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ABSTRACT
We introduce new methods inspired from dynamical systems and control theory for
estimating the quality of perishable products in inventory in a supply chain based
on measurable data. A state-space representation of the supply chain with perish-
able inventory is constructed from which controllability and observability properties
are established to derive inventory management and quality estimation strategies
with guaranteed performance. Rolling horizon state estimation is formulated to es-
timate the quality of inventory at locations where measurements are not available.
Observability and controllability properties then allow us to formulate an online op-
timization framework inspired by model predictive control, that defines an implicit
supply chain management policy. Numerical experiments demonstrate the perfor-
mance of the proposed state estimation and online optimization approach, as well
as its benefits for supply chain optimization (∼ 40% improvement in the cost objec-
tive relative to the baseline model).

KEYWORDS
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1. Introduction

The effective handling of perishable goods is a pivotal challenge for businesses across
various sectors. Perishable inventories, characterized by their limited shelf life and
susceptibility to spoilage, require meticulous planning and strategic management to
minimize losses and ensure optimal utilization. While the concept of perishable inven-
tory management applies broadly, one of its most critical and ubiquitous applications
lies within the realm of food products. Recent data reveal that about one-third of
the food produced globally each year is lost or wasted, at a cost of nearly US $1 tril-
lion (World Food Programme (WFP) 2024). Food loss pertains to a decline in the
quality or quantity of food resulting from decisions made in the food supply chain,
excluding retailers and consumers, whereas food waste refers to the losses caused by
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retailers, food service providers, and consumers (Food and Agriculture Organization
of the United Nations (FAO) 2024). Europe, North America, and Oceania together
lose or waste approximately 30% of fruits and vegetables produced (Food and Agricul-
ture Organization of the United Nations (FAO) 2011). In the United States, food loss
amounted to 133 billion pounds and $161 billion worth of food in 2010 (United States
Food and Drug Administration 2023). Food Loss and Waste (FLW) arise from various
inefficiencies, including overproduction, harvesting and transportation losses, inade-
quate storage conditions, contamination during processing, flawed allocation strate-
gies, product spoilage due to negligence, and consumer-level waste (Zhu et al. 2023).
FLW significantly strain already scarce natural resources, particularly freshwater, crop-
land, and fertilizers. Freshwater scarcity poses a major global challenge. Agriculture
is the leading consumer of freshwater, highlighting the critical link between FLW and
water management (Kummu et al. 2012). Substantial greenhouse gas (GHG) emis-
sions are attributable to the food system (around 25 to 33% of the worldwide an-
thropogenic total)(Crippa et al. 2021). Employing effective supply chain management
(SCM) strategies for such perishable products can enhance food security without in-
curring additional environmental burden, thus underlining its significance in global
food systems.

A large fraction of these losses is directly related to the highly perishable nature
of many food products. De Ketelaere et al. (2004); Jackman, Marangoni, and Stanley
(1990); Lana, Tijskens, and Van Kooten (2006) have shown that such products can de-
grade significantly over time spans comparable to the time required for the product to
transit through the supply chain, and that there is significant uncertainty in the degra-
dation rates. This makes it imperative for supply chain management (SCM) strategies
to account explicitly for the time evolution and degradation of product quality (often
represented in terms of consumer-perceived attributes such as color and firmness).
SCM must guide the optimal production, distribution and storage of inventory, as
well as the optimal regulation of environmental conditions (such as temperature and
humidity) during storage and shipment (Rong, Akkerman, and Grunow 2011).

Previous work (Sarimveis et al. 2008; Lejarza and Baldea 2020a,b, 2022; Lejarza,
Kelley, and Baldea 2022) has shown that online optimization is a computationally
efficient and robust approach for handling uncertainties in supply chain operations
(i.e., random disturbances such as uncertain customer demand and random product
spoilage), thereby reducing costs, energy consumption, and inventory waste. Online
optimization relies on feedback, i.e., a mechanism for periodically and repeatedly up-
dating supply chain decisions (e.g., orders and shipments) over a rolling time horizon
once uncertainties are revealed/realized or new information (regarding orders, product
inventories, spoilage, etc.) becomes available.

Implementing such feedback strategies requires comprehensive real-time information
pertaining to the inventory and quality of the products in all echelons of the supply
chain. However, measuring product quality often involves costly technology and skilled
personnel and, in reality, measurements may only be available from a limited number
of points in the supply chain. The purpose of this paper is to demonstrate that,
under certain conditions, it is possible to accurately estimate the quality of perishable
products at the remaining supply chain locations, and do so based on data that can
be measured cost-effectively in practice.

The present work relies on translating concepts from dynamical systems and control
theory to supply chain management of perishable inventories, and makes the following
contributions:
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(1) A representation of the perishables supply chain as a dynamical system. A linear
state space model is used, and the model is defined such that the output variables
are quantities that can be measured in practice.

(2) A novel rolling horizon1 state estimation scheme that allows for reconstructing
the values of inventory quality based on a limited set of measured outputs.

(3) A rolling horizon algorithm for online optimal SCM, focusing on production and
distribution planning for supply chains of perishable products.

(4) Extensive numerical experiments are carried out, demonstrating improved supply
chain transparency (in terms of the estimated product quality distribution) for
echelons of the supply chain where product quality is not directly measured,
as well as improved supply chain management performance for the resulting
production and distribution decisions.

The paper is organized as follows: the relevant literature is surveyed in the next
section. The production and distribution planning problem formulation is introduced
in Section 3, followed by the corresponding state-space representation in Section 4. Our
results on rolling horizon state estimation and SCM control are presented in Sections
5 and 6, respectively. Numerical experiments are described in Section 7, followed by
conclusions in Section 8.

2. Literature review

2.1. Control theoretic approaches to supply chain management

Supply chains are dynamical systems (i.e., systems whose state, inputs and outputs
change over time). Control theory provides a natural analysis framework for such sys-
tems (Ivanov et al. 2018), and control theoretic approaches have helped elucidate phe-
nomena such as the bullwhip and ripple effects caused by, respectively, high-frequency
and low-frequency disturbances (Udenio et al. 2017; Ouyang and Li 2010; Ivanov and
Dolgui 2021; Llaguno, Mula, and Campuzano-Bolarin 2022; Brusset et al. 2023; Brus-
set, Jebali, and La Torre 2023).

Optimal control theory has found application in scheduling problems. Optimal con-
trol approaches are well suited to these problems owing to their ability to handle
complex constraints, incorporate non-stationary job execution dynamics, and repre-
sent intricate relationships between process execution, capacity evolution, and physical
system configuration (processing parameters, machine setups) (Subramanian, Rawl-
ings, and Maravelias 2014; Dolgui et al. 2019). Optimal control has also been used
to support the integration of manufacturing process design and operations (Ivanov,
Dolgui, and Sokolov 2012).

Underpinning the use of control theoretic concepts for the analysis, design and op-
eration of supply chains is a mathematical model that represents the supply chain
dynamics. Based on the physical structure of supply chains, these models are struc-
tured in an input/state/output form. The states comprise the minimum number of
differential variables required to represent the evolution of the system in time (inven-
tories at each node are examples of state variables). Inputs include variables that can
be altered by the operator (e.g., shipments and production rates), as well as exogenous
disturbances, not all of which are known or measured. From a control perspective, the
values of the output variables are a function of the states and inputs, and can be
regarded as the information that is available regarding the operation of the system.

