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Abstract. This paper focuses on systems of nonlinear second-order stochastic differential equa-
tions with multiscales. The motivation for our study stems from mathematical physics and statistical
mechanics, for example, Langevin dynamics and stochastic acceleration in a random environment.
Our aim is to carry out asymptotic analysis to establish large deviations principles. Our focus is on
obtaining the desired results for systems under weaker conditions. When the fast-varying process
is a diffusion, neither Lipschitz continuity nor linear growth needs to be assumed. Our approach is
based on combinations of the intuition from Smoluchowski—-Kramers approximation and the methods
initiated in [A. A. Puhalskii, Ann. Probab., 44 (2016), pp. 3111-3186] relying on the concepts of rel-
atively large deviations compactness and the identification of rate functions. When the fast-varying
process is under a general setup with no specified structure, the paper establishes the large deviations
principle of the underlying system under the assumption on the local large deviations principles of
the corresponding first-order system.
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1. Introduction. In recent years, much effort has been devoted to analyzing
stochastic systems arising from a wide variety of fields. For example, an averaging
principle for complex Ginzburg-Landau equations was studied by Gao [17], homoge-
nization in ergodic media was treated in Chen et al. [3], homogenization of stochastic
convection-diffusion equations was studied in Bessaih, Efendiev, and Maris [1], mean
field limits of particle-based stochastic systems were obtained in Isaacson, Ma, and
Spiliopoulos [21], and Freidlin—-Wentzell type large deviations results were obtained
for multiscale stochastic partial differential equations in Hong, Li, and Liu [20]. One
of the salient features in many applications is time-scale separation. For example,
diffusions with fast and slow motions were treated in Khasminskii and Yin [24]. Al-
though the first-order stochastic differential equations (SDEs) have been analyzed
extensively, properties associated with the second-order SDEs are less well known. In
applications, for example, in numerous systems in mathematical physics and statis-
tical mechanics, such equations naturally arise; see, for example, the work of Kesten
and Papanicolaou in [22, 23].

Because of this need, this paper is devoted to fully nonlinear second-order sto-
chastic systems. We begin with the study of a class of second-order SDEs
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e2X5 = Ff (X5, YE) — N (X5, Y9)XE, X§=15€eR?, X§=a5€R?,

U0 Vo = Ly + Sos (e v, vi=u e
£ va

where £ > 0 is a small parameter. Equation (1.1) is a multiscale and fully nonlinear
system. In the above, for each ¢ > 0, Ff(z,y) : Ry x R? x Rl — RY) X5(z,y) :
Ry x R x RN — R, bi(x,y) : Ry x R x RE — RY 0f(z,y) : Ry x RY x R — RIX™
are measurable functions of their arguments (¢,z,y), and W; is an m-dimensional
vector-valued standard Brownian motion with W; being its formal derivative. For
each € > 0, the weak solution of (1.1) is defined in the usual way, i.e., there exist
a suitable probability space and an adapted Brownian motion W; such that there
are adapted processes (X¢,Y¢) satisfying the system of stochastic integral equations
corresponding to (1.1) almost surely.

Equations given in (1.1) may be considered as a singular perturbation problem
with multiple time scales. Intuitively, as €2 — 0 in the first equation of (1.1), it
can be approximated by a first-order equation, whereas Y in the second equation of
(1.1) can be viewed as a fast-varying process, as it will be referred to in what follows.
Further heuristic reasoning can be found in the beginning of section 2.1.1.

Our main effort is devoted to obtaining asymptotic properties of the underlying
systems. Under mild conditions, we establish the large deviations principle (LDP) for
the family of coupled processes {(X¢, u°)}eso with u€ being the occupation measures
of the fast-varying process Y¢. Neither Lipschitz continuity nor a growth condition
of F€ b%,0°¢ is assumed. From the LDP of such couples, we can obtain averaging and
LDPs for {X¢}.50. In addition, continuing our investigation, in this paper, we further
reveal asymptotic properties without assuming specific structure of the fast process.
In lieu of (1.1), we consider

(1.2) X7 = FY (X7, €7) — M (X7, €0) X7,

with &; being a process without a specified structure. We refer to &; as a fast-varying
process, as we do for Y, in the previous paragraph.

Why do we care about the second-order stochastic systems? This is because
numerous problems in physics, statistical mechanics, engineering, etc., involve such
systems. In fact, in the study of ODEs, we encountered many second-order equa-
tions, including Airy’s equations, Duffing equations, Liénard equations, Rayleigh’s
equations, etc. They have been used in a wide variety of applications. Adding sto-
chastic perturbations to these equations leads to second-order SDEs of various kinds.

To further illustrate, consider the motions of a net of particles in a net of random
force fields, described by Newton’s law as i.(t) = F.(t,w,z-(t), ¥c(t), xc(t)), where
x(t) denotes the location of the particles at time ¢. The F; denotes the random force
fields depending on time ¢, sample point w, the particle’s locations x., the particle’s
velocities #., and the random environments y.(t) interacting with the system. To
begin, turbulent diffusions and stochastic accelerations were considered by Kesten
and Papanicolaou in [22, 23] under suitable conditions. Here we focus on the motions
of particles, in which the Reynolds number (see e.g., [35] for a definition) is very small
so that inertial effects are negligible compared to the damping force by assuming that

Bt 22(6),22(0) e (1) = Bt (), o)) — 222X

i (t).

Now, by scaling X¢ :=x.(t/e) and &§ := x(t/¢), the system can be rewritten as (1.2).
One of the examples of x.(¢) is a diffusion process. In this case, &f is a fast diffusion
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process that is fully coupled with the system, which leads to the system of equations
in (1.1). Another motivation is from the averaging and large deviations principles
for systems of SDEs. System (1.1) can be viewed as the second-order version of
the problem considered in [27] and references therein. It should be mentioned that
there has been much recent interest in studying stochastic second-order systems in
random environments. For example, the work [39] studied stochastic Hamiltonian
systems living in random environments with the random environment represented by
a random switching process.

Because ¢ is a small parameter, as ¢ is getting smaller and smaller, we expect
the system to display certain limit behavior, in which the averaging principle plays
an important role in studying heterogeneity that often occurs in physics as well as
in biology, economics, queuing theory, and game theory, among others; see, e.g., [14].
Typically, analyzing and simulating heterogeneous models is much more challenging
than the corresponding homogeneous models, in which the heterogeneous property is
replaced by its average value. The averaging principle for a system guarantees the
validity of this replacement. On the other hand, the LDPs (see [11, 10]), characterizing
quantitatively the rare events, play an important role in many areas with a wide range
of applications. To mention just a few, they include equilibrium and nonequilibrium
statistical mechanics, multifractals, and thermodynamics of chaotic systems [36]. By
establishing the LDPs for system (1.1) and (1.2), we provide an insight into the
motions of (small) particles in random force fields, which is heterogeneous. Further,
the heterogeneity is allowed to interact with the system. Not only will this work
illustrate that averaging of the heterogeneity works in this case, but it will also provide
the picture of the dynamics around the averaged system.

From the point of view of development of homogenization and large deviations,
much effort has been devoted to studying averaging and LDPs of the first-order differ-
ential equations under a random environment (given by diffusion process, switching
process, wideband noise, etc.) in the setting of fast-slow systems. Such problems
have been addressed in [18, 25, 26, 40, 41, 42, 43] under certain settings in which the
fast process is often not fully coupled with the slow system. Very recently, the ques-
tion for the fully coupled system was addressed in [34]. Some other related studies
can be found in [2, 19, 27]. Reference [26] considered systems under wideband noise;
[33] studied systems under rough path noise; [7, 8, 9] investigated systems in infinite
dimensional settings. In contrast to the systems considered in the aforementioned
works with emphases on first-order equations, we consider systems of second-order
differential equations of the forms (1.1) and (1.2). From a statistical physics point of
view, there were some works treating the stochastic accelerations and the Langevin
equations such as [4, 15, 40] for the study of Smoluchowski—Kramers approximation,
[6] for the LDPs, [5] for the MDPs (moderate deviations principles) in the absence of
the random environment, and [31, 32] for the LDPs of Langevin systems with random
environment under certain specific settings. To the best of our knowledge, this paper
is one of the first works to address the problem of averaging and large deviations
principles for second-order equations in a random environment that are fully coupled.
We establish the LDPs under mild and natural conditions.

To establish the desired LDPs for system (1.1), in light of the work of [27, 34] on
the first-order SDEs, we first establish the LDP for the family of coupled processes
{(X¢, 1) }es0, where p€ is defined as a random occupation measure of Y¢. Then,
the LDPs for the families {X¢}.5q and/or {u°}.~0 can be handled by some standard
projection techniques in the large deviations theory. Without assuming any regularity
of F¢, b°, and o¢, we could not establish a “good” connection between the solution of
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the second-order equations and the corresponding first-order equations. Our approach
is based on a combination of the approach of Puhalskii in [34] for the first-order cou-
pled system (namely, obtaining the relatively large deviations compactness and then
carefully identifying the rate functions) and the intuition of Smoluchowski—-Kramers
approximation. To establish LDPs of SDEs, the weak convergence methods initiated
by Dupuis and Ellis [12] have been used by many authors (see e.g., [2, 6, 12, 26] and
references therein), and they have been shown to be effective in proving the LDPs
for many systems. However, using the weak convergence approach for our problem
may require stronger assumptions such as Lipschitz continuity of coefficients in the
equation of X¢ (as shown in, e.g., [2, Assumption 2.1] and [6, Hypothesis 1]). Such
conditions are needed in Budhiraja, Dupuis, and Ganguly [2] because of the need to
prove the lower bound [2, eq. (2.13)], in which some uniqueness properties of auxiliary
optimal controls are required. The paper [2] studied the first-order SDEs with a fast-
varying jump process; the aforementioned difficulty arises in [2] due to the presence
of multiple time scales rather than the presence of the jump process. Here, we are
dealing with fully nonlinear second-order stochastic systems with multiscales, but we
do not use the weak convergence method to avoid requiring the Lipschitz continuity
and other growth conditions. In [6], Cerrai and Freidlin considered the second-order
SDEs without coupling with another fast-varying process. To establish the desired
convergence, Lipschitz continuities of coefficients in the system are necessary. In [13],
Feng and Kurtz introduced the HJB equations/viscosity solutions approach. In [13,
section 11.6], first-order SDEs are considered, and conditions for the validity of LDPs
are derived. However, these conditions rely on the existence of functions possessing
certain properties, which are often difficult to verify in terms of the coefficients. Al-
though Feng and Kurtz were able to provide explicit conditions on the coefficients, a
key requirement is that of(x,y) be independent of x (see [13, Lemma 11.60, p. 278]).
As will be seen later, we do not need the Lipschitz continuity for (1.1), nor do we
need 0% (x,y) to be independent of x as in [13]. In this paper, we manage to establish
LDPs of X¢ in multiscale and fully coupled system (1.1) under mild conditions, which
is another of our goals.

To establish the desired LDP for the system under the general fast random process
(1.2), we have to use a different approach. We assume that the corresponding first-
order equation satisfies the local LDP, which will be shown to be verifiable and sat-
isfied in many problems. To prove the LDP, we show that the family of {X¢}.5¢ is
exponentially tight and satisfies the local LDP.

The rest of the paper is arranged as follows. We divide the presentation into
two parts. The first part, section 2, is devoted to the second-order systems with a
fast-varying diffusion (1.1). Section 2.1 formulates the problem and states the results.
The detailed proof of results is provided in section 2.2. The second part of the paper,
presented in section 3, substantially extends the results to second-order equations with
general fast-varying random processes (1.2). The formulation, conditions, results, and
detailed proofs are presented. Finally, section 4 presents two examples to illustrate
our formulation and results.

