
Providing Technical Support to Sustain Student
Motivation and Engagement in Software

Engineering Project-Based Learning
Ahmad D. Suleiman

Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY, USA
as4300@rit.edu

David Shepherd
Department of Computer Science

Louisiana State University
Baton Rouge, LA, USA

dshepherd@lsu.edu

Jan DeWaters
Institute for STEM Education

Clarkson University
Potsdam, NY, USA

jdewater@clarkson.edu

Yu Liu
Electrical & Computer Engineering

Clarkson University
Potsdam, NY, USA
yuliu@clarkson.edu

Daqing Hou
Software Engineering Department
Rochester Institute of Technology

Rochester, NY, USA
dqvse@rit.edu

Abstract—In this research paper, drawing from our own and
other computing instructors’ experiences, we highlight common
technical challenges faced by students in software engineering
project-based learning (PjBL) and discuss ways in which instruc-
tors can support students in overcoming them so that motivation
is summoned and sustained. Through the use of practical
hands-on experiences, PjBL has been shown to be an effective
educational approach. However, unless projects are intentionally
designed and supported in a way that summons and sustains
student motivation, PjBL is likely to fail to accomplish its goals.
Several factors influence student motivation, including their
perception of the project’s value and how confident they are in
their ability to complete it. In particular, challenges that students
perceive as insurmountable during the project can significantly
weaken their motivation. On the other hand, supporting students
to overcome such hurdles can be troublesome, especially in large
classes as well as classes with diversity in student backgrounds. To
generalize from our own experience, we designed a questionnaire
targeted at PjBL computing instructors that contained closed and
open questions on technical challenges faced by students, support
instructors provided to overcome such challenges, and lessons
learned by instructors on the effectiveness of their support. A
total of 47 responses were collected from instructors with diverse
backgrounds in terms of courses taught, students’ years, and class
sizes. We categorized the technical challenges into three main
categories, namely (a) challenges in installing and configuring
software packaged tools, (b) lack of prerequisite knowledge, and
(c) challenges while completing project tasks. In this paper, we
present the survey results from the three categories of technical
challenges, their frequencies, importance, and effective support
strategies instructors use to alleviate them.

Index Terms—Project based learning, Academic support, Sur-
vey, Technical Challenges

I. INTRODUCTION

Through the use of practical, hands-on experiences, project-
based learning (PjBL) has been shown to be an effective
educational approach that fosters a deeper understanding of

concepts in students, sharpens their critical thinking skills,
and develops real-world problem-solving ability [1]. However,
unless projects are intentionally designed and supported in a
way that summons and sustains student motivation, project-
based learning is likely to fail to accomplish the above-stated
goals [2].

Although there are undoubtedly individual differences, sev-
eral factors can affect students’ motivation [2], including
whether they believe the project is worthwhile, whether they
believe they have the competence to complete it, and whether
they focus on learning rather than on grades. In particular,
challenges that students perceive as insurmountable during the
project can significantly weaken their motivation. For instance,
students often invest more time than necessary in installing
and configuring packaged tools, programming languages, or
libraries necessary for a project [3], [4], which can lead to a
loss of interest and motivation even before commencing the
project.

On the other hand, supporting students to overcome such
challenges can be troublesome, especially in large classes,
online classes, distributed classes, and classes with diversity
in student backgrounds and preparedness, as well as diversity
in technologies to be used by students.

In this study, we generalize from our own experience and
that of other computing instructors by conducting a survey,
targeting computing instructors using PjBL in their software
engineering and other software-related courses. The survey
questionnaire contains closed and open-ended questions re-
garding (1) technical challenges faced by students, (2) support
instructors provided to overcome such challenges, and (3)
lessons learned by instructors on the effectiveness of their
support. We received a total of 47 responses from diverse
instructors in terms of courses, students’ years of study, and



class sizes. This study answers the following key research
questions:

• RQ1: What are the unnecessary technical challenges stu-
dents face in software engineering project-based learning,
their frequencies, and their relative importance?

• RQ2: What support strategies do instructors employ to
address these challenges and the effectiveness of such
support?

The rest of the paper is organized as follows: Section II
outlines the theoretical framework of this study. Section III
details the research methodology that guides this research;
We present the survey result in Section IV and Section V.
We discuss the results and highlight the study limitations in
Section VI. Finally, we conclude the study in VII.

II. THEORETICAL FRAMEWORK

Motivating students to learn in school is a topic of great
concern for educators today, and motivating students so that
they can succeed in school is one of the greatest challenges
of education [5]. Motivation is a complex part of human psy-
chology and behavior that influences how individuals choose
to invest their time, how much energy they exert in any given
task, how they think and feel about the task, and how long
they persist at the task [6]. Dörnyei [7] outlines three main
sources of motivation:

1) Course-specific components: the syllabus, teaching ma-
terial, teaching method, and learning tasks.