1 In the control literature, the term “moving horizon” is also used.
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The set of output variables could be the same as the set of state variables (i.e., all
state variables can be measured), a subset of the state variables, or a linear or non-
linear function thereof. Control theory is built around standardized representations of
the system dynamics, and the state-space representation that will be used here and
discussed in depth in Section 4 has been widely used for modeling and analyzing linear
systems.

At this juncture, it is important to point out that, in practice, it may not be possible
to measure all the system state variables; on the other hand, knowledge of all the states
is frequently needed for applying the control theoretical concepts outlined above. In
this context, state estimation becomes essential.

Broadly speaking, state estimation is the process of determining the state (i.e.,
the values of time varying/differential variables) of a dynamical system by fusing
information from (noisy) measurements of (a function of) a subset of the system
states, and a mathematical model of the system. It aims to provide the best estimate
of the system state variables by accounting for uncertainties in both the model and the
measurements. The Kalman filter (KF) (Kalman 1960) and its variants, the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) (Pei et al. 2019), are
among the most widespread state estimation approaches. The Kalman filter is based on
a linear state-space model, and it is assumed that both the system and measurement
noise variables (i.e., the uncertainties or disturbances) are Gaussian. The EKF and
UKF are extensions to the KF that allow for state estimation of nonlinear systems
when certain assumptions are met. For many physical systems that are highly nonlinear
and constrained (such as supply chains, where inventory levels and backorder values
must be nonnegative and where there are storage and shipment capacity bounds),
Kalman filtering may no longer be applicable. Rolling horizon estimation, also known
as moving horizon estimation (MHE) (Rawlings and Mayne 2019), conversely, is a more
flexible approach, that relaxes some of the core assumption of KF-based estimators
(e.g., noise variables being normally distributed, the dynamics being approximately
linear). The MHE algorithm involves using the (nonlinear) system model and solving
an optimization problem over a finite time window of measurements to determine the
values of the unmeasured system state variables that best fit the measured data.

In the context of supply chains with non-perishable inventory, state and parameter
estimation have been applied to forecasting demand, as well as to estimating replenish-
ment lead times (including production and shipment delays). Here, we recall the work
of Aviv (2003), who modeled inventory systems with uncertain demand with linear
state-space models, using a KF to compute minimum mean squared error forecasts of
future demands for all the locations in the network. Hayya et al. (2006) proposed the
use of simulation and estimation techniques based on smoothing and autoregressive
models to compute the expected lead time demand (i.e., the sum of variable demands
over a variable replenishment lead time). In the context of online optimization, Wang,
Rivera, and Kempf (2005) and Wang and Rivera (2008) used a KF to perform state
estimation under measured demand forecasting errors, and demonstrated superior per-
formance of the integrated optimization and estimation approach for a semiconductor
manufacturing case study. Villegas and Pedregal (2018) introduced a KF-based ap-
proach to circumvent the limitations and inaccuracies of aggregated forecasting, by
reflecting demand hierarchy across geographical dimensions in a state-space model
and thereby performing demand estimation with superior accuracy.

The same methods can be applied directly to estimate demand and lead times for
supply chains of perishable products (Mor et al. 2019). However, to our knowledge,
estimating the quality of perishable products has not yet been covered in the literature.
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This is a key result of this work and will be covered in depth in Section 5.

2.2. Supply chain management for perishable products

The past decades have witnessed a paradigm shift towards an enhanced coordination
between the echelons of the perishables supply chain, that yields significant economic
advantages (Wilson 1996). A substantial body of research underscores the critical
role of food supply chain management in optimizing efficiency (Bakker, Riezebos, and
Teunter 2012). A key challenge lies in maintaining consistent product temperature
throughout the supply chain, particularly during loading and unloading procedures
outside of controlled environments (Bogataj, Bogataj, and Vodopivec 2005). Even
brief deviations beyond the optimal temperature range can negatively impact product
quality. Studies such as that of Newsome et al. (2014) have shown that current practices
of open dating for tracking the expiration date of a perishable product may perform
poorly. Products that are still viable may be discarded and, conversely, non-viable
products may still be considered sellable, resulting in food safety hazards (Ketzenberg,
Bloemhof, and Gaukler 2015; Ketzenberg, Gaukler, and Salin 2018). This occurs due
to the fact that perishable goods inherently experience unpredictable and fluctuating
conditions, including fluctuating time-temperature profiles, throughout their supply
chain journey, which impact their viability.

There is thus a growing interest in improving cold chain traceability by predicting
the quality of perishable products as they progress through the supply chain. Supply
chain models for perishable products, such as those proposed by Rong, Akkerman,
and Grunow (2011), Amorim, Günther, and Almada-Lobo (2012), and Lejarza and
Baldea (2022) can account for inventories with heterogeneous quality and variable
shelf-life (which depends on time as well as the chosen environmental conditions for
each transportation route and facility). These models have then been leveraged to
devise SCM strategies for perishable products considering different decision variables,
applications, solution heuristics (see e.g., Soto-Silva et al. (2016); Sarimveis et al.
(2008), and for strategies inspired by Model Predictive Control, Lejarza and Baldea
(2020a,b, 2022); Lejarza, Kelley, and Baldea (2022)).

Most of the aforementioned models and SCM strategies are deterministic. Product
quality degradation is represented as a (set of) chemical reaction(s) using kinetic ex-
pressions that account for the impact of temperature (and possibly other variables,
such as humidity. The reader is referred to Van Boekel (2008) for a detailed review
on kinetic modeling of food quality.) The parameters of these expressions (rate con-
stant, activation energy) are assumed to be known with certainty. In practice, these
parameters are in fact uncertain: fresh foods such as vegetables, meats and dairy prod-
ucts, which are of natural origin and exhibit inherent variability in initial quality and
degradation rates. This endogenous uncertainty in the rate of degradation was rec-
ognized by, e.g., Ketzenberg, Gaukler, and Salin (2018), who derived order quantities
and expiration dates for perishable inventory with random lifetime under periodic re-
view. The results balance the outcomes of selling perished products (but before their
expiration date) or discarding viable products (but past the expiration date). In a
related work, Amorim, Alem, and Almada-Lobo (2013) introduced a risk-aware sup-
ply chain management framework under uncertain degradation rate considering well-
defined degradation scenarios (low, medium and high) and solved the SCM problem
using scenario-based stochastic optimization.

However, product quality degradation is also subject to exogenous uncertainties (i.e.,
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outside disturbances). For example, product spoilage may be accelerated by improper
temperature settings in storage facilities, or by events such as loading/unloading and
transferring goods between facilities and trucks or shipping containers. Taking cor-
rective action (e.g., adjusting storage temperatures) to deal with these disturbances
requires up-to-date information on the state of the supply chain at every relevant eche-
lon. Extensive recent work has been carried out on hardware and software solutions to
monitor environmental conditions. Sensors (e.g., RFID tags (Grunow and Piramuthu
2013; Piramuthu, Farahani, and Grunow 2013)) are available to measure environmen-
tal factors like temperature, humidity, and pressure in real-time, and internet of things
(IoT) technology (e.g., Tsang et al. (2018); Manavalan and Jayakrishna (2019)), facil-
itates the connection of such devices to the internet, enabling real-time data collection
and transmission. As of yet, direct measurements of product quality remain difficult,
with some attributes (e.g., firmness, moisture content) requiring destructive testing on
individual items (e.g., a single fruit/vegetable), and others (e.g., color) often requiring
that the product be removed from packaging. This is acceptable at, e.g., producer
facilities or packing houses, where product is generally presented in bulk, but may not
be feasible at, e.g., warehouses or ripening facilities.