2. Second-order fast-slow systems with fast diffusion.

2.1. Notation, formulation, and results. Throughout the paper, |-| denotes
a Euclid norm while || - || indicates the operator sup-norm, C(X,)) is the space of
continuous functions from X to ), and if ) is a Euclid space, we write C(X,)) as
C(X) for simplicity. Let M(R!) be the set of finite measures on R! endowed with
the weak topology, let P(R') be the set of probability densities m(y) on R! such that
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m € Wy (R?) and /m € WH2(R!), where W'2(R!) (resp., W)L (R%)) is the Sobolev
space (resp., local Sobolev space) with suitable exponents, and let Ci(R!) be the
space of continuously differentiable functions with compact supports in R. Let
C+(Ry, M(R?")) represent the subset of C(R;, M(RY)) of functions p = (st € Ry)
such that p; — pu, is an element of M(R!) for ¢t > s and i (R!) =t¢. It is endowed with
the subspace topology and is a complete and separable metric space, being closed in
C(Ry, M(RY)). We define the random process u® = (u5,t € Ry) of the fast process

Y€ by
(2.1) 1E(A) ::/tlA(Yj)ds VA€ B(RY).

Then, p€ is a random element of C4(R, M(R')) and we can regard (X<, ;) as a ran-
dom element of C(R;,R?) x Cy (R, M(R!)). Note that the elements of C+(R ., M(R!))
can be regarded as a o-finite measure on Ry x R!. As a result, we use the notation
p(dt,dy) for p € C4(Ry, M(R!)). For a symmetric positive definite matrix A and ma-
trix z of suitable dimensions, we define ||z|| 4 := z " Az. Following Puhalskii’s notation,
lz|la can be either matrices or numbers, depending on the dimension z. We also use
Vi, Vg, div, to denote the gradient, the Hessian, and the divergence, respectively,
with respect to indicated variables. It should be clear from the context.

We will establish the LDP and describe explicitly the rate function for the family
{(X%,1%)}es0 in C(R4,RY) x C4(Ry, M(RY)). The LDP and the rate function of
{X®}cs0 are obtained directly by standard projections in the large deviations theory.
To proceed, we recall briefly the basic definitions of the LDP. For further references,
see [11, 10, 28].

DEFINITION 2.1. We say the family of {P°}.~0 in some metric space S enjoys the
LDP with a rate function 1 if the following conditions are satisfied: (1) 1:S — [0, o0
is inf-compact, that is, the level sets {z €S :1(z) < L} are compact in S for any L > 0;
(2) for any open subset G of S,

- SN > s _
llirggfslogp (G) > -I(G) Zlggﬂ(f),

and (3) for any closed subset F' of S,
limsupelogP®(F) < —I(F):= — inf I(f).

e—0 zEF
We say that a family of random elements of S obeys the LDP if the family of their
laws obeys the LDP.

Our main effort in this section is to consider system (1.1) and to establish the
LDP for the family of the processes {(X¢, u)}cs0 with u° being the empirical process
associated with Y as in (2.1), where (X*,Y*) is a solution of the second-order dif-
ferential equation with random environment given in (1.1). Such a solution is defined
as follows.

One can rewrite (1.1) as

Xi=pi, X§=u5€cR?
(2.2) e?pf = FY (XF,YF) = N (X7, Y )pf, p5=a7€RY,

. 1 1 ;
YE= CH(XLYE) + 2of(XRYOW, Y5 =y5 R

Recall that for each ¢ > 0, the coefficients Ff (z,y) : Ry x RIx Rl = RE N (2, y) : Ry x
RIXR! = R, b5 (2,y) : Ry xRIXR = RE 0f(2,9) : Ry x R xRE — RIX™ are functions
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of (t,z,y); x§,25 € Rd,yg € R! are initial values that can be random. Throughout
the paper, we assume that these functions are measurable and locally bounded in
(t,z,y) such that the system of equations (2.2) admits a weak solution (X¢,p®,Y*)
with trajectories in C(R;,R? x R x R!) for every initial condition (z§,z5,%5), and
then the system of equations (1.1) admits a weak solution (X¢,Y*) with trajectories
in C(R,,R? x RY). More precisely, we assume that there exist a complete probability
space (QF, F¢,P¢) with filtration F° = (F¢,t € Ry ), a Brownian motion (Wt €
R ) with respect to F¢, and processes X¢ = (X7,t € Ry), p° = (pf,t € Ry), and
Ye = (Y7,t € Ry) that are F°-adapted and have continuous trajectories satisfying
the following equations:

t
X; =z5+ /pids
P =af + 7/ FE XEYE) = N(XE,YE)p f)ds,
YE=yS+ - /bE(XE YE) ds+—/ (X5, YE)dW,

for all t € Ry, P°-a.s. It is noted that it may not guarantee the uniqueness of the
solution. (To ensure the uniqueness, one may need to require further that the coeffi-
cients are Lipschitz continuous, which we do not assume here.) Next, we need some
conditions, which are mild and natural, to establish the LDP for the family of coupled
processes {X°¢, u€}oso0.

Assumption 2.1. Assume that for all L >0 and ¢ > 0,

(2.3)

limsup sup sup sup [|F5(z,y)] + X (2 y)] + |65 (2, 9)| + [IZ5(2, )ll] < oo,
e—=0  s€0,t] yeR! zeR4:|z|<L

where X7 (2,y) := o7 (2,y) 07 (z,y)] |

! Fy(z,y)
2.4 limsup sup sup sup e < 00,
24 T b e SR T )X ()
be T
(2.5) lim limsup sup sup sup Byl y <0,
M—=0oo e—0  se[0,t] yeR,|y|>M zeR™,|x|<L lyl
lim sup sup [IVXS (2, 9)] + [V XS (2, )]
(2.6) €20 s€[0,00),y€R! wER?
VAL (2, 9)] + Vi AL ()] < o0,
and
(2.7) liminf inf As(x,y) > Ko >0.

e—=0 s€g[0,00], yeR’ z€ER?

Remark 2.1. The condition (2.3) consists of (locally in (¢,2) and globally in y)
boundedness conditions of F*¢,b° and EE Note that (2.4) is a growth-rate condition,
which is milder than linear growth of 32 ((1 5)) ;e.g., i; ((;3 5)) 1 satisfies this condition
but is not linear growth. Moreover, it does not imply any growth rate condition for
F2(z,y). The condition (2.5) is a stability condition, which in fact is needed for
the ergodicity of the fast process. It is noted that we do not require any Lipschitz

continuity and growth-rate conditions for these coefficients. Lower boundedness and
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regularity conditions (2.6) and (2.7) of Ai(z,y) are natural and often used in the
literature of mathematical physics; see, e.g., [5, 6].

Assume that there are “limit” measurable functions Fi(z,y), Ai(x,y), bi(x,y),
and o¢(z,y) of the families of functions FF(x,y), \i(x,y), b5(x,y), o5 (z,y) as € =0,
respectively, in the sense that for all £ >0 and L >0,

lim sup ~ sup sup  |[FE(z,y) — Fs(z, )| + IX(z, 1) — A(z,9)]
(2.8) €7Ys€[0,t] yeR!, |y| <L z€R%,|x|<L

165 (,9) = b ()| + 05 (@,) = 02(.9) ] = 0.

Assumption 2.2. Assume that the “limit” function b;(z,y) is Lipschitz continuous
in y locally uniformly in (¢,2); bs(z,y) and Z4(z,y) := o¢(z,y)[0¢(z,y)] T are continu-
ous in x locally uniformly in ¢ and uniformly in y; X;(x,y) is of class C! in y, with the
first partial derivatives being bounded and Lipschitz continuous in y locally uniformly
in (¢,2); and div,3(z,y) is continuous in (z,y). The matrix ¥;(z,y) is positive def-
inite uniformly in y and locally uniformly in (¢,z). In addition, the “limit” function
Fy(x,y) is locally Lipschitz continuous in z locally uniformly in ¢ and uniformly in y.
The conditions (2.6) and (2.7) hold for A;. Moreover, for all ¢ > 0,

.
(2.9) lim sup sup w

5 <0.
ly| =0 se[0,t] 2R |y

Rate function. Denote by G the collection of (¢, u) such that the function
0= (p,t €Ry) € C(Ry,R?) is absolutely continuous (with respect to the Lebesgue
measure on R ) and the function p = (u,t € Ry) € C+(R4, M(R!)), when considered
as a measure on R, x R!  is absolutely continuous (with respect to the Lebesgue
measure on R, x R!), i.e., u(ds,dy) = ms(y)dyds, and for almost all s, ms(y) (as a
function of ) belongs to P(R!).

For (p,p) € G, u(ds,dy) =ms(y)dyds, define

Hl(wvu)=/ooo [BsgﬂgdﬁT <sbs—/Rl mwu(y)dy)

+ sup )/Rl ([Vh(y)]T (;divy (Zs (s, y)ms(y)) — bs(sos,y)ms(y)>

heC) (R

1
= SIVAWIR, o) )] s

and define Iy (¢, u) = o0 if (o, p) ¢ G.

DEFINITION 2.2. The family of random variables with distributions {P°}.~q is
said to be exponentially tight in the space S if there exists an increasing sequence of
compact sets (K1)p>1 of S such that limy,_ o limsup,_,gelogP*(K ) = —oo.

THEOREM 2.1. Assume that Assumptions 2.1 and 2.2 hold, that the family of
initial values {x§}e~o0 obeys the LDP in R? with a rate function Iy, that

limsupelzf| <o a.s.,
e—0

and that the family of initial values {y§}e>o is exponentially tight in R!. Then the
family { (X, u)}eso obtained from (1.1) obeys the LDP in C(Ry,R%) xCt (R4, M(R!))
with rate function 1 defined as 1, 1) =To(po) + T1(p,p) if (p,p) €G, and L(p,p) =
0o otherwise.
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COROLLARY 2.2. Under the hypotheses of Theorem 2.1, the family {X®}.s0 sat-
isfies the LDP in C(R,R%) with the rate function Ix defined by

Ix(p) = I(p, ).

inf
HECs (Ry, M(R))

As an alternative representation, if function ¢ = (¢, t € Ry ) € C(Ry,RY) is absolutely
continuous with respect to Lebesgue measure on Ry, then

Fy(¢s,y)

As(©s,Y) mly)dy

() =To(go)+ [ sup [T~ sy (67 [

BERE meP(R!

(2.10) v s [ (9T (Gin (e im() = bleimiy)

heCd (RY)
225(4,05 ,y)m(y)> dy> :| dS;

~ 51V

otherwise, Ix () = oo.