2) Teacher-specific components: the teacher’s behavior, per-
sonality, and teaching style.

3) Group-specific components: the dynamics of the learner
group.

According to Self-Determination Theory (STD) [8], indi-
viduals are motivated when their needs for autonomy, compe-
tence, and relatedness are met. In the context of PjBL, project-
specific components such as project autonomy, relevance,
ownership, complexity, and support can fulfill these needs.
For example, giving students control over their projects (auton-
omy) and ensuring they have the resources and support needed
to succeed (competence) can significantly enhance motivation.
Several other factors can affect students’ motivation in PjBL,
including whether they find the project interesting and valuable
and whether they focus on learning rather than on grades. In
particular, challenges that students perceive as insurmountable
during the project can significantly weaken their motivation
and confidence [2]. For example, students often invest more
time than necessary in installing and configuring packaged
tools, programming languages, or libraries necessary for a
project [3], [4], which can lead to a loss of interest and
motivation even before commencing the project. Another
example is when students encounter technical issues caused
by software bugs, which can undermine their confidence, sub-
sequently impacting their motivation. Similarly, if projects are
too difficult, students can easily lose confidence, as they expect
continuous success from one task to another. While projects
should ideally be challenging [9] for students, effective support

should be provided to ensure they can overcome difficulties
and maintain motivation.

However, supporting students to overcome such challenges
can be troublesome, particularly in large classes. Large classes
often suffer from reduced interaction, low engagement, lack
of individual attention, social isolation, and a sense of dis-
connection [10]. It becomes impractical for instructors to
monitor the success of every team project adequately. More-
over, large classes are not the only challenging environments
for supporting PjBL. Online classes [11], [12], distributed
classes [13], and classes with diverse student backgrounds,
preparedness levels, and technology proficiency all present
significant hurdles in providing effective support in PjBL.

Hence, instructors must be cognizant of these technical
challenges and be equipped with effective methodologies to
support students in overcoming them.

III. RESEARCH METHODOLOGY

In this section, we outline our research methodology, cov-
ering our questionnaire design, participant recruitment, data
analysis, and the class background information for the survey
responses.

A. Questionnaire Design

To address the research questions, we conducted an online
survey using the questionnaire shown in Table I (condensed
version). From our experiences with running PjBL courses in
computing, we carefully designed the questionnaire to capture
insights from computing instructors who used PjBL in their
courses.

To understand the class background information of the
instructors, we started by asking questions related to the type
of course they implement PjBL on, the student’s year of
study, and course class size. These background details will
help in contextualizing responses. We categorized the technical
challenges into the following three main categories:

• TC1 - Challenges students face while installing and
configuring software package & tools: Such as program-
ming language compilers, libraries, frameworks, web and
database servers, etc., including any existing projects that
require students to set up before starting their projects.

• TC2 - Lack of Prerequisite Knowledge: Some students
may lack the prior knowledge and experience needed to
undergo the project, such as not being familiar with a
programming language, version control systems like Git,
or project management tool like Jira.

• TC3 - Challenges while completing project tasks: Chal-
lenges students face along the way of completing project
tasks, such as debugging, design implementation, etc.

For each of the above categories, we ask instructors how
often their students face such challenges, the support they
provide, and the effectiveness of such support.

The questionnaire comprised a balanced mix of closed-
ended questions, aiming to quantify the frequency and per-
ceived importance of challenges and support strategies, and
open-ended questions, intended to capture nuanced qualitative



TABLE I
SHORTENED VERSION OF THE SURVEY QUESTIONNAIRE

Question Question Type
Class Background Information

In what course(s) do you apply PjBL? Enter course titles, e.g., Software Engineering Open
What is the size(s) of your PjBL course(s)? Multiple[Range]
What year are the students typically in? Multiple[Year]

Challenges in Installing and Configuring Software Packages & Tools
How often do your students encounter this challenge? Single[Scale]
Elaborate on the specific packaged tools used or any existing project that your course project was based on. Open
What support do you provide to students to overcome such challenges? Multiple+Open
What lessons do you want to share with us on the effectiveness of providing this technical support? Open

Lack of Prerequisite Knowledge
How often do your students encounter this challenge? Single[Scale]
Elaborate on the prerequisite knowledge needed for each project. Open
What support do you provide to students to overcome such challenges? Multiple+Open
What lessons do you want to share with us on the effectiveness of providing this technical support? Open

Challenges while completing project tasks
How often do your students encounter this challenge? Single[Scale]
Elaborate on the particular challenges your students encounter when completing project tasks Open
What support do you provide to students to overcome such challenges? Multiple+Open
What lessons do you want to share with us on the effectiveness of providing this technical support? Open

Other Challenges
Describe the additional technical challenges your students face that are not captured by this questionnaire, the support you
provide to students to overcome such challenges, and the lessons you want to share with us on the effectiveness of such support.