As such, establishing model-based mechanisms for estimating product quality at all
echelons of the supply chain on the basis of measured variables is of elevated interest.
Control theory, and in particular state estimation, represent an ideal paradigm to this
end. The focus of the present paper is thus to establish observability and controllabil-
ity properties for supply chains of perishable products, and develop state estimation
mechanisms for product quality as degradation driven by endogenous and exogenous
factors occurs. As mentioned above, to the best of our knowledge, such mechanisms
do not currently exist and their development - uniting supply chain modeling and
estimation theory concepts - is the key contribution of this work. Table S5 in the Sup-
porting Information provides a summary of the literature referenced in this section
in comparison and contrast to the results presented in this paper, emphasizing the
novelty of our contribution.

3. Production and distribution planning problem formulation

We consider a supply chain network consisting of a set of producers P, a set of distri-
bution centers or warehouses D, and a set of retailers R. The set of routes between
facilities is known and denoted by A such that if (i, j) ∈ A a route between facility i
and facility j exists. The sets n(i) and v(i) denote respectively the set of all successor
and predecessor facilities to facility i. We consider production lead time denoted with
τpi for facility i ∈ P , and shipment lead time denoted with τi,j for route (i, j) ∈ A. All
facilities can hold inventory in storage by incurring a holding cost, and it is assumed
that producers have no predecessors and that retailers have no successors. We consider
a discrete time model (typically using days as the time unit), and a planning or control
horizon length N such that t ∈ {0, . . . , N}.
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3.1. Product quality and degradation modeling

The evolution of the quality of perishable products is assumed to be known and rep-
resented by a rate of change expression of the form:

dq(t)

dt
= f(q(t), κ(t)) (1)

where q(t) ∈ R is the time-varying quality attribute, κ(t) ∈ R is the time-varying
(manipulated) environmental conditions, and f(·) : R × R → R reflects the product
quality dynamics.

Further, it is assumed that f(q(t), κ(t)) ≤ 0, which implies that product quality
is non-increasing in time. For example, it has been found that a model that follows
a first-order Arrhenius-type reaction kinetics (i.e., f(q(t), κ(t)) = −ae−bT q(t), with
a, b ∈ R+, can capture the degradation rate of many quality attributes of fresh produce
such as avocados, tomatoes De Ketelaere et al. (2004), avocados Maftoonazad and
Ramaswamy (2008), strawberries Hosseinifarahi et al. (2020), etc. More details on
deriving these quality models and their parameters can be found in Newsome et al.
(2014).

As quality typically decays in time such that limt→∞ q(t) = q∞ for some q∞ ∈ R, the
minimum product quality requirement is defined as qmin ∈ R, such that qmin ≥ q∞,
and if q(t) < qmin , the product is considered spoiled and must be discarded at a cost.
From a practical perspective, q∞ reflects the quality at which the product is completely
spoiled and potentially unsafe for consumption, while qmin is the lower quality bound
for which the product is deemed “sellable” and has some remaining economic value.
Products with quality lower than qmin cannot be used to fulfill demand. The value of
these parameters is strictly dependent on the specific product and market considered.

The environmental conditions (κ(t)) available to control product quality are de-
termined by the specific features of the supply chain equipment technology (e.g.,
temperature control or atmospheric composition control). These conditions have a
direct impact on the rate of product quality degradation as per the dynamics in (1)
(e.g., higher temperature accelerates the biochemical reactions responsible for changes
in color, texture and firmness of food products (Newsome et al. 2014)). However,
because of the discrete-time nature of production and distribution decision-making
(e.g., decisions are made on a hourly, daily, weekly basis) the quality variables are
re-scaled and discretized as in Lejarza and Baldea (2022): given a countable set of
a total of S environmental condition settings such that κ(t) ∈ {κ̃k|k = {1, . . . , S}},
the model output is a set of discrete quality levels Q and discrete degradation val-
ues (or quality losses) corresponding to a single time period (e.g., one day) given by
∆qk ∀q ∈ Q, k ∈ {1, 2, . . . , S − 1, S}. The resulting discretization thus provides an
approximation of the (nonlinear) model shown in (1) to an arbitrary accuracy. The
reader is referred to Lejarza and Baldea (2022, Section 3) for an extensive theoretical
and practical discussion on the implementation of the aforementioned discretization
algorithms.

Remark 1. For the sake of simplicity this work considers a single time-varying prod-
uct quality attribute (i.e., q(t) ∈ R), an approach that has been largely adopted in
the literature (Rong, Akkerman, and Grunow 2011). This attribute typically corre-
sponds to the quality attribute with the fastest degradation rate (Lejarza and Baldea
2021b, Section 3). We also note that more recent work considered production and
distribution planning for multi-attribute quality dynamics (i.e., q(t) ∈ Rm for m > 1)
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(Lejarza and Baldea 2022). Further, more sophisticated models capture degradation
rates that may be dependent on the quality level and expressed as ∆qq,k, e.g., for the
case of first-order degradation dynamics. For notation simplicity we use ∆qk to denote
degradation rates, and the reader is referred to Lejarza and Baldea (2022, Sections 3
& 4) for further details on higher-order product quality degradation dynamics.

Remark 2. Previous works discussed the use of environmental conditions (e.g., adap-
tive temperature control in Lejarza, Pistikopoulos, and Baldea (2021)) to reduce the
rate of product degradation. In this contribution, to preserve the clarity of discus-
sion and exposition, it is assumed that optimal values for these variables have been
a priori established (e.g., by solving the nominal problem production planning prob-
lem without estimation as done previously in Lejarza and Baldea (2020a); Lejarza,
Pistikopoulos, and Baldea (2021)), and they are not re-computed. Under this assump-
tion, the degradation rate ∆q is a normalized stochastic quantity, and its distribution
is independent of environmental conditions (which holds true in some practical set-
tings, e.g. for supply chains that do not have advanced, real-time temperature control
and for which the temperature in refrigerated trucks is set at a specific value). An
integrated framework for adapting environmental conditions based on the estimated
values of quality is a subject of ongoing work. It is hypothesized that the economic
advantages resulting from state estimation will be significant, as state estimates might,
for example, suggest reducing temperature when high quality degradation occurs.

3.2. Inventory and backorder balances

The inventory and backorder balances form the core component of the dynamic model
of supply chains. At the basic level, the inventory balance captures inventory inflows
and outflows at a given facility.

Ii,t+1 = Ii,t +
∑
j∈U in

i

uinj,i,t−τj,i +
∑

j∈Uout
i

uouti,j,t (2)

where Ii,t denotes the amount of inventory in storage at facility i at time period t.
The variables uin and uout denote respectively inflow and outflow of inventory, t− τj,i
corresponds to the time of arrival of the inventory inflow with some time delay τj,i. The
sets U in

i and Uout
i respectively denote the available sources and sinks of inventory (e.g.,

shipments from upstream and to downstream facilities). While the form of equation
(2) is valid for all facility types (manufacturers, distribution centers, and retailers), it
should be noted that each facility might have different kinds of inventory inflows and
outflows.