2.1.1. Zero points of I(¢, 1), averaging principle of (1.1), and its large
deviations analysis. We start with an intuitive discussion on the behavior of (1.1)
as € — 0. Intuitively, there are two phases as € — 0. First, €2 goes to 0. At this
phase, X7 is close to the solution of the following associated first-order equation
(or the overdamped equation in the language of statistical physics):

—_— ~ R ~ . —F& —_
0=F; (X, Y;7%) = N(X, Y7 )X, Xy=z5€R’,
(2'11> e, X 1 <€ v, X 1 <€ e, XN\TH e, X i
ViR = Y b ot (LYW, YT =y et

Next, Yf’X converges to its invariant distribution as € — 0. More precisely, if we let

VX :=Y2%, then

e FE(X; YN

tr 7 t/e € d
Xt:T’ XOZZ‘(E)ER,
CTNELED
<X e ~— e ~— ~_
Y, =05 (X0 YY) + Veor. X Y)W, Yyt =y e R,

where Wy is another standard Brownian motion. As a consequence, because Yt)/‘; will

come to and stay close to its invariant measure as ¢ — 0, Y; will tend to X, the
solution of the following differential equation:

Yt:F/)\t(Yt)7 YO :fo,
where T is the limit of xf, and

= Fy (z,y)
i, (z)= | S gt gy,
Pl = oy

and for each fixed (t1,z), 7''*(dy) is the invariant measure of the following SDE:

Y, = by, (2,Y1) + oy, (2, Y)Wy,
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The convergence of X§ to X; as € — 0 forms an averaging principle of (1.1). However,
we are interested in not only the convergence of X¢ to X, but also the tail probability
of this convergence, i.e., the rate of the convergence of the probability of the event
{|IX® = X|| > n} to 0, for any > 0. We show that the convergence is exponentially
fast. The answer to these questions can be obtained from the LDP for {X}.~o and
explicit representations of the rate function.

To proceed, we apply our results to make the above intuition rigorous. It is shown
later that I; (p, u) =0 provided that a.e.

. Fs(@svy)m
7o R’ As (s, 9) W)
ms(y) satisfies the equation
(2.12)
[ (G on T + 70 b)) 1)y =0 ¥ € G5 R

and Io(pg) = 0. Alternatively, ms(-) is the invariant density of the diffusion process
with the drift bs(ps,-) and the diffusion matrix X4(ps,:). Therefore, as e — 0, the
trajectories of {X¢}.~0 hover around X with exponential tail probability, where X is
defined as the solution of the ODE

(2.13) Xt:F//\t(Yt), X =7,
with
Ft(xay)—
F =
/)\t(x) - At(l’,y) mt(y)dy7

and 7 (+) satisfies (2.12) and Ty satisfies Iy(To) = 0. Letting

_ _ < 1 _
BS(X) = {@EC(RJr’Rd) e — Xt||C(R+,Rd) = Z on (1 /\fgphﬁt - Xt|) > n},

n=1

the LDP established in this paper implies that
P¢(X? € BE(X)) v e e ix(By(X),

where Ix (Bg(X)) = inf peBs(X) Ix(p). If we assume that X is the unique solution of

(2.13), it is the unique solution of Ix () = 0. As a result, [x(B;(X)) > 0. Indeed,
if Ix(Bg(X)) = 0, there exists {pr}p2; C Bg(X) such that limg o Ix (o) = 0.
Because [x is a rate function, there exists a convergent subsequence (still denoted
by @) of {¢x} with limit denoted by % € B (X). Since Ix is lower semicontinuous,
0 <Ix(®)=Ix(limg—oo ¥r) < limg oo Ix (¢x) = 0. This leads to Ix(®) =0, which is
a contradiction. Because Iy (BS(X)) >0, P(||X¢ — X|| >n) — 0 exponentially fast for

any 1> 0.

Remark 2.2. In section 2.1.1, we illustrate that from our LDP result, we can
establish the averaging principle of (1.1) with exponential convergence rate in the sense
that X¢ converges to X (of (2.13)) with exponential tail probability, i.e., for any 7 > 0,
P(||X® — X|| > 1) — 0 exponentially fast. From a different angle, references [41, 42]
treated convergence rate for averaging principles of different problems using certain
moments. In this process, just as in treating Lo or L, convergence rates in numerical
approximation of SDEs, global Lipschitz conditions are needed. For our second-order
equations, the Lipschitz continuity need not be assumed. This is an advantage.
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2.1.2. Alternative representations of I(¢, t). One can write the rate func-
tion (e, p) as

BeRrd As(@s,y

()=o) + [ [sup 6 (6 [ FED ) +Js,%<us>] s
where vs(dy) =m,(y)dy and

Tuanyi= s [ (IR (%0 (B (n pima(0) b simato))

hect (R!
1
= SITHDIR, o) )

In fact, for each (s,z) € Ry x RY, J, . (v) is the large deviations rate function for the
empirical measures

S, 1 K VS, T
v (dy):g/o 14, (Y.>%)dr

for rate e =1/t as t — oo and
L 8,T

Y, =bs(, ﬁs’w) +os(, ﬁs’m)dwﬁ

see [34, section 2, Corollaries 2.2 and 2.3].
Moreover, if I(¢, u) is finite, it is necessary that

¢S:/ —Fs(wS’y)ms(y)dy a.e.,
R! )‘3(9037y)

and in this case, we have I(p, ) = Io(¢o) + [y Js,. (vs)ds. On the other hand, one
can also write the rate function (see [34, section 2, Proposition 2.1])

(2.14) 1, 1) =To(0) / /Rl

with u(dy,ds) = ms(y)dyds, where for each s € R, each function mg(-) belongs to
P(RY), and Jtm(-),u is a function defined as follows. Denote by L2(RL R Sg(ps, y),
ms(y) dy) the Hilbert space of all R%-valued functions (of y) in R! with norm

Vms

ETRON ms(y)dyds,

s (Sos 7y)

— Tsma() s (y)’

1 = [ £, e 01,

and by L2 (RY,R!, (2, y), m(y)dy) the space consisting of functions whose products
with arbitrary C$°-functions belong to L2(R!, R!, 3¢ (z,y), m(y)dy). Then Ttm()u 18
defined as a function of y by

t7t,m(),u(y) = HZt(x,-),m(-)(Zt(xvy)_l(bt(x7y) - dlszt(x,y)/Z)),

where IIy,(;,),m() maps ¢(y) € Li (R, R, Z(z,y),m(y)dy) to Is,()m) oY),
which belongs to Ly (R!, RY, 3y (2, y), m(y)dy) and satisfies that for all h e C5°(RY),

[ IS ey iy bladm)dy = [ (V0] (o) o(wm() s
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If p(y) € LR, R, Sy (2, y), m(y)dy), then Ils, (5 . m()¢(y) is the orthogonal projec-
tion of ¢ onto ]L(l)’Q(Rl,Rl, Yi(z,y), m(y)dy).

In fact, I(¢p, pt) is defined similarly to the rate function of the family of processes
{(X7, 4=X) }es0, where p5( fo (YEX)ds, AeB(RY), and (X, Y X) is the
solution of the following equatlon

. e (Ve e, X
%, = X)) 7)’ X, =25 € R,
A (X, Y0T)

s S 54 1 — .
Vol = (XY + —2of (X Y)W, Y5 =15 eR
€ Ve
2.2. Proof of Theorem 2.1. This section is devoted to proving Theorem 2.1.
In the proof, we use C to represent a generic positive constant that is independent of
€. The value C' may change at different appearances; we will specify which parameters

it depends on if it is necessary.

2.2.1. A road map for the development of our analysis and proof. To
make the proof more readable, we first provide a road map and then illustrate the
details in the following sections. The proof of the LDP of {(X¢, u°)}e~o is based on
the approach of [34], which relies on the properties that if a family of random elements
is exponentially tight, then it is sequentially large deviations (LD) relatively compact,
i.e., any subsequence contains a further subsequence enjoying the LDP with some
rate function. The remaining work is done by carefully identifying the rate functions.
Specifically, the details are as follows.

Step 1. The exponential tightness of {(X¢, u)}o~¢ is proved in section 2.2.2 by
applying the (extended) Puhalskii criteria. Particularly, dealing with X¢, we prove
(2.16), which shows that {X°} cannot be large with exponentially small probability,
and (2.17), leading to needed continuity properties. To prove these, a first step is
to use Lemma 2.1 to deal with the large factor siz Then, taking advantage of the
martingale property of stochastic integrals enables us to establish desired estimates.
It is similar for p®.

Step 2. After proving exponential tightness of {(X¢, )}, thanks to Proposi-
tion 2.1, {(X¢, %)} is sequentially LD relatively compact (Definition 2.3). Therefore,
the second step is devoted to identifying the LD limit points. More precisely, we let

T be LD limit rate functions or LD limit points of {(X%,4%) }es0 (ie., a rate function

of some subsequence of {(X¢, u®)}eso that obeys the LDP), and we prove that I =1
(I is the rate function defined in section 2.1). Details for this step are as follows.

Step 2(a). We introduce another characterization of the rate function in sec-
tion 2.2.3. Precisely, for each step function §(s) and each f(t,z,y) real-valued C!+%2
(R; x R x RY)-function with compact support in g locally uniformly in (¢, ), define
<I>t*8’f as in (2.39). Then, I* is defined as the supremum of <I>tﬂ,’\]; over 3, f, and stop-
ping times 7 (see (2.40)). Later, as a byproduct of the study of the regularity of I*
(in section 2.2.5), it is shown that I* = I, thanks to their alternative representations
(2.14) and (2.54).

Step 2(b). In section 2.2.4, we prove the lower bound of the LD limit, i.e.,
I* < T for any (i, ) or sup(%#)ec(RJﬁRd)XCT(RJ”M(Rz))((I)f/’\{(%#)(4,0, n) —I(p,p)) =0.
To prove this claim, using Lemma 2.2 (or [11, Theorem 2.1.10 ), it suffices to show
that E exp{ @fAﬁTfXE ey (X5 p7) =1, and @tAﬁT(’; 1o (@5 1) = (p,p) ase —0
uniformly in compact sets; see Theorem 2.4.

Step 2(c). Section 2.2.5 is devoted to the proof of the upper bound of the LD
limit, i.e., I <T*. We first show this claim at sufficiently regular (dense) points; see

MT(sﬂ 1)
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Theorem 2.5. Then, it is shown for arbitrary points by an approximation using regular
points and applying some continuity properties of rate functions.

Remark 2.3. Although our proof is inspired by the approach of [34], let us briefly
highlight some differences in our works as follows. (i) System (1.1) is second-order,
while [34] studied first-order equations. We do not assume any Lipschitz continuities
for coefficients. Therefore, it is not possible to get a “good estimate” (e.g., expo-
nentially close) between (1.1) and its corresponding overdamped first-order equation.
(ii) To identify the rate function in Step 2, when defining I*, we need to narrow the
space taking the supremum to control terms containing the derivative p® of X¢ (which
is due to considering second-order systems), especially the integral involving p® and
the diffusion part of the fast process (see (2.45)); see Remark 2.5.

2.2.2. Exponential tightness of {(X®,u%)}. - In this section, we establish
the exponential tightness of {(X¢,1%)}es0 in C(Ry,RY) x C4(Ry, M(R!)). We recall
these preliminaries below; see [11, 10, 28] for more details.

DEFINITION 2.3. The family {P*}.~o is said to be sequentially LD relatively com-
pact if any subsequence {P* }i>1 of {P°}.s0 contains a further subsequence {P*3 }j>4
which satisfies the LDP with some LD rate function as j — oco. We say that a family
of random elements of S is sequentially LD relatively compact (resp., exponentially
tight) if their laws have the indicated property.

PROPOSITION 2.1 ([34, Theorem 4.1]). If a family {P=}.>0 is exponentially tight,
then it is sequentially LD relatively compact.

To start, we introduce the following technical lemma, which will be used often in
some calculations in this section.