Open

Rank the relative importance of the three categories of challenges in determining students’ success in PjBL. Open

perspectives and experiences. The questionnaire was designed
and collected using Google Forms.

B. Participant Recruitment

The study undergoes an Institutional Review Board (IRB)
review process for approval, ensuring that ethical consider-
ations are thoroughly evaluated and upheld throughout. The
questionnaire was targeted at computing instructors who use
projects in their software-related courses. We used two meth-
ods of participant recruitment, which are:

• Direct email invitation to instructors, with multiple re-
minders. The email list comprises of 313 email addresses,
obtained from research papers in our ongoing work on
systematic review on computing PjBL [14]. The review
gathered 184 computing-related PjBL papers from ACM
Digital Library, IEEE Xplore, EI Compendex, and Sco-
pus, without any period limit. About 50 of the emails
bounced back.

• Utilizing online social media platforms like X (formerly
Twitter) and Reddit.

Responses are anonymous and informed consent was obtained
from all participants. Measures were implemented to safeguard
the confidentiality and privacy of their responses.

C. Data Analysis

We received a total of 47 valid responses. The majority of
these responses were due to the direct email invitation. The
responses were exported to Google Sheets for data analysis
and synthesis. A few instructors also reply to the invitation
email, expressing their support for this research and interest
in knowing more about the research outcomes.

Quantitative responses exported from Google Sheets were
plotted on appropriate charts and tables. Additionally, we also
extracted relevant and interesting themes from the qualitative
responses, which are presented in the study results.

D. Class Background Information of Responses

Below is the result of the collected background information
from the survey:

1) Type of Courses: Software engineering courses domi-
nate the courses in the survey, which is our primary target.
However, we got responses from other diverse computing
courses, as shown in Table II. Introductory and advanced
programming courses are also commonly reported. Responses
also include software life-cycle courses such as software
requirement and analysis, software architecture and design,
modeling, software development, software quality assurance,
security, and software evolution. Domain-specific courses are
also reported, such as machine learning, cloud computing,
high-performance computing (HPC), and data science. Other
reported computing courses include information systems, re-
search projects, software systems, remote teamwork, design
thinking, formal methods, telematics applications and services,
data analytics, industry experience, thesis seminars, studio
projects, and programming language processors.

2) Student’s Year of Study: The courses involve students
from diverse study years, ranging from freshmen to graduate
students, as shown in Figure 1. Students in their late academic
years, such as juniors and seniors, tend to be more involved in
PjBL initiatives. This increased involvement may be attributed
to several factors, including a deeper understanding of course
material and higher proficiency in technical skills due to prior
programming experience from earlier courses. While it’s less



TABLE II
DISTRIBUTION OF RESPONSES BY PJBL COURSE

PjBL Course Count a

Software Engineering 22
Introductory/Advance Programming 7
Software Development 3
Cloud Computing 2
Data Science 2
Security 2
Software Quality Assurance 2
Software Requirements Analysis and Specification 1
Software Architecture and Design 1
Software Evolution Project 1
Machine Learning 1
High Performance Computing 1
Modeling 1
Mobile Applications Development 1
User Interface Design 1
Other Computing Courses 14
aNote: The count may not sum to the specified total of 47 because some
responses report multiple PjBL courses

common for first-year students to participate in PjBL, it’s
not unheard of. Instructors incorporate PjBL into their intro-
ductory courses to introduce students to real-world problem-
solving, teamwork, and critical thinking skills. However, the
complexity and scope of projects assigned may be more
limited compared to those assigned to upper-level students.
Additionally, first-year students may require more support than
other senior students due to their lack of experience.

3) Class Size: There are four class size ranges available
on the questionnaire: under 25, between 25 and 40, between
41 and 60, and over 60. In computing courses, a class size
below 25 can be considered small. Smaller class sizes facilitate
better opportunities for students to ask questions, more focused
instruction, and more effective assignment feedback. Class
sizes between 25 and 40 are somewhat manageable. As the
class size goes above 40, the class becomes harder to manage
and more difficult to support. As illustrated in Figure 2, most
of the class size of responses falls under the chaotic category.

Fig. 1. Distribution of Responses by Student’s Year of Study

Fig. 2. Distribution of Responses by Class Size

IV. TECHNICAL CHALLENGES

In this section, we will then present the results of the
three technical challenge categories students face and their
frequencies. Subsequently, we present the relative importance
of these categories in determining student success. Finally, we
will discuss other reported technical challenges.

A. Frequency of Technical Challenge Categories

In all three categories of technical challenges, we asked
instructors how often their students faced them. There were
three selection options: never/rarely, occasionally/sometimes,
or many/often. The result shows that all three challenges have
a frequency of occasionally or often, as shown in Fig. 3.