The inventory balance in (2) assumes that the inventory is of a single quality level,
which does not change over time. This can be augmented to reflect the presence of
inventory of different quality levels and quality degradation over time as follows (Rong,
Akkerman, and Grunow 2011; Lejarza and Baldea 2020a, 2022; Lejarza, Pistikopoulos,
and Baldea 2021):

Ii,q,t+1 = Ii,q+∆q,t +
∑
j∈U in

i

uinj,i,q+∆qj,i,t−τj,i +
∑

j∈Uout
i

uouti,j,q,t (3)

where Ii,q,t now denotes the amount of inventory in storage at facility i, of quality q, at
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time period t. The parameter ∆q reflects the number of discrete product quality units
that are lost due to degradation for a single time period. ∆qj,i denotes the (discrete)
number of quality levels lost during the τj,i time delay (e.g., when shipping inventory).

The inventory balance in (4) accounts for product quality dynamics so that inven-
tory at time t+1 is of lower quality q and comprised of different sources: (1) inventory
that was in storage at the previous time period and was of higher quality q+∆q > q,
and (2) inventory that arrived from upstream facilities which was initially shipped at
higher quality q +∆qj,i > q. The reader is referred to Rong, Akkerman, and Grunow
(2011, Section 3) and Lejarza and Baldea (2020a, Section 4) for further details on the
derivation of the inventory balance equations.

The model in (3) assumes a deterministic quality degradation process of known
rate (as described in Section 3.1). In practice, these degradation rates are in fact
not deterministic and are subject to some level of uncertainty due, among others,
to inherent variations in the evolution of natural products, as well as to unforeseen
and unmeasured changes in environmental factors (e.g., temperature, concentrations
of gases such as ethylene that promote ripening) that impact the degradation rate. To
our knowledge, this uncertainty has not been considered in the literature on SCM of
perishables, where most reports discuss uncertainty with respect to customer demand
at the retail facilities.

We propose to describe this uncertainty in degradation rates as random but bounded
disturbances in the stored inventory at different quality levels. To this end, we augment
the model in (3) as follows:

Ii,q,t+1 = Ii,q+∆q,t +
∑
j∈U in

i

uinj,i,q+∆qj,i,t−τj,i +
∑

j∈Uout
i

uouti,j,q,t + ϵiq,q−1,t + ϵiq,q+1,t (4)

Here, ϵiq,q̄,t for q̄ ∈ {q−1, q+1} are discrete random variables with arbitrary probability
mass functions, that reflect the aforementioned disturbances. Conceptually, including
these variables provides a correction to the predictions of the deterministic model: a
portion of the inventory Ii,q,t of product of quality q (as predicted by the deterministic
model), may in fact be of higher quality q+1 or of lower quality, q− 1. We assume for
simplicity that actual inventory is either a single quality level better (or worse) than
predicted by the deterministic model, but the idea can be readily expanded to assume
that broader variations in quality level are possible.

The conservation of inventory must still be satisfied, and we assume that the ran-
domness in degradation rates does not impact the total inventory at node i. Thus, the
variables ϵ must satisfy the inventory conservation property:∑

{q ̸=q̄}∈Q

ϵiq,q̄,t = 0 (5)

where Q is the discrete set of all quality levels such that Q = {1, . . . , qmax } for some
positive integer qmax . In turn, this requires that the following properties hold:

ϵiq,q−1,t = −ϵiq−1,q,t, ϵiq,q+1,t = −ϵiq+1,q,t

ϵiq,q−1,t ∈ [−Ii,q,t, Ii,q−1,t], ϵiq,q+1,t ∈ [−(Ii,q,t + ϵiq,q−1,t), Ii,q+1,t]
(6)

Based on these definitions and under the assumptions stated above, the presence of
uncertainty in the degradation rate does not cause a net change in the total inventory
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in storage at any node in the supply chain at a given time. However, the disturbance
may cause inventory to drop to the a lower quality than qi,min for a given facility, thus
resulting in waste being generated.

Remark 3. From a mass conservation perspective of inventory of quality q at node
i, readers may view the model in (4) as representing a transfer of inventory of quality
q to a lower quality level q − 1 or to a higher quality level q + 1. The transfer of
inventory to a higher quality level as introduced above does not imply that the quality
of the product improves over time. Rather, it simply means that the degradation rate
is lower than the nominal value.

With the above, the inventory balances at producer facilities can be written as:

Ii,q,t+1 = Ii,q+∆q,t −
∑

j∈J (i)

si,j,q,t + pi,q,t−τp
i
+ εiq,t (7)

for all i ∈ P , q ∈ {Q | qi,min ≤ q ≤ qmax}, t ∈ {0, . . . , N}, where J (i) ∈ {j ∈ n(i) |
q ≥ qi,min + ∆qi,j}, and for compact notation we represent the disturbance in (6) as
follows:

εiq,t = ϵiq,q−1,t + ϵiq,q+1,t (8)

which is by definition also a discrete random variable. The decision variables si,j,q,t
correspond to the amount of inventory shipped through route (i, j) ∈ A, of quality
q ∈ Q, at time period t, and decision variables pi,q,t correspond to the amount of
inventory produced at facility i ∈ P , of quality q ∈ Q, at time period t. In practice,
manufacturers might not have (complete) control of production quality, but rather the
quality produced can be modeled as a random variable. From a modeling perspective,
this can be accomplished by sampling one or several quality levels Q̃ ⊆ Q from a
certain distribution, and setting pi,q,t = 0 ∀ q ∈ Q̃. This will be discussed in more
detail when describing the numerical experiments in Section 6.

For distribution centers, the inventory balances are:

Ii,q,t+1 = Ii,q+∆q,t −
∑

j∈J (i)

si,j,q,t +
∑
j∈v(i)

sj,i,q+∆qj,i,t−τj,i + εiq,t (9)

for all i ∈ D, q ∈ {Q | qi,min ≤ q ≤ qmax}, t ∈ {0, . . . , N}, where J (i) ∈ {j ∈ n(i) | q ≥
Qi,j,k}. Similarly, the inventory balances for the retailers are:

Ii,q,t+1 = Ii,q+∆q,t +
∑
j∈v(i)

sj,i,q+∆qj,i,t−τj,i − ri,q,t + εiq,t (10)

for all i ∈ R, q ∈ {Q | qi,min ≤ q ≤ qmax}, t ∈ {0, . . . , N}.
Lastly, we also account for backorder dynamics which reflect accumulation of unmet

demand:

BOi,t+1 = BOi,t −
∑
q∈Q

ri,q,t + di,t (11)

for all i ∈ R, t ∈ {0, . . . , N}, where BOi,t denotes backorder at retailer i ∈ R, and
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di,t is a random variable corresponding to the customer demand. We recognize that
while backlogging demand for some perishable products might be possible (e.g., for
pharmaceuticals), it might not be realistic in the context of food products at the retail
level. In the latter case, we note that accounting for backorder corresponds to a more
general case than when unmet demand is transferred to e.g. missed sales. In the case
of the latter, missed sales (MSi,t) can be expressed without any dynamics as follows:

MSi,t = di,t −
∑
q∈Q

ri,q,t (12)

where the variable MSi,t simply serves for tracking the cost of unfulfilled demand but
has no explicit dynamics.