LEMMA 2.1. For real-valued continuous function g(s), real-valued continuously
differentiable function u(s), and real-valued Ité process w(s), w(s) > 0 Vs with the
quadratic variation denoted by (dw,dw),, we have the following identity:

(2.15)
1 ! ° L [Pw(r)dr’
u(s) | e =)r g(r)drds
0 0

:/Ot Tﬁig?dw/ot VIZ?S(;) (/Oe:z fw(r')dr'g(r)dr) ds
_((’?)/0 o f;wmdrg(s)ds_/o j((j))z (/056_512 fw(rl)dr’g(r)dr> du(s)
+ /O t j((j)é ( /0 % f:w<r'>dr’g(r)dr> (dw, dw),.

Moreover, the identity (2.15) still holds if g is an R%-valued function and u can be
either R-valued or R¥-valued (with the operations corresponding to u and g being
understood as the inner product in R%).

<

g

Proof. Using integration by parts for
6_5% Jo w(r)dr
w(s)

(2.15) follows from standard calculations. d

u(s)/ e forw(T/)dr/g(r)dr and
0
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THEOREM 2.3. Suppose that Assumption 2.1 holds, that the family {(z§,vy§)}e>0
is exponentially tight, and that limsup,_,, ez < oo a.s. Then {(X¢, u%)}eso obtained
from (1.1) is exponentially tight and sequentially LD relatively compact in C(R,,RY) x

Cr(Ry, M(RY)).

Since C(R4,R!) x C4(Ry, M(RY)) is a closed subset of C(Ry,R%) x C(Ry, M(R!))
and P*((X¢, pf) € C(R4,R?) x C+(R4, M(R"))) =1, it is sufficient to prove that the
family {(X¢, u)}eso is exponentially tight in C(Ry,R%) x C(Ry, M(R)). To prove
this, it suffices to verify {(X¢, u°)}.s0 satisfying the (extended) Puhalskii criteria (see
[28, Theorem 3.1] and [13, Remark 4.2]), namely, for all ¢,¢ >0,

(2.16) lim limsupelogP® | sup |X:|>L | =—o0,
L—oo ¢ s€[0,t]

(2.17) lim limsup sup elogP® ( sup ’X; - X;" > €> = —o9,
020 e=0" se[0, 5<51<5+6

(2.18) hm hmbupelog]P’E (1= ([0,8], {y eR : |[y| > L}) > £) = —o0,
L—oo ¢—0

(2.19) lim limsup sup elogP*® sup  d(ps,,ps) > L | = —o0.
020 e=0 se0,1] s1€[s,5+4]

Remark 2.4. In general, (2.16)—(2.19) only imply the sequentially exponential
tightness (i.e., any subsequence is exponentially tight). However, because (X¢, u¢) is
continuous in € in distribution, it is true that (X¢, u°) is exponentially tight, although
in our proof only the sequentially exponential tightness is needed.

From (2.2), by the variation of parameter formula, we obtain

1 t
(2.20) p§=xie““f‘”+;z / e~ A FE(XE, Y2 )ds,
O

where for any 0 <s<t,e>0, A (t,s) = f A(XEYS)dr and dA:(t) = A:(¢,0).
Proof of (2.16). It is readily seen that

(2.21)
12 €12y — t (XE) ps
In(1+ [ X7[7) = In(1 +[a5]") = | Wd

LX) Tag 1 [/t2 s
— s — (s)d X¢ T Ac (s, T)FE X€ YEdr
[ e s [ e ([ (X2, Y7)

Denote v§ = 1_HXE|2 (X7) (f e A< FE(XE,YF)dr). We have from (2.21) and
Lemma 2.1 that
(2.22)

In(1+|X7*) = In(1+ |25]*)

- [ gy [ IR
“ 1+|X€|2 o TH PN, V)

T
2(XE[X2) g [

— e\S,T FE Xs YE d d

+ 0 A:( Xg,Y; (1+|X5|2 1+ [X:]2)2 € (X7, Y7 )dr | ds

AN (XE,Y7)

Xt,Y /0 e ( XE Vo)l

+/0 Oy DX (X V)
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Combining (2.22) and the It lemma, one has
In(1+ X7 *) = In(1+ |25]*)

_ / 2(X0) 72T a4 / 2(X5)FE(XLYS)
T+ xR o (L+[XE2)A(XE,Y5)

o2 e 2AXE X )pEN | /[
s - s s s (ST)FE X VEVdr) ds
Jr/)\E(XE Y?) (1-|—|X§|2 (1+]Xz]2)2 > </06 (X7, Y7 )dr

t 'UE
— — =V A(XE, Y )ds
I PR YT VALY
A (XE.YE T €d
/0 [)\ XE YE [VX ( 89 S)] ps S

1
=

1
25/0 el Xe e vap IV MY s v ds

t
T
/0 AE Xa YE [VYAE(X;:,Y;E)] bi(Xj,}/;E)ds

1t e :
+g/0 Tere v 1T A Y e )

R A
Ve Jo [AS(XE, YE)P
— KE

[VYAE(X§7 }/:)}TO-E(XSa ng)dWs

. Ys AN(XE. YE T ¢ X€ Ye dWS7

\/>/ )\s Xs Yg)] [VY ( s) s)] Us( ER) s)

where K7 is the remaining terms in the right-hand side. Therefore, we get
1 € £ 1 e 5

(2:23) ~ [in(1 +1X7%) = (1 + [o6[)] = - K7 + D5,

where

7o€ € 1 ! ‘,05‘2 e(ye yve) |2
K= |:Kt +;2/0 W||VY>\S(XsaYs)Hzi(Xg,Y;)dS and

s S

t 6\[/ )\5 X6 YE [VYAE(X;Y:)}TUE(X;Yss)dWs

051 )
he(Ye Vell4 AE XE Ys £ € £ d .
5 ) Dt RO T
Let ¢§ =inf{t>0:|X;| > L}. It is obvious that (§ is an F=-stopping time. Since Dj

is a local martingale, we have from (2.23) that

1
20 Fow{: [+ X P -+l - Ko ] <1

On the other hand from (2.20) and Assumption 2.1, and noting [ e=4<(t*)ds <
(o)
fg e 2 ds < £ —0, one obtains that there is a finite constant Cy ; depending only

ont,L that satisfies, for all sufficiently small ¢,

(225) |p§/\<z| < Ct,L + mieiAa(t).

Similarly, we have for € small

t
 kolt—s
(2.26) [vncs | < Cor / ool
0

<e2Cyp.
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Combining (2.25), (2.26), the definition of ]/(\'f, Assumption 2.1, and limsup,_,jex] <
oo yields that as € is small

(2.27) |Kines | <C+eChp,

where C is some finite constant depending on neither ¢ nor ¢, L. Therefore, from
(2.24) and (2.27), we have that for all e sufficiently small,

1
o exp{g [1n(1 [ Xfre: [2) — In(1+ |a5]?) - c—ect,L]} <1.
Thus, one has for any ¢, L, N > 0,
Pl sup [XJ[>L | =P (| X{ue: [ > 1)
s€[0,t]
(228)  <P°(|aj|> N) +E° exp{ [ln(l +1Xines P) — ln(1+L2)} } L{jwg1<ny
<P*(|z5| > N) + exp {5 In(1+N?) 4+ C+eCyr —In(1+ L?)] } .

From (2.28) and the logarithm equivalence principle [10, Lemma 1.2.15], we obtain
that for all t, N >0,

(2.29) hm limsupelogP ( sup |X:|> L) <limsupelogP®(|zg| > N).
L—oo -0 s€[0,] e—0
Because {x§}c~0 is exponentially tight and using (2.29), we obtain (2.16) for any
t>0. O
Proof of (2.17). By applying Lemma 2.1 to (2.20), one has
(2.30)

t
szxé—k/ pids =xg+ / a5e Al )ds—I——/ / —A(r) pe(XE VE)drds
0 0

t Fs(Xs Ys
— m€ 5 r)d 7d
iEo"'zlA + 0 AS(XEYE) "

rytr

1 — Al (t,r)
- F (X5, Y7 )dr
Af(Xf,Yﬂ/ ‘ e ¥

t 1 A
_ —Ac(s,r) e € € € € €
/0 [)\E(X;;"Y'Sa)]Q <A F (XT"YT' )d?”) d)\S(XS,Y; )

t 1 A
—Ac(s,r) e £ 5 3 3 € 3 3 £
+/0 [)‘E(X§7Y;8>]3 <A F (X’I"’YT' )dT‘) <d>‘s(X37Yt9 )ad)‘s(Xs7Y9 )>S

We obtain from (2.30) and It6’s formula that

t
_ FS(XE Ye)
XE — ¢ € Ag(r)d rotr
b xo-i-xl/o e T+ ; 7)\5(X$,Yf) T
1 — T 13 £ 3
(2.31) A / AL B (X2, Y )dr

V )\E(XE,YE) s _AL(sr)
s s =(8,7) pe( xe ye d d
) DXL Yo </ ¢ P (X Yo)dr ) ds
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t e € e\l T e s
[VX/\S(XsaYG )] DPs </ Ac(s,r) )
N < < < < e~ s, Fs Xf’}/rs dr ) ds
| i U )
- 1/t [VY)\E(XE YE)]TbE(XEaY;‘E) (/8 —Ac (s, ’I“)FE(XE Ys)dr) ds
0

(A (X5 YE)P e
||VY'Y')\6 )(‘E YE)HEE(Xe YE) (/ A,
— - <“">F6(X5,Y:)dr> ds
/ 5 XE Ye)] 0

/t HVY)‘E(XE YO 5 v /Se ) FE (XS, YE)dr ) ds
e Jo RHO R IE 0 o

t (f(; e—AE(s,r)FE(Xa YE)dT) (

- rotr YV A\ XE7YE T & X67YE AW,
\ﬁ 0 [/\‘E(Xg,yf)] [ Y s( s s)] Us( s s) )
::fi_ﬁiv
where
_A (s,r) FE(XE YE)dT)
= A (XE,YE)] oS (XE,YE)dW,
t f/ e ( X YE)]2 ([VY s( 59 s)] o (X5, s) )>

and ?i is the remaining terms in the right-hand side of (2.31). By the regularity of
A%, it is not difficult to see that

(2.32)
1 —Ac(t,r) 1 /‘,. —A.
r Fs X% Y9)ds (bT)FE X% YVE)ds
Af(Xf,Yf)/ ‘ KoY = e va o ¢ (1)
e_As(t) _AE(S) S A (r) FEOXE V)
< — T
CINXE YY) A(XE YY) / B (X, Yl
—A(t) t A(r)
<(r Fs X&.Ye)|d
+)\§(Xta’yta)/ € |F7 (X7, Y dr
s

<C sup AL (X, Y)7) |/ e= B0 |FS(X:E, Y5 |dr

2 rySr
€ re(s,t]

t
+C/ e~ BN R (XE YE) |dr.
S
We obtain from the definition of Fi, an application of (2.32), and recalling the defi-
nition of (7 that there is a finite constant C;, depending only on L such that for all
small €,

(2.33) sup  sup ‘KMCE —FiACE
s€[0,T] t€[s,s+6) E

SCT,Ld VT>070<5<1.