B. TC1: Installation and Configuration

Challenges students face while installing and configuring
software packages & tools are the most reported, with a
“many/often” frequency (about 60%). Instructors reported
students having challenges with various software tools such
as web servers, compilers, and interpreters for programming
languages like Python and Java, integrated development en-
vironments (IDEs) like Eclipse, PyCharm, and Visual Studio,
programming language frameworks like Django and NodeJS,

Fig. 3. How Often Each Technical Challenge Category is Faced by Students



and database management systems (DBMS) like MySQL and
PostgreSQL. Other tools also reported include Git, Docker,
and Kubernetes. The frequency of challenges with these tools
can vary depending on various aspects. For example, projects
that use a variety of tools are likely to have more challenges.
Diversity in operating systems students use and software
versions are other factors. Installation instructions provided by
instructors are likely not to work for all operating systems and
software versions. These issues can be even more problematic
to support when students are open to selecting any technology
stack, making it difficult for instructors to prepare ahead. Some
instructors also note that it is challenging to get students to
use the provided materials first because many try to help
themselves by searching online or using ChatGPT, Stack Over-
flow, Google Search, and other resources before consulting the
materials. A small number of responses (7) reported rarely
having installation and configuration challenges. All of these
responses pointed out that their project tools do not need
installation, a straightforward installation process, or that they
provide effective installation scripts and virtual machines.

C. TC2: Prerequisite Knowledge

Fewer instructors report a lack of prerequisite knowledge
than in the other two categories. Occasionally, students lack
the knowledge or skills needed to perform the course project.
Instructors have reported a lack of prerequisite knowledge
like programming basics, object-oriented design, Git/GitHub
knowledge, SQL and databases, programming language syn-
tax, software testing, and user interface design. These chal-
lenges tend to be more common in senior-level courses, such
as capstone projects. This might be because these courses
aim to integrate students’ prior knowledge into a software
engineering project. These challenges can also be prevalent in
courses that involve more students from diverse backgrounds.

D. TC3: Project Tasks

Challenges while performing project tasks are also mostly
reported with “many/often” frequency. Often, students face
several challenges as they complete the assigned project tasks.
Instructors have reported challenges while performing tasks
such as code debugging, writing test cases, lack of proper
project design, code implementation, version control issues,
deployment, database issues, and documentation. Students
can be easily frustrated by errors, which often take them
longer than necessary to solve. Students sometimes also do
not carefully read and evaluate error messages. An instructor
also pointed out the issue with “feature creeping” [15], where
students tend to think more about fancy features than the actual
working of the project. Another issue with students arises
from their desire to focus solely on generating code, often
overlooking the necessary design and analysis efforts.

E. Importance Ranking of Technical Challenge Categories

We also asked instructors to rank the relative importance
of overcoming the three categories in determining student’s
success. The result shows that challenges while performing

Fig. 4. Relative Importance of the Technical Challenge Categories.
Note: The responses may not sum to the specified total of 47 because of
missing votes

project tasks (TC3) are considered the most important, as
shown in Fig. 4. These types of challenges are highly un-
predictable, especially in open-ended and greenfield projects,
where students have numerous solution paths to explore. The
variability inherent in such projects can lead to a wide range
of technical hurdles that students may encounter, making it
difficult for instructors to anticipate and effectively support
every potential issue.

Despite being the most frequently reported, challenges in
installation and configuration (TC1) are generally perceived
as the least important by most instructors. However, there are
some varying opinions, with a few instructors considering it
the most important. These opinions usually come from courses
where the installation and configuration of tools are part of the
learning objectives.

F. Other Reported Challenges

We asked instructors to describe any additional technical
challenges their students face that are not covered by our three
categories. The responses consist of a range of challenges,
some of which are technical in nature and others non-technical.

Instructors pointed out that students lack skills on how
to organize and manage software engineering team projects.
Another issue arises from a lack of design thinking and
exploration of solution space. Instructors also highlighted
difficulties regarding getting information about the project
domain, especially during requirements gathering from an
external client or the teacher. Students often lack business
etiquette when talking to clients. Matching project require-
ments and stakeholder needs is also an issue for students.
Students struggle with critiquing their own work and con-
ducting thorough validation and verification processes. Writing
appropriate documentation for system design, architecture, and
implementation is another common challenge. For projects that
require special equipment, the availability of this equipment
is a challenge, especially if they have to share it with other
project groups. Presentation and demonstration of project
artifacts have also been reported. With recent advancements



in generative AI [16], an instructor reported that students are
relying on ChatGPT to do all their project work.

While this study mainly focuses on technical challenges, in-
structors have pointed out several non-technical challenges that
can directly or indirectly contribute to students’ inability to
succeed. For example, some instructors mention that students
struggle with time management. They tend to only work on
their project close to the deadline, giving them little to no time
to effectively design, implement, test, and debug their work.
Students also do not contact instructors, making it impossible
for instructors to be aware of the needed support. Team
dynamics are another issue, starting with team formation and
project allocation. Students struggle to effectively collaborate
due to personality clashes, differences in expertise, and a lack
of discipline. Communication and scheduling are other major
issues, especially in online classes, where students struggle
to communicate with their team members effectively and
agree on a common time for project meetings. Some students
dominate project tasks, excluding others from meaningfully
participating in the project, while others disappear (free riders)
or fail to contribute, leaving their teammates with additional
work. Keeping track of teams with neurodivergent and slow
students is also a reported issue.