3.3. Cost function and additional system constraints

The production and distribution planning problem consists of minimizing the oper-
ating costs of the supply chain, for which we consider a cost function very similar
to the one introduced in Lejarza and Baldea (2022). In brief, the objective is a lin-
ear function of the decision variables and reflects variable costs per unit associated
with production, shipment, inventory holding, backorder, and inventory disposal once
spoiled. We additionally consider a fixed cost associated with shipment to reflect the
discrete expense incurred for shipping any amount of inventory from one facility to
another (e.g., personnel wages and equipment expenses). To highlight the advantages
of having more accurate information about the distribution of product quality (ob-
tained by implementing state estimation), we consider an addition to the operating
costs to reflect the quality preferences at the retailers. That is, in addition to the min-
imum quality requirements, the following cost component is included in the objective
function: ∑

i∈R

∑
q∈Q

ρi,qri,q,t (13)

where ρi,q < 0 captures the value of quality at retailer facilities. The determination of
these cost parameters can involve various factors, such as assessing the additional profit
margins from selling fresher produce, which can be priced higher at the retail level.
However, these parameters are often influenced by market elasticity, encompassing
considerations of price, quality, and demand (Giri and Masanta 2020), an aspect of
inventory management that is beyond the scope of the present study. These cost
considerations, as accounted for in (13), play a significant role in supplier selection
at the retail level. Retailers may opt to pay a premium for products from suppliers
offering higher quality or shorter lead times, thereby enhancing the quality of their
inventory. Conversely, retailers less concerned with product quality, as reflected in
(13), may choose to source inventory from less expensive suppliers located further
away, reducing operating costs without compromising revenue derived from sales.

The system constraints are based on a previous model (Lejarza and Baldea 2022;
Lejarza, Pistikopoulos, and Baldea 2021), and include: (1) inventory that falls be-
low qi,min is accounted for as waste Ωi,t, (2) the amount of sales must not exceed
the observed demand plus back order, and available inventory must be greater than
outbound shipments and sales, and (3) capacity constraints are in place for daily
production amounts, shipments for each route, and inventory in storage. A detailed

11



description of the model and the corresponding equations are provided in the Sup-
porting Information.

4. State-space representation of system dynamics

The structure of the proposed state-space model is introduced using a prototype sup-
ply chain comprising three nodes: a producer (P1), a distribution center (D1) and a
retailer (R1), as shown in Figure C1. A discrete representation of time is used as in
Lejarza and Baldea (2022); Lejarza, Pistikopoulos, and Baldea (2021). For simplic-
ity the degradation rate is normalized to be equal to one at the given temperature,
i.e., the product degrades from one quality level (grade) to the next lower grade in
one time interval/sample time. Note that this normalization is a linear transforma-
tion of the quality variables and does not affect the model’s generalization to other
perishable supply chain instances. The inverse transformation can easily be applied
to recover the original, non-normalized values (more details are available in Lejarza
and Baldea (2022)). Also for simplicity and illustration purposes, a perishable product
with three possible quality levels (q1, q2, q3, with q3 being the highest quality and q1
the lowest quality) is considered. The supply chain structure and variable definitions
are illustrated in Figure C1.

Definition 4.1. The state of the system, denoted by x, is defined as the level of
product inventory for each quality level at each facility. The state vector at sampling
time t is defined as:

x =
[
IP1,q1 . . . IP1,q3 ID1,q1 . . . ID1,q3 IR1,q1 . . . IR1,q3 BOR1

]T
(14)

The successor state at the next sampling time t+ 1 is then defined as:

x+ =
[
IP1,q1−∆q . . . IP1,q3−∆q ID1,q1−∆q . . . ID1,q3−∆q IR1,q1−∆q . . . IR1,q3−∆q BOR1

]T
(15)

Clearly, the successor state x+ can be expressed as an affine function of x for some
∆q ∈ R. Further, it should be noted that the dimension of the state space scales linearly
with the number of quality levels chosen in the discretization, which ultimately affects
the complexity (in terms of number of variables) of the optimization problem. This
presents an inherent trade-off between the fidelity of the model (i.e., the accuracy
of the approximation of product quality dynamics) versus the computational effort
required to solve the optimization problem. Guidance regarding how to determine the
minimum number of quality levels can be found in Lejarza and Baldea (2021b), and
a more in depth discussion on how the production and distribution planning problem
scales with respect to the supply chain network parameters (including the product
quality discretization) can be found in Lejarza and Baldea (2020a).

Definition 4.2. The vector of system inputs, denoted by u, is defined as:

u =
[
pP1,q1 . . . pP1,q3 sP1,D1,q1 . . . sP1,D1,q3 sD1,R1,q1 . . . sD1,R1,q3 rR1,q1 . . . rR1,q3

]T
(16)

The system inputs (which become decision variables in SCM optimization problems)
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defined at each sample time correspond to the production amounts for each product
quality level, shipment amounts for each possible route and each possible quality level,
and the retail sales at each quality level.

Definition 4.3. We also define the system disturbances w as the uncertainties
in product quality and customer demand at the retail facilities, both of which are
additive with respect to the state variables, as was introduced with the inventory and
backorder balances previously in (4) and (11), respectively.

Based on these definitions of the state, the successor state, the input, and the distur-
bance vectors, the supply chain network dynamics with product quality degradation
can be represented in a linear state-space form,

x+ = Ax+Bu+w (17)

The structure of this model is illustrated graphically in Figure C2 for the example
introduced earlier in Figure C1. While the supply chain dynamics can be represented
with the above linear model, it should be noted that the embedded discretized quality
degradation model captures the nonlinear relationship of the continuous dynamics in
(1). Furthermore, constraints discussed previously (i.e., the inventory balance of the
general form in equation (4), and additional constraints introduced in Section 3.3) can
be represented in compact notation as:

(x,u) ∈ Z ⊆ X× U (18)

where the set Z denotes coupled state and input constraints, and X, U denote in-
dependent constraints imposed respectively on the states and inputs, which define a
set of linear inequalities reflecting e.g., production, shipment and inventory holding
capacity. In the illustrative example shown in Figure (C2), the input vector indicates
a degradation of ∆q = 1 quality levels during shipment e.g., a shipment from P1 to
D1 at quality level q3 (i.e., sP1,D1,q3) is accounted for as inventory in D1 at quality
level q2 (i.e., ID1,q2). Matrix B can be easily modified to reflect greater degradation
rates, and the state and input vectors can be easily redefined to account for greater
production or shipment lead times (e.g., as shown in Subramanian, Rawlings, and
Maravelias (2014)). For this example, the inherent assumption is that the lead time
between facilities corresponds to the same amount of time (typically one day depend-
ing on the time discretization of choice) over which a loss of ∆q quality levels occurs.
That is, following the definition of the inventory balances in (4), for this example we
have that ∆q = ∆qj,i∀(i, j) ∈ A. We note that this representation is relaxed for the
numerical experiments included in Section 7 which consider different lead times.

4.1. Measurements and output model

One of the main contributions of this work is establishing a means for reconstructing
state variables (i.e., inventory quality) from available measurements.

Definition 4.4. The vector of outputs, denoted by y, is defined as the set of variables
corresponding to measured quantities of the system at every sampling time.

Assumption 4.5 (State measurements). We assume that the following three mea-
surements of the states are available through the supply chain over time:
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(1) The total amount of inventory at each facility is measured. That is, for all facil-
ities i ∈ N and all time periods t,

∑
q Ii,q,t is measured.