Now, let T'>0,¢ > 0 be fixed, and let L > 0 be fixed but otherwise arbitrary. We
have that for any small J satisfying 6 < 1, Cp 6 < ¢/2, and small «,

)

IP’E< sup Xf—XSE|>€>

te[s,s+4]

(2.34) <SP <TH+1)+P° (t sup ‘XfAcz = Xones
E€ls,s
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— — 14
SPE(CEST—FU‘FPE( sup |Di/\cz_Dz/\c;|> )

te(s,s+6] 5
d k k /
<P* sup  |XZ|>L|+Y P sup [Dinee —Donee|>= |,
<t€[0,T+1] K ; te[s,s+6] INCE SACL 2

—e.k . = . . —e,k
where Di’ is the kth component of Di, k=1,...,d. Tt is readily seen that {DiMi —

¢k . . . . c .
Dz ACE }i>s is a martingale with the quadratic variations bounded by

C tACL s _ 2rg(s—r)
=L / e <2 drds <eCpé.
€ 0

sACE

By the exponential martingale inequality [29, Theorem 7.4, p. 44], we have

—e.k —e.k l
pe sup  [Djree —Dipee| > =
<t€[s,s+6] AL SNCE 2

l l
- Z + 4€CL5€CL6>

—e,k —e,k
2.35) <P sup ‘Dg’ . — D
( <t6[375+6] tACE ACE

€2
< —_—— .
_exp{ 8€CL5}

Combining (2.34) and (2.35), the logarithm equivalence principle [10, Lemma 1.2.15]
yields that

lim limsup sup eloglP® | sup |X;—XZ|>/
620 e=0 sef0,71] te[s,s+0)
(2.36)
<limsupelogP*® sup |X;|>L | VL>0.
e—0 te[0,T+1]
Letting L — oo and using (2.16), we obtain (2.17). d

Proof of (2.18) and (2.19). Once we established the exponential tightness of
{X¢}cs0, the proof of (2.18) and (2.19) for {u°}.>0, which is in fact the occupa-
tion measure of a diffusion, is similar to that of the first-order coupled systems. As a
consequence, such proofs can be found in [34, p. 3134]. d

2.2.3. Characterization of rate function. Let 3(s) € C(R;,R?) be a step
function satisfying that there are 0 =ty <t; <---<t,, <ooand 3; eRi=1,...,m,
such that

(237) 5(8) = Z/Bil[ti—lytz)(s)'
i=1
For ¢, € C(Ry,R%) and S(s) of the form (2.37), we define
¢ m
(2.38) / B(s)deps == Zﬁ;(‘ﬁt/\ti — At 1)
0 i=1

Now, for each step function 3(s), each f(t,r,y) real-valued C*?2(R; x R? x R!)-
function with compact support in y locally uniformly in (¢,2), and each (¢,u) €
C(R-‘de) X CT(R-HM(RI))v let
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.
851 (i /5 Vs — // B %’ BN F(0s9) g, ay)
R! Sosa

/ / [V, (5.00,9)) b (00 y)ulds, dy)

—5/ / tr Es(@s,y)vyyf(‘s’Sosvy)>/~"(d37dy)
0 JR!

1 [ )
=5 [ [ 19 il )

Moreover, let (i, i) be a continuous function of (p, ) € C(Ry,R?) x C4 (R, M(RY))
that is also a stopping time relative to the flow G = (Gy,t € R;) on C(R4,R%) x
C+(Ry, M(R!)) of the o-algebra G generated by the mappings ¢ — ¢, and p — jug
for s <t. Let us also assume that ¢y is a bounded function of (p,u). It is seen

(2.39)

1)
that under Assumption 2.2, ®7/ (¢, 1) is continuous in (¢, 11).

Next, define

(2.40) (0, 1) = RN (LAY

where the supremum is taken over 5(s), f(s,z,y), and 7(p, 1) satisfying the require-
ments as above and over ¢ > 0. It is seen that I* is lower semicontinuous in (¢, u).

Now, let T be LD limit rate functions or LD limit points of {(X®, u%)}eso (ie., a
rate function of some subsequence of {(X¢,1%)}eso that obeys the LDP) such that
]I(go, @) = oo unless g = 7, where 7 is a preselected element of RZ. This restriction
will be removed in section 2.2.6. We will identify the rate functions. For any such LD
limit point ]I we aim to prove I=1I* by showing the upper bound T>I* and the lower
bound T < T*; see details in section 2.2.4 and section 2.2.5. Moreover, it will be seen
that I* (¢, u) =1L(p, u) provided I*(p, 1) < 00, o =7, and Iy(Z) = 0. Throughout this
section, the assumptions in Theorem 2.1 are always assumed to be satisfied.

Remark 2.5. Note that I* is defined similarly but not identically as in the case
of first-order coupled systems in [34], although the solution of (1.1) shares the same
rate function with the corresponding first-order system. Compared with [34], I* is
defined by taking the supremum over smaller space when we did not allow [ to be
a function of X. This modification has an important role in the proof of the lower
bound of the LD limits, i.e., the inequality I* <1. Otherwise, it would be impossible
to control terms containing the derivative p® of X¢, especially the integral involving
p° and the diffusion part of the fast process (see (2.45)). Meanwhile, it would have led
to difficulty in proving the upper bound of the LD limits, i.e., the inequality T* > I.
However, it will be shown that we still can get the upper bound as in the first-order
system (in [34]); see the details in section 2.2.5.

2.2.4. Lower bound of large deviations limits. This section is devote to
proving I* <I. We have the following theorem.

THEOREM 2.4. Let I be an LD limit point of {(X%, u%)}eso. For anyt>0, B, f, 7
are as given above,

(2.41) SUD (4, 1) €C (R4 RY) X Cy (By ,M(RD)) (‘I’MJ;(W (@5 1) — H(%M)) =0.

~

Then I*(p, 1) <1, ) for all (¢, p) € C(R4,RY) x C(Ry, M(R?)).
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Proof. For B(s) being of the form (2.37) and f(s,x,y) being a function with
compact support in y locally uniformly in (¢,2), denote

(2.42)
57 (o, 1)

t/ [B(s)] Tafe= 4" ) pu(ds, dy)

I
+/0 /RL X5 ( (?y) TSI EL (@, y) il ds, dy)
A

A

+ /RL [B(s) T(/O e‘Af’y(s’”Ff(somy)dr> Wﬂ(d&dw
[ (o) S

VY)‘6 Ps, Y bE(@say)

- (ST)FE )
€ 807‘7
Lo (f e
/ V )\ ER) e
// T(/ efA“" s’r‘)Fs Saryy ) || YY (’0 )”2 (©s,y) (ds,dy)
R! 0 (s, 9)]

u(ds, dy)

||Vy/\ Ps, Y ||25
I T —AV’ (ST’)FE (0s,y) ds. d
/ /Rl (/0 e (or,y M wu(ds,dy)
2
’ T(foqe e T)FE (pry ’ v )\ oy
252//11%1 Az (s, )] V3 AP0 ) 5, ) 11 ),
fe*A (S,T)Ff(go,«,y)dr) )
V )\E S £ dS,d 3
//Rl NHCNIE IV A (@5, )5 (. 11(d, dy)
where AZY(t,5) = f Sz As(or,y)p(dr, dy), and
Ui (o, 1) = f(t 00, Yi) = £(0,00,95) // Vo f(s,0s,y)u(ds, dy)
(2.43) ,
7\/ / [me(&@s,y)]—rsﬁs,u(ds,dy),
o JRi
and

o5 (o, /5 Ydips — //R’ %,%7 ) (ds.dy)

(2.44) //RL Vyf(s,05,9)] b3 (s, y)u(ds, dy)
_5/0 /]R tr Ei(%’y)vyyf(s,ws,y))u(ds,dy)

B ;/ot /]Rl V3£ (5. 00 0)l[55 o, (s, ).

We have from (2.20) and Lemma 2.1 that

[eimax:= [

1

(2.45) , ,
- / B(s) Tase A Ods+ L [ 18(s)T / Ao B (X2, YE)dr
0 € Jo 0
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B A()ﬁc(t)Y) /0 e A FE(XE, Y7 ) ds
AL (/oe O (XE Y ) VX:\: ;)f 1}/;)]] 2 s
_% Ot[ﬂ(s)ﬁ </OS e~ A< P2 (X2 Vo) dr ) VY)\E([);':(?;];;;(XE’Yss)ds

1 t T s ||VYY)\E(X§aYsE)HZE Xe)Ye
1 Aslsr) pe(X2 Y e e
T ([ e e pz o v ) S S

2
L T T —Ad(er) e XV HVY)‘E(X;YSE)HEE(XE,Y:)
+g/0 [6(s)] </ FE(XE, Y )dr e T ds

CRi S

L1 MBI (fy e A (XE, Y dr)
Ve ls e Xz Yo P

Moreover, 1t6’s formula yields that

[Vy XS (X5, Y] T ol (X2, Y5 )dW.
(2.46)

t t
f(taXtEa}/tE) - f(0a$87y8) :/ vsf S X§7Y96)d8+/ [va<S Xssa}/ss)] pidS
0

t
+ 1/ [Vy f(s, X5, YE)] T05(XE,YE)ds + T[Vyf(s,Xj,Yj)}ng(Xj,Yj)dWs

o / tr (Z5(XE, Y2) Vv (5, X3, 7)) ds.

Combining (2.46), (2.45), and the definitions of ®57/ 157 and ¥5%/ in (2.44),
(2.42), and (2.43), we obtain that

(2.47)

1
g{(I)?ﬂvf(Xs“us)+F?5(X€“us) +\I/f’ﬁ’f(X€,‘u€)
1 K [ g > 13 (>
= \/g/o [va(S’XS7Yig )]Tas(Xs?}/s )dW?

1 t
1 / Iy £(s X;Y:)HQZE xeyeds

f e—Ac(s, T)FE(X,f,YTE)dT') .
Vy X (XS, Y] oS (X5, Y )dW,
Ef/ (X Vo) [Vy AS(X5 Y01 o3 (X5, Y7)
2
f e~ Ae QT)FE(XE,YTE)dT) I
263/ | )\E(X‘g’YSE)] ’ ||VY)\ (XS7Y5)||Z§(X§’YSE)dS
BN (Jg e~ FE (XF, Y dr) ,
S(XE, Y5 ve ve ds.
=y PHEENIE IV AL Y v d

Since the right-hand side of (2.47) is a local martingale and 7(X°¢, u€) is a stopping
time with respect to F° due to the measurability of X7, u¢ with respect to Fy, we
have that
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(2.48)
1
Bf e € B f e € _
E* exp{ (05 e ey (X )T e (X ) 4205 e (X )]}_1.

LEMMA 2.2 ([11, Theorem 2.1.10]). Assume that the net {ve}exo is exponentially
tight, and let T represent an LD limit point of {u5}5>0 Let . be a net of uniformly
bounded real-valued functions on'S such that [exp(2®.(2))v.(dz) = 1. If . converges
to ® uniformly on compact sets (as € = 0) with the functwn D being continuous, then

sup, es(®(2) = 1(2)) = 0.

As in the proof of (2.16) and (2.17) in section 2.2.2, it is not difficult to obtain
from Assumption 2.1 and the fact that p;ar(,,.) is a bounded function of (¢, i) that
there is finite a constant C, which is independent of € such that for all small enough

|FMT(¢ “)(go, )| < Ce uniformly over (o, ). Similarly, there is a constant C' such
that for e sufficiently small, |\I/;\ﬁT{@ u)( w)| < C uniformly over (¢, ). As a result,
one has
B8 e,B.f
(2.49) Fi/\T(szwt)(W7 )+ S\DMT(VJ u)(% ) =0
as € — 0 uniformly in compact sets. Finally, by assumption (2.8), we have
&8, f B.f
(2.50) DTl (P2 1) = Py (05 1)

as € = 0 uniformly in compact sets. Combining (2.48) and (2.49) and then applying
Lemma 2.2 yields (2.41). Then, it follows immediately that I*(o, x) < I(e, p) for all
(o, 1) € C(R4,R?Y) x C4(R4, M(R?!)). The proof is complete. O

2.2.5. Upper bound of large deviations limits. Let T be an LD limit point
of {(X¢,u®)}eso such that H(gp, i) = oo unless ¢y = 7, a preselected element of RY.
In this section, we aim to prove that I(¢, 1) < I* (¢, ) for any (p,u) € C(R4,RY) x
C+(Ry, M(R?")) such that ¢g =Z. The completion of the proof will be given later in
section 2.2.6. With the results established in sections 2.2.2 and 2.2.4, this part can
be done similarly to that of [34, sections 6-8] because the rate function has a similar
variational representation. Although our I* is defined as the supremum in a smaller
space than in [34], we can still prove I <I* by a similar argument as in [34]. We will
only provide a sketch of the main ideas and highlight the differences, whereas detailed
arguments can be found in [34, sections 6-8].