V. PROVIDED SUPPORT

We asked instructors what support they provide to students
in each of the three technical challenge categories and the
effectiveness of such support. In each case, we listed some
support strategies based on experience for instructors to select
from. In addition, an open-ended response can be provided.
Subsequently, we will highlight the effectiveness of these
provided supports and highlight other support strategies from
the open-ended responses in each category.

A. Supporting TC1: Installation and Configuration

To alleviate challenges while installing and configuring
packaged tools, instructors need to provide appropriate sup-
port. Table III lists the initial support strategies and the number
of respondents who implement them in their PjBL courses.

1) Online Resources: Providing links to online resources,
like written tutorials and videos, is the most common strategy.
These resources usually have detailed instructions on how to

TABLE III
SUPPORT PROVIDED TO OVERCOME CHALLENGES DURING

INSTALLATION AND CONFIGURATION OF PROJECT TOOLS OR EXISTING
PROJECT

Support Provided Count a

Share online resources such as written or video tutorials 32
A teaching assistant offers support to students 29
Peer support from fellow students 27
A dedicated laboratory activity to support students 15
Provide a computer with all the necessary software installed 9
Use a container environment such as Docker 9
Share a Virtual Machine with all the necessary software 6
aNote: The count may not sum to the specified total of 47 because some
responses report multiple support strategies

properly install and configure the necessary packaged tools.
This strategy is less challenging for instructors as it does
not require their active participation. On the other hand, they
might not always work for all students with different operating
systems and software versions. Instructors need to update them
in a timely manner.

2) Teaching Assistants: The next common support strategy
is having a teaching assistant offer support to students in
troubleshooting installations. This can be during office hours,
via email, or through other communication channels such
as Slack and Zoom. This approach can be relatively costly,
especially for large classes, considering that teaching assistants
have to be hired and trained to support such challenges.

3) Peer Support: Peer support [17] is another common
strategy instructors employ, where students get assistance
and guidance from their peers who may have successfully
completed the necessary installation and configuration of tools.
In a team, one or two people (especially the team leader) will
typically complete the installation successfully and then assist
other members. Peer support fosters collaboration, knowledge
sharing, and a sense of community among students. This
approach is hardly costly, as instructors just need to encourage
students and provide appropriate means of communication for
students to share common challenges with specific tools.

4) Laboratory Activity: While not as common compared
to the first three strategies, designing a dedicated laboratory
activity for the installation and configuration of packaged tools
is effective for instructors. It allows students to complete their
installation within the laboratory period and get immediate
support from the facilitators (i.e., the instructor and/or teaching
assistant). However, because of schedules, instructors do not
necessarily have the time to conduct such activities during
class time, especially in projects with several technology
stacks that might require multiple laboratory sessions.

5) Computer with Tools Installed: Some instructors provide
a computer with all the necessary software packages and
tools installed. While this approach eliminates installation
challenges, it prevents students from having a crucial learning
opportunity in configuring these tools. Moreover, the devices
might not always be fully available to students, either within
the project time frame or after. Cost is also an issue because
not every institution can afford to provide good computer
devices to a large number of students for their project work.

6) Virtual Machines: Virtual machines (VMs) are some-
times provided to students, containing all the necessary soft-
ware packages and tools installed. This is cost-effective com-
pared to computer devices. However, students still need to
install and configure virtualization software, such as Oracle
VirtualBox. Using VMs consumes a lot of CPU and memory
resources. Not all students with computer devices can seam-
lessly use them. Sharing the prebuilt VM image can also be a
challenge, as it can have a very large storage size.

7) Container Environments like Docker: Providing Docker
container environments with prebuilt images is very similar to
virtual machines. It is a modern approach and very commonly
used in the software engineering industry. They usually take up



less computer resources compared to VMs and can be easily
shared with students. However, as one of the responses noted,
installation is part of the learning process, and merely offering
Docker containers would miss that opportunity.

8) External Support: In the open-ended sections, some
instructors mentioned they have industry mentors, project
customers, or other faculties that help students with installation
and configuration issues. Considering their extensive experi-
ence with these tools, they can be of great assistance. However,
a lot of student projects do not involve outside partners, mostly
because there are not enough mentors or clients who are
willing to help out.