(2) The quality distribution of inventory is only measured at manufacturing facilities.
That is, Ii,q,t is measured for all producers i ∈ P and time period t, for all quality
levels q ∈ Q. This assumption is justified by the fact that some initial sorting
occurs at manufacturing facilities after e.g., harvesting produce products and
before shipping to downstream nodes.

(3) Backorder is measured to illustrate the advantages of state estimation for pre-
dicting inventory quality. However, in practice we might only observe sales and
any unmet demand (i.e., for lack of inventory or because of products being of
inferior quality) is accounted for as missed sales that might not be measured or
quantified.

This set of measurements of the outputs y is denoted by ŷ.

Based on these definitions, the output variables can be expressed as a function of
the states by a linear model of the form y = Cx+v, which also reflects the possibility
that noise v may arise from the measurement procedure (e.g., sensor noise).

Assumption 4.6 (Input measurements). The estimation problem is posed with par-
tial information regarding the decision variables. Specifically, it is assumes that two
additional quantities are measured corresponding to the system inputs:

(4) The total amount of inventory shipped across each route is measured. That is,
for all routes i, j ∈ A and all time periods t,

∑
q si,j,q,t is measured, but inventory

at individual quality levels is not measured.
(5) The quality distribution of inventory sold at retail facilities is measured. That

is for retailers i ∈ R and time periods t, for all quality levels q ∈ Q, ri,q,t is
measured. This assumption is justified by the fact that some final sorting occurs
at retailers (e.g., supermarkets) when they display their inventory for customers
to purchase.

This set of measured input values is denoted by û.

Remark 4. It is reasonable to assume that the product quality distribution of ship-
ments made is not measured/measurable. As mentioned earlier, products may be
shipped in packaged form, which makes it practically impossible to efficiently apply
quality sampling/measurement techniques for every inventory item.

Remark 5. There are other potential challenges related to measurements, including
the presence of biases and measurement delays. Here we assume that measurements
are unbiased (albeit noisy) and available without time delays. Further work is required
to address these additional challenges.

4.2. Controllability and observability properties of the supply chain
network model

Before introducing the proposed estimation strategy, it is important to understand how
the structural properties of the supply chain (as reflected by the proposed state-space
model) respectively affect controllability and observability.
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4.2.1. Controllability

A linear state space system of the form (17), defined by the pair of matrices (A,B) is
guaranteed be controllable (that is, if for any pair of states x1,x2 in the state-space,
x2 can be reached from x1 in a finite amount of time) if and only if rank(C) = nx,
where x1,x2 ∈ Rnx and C is the controllability matrix is given by:

C =
[
B AB . . . Anx−1B

]
(19)

A useful result for checking controllability of linear systems is provided by the follow-
ing:

Lemma 4.7 (Hautus lemma for controllability (Hautus 1972)). A system is control-
lable if and only if

rank
[
λI −A B

]
= nx ∀λ ∈ C (20)

where C is the set of complex numbers.

On this basis, we make the following claim:

Claim 1. The state-space representation of the supply chain dynamics is a controllable
system if each facility in the network has available: (1) at least one unique control input
corresponding to inventory inflow for all product quality levels, and (2) at least one
unique control input corresponding to inventory outflow for all product quality levels.

Proof. The proof is provided in Appendix A.

Remark 6. Because of the monotonic nature of product quality degradation, facilities
located downstream in the supply chain network (e.g., retailers) are less likely to
possess control inputs associated with inflow of high-quality inventory. This is an
inherent property of supply chains with product quality degradation and can be seen
in the illustration in Figure C2, where facility P1 has access to inventory of quality
q3, q2, q1, facility D1 only has access to inventory of quality q2, q1, and facility R1

only has access to inventory of quality q1. Therefore, high quality inventory states
are inherently uncontrollable and unreachable downstream the supply chain network.
Equivalently, there is an inherent upper bound on the quality of the inventory that
may be available at retail facilities, which is naturally lower than the highest quality
grade available from a producer. In general, the upper bound of the inventory quality
that can reach downstream facilities is determined by the maximum quality available
at producers minus the degradation that occurs over the minimum total lead time to
reach retailers.

Since some of the supply chain states might be uncontrollable as per Remark 6,
it is important to understand the behaviour of these uncontrollable states. In this
context, a system is said to be stabilizable if all uncontrollable states are stable, which
means that when a state is subject to some perturbation it returns to its associated
equilibrium point, or in the bounded-input, bounded-output (BIBO) sense, a bounded
perturbation results in a bounded response of the state (or any outputs computed
based on it). We adapt previous results (Lejarza and Baldea 2020b) to demonstrate
the stability of the supply chain system.
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Claim 2. The supply chain network with product quality degradation is a stabilizable
dynamical system.

Proof. The proof is provided in Appendix B.

Remark 7. While the supply chain is a stabilizable and partially controllable dynam-
ical system, the presence of system constraints of the form of x ∈ X and u ∈ U weakens
the above controllability result, meaning that not all states might be reachable from
a given initial state when e.g., there are constraints on the control inputs (such as
production, shipment or storage capacity bounds). Therefore, for decreasing supply
chain capacities, high inventory states become unreachable. Reachability in this sense
can be established by (theoretically or computationally) proving the feasibility of the
optimal control formulation of the SCM strategy, which will be introduced in Section
6.

The sparsity pattern of the controllability matrix for the state-space model in Fig-
ure C2 is shown in Figure C10. For this simple prototype system, it is easy to ver-
ify (computationally and visually from Figure C10) that the controllability condition
rank(C) = nx, for nx = 10 in this example, holds and the system appears controllable.
As discussed in Remarks 6 and 7, while not all states might be reachable (due to the
presence of e.g. non-negativity constraints on the control inputs), the stabilizability
of the system is guaranteed based on the monotonic nature of the product quality
degradation.

4.2.2. Observability

Observability implies that two non-identical states x1 and x2 can be distinguished
by applying some input and observing the two corresponding system outputs over a
finite amount of time (Sontag 2013). The observability matrix (whose rank is nx for
observable systems) is given by:

O =
[
C CA . . . CAnx−1

]T
(21)

Necessary conditions for observability can derived similarly to Lemma 4.7, and the
following can used for checking observability of linear systems:

Lemma 4.8 (Hautus lemma for observability (Hautus 1972)). A system is observable
if and only if

rank

[
λI −A

C

]
= nx ∀λ ∈ C (22)

in which C is the set of complex numbers.

Claim 3. The supply chain states are observable if the net inventory amounts (that is,∑
q∈Q Ii,q,t and backorder (that is BOi,t) at each facility are measured, per Assumption

4.5.

Proof. A detailed proof can be found in Appendix C.

The sparsity pattern of the observability matrix for the state-space model in Fig-
ure C2 is shown in Figure C11. For this simple prototype system, it is easy to ver-
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ify (computationally and visually from Figure C11) that the observability condition
rank(O) = nx, for nx = 10 in this example, holds and the system is observable.