It is obvious that it suffices to consider the case I*(p,u) < oco. Therefore, we
should investigate the regularity of ((p ) provided T*(p, p) < oo first. It is shown in
[34, section 6] that if (¢, u) € C(Ry,R?Y) x C+(R4,RY), ]I*((p, 1) < oo, then u(ds,dy) =
ms(y)dyds, v is absolutely continuous (w.r.t. Lebesgue measure on Ry ), and mg(y) is
a probability density function in R!. In this case, I* has the following representation:

(¢, 1)

-/ (sup (97 o7 [ Erlensimali)y )
0\ Berd As(s,y)

b [ 9T (G 0) b))

heck (R!

1
=5 [ IvhI
Rl

(2.51)

(psy) s (y)dy) ds
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o0
:/ sup <5T¢S BT/ <L‘O‘s’y)s(y>dy)
0 BERE R! As(@s, )
V,ms(y
+ sup / <[g(y)]TEs(<pS7y) (2‘;’%(()) — Tsma() s (y)>
9€LG ™ (RLRE S (05,y) s (y) dy) s\Y

1
~3 ||9(y)||zs(sos,y)ms(y)> dy) ds.

In the above, IL(l)"Q (RLRY S, (¢s,y), ms(y)dy) represents the closure of the set of the
gradients of functions from C$°(R!) in L2(RY,RY, Y. (ps,y), ms(y)dy), in which
L2(RL R S, (9s,y), ms(y)dy) is the Hilbert space of Ré-valued functions (of y) in
R endowed with the norm || f[[3; ,,, = [ I f ()3 »)™Ms(y)dy, and for each (t,z) €
R, x R9, each function m(-) being a probability density function in R, Ttm()u 18 @
function of y defined by

Tem(yu®) =15, @) m() (Se(@,y) " (be(z,y) — diveEe(z,9)/2)),

where IIs;, (5 .),m(.) maps a function ¢(y) € L (R, R’, Sy (2,y), m(y)dy), which is the
space consisting of functions whose products with arbitrary C3°-functions belong to
LQ (Rlv Rlv Et(xv y)7 m(y)dy)a into

15, (2, ).m()0(y) € Lo (R R, By (2, ), m(y)dy)

and satisfies that, for all h € C5°(R!),
[ I H T ) 60 m )y = [ [V Sl )0l
R! R!

If p(y) € LA2(RL R, (2, y), m(y)dy), then Iy, (5. m)¢(y) is the orthogonal projec-
tion of ¢ onto Ly*(RY, RE, 3 (2, ), m(y)dy). Moreover, it is readily seen from (2.51)
that

. . Fs(@say)
2.52 if T* p, ) < oo, then Vs :/ EEALELL S
( ) ( ) R! As(@s,y)

In addition, the supremum in the last term in (2.51) is attained at

ms(y)dy.

5 Vyms(y)
2 — Yymsy)
e IW) =5 )~ Teme 00 W)
so that
Vym 9
2.54 s( T ‘ s
( ) / /RL 2mq ) s()v‘Ps(y) 25(5037y)m (y) yds

This combined with (2.14) also shows the equality of I and I*.
Now, we proceed to the proof, which contains two main steps.

Step (i): Identify the LD limits at sufficiently regular (dense) points.

THEOREM 2.5. Assume that the assumptions of Theorem 2.1 hold. Let T be an
LD limit point of {(X,u%)}eso such that I(p,pu) = oo unless oo =Z. Let (p, i) € G
be such that po =T and [i(ds,dy) = ms(dy)ds, where mg(y) has the form
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e )= (i (D) e (17 (1)),

where ms(y) is a probability density in y locally bounded away from zero and belonging
to CY(RY) as a function of y with |V'my(y)| being locally bounded in (s,y), and 7(y) is
a nonincreasing [0, 1]-valued C}(R4.)-function, with y € R, that equals 1 for y € [0,1]
and equals 0 fory>2;r>0 and a> 0, and M; is the normalizing constant. For given
ms(y), 1(y), and r, there exists ag >0 such that for all a > ag, I(p, n) =1*(@, 4).

Technical lemmas. Before proving Theorem 2.5, we first need some technical
lemmas. For 3, h as defined in section 2.2.3, we denote

(2.56)
t

A=t freres [ [ 19,n60.0)
0

Performing integration by parts in (2.39) yields that

yu(ds,dy) + sup <ps|+tZN}.
s€[0,t]

(2.57)
0 ()= [ (Blorga - )T [ )
9 uns e (G (rr s 00) = s () )
—%/Rl IVyh(s, 05, 9)II3, ,y)ms(y)dy>ds.
Let
(2.58) %" (1) == <I>f]23',’h (s 1),

and for each ¢ > 0, K := {(¢, ) :ﬁ((p,,u) < §}. The following are some technical
lemmas needed for the proof of Theorem 2.5.

LEMMA 2.3 ([34, Lemma 7.1]) (approximation of 7,6). Assume the following
conditions for the boundedness and the convergence (uniformly in Ks) of {8},

{hé(x,y) ;.il to ﬂs; hg(l',y)

N N
(2.59) / |Bs2ds + / ess  sup |Vhs(ps,y)|ms(y)dyds < oo,
0 0 (p,neKs) JR!
N .
lim |Bs — Bi|ds
11— 00
(2.60) 0

+ lim  sup / / |Vhs(s,y Vh ' (©s, )| ms(y)dyds =0.
]Rl

’L—>OO @ H)GK{S
Then we have the convergence

2 (o, 1) X 78 (o, 1) and 05 (0,1) 2 05" (0, 1) uniformly in K.

LEMMA 2.4 ([34, Lemma 7.2]) (localizing supremum). If hs(x,y) is measurable
and belongs to class W, . in y, vanishes when y is outside of some open ball in R
locally uniformly in (s,x), and is such that the derivative Dhg(x,y) is continuous in
(x,y) for almost all s € Ry and that fo SUD, cRi:|g|<L Jgi | Dhs(x,y)|9dyds < oo for
all ¢>1 and L >0, then, sup(,, ek, (91’% (o, 1) — I(¢, 1)) =0, and the supremum is
attained.
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LEMMA 2.5 ([34, Lemma 7.3]) (regularities and growth-rate properties of a certain
(dense) class). Assume ms(y) is an Ry -valued measurable function and is a probability
density in y for almost every s. Assume further that it is bounded away from zero on
bounded sets of (s,y) and is in C*(RY), with [Vms(y)| being locally bounded in (s,y),
and that m,(y) = Mse=Y! (@ > 0) for all |y| large enough locally uniformly in s. There
exists an ag such that if a > ao, there is a wy(x,-) such that Ty m_()..(-) = Vws(z,-)
and satisfies certain regularity and growth-rate properties [34, (7 13)—(7.15)].

Proof of Theorem 2.5. Let ag and then W (z,y) be defined as in Lemma 2.5 for
fivs(y). Let § =0 and hy(x,y) = §Iniis(y) = @s(z,y). Then Vhy(z,y) = Vins(y) _

o 2ms (y)
Vs (z,y). We want to apply Lemma 2.4 for 8, hs(x,y). However, T (z,y) might not
have a compact support in y. Hence, in order to use Lemma 2.4, we need to restrict
it to a compact set. Therefore, we shall truncate f, (z,y). Let n( ) represent an R -
valued nonincreasing C§°(R; )-function such that n(t) =1 for 0 <¢ <1 and n(t) =0
for ¢ > 2. Let @}(x,y) = @(z,y)n(4) and hi(z,y) = jn("4) i, (y) — @i(z.y). As

in [34, Lemma 7.4], we can prove that h, (7,y) satisfies the conditions in Lemma 2.4.

Next, given N € N, let TN and 90 B be defined by the respective equations
(2.56) and (2.58) with 8 = 0 and h = n (x,y). Since the functions § = 0 and
hi(z, y) satisfy the hypothes1s in Lemma 2.4, there exists (™%, V%) € G such
that %" (N7, uN) = T(eN4, uN) and (PN ,uN) € Konyo for all i In par-
ticular, Nl(ds dy) = mMi(y )dyds where m:i(.) belongs to P(]Rl), and the set
{(@N, pNE) i = 1,2,...} is relatively compact. Since T(pNF, Nty > T (N, o)
and %" (N4, V) < ]I*( Nt Nty one has

X i N i iy T i g
(2.61) 0" (™, N =T (N, N =T (N ).

Extract a convergent subsequence (still denoting the index by i) pu™* — uV in
C+(Ry, M(R!)) and ™'t — oV in C(R+,Rd). R

Because of (2.61) and (2 57), I* (™4, uN+') obtains supremum at hl(x,y) when
s < 79l (N4, uNt). Therefore, by using (2.53), we can characterize mN+ (noting
that p™N+i(ds,dy) = mY-!(y)dyds) and then can show that the convergence of (2.59)
and (2.60) in the hypothesis of Lemma 2.3 is satisfied (see [34, (7.46)—(7.48)]). Thus,

by Lemma 2.3, we have that Tj(i,hi(cpNi pNt) — T]%’h(goN,,uN) as i — oo, and that

mNi(y) — Mms(y) in ]Ll([O T]%h(goN u™)] x RY). Therefore, u™ (ds,dy) = m(y)dyds
for almost all s < 79" (o M M.

Using @2 = [o, Wdy due to (2 52) and applying [34, Lemma 6.7],

we obtain from the convergence of p™V:# — oV in C(R+,Rd) and mN-i(y) — ms(y)

in ([0, Tg,h(goN,uN)} x RY) as i — oo that ¢ = le %%;(ydy a.e. for s <
~O.R
NN

¢ N). By the uniqueness, oN = @, for s < TN (goN,,uN). As a byproduct,
@GN 5, as i — 00 a.e. on [O Tj%h(cpN7uN)]

We have proved that TN ((p 1N = TNh((p, i) and oY = 3, ;iév = [, for
s < T]%h(g’i,jl) so that H%h(goN,,u ) =6% h((p it). We can show that H%h(@N,uN) =
lim; 0 O%" (Nt uN+1). Therefore, taking the limit in (2.61), we have I* (o™, u) >
G%h (N, uN) > ﬁ(¢N,uN), which together with the fact that I* < T obtained in the
previous section implies that T* (o, uV) = 9?\}h(<pN,,uN) =T(oN, ). Therefore, we
have for all N >0,
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(2.62) I'(3,7) = 0% (@.) = 0%" (o™ 1) = T(™, ).