9) Other Support Strategies: Several other support strate-
gies were reported in the open-ended section. Instructors give
direct support during office hours, during dedicated class time,
on online platforms like Discord and Slack, and a special tuto-
rial for installation tasks. For the simple programming and ini-
tial exercises, some instructors developed a browser-based tool
that allowed the students to get started with programming right
away. Some instructors recommend open-source tools with
free student licenses, such as AWS Cloud and Google Cloud,
which help bypass the installation and configuration problems.
Another instructor provides comprehensive platform-sensitive
installer scripts to students, which took many years to learn
all of the issues that can go wrong and program the installer
scripts to handle them.

B. Supporting TC2: Prerequisite Knowledge

Instructors need to provide appropriate support to students
who lack the necessary prerequisite knowledge. Table IV lists
the initial support strategies and the number of respondents
who implement them in their PjBL courses.

1) Online Resources: Providing links to online resources,
like written tutorials and videos, is also the most common
strategy when supporting students with a lack of prerequisite
knowledge. Some instructors developed a set of video lessons
themselves. While this approach relies on students’ ability
to self-learn from these resources, it does save them time in
finding them themselves.

2) Peer Support: Peer support is another common support
strategy in overcoming a lack of prerequisite knowledge.
Instructors ask and encourage students to get help from team
members and organize peer support within the project team’s

TABLE IV
SUPPORT PROVIDED TO OVERCOME LACK OF PREREQUISITE

KNOWLEDGE

Support Provided Count a

Online resources such as written or video tutorials 32
Peer support from fellow students 29
A teaching assistant offers support to students 22
Give additional lectures on prerequisite knowledge 19
A dedicated laboratory activity is designed 10
Ask students to drop the class and take a prerequisite course 2
aNote: The count may not sum to the specified total of 47 because some
responses report multiple support strategy

scope. Some instructors believe that most such prerequisites
seem very dramatic at first but can quickly be overcome
through teamwork with more knowledgeable students. For this
reason, it is recommended to manually balance project groups
when they are formed, perhaps by using a technical survey at
the start of the course.

3) Teaching Assistants: Teaching assistants can always be
used in addition to other support strategies to support students
with a lack of prerequisite knowledge. Graduate teaching
assistants or students who have been through the project
previously are well-positioned to provide support within the
limits of their own expertise while not doing the project in their
place. As previously indicated, this approach can be rather
expensive because teaching assistants must be employed and
trained to support such challenges.

4) Lecture on Prerequisite Knowledge: Creating additional
class lectures on prerequisite knowledge is another method of
supporting students with a lack of prerequisite knowledge. It
is also a way to remind students of what is required of them
and help them refresh their prior knowledge before or during
the project activities. With a tight lecture schedule, instructors
need to structure the semesters so that students go into the
project with a strong baseline of capability. It seems reasonable
to ensure that before students are required to apply concepts,
skills, and tools to the project, they have been introduced and
given practice with them.

5) Laboratory Activity: Some instructors also design ded-
icated laboratory activities for students to practice required
project knowledge. To make sure everyone has the necessary
basics, some will make the laboratory session mandatory for
all students. Some instructors give students the opportunity
to attend one or two workshop-style laboratory activities to
gain a better understanding of the requirements process before
beginning the project.

6) Drop class and Take Prerequisite Courses: In rare
cases (2), instructors suggest that students lacking prerequisite
knowledge should drop the class and take a prerequisite course
instead. To avoid these, instructors need to fix prerequisite
classes so we can ensure they have the right exposure and
enforce these prerequisites prior to course enrollment. How-
ever, students may have undergone the prerequisite course but
may still face challenges. One respondent recommended the
implementation of a ramp-up coding pre-assignment at the
beginning of the semester, in which students must pass or drop
the course. This serves as an effective screening mechanism,
despite rare instances of failure.

7) Other Support Strategies: Several other support strate-
gies have been reported by instructors in the open-ended
section, such as industry workshops, mentorship from an open-
source community, office hours, in-hand tutorials, and support
from other faculty members. Extra time can sometimes be
given to students with these knowledge gaps. One respondent
mentioned it could be beneficial to have project goals that are
flexible and can be adjusted based on the student’s experience.
This may introduce inconsistency or uncertainty in the learning
experience, and while it may create a feeling of unfairness



among students it does promote equity by providing accommo-
dations for those who need them. Another instructor conducts
a short quiz or a hands-on coding activity to assess the entire
class’s capability and then plans tutorials to incrementally
bring them up to speed with the project. Assignments are
another strategy employed by instructors. As reported by
one of the respondents, some students complain about the
intensive six weekly assignments used, but many more find
the assignments helpful in completing the project.

C. Supporting TC3: Project Tasks

Instructors need to provide appropriate support to students
during project tasks. Table V lists the initial support strategies
and the number of respondents who implement them in their
PjBL courses.

1) Peer Support: Peer support is one of the most commonly
used strategies to overcome project task challenges. One of
the purposes of the PjBL course is to encourage students to
cooperate with their team members by building a collaborative
environment from the start of class so students can help each
other. Instructors use collaborative tools like Slack to promote
peer support and ask students to use the search tool to check if
other teams have encountered similar issues. Providing other
central collaboration sites for posting questions and reading
answers also helps. Having students do troubleshooting to-
gether shows them how real-world problems are solved, even
if they don’t have the required experience themselves yet. A
lot of instructors believe peer support is often helpful.