5. Rolling horizon state estimation

In this section, we develop a rolling horizon state estimation strategy which, as argued
in Section 2, provides greater flexibility and robustness compared to e.g., traditional
estimators based on the KF. In this sense, approaches based on MHE allow for con-
sidering the constraints of the supply chain model and arbitrary distributions of the
disturbance (e.g., the structure of the product quality disturbances ϵq,q̄ presented in
(6)). MHE is a real-time, optimization-based state estimation technique that employs
past measurements of output variables and decisions/control inputs (i.e., from time
periods k ∈ [1 − Ñ,−1]). The estimator computes a sequence of state estimates over
a finite horizon, in a moving-window/rolling horizon fashion, by solving the following
quadratic program at each sampling time:

min
x̃,ỹ,ũ,w̃,ṽ

−1∑
k=1−Ñ

||ỹk − ŷk||2W+||w̃k||2Q−1+||ṽk||2R−1+||x̃k − x̃pre
k ||2Wpre

s.t. x̃k+1 = Ax̃k +Bũk + w̃k ∀k ∈ I−Ñ+1:−1

ỹk = Cx̃k +Dũk + w̃k ∀k ∈ I−Ñ+1:−1

ũk = Eûk ∀k ∈ I−Ñ+1:−1

(x̃k, ũk) ∈ Z ∀k ∈ I−Ñ+1:−1

ỹk ∈ Y ∀k ∈ I−Ñ+1:−1

(23)

where the objective function has four components:

• A penalty on the difference between the predicted outputs ỹ and the current
measurements ŷ. Penalizing this difference drives the estimation algorithm to
approximate the observed data (i.e., the inventory measurements described in
Assumption 4.5) thereby improving the accuracy of the estimates.

• A penalty on the difference between current estimates x̃ and previous estimates
x̃pre weighted using matrix Wpre. This penalty promotes temporal consistency
in the estimation process to produce estimates that evolve smoothly over time,
and such that there are no abrupt changes in the inventory quality estimated
from one iteration to the next.

• Penalties on process noise estimate weighted by the inverse of the process noise
covariance Q, and on measurement noise estimate weighted by the inverse of
the measurement noise covariance R. These penalties help prevent overfitting
and improve the generalization ability of the estimation algorithm, as well as
promote interpretability by encoding distributional information about the noise
variables.

The reader is directed to the works of Muske, Rawlings, and Lee (1993); Robert-
son, Lee, and Rawlings (1996) and Ge and Kerrigan (2017) for more information on
choosing the matrices W,Wpre, Q,R.

The estimation horizon is denoted by Ñ , and the constraints imposed on the output
variable predictions are denoted by Y. In this case the computed state estimate x̃0
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corresponds to the initial state value used for solving the supply chain management
problem that will be discussed in Section 6. The constraint (x̃k, ũk) ∈ Z ensures
that the resulting estimates satisfy all the supply chain constraints (e.g., inventory
capacities, minimum quality requirements at retailers, and all other constraints covered
in the Supporting Information). Similarly, the formulation in (23) can accommodate a
wider range of objective functions and non-Gaussian distributions for w and v hence
being more suited for the supply chain estimation problem than KF-based approaches.

Initially, before there are sufficient data perform estimation (that is, when t < Ñ),
(23) is solved for a shorter estimation horizon length, which is increased by one at
each sampling time until Ñ ≥ t. Previous estimates used are denoted as x̃pre

k which is
initially set as some initial guess for the mean of the states, similarly to other estimation
approaches (Kalman 1960). The resulting optimization problem is a quadratic program
that can be solved efficiently with off-the-shelf optimization software assuming that
Ñ is not exceedingly large. In this case, since we do not measure inventory at all
quality levels separately (these measurements are only available for producers), we
cannot assume that the exact values of the control inputs are known (e.g., we do
not exactly know how much inventory of which quality was shipped through a given
route). Therefore, shipment variables are included in (23) as decision variables ũ, and
are related to the available input measurements via matrix E.

6. SCM based on rolling horizon control

Model predictive control (MPC) (Rawlings and Mayne 2019), sometimes referred to
as rolling horizon control, has been discussed as a SCM approach for non-perishable
(Subramanian et al. 2013; Subramanian, Rawlings, and Maravelias 2014) and perish-
able (Lejarza and Baldea 2020a,b) inventories. The controller uses demand forecasts
and state estimates (i.e., the amount of inventory at each quality level at each facility)
to compute the optimal production and shipment decisions by solving an optimization
problem of the form:

min
u

N−1∑
k=0

ℓ(xk,uk) + Vf (xN )

s.t. xk+1 = Axk +Buk +ws ∀k ∈ I0:N−1

(xk,uk) ∈ Z ∀k ∈ I0:N−1

x0 = x̃0

xN ∈ Xf

(24)

where u = {u0, . . .uN−1} is the set of control input vectors over the control horizon
N (i.e., uk corresponds to the control input, that is production, shipment and sales
decisions to be implemented at sampling time t+ k). The cost function is denoted by
ℓ : X× U → R, reflecting a trajectory tracking objective or an economic performance
metric as discussed previously in Section 3. The terminal costs Vf (·) and terminal
constraints Xf are used to guarantee the stability of the nominal closed-loop system,
resulting from repeated rolling horizon optimization as will be discussed subsequently.
These terminal components ensure that the optimal production and shipment decisions
from the solution of (24) always steer for the supply chain inventory towards some
desirable state (e.g., this could be a steady state or some a priori determined safety
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stock level). For further details on the properties and the design of these terminal
conditions the reader is referred to Amrit, Rawlings, and Angeli (2011); Angeli, Amrit,
and Rawlings (2011); Amrit, Rawlings, and Biegler (2013).

The optimization problem (24) is based on the production and distribution planning
model presented in Section 3, with the addition of the terminal components. The vector
ws denotes the nominal disturbance, and is used to incorporate demand forecasts for
each retail facility in the supply chain network (see Figure C2, and note that in the
nominal case, εiq = 0 for all facilities i and all quality levels q, and that demand
represents the disturbance for the backorder state).

Problem (24) is solved at each sampling time t, and the first element of the optimal
sequence of control inputs, denoted by u∗

0, is implemented in the supply chain. After
implementing u∗

0, a measurement of the system outputs ŷ is made, and a new initial
state estimate is computed by solving (23). This procedure is repeated in real-time,
and defines an implicit supply chain management policy (or control law) u = κN (x)
that maps estimates of the supply chain inventories (for both quantity and quality) to
production, shipment, and sales decisions. The rolling horizon nature of the proposed
estimation and control algorithms is illustrated in Figure C4. Figure C4 also illustrates
the concept of “move blocking” which is a technique that limits the frequency of control
input changes (i.e., the same value of the control input is used for multiple consecutive
time steps) to reduce computational complexity and improve real-time performance.

Figure C5 summarizes the proposed integrated state estimation and control ap-
proach for closed-loop supply chain management, highlighting the correspondence be-
tween the supply chain variables and the systems notation used to define the estimation
and control optimization problems in (23) and (24) respectively. The model-based con-
troller uses information regarding demand forecasts and state estimates corresponding
to inventory (that is, the amount of inventory at each quality level at each facility)
to compute the optimal production and shipment decisions, which are implemented
in the supply chain. More specifically, the approach uses the estimate at the current
sampling time (x̃0) to initialize the supply chain model embedded in the optimization
problem in (24). The time overlap between the estimates and decision variables for
the estimation and control problems in illustrated graphically in Figure C4. Once new
measurements are received, the estimation and control horizons are shifted forward in
time by one sample time and the procedure is repeated.