From (2.62), the fact that oY = @,, Y = [ until TN (<p, i), and the fact that bl
is lower semicontinuous and inf-compact, we obtain I*($, 1) > 1(3,7). As a result,

we can conclude that I*(3,7i) = 1(3,7i) for all (3,7) satisfying the requirements in
Theorem 2.5. a

Step (ii)A. Approximating the LD limits in arbitrary points by regular
points. Let I be an LD limit point of {(X¢,u%)}e~0 and be such that I(¢, u) = oo
unless ¢o = Z. In this step, it is proven (see [34, Theorem 8.1]) that if I*(¢, u) < 0o,
then there exists a sequence (go(k),u(k)), whose elements have the properties from
Theorem 2.5 such that (") 1By — (@, ) and T*(®) k) — I*(p, ) as k — oo.
Therefore, one has T(p, 1) < T*(p, 1) = limp_s00 T (), 1)) = limy,_ o0 I(*), u*)) >

’]T(ga, u). Hence, we have obtained the desired properties in this section.

2.2.6. Completion of the proof of Theorem 2.1. We will complete the
proof of Theorem 2.1 by removing the restriction that I(p, ) = co unless g =727 in
section 2.2.3, where 7 is a preselected element such that Io(Z) =0. This can be done
similarly as in [34, section 9] and will be omitted here.

3. Second-order fast-slow systems with general fast random processes.
In this section, we treat (1.2), in which the fast-varying random process & is under a
more general setup without specified structure. We need the following assumptions.
At a glance, the conditions may seem to be abstract. Nevertheless, Remark 3.1
illustrates that these assumptions are mild, verifiable, and natural.

Assumption 3.1. The functions Ff (z,y) and Af(z,y) are Lipschitz continuous in
x locally uniformly in ¢ and globally uniformly in y, and Af(x,y) is bounded below
(uniformly) by a positive constant #g. Either Fy(x,y) and Aj(z,y) have linear growth
in (¢,z) globally in y, i.e., there is a universal constant C such that

(3.1) |77 (@, 9)] + X ()| < O+ [t + |,

or Ff(z,y) and Af(x,y) have linear growth in z locally in y, i.e., the constant C in
(3.1) is uniformly in bounded sets of y and &£ is such that for any T'> 0

(3.2) hm limsupelogP < sup |&7]> L) = —o0.
0<t<T

L—oo 0

DEFINITION 3.1. A family of stochastic processes {X}eso is said to satisfy the
local LDP in C([0,1],R9) with rate function J if for any ¢ € C([0,1],R9),

lim limsupelogP (X°® € B(g,9))

=0 -0

= lim hmlnfslogP(XE € B(p,9)) =-J(p),

6—0 e—0

where B(yp,68) is the ball centered at ¢ with radius & in C([0,1],R%). J is called local
rate function.

Assumption 3.2. The family of processes {Z%}.~¢ given by
Fe(Z,€F)

N (Z5,€)°
satisfies the local LDP with a rate function J.

(3.3) ZE = Z5 = x§
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Remark 3.1. Seemingly abstract, Assumption 3.2 is not restrictive. In fact, it
is the LDP for the first-order systems, which is relatively well understood now. For
example, the condition is verified when & is a (fast-varying) diffusion process

1 1
g = B (X7t + 0] (X7 €)W,

where W, is a standard Brownian motion; see [27, 43, 44]. It is also verified when
&8 is a (fast-varying) Markovian switching process with generator Q(t)/e and Q(t)
being a time-inhomogeneous and irreducible generator of a Markov chain, or when &;
is a (fast-varying) jump process having jumps at rate O(e~1); see [2]. Furthermore,
the condition is verified when & has no specific representation but satisfies exponen-
tial ergodicity [18]. Note also that condition (3.2) in Assumption 3.1 is essentially
an exponential tightness of the fast processes, which is readily verified for & being
diffusion processes or Markovian switching processes. When we deal with general
fast processes without any specific formulation, the assumption on tightness (3.2) and
Assumption 3.2 are very natural. Without the tightness and ergodicity of the fast
processes, it is unlikely one can obtain the averaging and LDPs for a fast-slow system
under the setting of general fast processes.

Remark 3.2. We did not assume any regularity and growth-rate conditions of the
coefficients of the slow component when dealing with (1.1). However, for the general
fast random process, it seems to be impossible to use the same assumptions because
we do not require any structure for the fast process. As a result, the assumptions in
this section are stronger than that of section 2. In particular, we need the Lipschitz
continuity and growth-rate conditions of Ff(z,y). It is worth noting that we used
two totally different approaches for the cases of fast diffusions and general fast-varying
processes. If the fast process is a diffusion, thanks to the nice structure of martingales,
we can identify the rate function after estimating the exponential moment. Therefore,
in the first case, after obtaining the exponential tightness and then relatively LD
compactness (see Definition 2.3), our remaining work is to identify the rate functions.
In the general case, we use a different approach that relies on the property that
exponential tightness and the local LDP imply the full LDP. In this situation, we need
to connect directly the solutions of the second-order and the first-order equations.

We are now in a position to present the main theorem. The result is stated next,
and the proof is given in the next section.

THEOREM 3.1. Assume that Assumptions 3.1 and 3.2 hold, that the family {z§}.>0
is exponentially tight, and that limsup,_,,e|z5| < 0o a.s. Then, the family {X=}.50 of
(1.2) obeys the LDP in C(Ry,R?) with rate function J.

3.1. Proof of Theorem 3.1. The proof of this theorem is based on the fact
that the exponential tightness and local LDP imply the full LDP. The following result
is well known in LD theory; see, e.g., [11, 10, 28].

ProOPOSITION 3.1. The exponential tightness and the local LDP for a family
{X¢®}.s0 in C([0,1],RY) with local rate function J imply the full LDP in C([0,1],R%)
for this family with rate function J.

In what follows, we prove the LDP of {X¢}.~¢ in C([0,1],R9). Tt will be seen that

it can be extended to the space C([0,7],R?) endowed with the sup-norm topology for
any T > 0. As a consequence, the LDP still holds in C([0,o0),R?), the space of
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continuous function on [0, 00) endowed with the local supremum topology. (This fact
follows from the Dawson—Gaértner theorem; see [10, Theorem 4.6.1], which states that
it suffices to check the LDPs in C([0,T],R%) for any T in the uniform metric.) We
will still use C' to represent a generic positive constant that is independent of €. The
value C' may change at different appearances; if it is necessary, we will specify which
parameters it depends on.

Exponential tightness. We aim to prove (2.16) and (2.17). We have
¢
(3.4) Xf:;z:8+/ ae 4 gs + 7/ / —ALs ) pE(XE €5)dr
0

where for any 0 < s <t<1,6>0, A5(t,s): 2f (X2, €5)dr and AS(t) = AS(t,0).
So, we can obtain from some direct calculations and Assumptlon 3.1 that

t
(3.5) | XF| < [af| + Ce?[af| + C s%p]lFf(Xf,ﬁi)\ds,
0 r€l0,s

and by noting further that f; e Fdr<Ce(l—e ) < Cer/Jt— 3], we get
(3.6) | X7 — X5| < Celaf |Vt — 5[+ CJt — s sup [F7 (X5, 601
rE|s,t

If (3.1) in Assumption 3.1 holds, (2.16) follows immediately from (3.5) and Gronwall’s
inequality on noting that limsup,_,,elz§| < oo a.s., {xf}.>0 is exponentially tight;
then (2.17) follows from (2.16) and (3.6).

Otherwise, assume that (3.2) holds. Let C v be constant in (3.1) uniformly in |y| <
N. We get from (3.5) that sup,¢ (g 47 [ X7 | < C(Cn+N)e N provided supyep,1 1€ < NV,

|z§| < N. Therefore, for any N >0, for L > C(Cy + N)e N one has

Ppe ( sup | X¢| >L> <P°(|ag| > N) + P* ( sup |&| >N> .
te[0,1] t€[0,1]

Letting L — co and N — oo and using the logarithm equivalence principle [10, Lemma
1.2.15] and (3.2) in Assumption 3.1, we get (2.16). Thus, we also obtain (2.17).

Local LDP. We note that we do not assume any structure of . As a result,
we could not use integration by parts (Lemma 2.1) to connect the first-order and
second-order systems. Therefore, we will establish a relationship in a local sense.

For each continuous function ¢, we introduce the auxiliary processes X;'¥, the
solution of

(3.7) XY = Fi (01, €) = Moo §) X%, X§ =uj, X5 =af,
and Z;¥, the solution of

FtE(SDtyftE)
/\?(Qoﬁgf) ’

We have from (3.7) and the variation of parameters formula that

(3.8) Z5¥ = Z5¥ = .

t t s
1
(39) X =uzf+ / xie—A?w“)dH;z/o / AL FE (0, ) dr
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where for any 0 < s <t < 1,e >0, A5 (t,s) := E%f; X (o, £5)dr and AS (1) =
A§7W(t,0). From the fact that Ag(s,r),Agw(s,r) > @ and the property of A, we
obtain that

‘e—AS(S,T‘) _ e_Ag,ap(SaT) S Ce *no(b ) / ‘XE (pr‘ dr
(3.10) —kg(s—r)
<Ce =2 ~S - sup | XD — o
€ rel0,s]

A change of variable leads to

s

(3.11) / exp{_ﬂo(sz_r)} . S_QrdS:EQ/E e " rdr < Ce?.
0 € € 0

Therefore, we obtain from the Lipschitz property of the coefficients and (3.10) that

[ et (50 - e e e ar

< / e A6 |FE(XE, 65) — FE (g, €8)| dr
0

) c € —Af(s,r —AS _(s,r
+/ |ES (o, E5)]| e AL(syr) _ o= AL L (s0)
0

<Ce? sup |X; — .|+ Ce® sup |F (e, &) sup 1 X5 — o
0<r<s rel0,s o<r

(3.12)
dr

Combining (3.4) and (3.9), applying (3.12), and noting that limsupeﬁodx‘ﬂ < o0
leads to
(3.13)

t
sup | X —XJ%|<Ce bup | XS —ps|+C sup |Fr(¢r, &) sup | X — ¢lds.
s€[0,t] s€[0,t re(0,t] 0 re€l0,s]

From (3.7) and (3.8), we obtain that

t 52Xe,¢ .
X% — 707 = / 7Edr < Ce? sup |X;¥
0 Ai(or &) s€[0,t]
(3.14) <Ce® (in+ sup Ff(%fﬁ)l)-
r€l0,t]

One also gets from (3.3), (3.8), and the Lipschitz continuity of F°, A\® that
(3.15)

t
sup [Z5¥ —Z3| <C| sup [F7(er,&0)|+ sup [AZ(er, &) / sup |Zy — ¢y |ds.
s€[0,t] rel0,t] rel0,t] 0 r€lo,s]

Now, if (3.1) in Assumption 3.1 holds, combining (3.13), (3.14), and (3.15), we get

sup | X — 5| <Ce sup | X —ps|+Ce |1+ sup o]
s€[0,t] s€[0,t] rel0,1]

+C<1+ sup |<,0T|> sup |Z: — .|
rel0,1]

ref0,1]
t
+C’<1+ sup |gar|>/ sup |X: —,|ds
ref0,1] 0 r€l0,s]
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and

sup |Z: — s <Ce (1 + sup (pr|> +C (1 + sup |L,0T|> sup |Z: — .|
s€[0,t] rel0,1] ref0,1] rel0,1]

rel0,1] rel0,s]

t
+C’<1+ sup <pr>/ sup |X: — ¢, |ds.
0

Thus, for small €, one has

sup | X7 — | <Crpe+Cy, sup |Z7 — ¢y and
te[0,1] t€[0,1]
(3.16) . .
sup |Z; — | < Co e+ Cy, sup | X7 — @y,
tef0,1] t€[0,1]
for some constants C1 ,, Ca,, depending only on sup,.¢jg 47 || and independent of e.
So, for any ¢ >0 we have from (3.16) that

P sup | X7 —pe| <6 | <P sup |Z7 — ¢ <26Cy, | Ve<d/Cy, and
te[0,1] te[0,1]

o
P sup | X7 —@e| <6 | 2P| sup |Z; — | < o5— | Ve<d/Cp.
t€[0,1] t€[0,1] 2C1

Therefore, the local LDP of {X¢}.5q follows directly from the local LDP of {Z¢}.<o.