2) Teaching Assistants: Teaching assistants are also com-
monly used to support students. Some even pair a teaching
assistant with each team to provide constant technical support.
Office hours or consultation times are usually arranged so
students can contact the necessary channel for assistance. It is
usually better if the teaching assistants are graduate students.
However, senior students or students who excelled in the
course previously as teaching assistants can also be used to
offer support. Teaching assistants’ competence and enthusiasm
for supporting students matter a lot. Again, this approach
can be rather expensive, because teaching assistants must be
employed and trained to support such challenges.

3) Solution Hints and Technical Support: Instructors also
support students with comprehensive hints to problems that
get them’ stuck, either on-demand or timely. Instructors prefer
giving hints to students at this stage and letting them figure
out the answers to their problems. Also, because there are no

TABLE V
SUPPORT PROVIDED TO OVERCOME CHALLENGES WHILE COMPLETING

PROJECT TASKS

Support Provided Count a

Peer support from fellow students 28
A teaching assistant offers support to students 28
Provide solution hints and other technical support to students 26
Online resources such as written or video tutorials 21
aNote: The count may not sum to the specified total of 47 because some
responses report multiple support strategy

perfect answers for a design or implementation, some believe
it is best to give broad directions and let them choose their
options. As pointed out by one of the respondents, providing
solution hints can be tricky. If you say too much, you give
away the solution, and staying vague often increases the
confusion rather than helping to overcome it.

4) Online Resources: Online resources are not as widely
used to support project tasks when compared to the other
two challenges. Providing links to online resources may not
always address the specific problem a student is encountering.
However, clarifying that these resources serve as a starting
point and encouraging students to explore further on their own
can empower them to find tailored solutions.

5) Managed Communication: Challenges with project tasks
often arise due to poor time management by students. From
the open-ended sections, instructors highlight that students
don’t contact them on time, and sometimes they even need to
do some follow-up. Instructors use managed communication
techniques as a result, such as holding weekly or biweekly
meetings, reports, presentations, or reviews. Another helpful
approach recommended by one respondent is organizing the
project into clearly defined milestones and ensuring that each
is checked off the list before moving on to the next. We believe
that this can be an important strategy, whose effectiveness can
be explored in future research. Regular reminders of project
schedules and expectations can also be helpful.

6) Other Support Strategies: Instructors have also used
other support activities, like giving students special training,
industry workshops on design and best practices, and do-
ing special laboratory activities on design comparison and
criticism. Some also provide code templates to students and
encourage the use of generative AI tools like ChatGPT.

VI. DISCUSSION AND LIMITATION

While the surveyed instructors have identified other chal-
lenges in PjBL, we believe that the three technical challenge
categories we proposed represent the major ones, with the
remaining being non-technical in nature.

Various strategies are available to help students overcome
challenges in installing and configuring software packages and
tools. Supporting students with installation problems early on
saves time and allows them to focus on the project tasks, which
are the true learning objectives. When stuck on the setup step,
they can be demotivated for a substantial part of the course.
It can be effective to make the students aware ahead of time
of what technical stacks they need in the upcoming semester,
which will provide them with sufficient time to self-study these
packages and environments before the project.

While some advocate for direct support to alleviate the lack
of prerequisite knowledge and challenges during project tasks,
others prefer to encourage students to self-support themselves,
expecting a high level of autonomy and promoting self-
directed learning, especially given the abundance of tutorials
available on the Internet. Through this self-support process,
students are expected to learn a lot, gaining a deeper under-
standing of the practical applications of theoretical concepts.



When students take responsibility for solving their problems,
they become more effective learners. Initial struggles are part
of the learning process, and by the end of the semester, they
will overcome them. Instructors should refine the project goals
based on the difficulties encountered by the teams, ensuring
the project is appropriately scoped for the available time and
the students’ experience levels.

We noted two limitations in our study design. First, the
survey questionnaire was iteratively designed based on the
authors’ experiences, which may have introduced bias. Future
research should follow established processes from the litera-
ture for formulating, refining, and selecting survey questions.
Second, while the 47 responses provided initial insights, a
larger sample size is necessary to generalize the findings more
effectively and perform statistical analysis.

VII. CONCLUSION

In conclusion, this study gives insight into the critical
technical challenges encountered by students in PjBL en-
vironments and the strategies employed by instructors to
alleviate them. The theoretical framework emphasizes the
multifaceted nature of motivation in PjBL, highlighting the
significance of project-specific components alongside course,
teacher, and group-specific factors. Technical challenges, such
as installation and configuration issues, a lack of prerequisite
knowledge, and project tasks, significantly impact student
motivation and confidence. Effective support strategies are
essential to mitigate these challenges, particularly in large
classes and other diverse learning environments. Through a
comprehensive research methodology involving a survey of
computing instructors, this study provides the following two
key contributions:

• Categorizing technical challenges faced by students in
computing PjBL courses, their frequencies, and the rela-
tive importance of overcoming these challenges in deter-
mining students’ success.