If (3.1) in Assumption 3.1 only holds locally and (3.2) holds, then in the event
suPyeo,1) 1€ < IV, we still have (3.16) with C1,, C2 replaced by Cip N, C2pN
depending only on ¢, N. So, for any ¢ > 0 one also has that for all € < §/C1 o N A
5/C2,<p,N7

W(mﬂﬁ—%Rﬁ

tefo,1]

<P ( sup |Z; — ] < 2502,%1\') + P ( sup |¢7 | >N>

te0,1] te[0,1]

and

t€(0,1]

)
>P°| sup |Zf — ] < —P°| sup [&|>N .
te[0,1] 2014, te[0,1]

By letting ¢ = 0, N — oo, and § — 0 and using the logarithm equivalence principle
[10, Lemma 1.2.15] and (3.2) in Assumption 3.1, we obtain the local LDP for {X}.-o.
Therefore, the proof of Theorem 3.1 is complete.

W(mﬂﬁ—wkg

4. Examples. In this section, we consider some examples drawn from physics
to illustrate our formulation and results in these cases.

4.1. Stochastic acceleration with small-mass particles. Stochastic accel-
eration considers motions of a net of particles in a net of random force fields, which
is described by Newton’s law as Z.(t) = F.(¢t,w, x(t), 2 (t), xe(t)), where F. denotes
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the random force fields. Such models were considered by Kesten and Papanicolaou
in [22, 23] and references therein. Note that small and large are relative terms. Here
we focus on small-mass particles, by which we mean that the Reynolds number is
small (see, e.g., [35] for a definition) so that inertial effects are negligible compared
to the damping force, or the ratio “inertial effects/damping force” is parameterlzed
by € < 1. Therefore, random force field F. can be written as F. = F. — f, and the
motion is described by Z.(t) = FL(t,z:(t), x(t)) — M <(t). Now, by scaling
Xf:=x(t/e) and & := x.(t/e), the system can be rewritten as (1.2), 1

(41)  2Xi= ﬁmm»A%m@ﬁ;X%m£W,m=mdw

The above illustrates how the fast-varying process (or fast-varying random environ-
ment) & = x.(t/€) comes in. To further demonstrate, we consider some common mod-
els of the fast-varying processes for random environment &; and illustrate our results.

4.1.1. Fast-varying diffusion. Consider the case that fast-varying process &
is modeled as a (fast) diffusion, which is common in modeling stochastic processes in
physical phenomena, i.e.,

1 .
%Uf(XtEvgtE)Wta =6 <R,
In this situation, stochastic acceleration (4.1)—(4.2) become coupled second-order
SDEs (1.1). The LDP for stochastic acceleration in this case is established in Theo-
rem 2.1 with rate function given in variational form (2.10) or representation (2.14).
It is important to note that we establish LDP for stochastic acceleration assuming
neither Lipschitz continuity nor linear growth rate of F¢; see Assumptions 2.1 and 2.2
and Remarks 2.1.

. 1
(42) & = b(X7.€D) +

THEOREM 4.1. Under Assumptions 2.1 and 2.2 and (2.8), stochastic acceleration
under fast-varying diffusion environment (4.1)—(4.2) obeys LDP with the rate function
given in (2.10).

4.1.2. Fast-varying jumps. Consider the case that &; is a jump process taking
finite values in M = {1,...,|M]|}, where |M]| denotes the cardinality of the set M.
Similarly to [2], the evolution of the jump fast component is constructed through a
jump intensity function c(z,y) = ¢, (z) : R? x M — [0,00) and a transition probability
function r(z,y,y") = ryy (x) : R4 x M x M — [0,1], both of which are coupled with
X*®. We describe the construction of jump processes &; as follows.

Assume that for all (x,y) € R x M, Zy’EM Ty (2) = 1,7y, (z) = 0. Let ¢ =
SUD (5 y)erix M Cy(T) + 1, Eyyr(z) = [0, ¢y (7)1, ()] for all (z,y,y") € R% x M x M,
y#y', and T =:{(y,y') € M x M : 1y, () > 0 for some x € R%}. For (i,j) € T, let N,
be a Poisson random measure on [0; ¢] x [0, T] xR with intensity measure pc®pr®pioo,
where pr and oo denote the Lebesgue measures on [0,7] and R, respectively, such
that for ¢ € [0,7], N;(A % [0,t] x B) — tuc(A)po(B) is an Fy-martingale for all
A € B[0,¢] and B € B(Ry) with puw(B) < 1. Then, we define ijfl(dr x dt) =
Ni;(drxdtx[0,e1]), which is a Poisson random measure on [0, (] x [0, 7] with intensity
e ue ® pr. The processes (Nw 1)(2 jer are taken to be mutually independent. We
will assume that for 0 <s <t <T, {Nj; "(Ax(s;t]xB): A€ BJ0,¢], B B(Ry), (i,§) €
T} is independent of Fs. Now, we consider the following stochastic acceleration with
fast-varying jumps:
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e2X§F = F5(X{,YE) — N (X5, YP) XS,
(4.3) AYE =3 e Jre.qU = Dlve)=iLey, (xp) (NN C(dr x db),
XO—CL‘QERd Xo—xleR Ybszyoe./\/l.
According to [2], we make following assumption for the jump process.
Assumption 4.1. The function ¢ is bounded, and there exists a finite constant

C > 0 such that for all y,y' € M and x;, x5 € R?,

ley(21) — cy(z2)| + |1y (21) — 1y (22)] < Clat — 22|

Moreover,
M|
inf min " (z) >0 inf minc >0 inf min r > 0.
xeRdy,zeMn_l yZ( ) ’ zeRdyeM y( ) " zeRd (y,y')€T yy( )

The rate function for the LDP of (4.3) is constructed as follows. For ¢ =
(¥(4))jem, with 1, : [0,{] = R being a measurable map for every j, define

K - Zy:ysﬁj (I);py (m) if i =7,
and R = {v = (vij)(i,j)eT, vij : [0,1] x [0,{] = R is measurable for all (i,j) € T}. For
0 € C([0,1],R%), let V(i) be the collection of all

(= (ui),v = (vin), 7= (mi)) € M([0, 1] : R)M 5 R x M([0, 1] : P(M),

where M([0,1] : P(M)), M([0,1] : RY) denote the space of measurable maps from
[0,1] to P(M) and from [0,1] to R?, respectively, with P(M) being the space of
probablhty measures on M equipped with the topology of weak convergence], such
that fo llui(s)]|?mi(s)ds < oo for each i € M, and

ot =x0 + Z / ('05’] (s)ds; Z 7rj(s)<I>;§'(s")(gas):0, a.e.s€l0,1], Vi e M.
JEM JEM

Combining Theorem 3.1 and [2] yields the following result.

THEOREM 4.2. Assume Assumptions 3.1 and 4.1 hold. Then the family of pro-
cesses { X}~ in stochastic acceleration system with fast-varying jump (4.3) satisfies
the LDP with the rate function 1 given by

H“"Mm)ew{z [ oo

" Z /[OC]X[O 1]é(vij(s’Z))Wi(S),Ltg(dZ)dg},

(4,5)€T

(4.4)

where {(z) =xlnz —x + 1.

4.2. Liénard equation with relaxation oscillations. The Liénard equations,
named after physicist Alfred-Marie Liénard, have been extensively studied in the
literature of ODEs. During the development of radio and vacuum tubes, the Liénard
equations were used to model oscillating circuits. These equations were also used in
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mechanical systems in physics and engineering. In the exploration of radio and vac-
uum tube technologies, much attention was devoted to the study of Liénard equations
and such equations with relaxation oscillations. A notable important equation is

(45) (1) = gla" (1) — k¥ (1),
where v > 1 is a large number, & is a positive constant, and g is a function. Equation
(4.5) has been studied in detail in [30] with the motivation from the familiar van der
Pol equation [37]. Its variations can also be found in [38] and references therein.
Now, we consider the case that the environment is perturbed by random factors
so that the function g and coefficient x depend on a random process, which varies
very quickly. Such a fast-slow setting is natural as multiscale systems arise in many
problems in various fields. For example, many processes (e.g., signals, cellular pro-
cesses) are inherently multiscale in nature with reactions occurring at varying speeds.
As a result, we consider the following Liénard equation with relaxation oscillations in
a fast-varying random environment:

(46) (1) = gl (), € (1)) — w(E ()" (1),

where £”(t) is a (fast-varying) random process, which interacts with a¥(¢). In par-
ticular, the time-scale separation comes from applications; see, for example, [30] and
references therein. Using our results, we can establish LDP for the family of solutions
{z"(")}us1 of (4.6). (i) If £€”(t) has the form of a (fast) diffusion, LDP of {z"(-)},s1
is established by Theorem 2.1 without any assumption about Lipschitz continuity of
g. (ii) If £€”(¢t) is a (fast) jump process, LDP of {z”(-)},s1 can be obtained as in sec-
tion 4.1.2 (Theorem 4.2). For brevity, we only state the results without the verbatim
derivations.

THEOREM 4.3.

(i) Assume d€¥(£) = vby (2" (£), € (£)) + oo} (aF , € (1)) dW (1), €& = o ERL. Un-
der Assumptions 2.1 and 2.2 and (2.8), {z”()},>1 satisfies LDP with the
rate function

e A L G B

BERE meP(R! K(y)

an o+ sw [ (T (Gdin (e nm() - bl

hect(RY)
1 2
— SIVR@)I . ymy) ) dy ) |ds

if ¢ is absolutely continuous; otherwise, Ix (p) = oo.

(11) Assume déy(t) = Z(i,j)e'ﬂ‘ TG[O,C](j — i)l{g”(t—):i}1Eij(:v;’)(7‘)Niuj(dr X dt),
where N, is a Poisson random measure with (fast) intensity rate O(v) con-
structed precisely as in section 4.1.2. Under Assumptions 3.1 and 4.1,
{z"},s1 satisfies the LDP with the rate function 1 given by

1 1
I(p)= inf ,/ ()| [Pms(8)ds
() (u,0,m)EV(p) i%\:AQ 0 [[wi(s)[I7mi(s)
(4.8)

+ ) / (v (s,2))mi(s) e (dz)ds p
(i,j)eT” [0:¢1%[0,1]

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/24 to 68.36.191.65 by Gang Yin (gyin@uconn.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(1]

2]
(3]

(4]
[5]
[6]

[7]

(8]
[9]
(10]

[11]
(12]

(13]
(14]
(15]
(16]

(17]
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(19]

20]

(21]
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23]
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=

1\/

=

A.
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where {(z) = zInz — x4+ 1, and V(p) is the collection of all (u = (u;),v =
(vin), ™ = (m;)) such that fol |lui(s)||?mi(s)ds < oo for each i € M, and

Pt =10+ Y iepm fg g(&;’.’)j)ﬂj(s)ds, and 3 7rj(s)<I>§g'(s")(gas) =0,a.e. 5 €
[0,1],Vi € M.
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