• Highlighting effective strategies to support students in
overcoming such technical challenges based on feedback
and insights gleaned from a survey of PjBL practitioners,
and the effectiveness of such support.

Supporting students demands a lot of time, and all strate-
gies of support have their benefits and limitations. Some
surveyed instructors believe that it is important to rely on
the drive/eagerness of individual students to solve their own
issues. They also believe that students will eventually figure it
out, which will make them better software engineers. Others
believe that many students easily get stuck and cannot move
forward if they are not offered support. Emotional support
and managing students’ expectations also matter a lot. It
is important to get feedback from the students about the
difficulties regarding project activities. Soft issues such as time
management also play a big factor and can often be harder to
resolve than technical ones.

Onward, instructors must remain aware of these technical
challenges and be equipped with effective strategies to support
students in alleviating them. Instructors need to give students
their time, expect them to contribute, and provide time to steer
student efforts if they drift. Instructors also need to decide what
is best for them based on the course learning objectives and
specific learning environment. This will ultimately enhance
the success of PjBL initiatives in software engineering and
computing education in general.

ACKNOWLEDGMENT

This work was partially supported by the U.S. National Sci-
ence Foundation Awards DUE-2111318 and DUE-2111294.

REFERENCES

[1] S. Bell, “Project-based learning for the 21st century: Skills for the
future,” The clearing house, vol. 83, no. 2, pp. 39–43, 2010.

[2] P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik, M. Guzdial,
and A. Palincsar, “Motivating project-based learning: Sustaining the
doing, supporting the learning,” Educational psychologist, vol. 26, no.
3-4, pp. 369–398, 1991.

[3] D. Davenport, “Experience using a project-based approach in an intro-
ductory programming course,” IEEE Transactions on Education, vol. 43,
no. 4, pp. 443–448, 2000.

[4] A. Adorjan and M. Solari, “Software engineering project-based learning
in an up-to-date technological context,” in 2021 IEEE URUCON. IEEE,
2021, pp. 486–491.

[5] J. Filgona, J. Sakiyo, D. Gwany, and A. Okoronka, “Motivation in
learning,” Asian Journal of Education and social studies, vol. 10, no. 4,
pp. 16–37, 2020.

[6] R. Ramli, “The effect of learning motivation on student’s productive
competencies in vocational high school, west sumatra,” International
Journal of Asian Social Science, vol. 4, no. 6, pp. 722–732, 2014.

[7] Z. Dörnyei and E. Ushioda, Teaching and researching motivation.
Routledge, 2021.

[8] R. M. Ryan and E. L. Deci, “Self-determination theory and the fa-
cilitation of intrinsic motivation, social development, and well-being.”
American psychologist, vol. 55, no. 1, p. 68, 2000.

[9] S. Aldabbus, “Project-based learning: Implementation & challenges,”
International Journal of Education, Learning and Development, vol. 6,
no. 3, pp. 71–79, 2018.

[10] C. Mulryan-Kyne, “Teaching large classes at college and university level:
Challenges and opportunities,” Teaching in higher education, vol. 15,
no. 2, pp. 175–185, 2010.

[11] M. Adil, I. Fronza, and C. Pahl, “Software design and modeling practices
in an online software engineering course: The learners’ perspective.” in
CSEDU (2), 2022, pp. 667–674.

[12] S. Motogna, D. M. Suciu, and A.-J. Molnar, “Exploring student
challenges in an online project-based course,” in Proceedings of the
First International Workshop on Designing and Running Project-Based
Courses in Software Engineering Education, 2022, pp. 10–14. [Online].
Available: https://doi.org/10.1145/3524487.3527361

[13] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE
software, vol. 18, no. 2, pp. 16–20, 2001.

[14] Anonymous, “Systematic literature review on project-based learning in
computing education,” 2024, unpublished Manuscript.

[15] B. Elliott, “Anything is possible: Managing feature creep in an in-
novation rich environment,” in 2007 IEEE International Engineering
Management Conference. IEEE, 2007, pp. 304–307.

[16] S. Bengesi, H. El-Sayed, M. K. Sarker, Y. Houkpati, J. Irungu, and
T. Oladunni, “Advancements in generative ai: A comprehensive review
of gans, gpt, autoencoders, diffusion model, and transformers.” IEEE
Access, 2024.

[17] S. Mead, D. Hilton, and L. Curtis, “Peer support: a theoretical perspec-
tive.” Psychiatric rehabilitation journal, vol. 25, no. 2, p. 134, 2001.