6.1. Implementable policy computation

A challenge with implementing the proposed simultaneous estimation and control
framework is that the decisions obtained by solving (24) are based on the state es-
timate. The resulting decisions may not be feasible when considering the true state
of the supply chain. For example, consider the case where the computed control deci-
sion corresponds to shipping a total of s∗i,j,q product units from facility i to facility j
with quality q, but the true system has inventory Ii,q < s∗i,j,q. Then, implementing the
control is not possible (i.e., the computed decision is infeasible in practice).

To circumvent this issue, a systematic approach is required for translating the com-
puted control input into an implementable decision for the true state of the supply
chain. The resulting policy is intuitively expected to be suboptimal relative to the con-
trol input computed with perfect state feedback, as was described in previous works
(Lejarza and Baldea 2020a,b; Lejarza, Pistikopoulos, and Baldea 2021). However, we
posit that the implementable version of the policy computed using state estimation
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has superior (cost) performance in practice than the policy computed merely based
on the nominal state of the system (i.e., by setting ϵq,q̄ = 0).

We propose to determine the closest (in a norm sense) possible implementable value
of the optimal control input (focusing on shipments, since production rates cannot
be infeasible based on the inventory of the true system) by solving the following
optimization problem at each sampling time t:

min
si,q,t

∑
(i,j)∈A

[∑
q∈Q

∑
q̄∈Q

λq,q̄
(
si,j,q,t − s∗i,j,q̄,t

)2 ]
+ ψi,jγ

2
i,j

s.t. Ii,q+∆q,t ≥
∑

j∈n(i)

si,j,q,t ∀q ∈ Q

∑
q∈Q

si,j,q,t =
∑
q∈Q

s∗i,j,q,t − γi,j ∀(i, j) ∈ A

γi,j ≥ 0 ∀(i, j) ∈ A

(25)

where s∗i,j,q,t denotes the shipments computed by solving (24) based on the state esti-
mate, and si,j,q,t denotes the approximation of these shipment decisions based on the
true inventory available in the supply chain denoted by Ii,q,t. In the above quadratic
program, the first constraint enforces feasibility by ensuring that the actual shipments
do not exceed the current amount of inventory available to ship. The second constraint
enforces that the same net shipments from the SCM policy are preserved. An auxil-
iary variable γi,j is added to soften the constraint in case that shipping the exact net
amount as indicated by the SCM policy defined by solving the control problem is not
feasible. The cost coefficient ψi,j should be set to a sufficiently large value to ensure
that the net shipments match between the SCM policy value, s∗i,j,q,t and its feasible
approximation si,j,q,t. Otherwise, for small values of ψi,j the optimization problem in
(25) may allow for large values of γi,j such that the resulting implementable policy
may differ considerably form the proposed estimation and control SCM policy.

Furthermore, we introduce a coefficient λq,q̄ to penalize differences in the quality
shipped, such that for all q, q̄ ∈ Q: λq,q̄ = 1 if q = q̄, else (q − q̄)2 + 1 if q ̸= q̄. The
underlying idea for this choice of coefficient λq,q̄ is to have a penalty that increases
proportionally to the absolute difference between the estimated shipment and the
implemented shipment decisions (e.g., there should be a greater penalty for a difference
of ten quality levels than for a difference of one quality level between estimated and
implemented shipment). This penalty in (25) is also proportional to the difference in
the amount shipped, so that the implementable policy is as close as possible (in terms
of product quality, and inventory amounts) to the policy resulting from the proposed
SCM approach.

Remark 8. In practice, when the true state of the system is not known, robust
control approaches may be required to ensure that the computed control inputs are
feasible under some assumption regarding the distribution of the state estimation error.
Robust control is beyond the scope of the present work, and details regarding its design
and implementation can be found elsewhere (Lejarza and Baldea 2021a; Mayne 2016;
Rawlings and Mayne 2019).
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7. Numerical experiments

We consider a supply chain network structure based on our previous work (Lejarza and
Baldea 2020a,b; Lejarza, Pistikopoulos, and Baldea 2021)) as shown in Figure S1 of
the Supporting Information, consisting of two producers, one distribution center, and
four retailers. Table S.1 summarizes the network model parameters used to perform
the numerical experiments. All simulations were carried out on a computer featuring a
Apple M2 processor and 24 GB of RAM. All resulting linear programs were formulated
in Python using Pyomo (Hart, Watson, and Woodruff 2011) and solved with CPLEX
12.10.0.0 (IBM Corporation 2019) (using a 1% absolute optimality gap and all other
default settings of the solver).

We perform experiments considering three specific instances of the problem:

(1) Full-state feedback where the states (i.e., inventory at all quality levels and in
every facility of the system) are assumed to be measured perfectly (this corre-
sponds to the closed-loop management strategies discussed in earlier publications
(Lejarza and Baldea 2020a,b; Lejarza, Pistikopoulos, and Baldea 2021)).

(2) Nominal quality degradation plus feedback control where the states are predicted
by the supply chain model and setting ϵq,q̄ = 0, i.e., no disturbances are detected
and no state estimation is performed. The predicted values are then used to solve
(24).

(3) State estimation plus feedback control where (23) is solved to compute a state es-
timate based on the available measurements at each sampling time. The resulting
estimate is then used to solve (24).

The nominal quality degradation plus feedback, and estimation plus feedback policies
(Instances 2 and 3) are implemented by computing the closest implementable policy to
the one predicted by the controller by solving (25). For illustration purposes, Instances
2 and 3 use the true state of the system as the initial value. We consider disturbances
that are sampled from a discrete set of values in ϵq,q̄ ∈ [−Ii,q, Ii,q̄] with probabilities
approximated from a normal distribution centered around zero, so that nominally the
system has zero product quality disturbances. The Supporting Information provides
a detailed description of the supply chain instance considered. We use the root mean
squared error to measure the accuracy of a state estimate with respect to the true
value. That is, for a facility i and time period t:

RMSEi,t =
1

|Q|

√∑
q∈Q

(Ii,q,t − Ĩi,q,t)2 (26)

for a true inventory state I and the respective estimate Ĩ.
Since measurements are collected for inventory quality at manufacturing facilities,

we focus on estimation of product quality at distribution centers and retailers. Note
that although measurements are made with respect to the quality of products sold
at each sampling time t, sales information is available after the quality of inventory
at retailers is estimated, so we posit that the state estimate will not exactly align
with the true state of the system. That is, we consider the estimation performance at
points in the supply chain between the two sources of data (i.e.., manufacturing and
customer sales) used to perform state estimation. The results in Figure C6 show the
performance of the estimator (Instance 3) in comparison to the state tracked nominally
(Instance 2). Figure C6 (left) shows the RMSE of the two instances as a function of
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time with respect to the true inventory quality at D1. Evidently, the closed-loop system
with estimation (Instance 3) performs better at predicting the distribution of product
quality than the nominal system (Instance 2). Performing a t-test confirms that the
RMSE of Instance 3 is statistically significantly lower than that of Instance 2 for the
runs considered, with a p-value < 0.01 (more details about the test can be found in
the Supporting Information). The improved performance of the estimator (Instance
3) is more clearly seen in Figure C6 (right), in which the ratio of the RMSE of the
estimator (Instance 3) to that of the nominal system (Instance 2) is evidently less than
one.

To gain further quantitative insight in the improved SCM performance afforded by
the estimator (Instance 3), Figure C7 shows the cumulative distribution of product
quality at the distribution center at different points in time of the closed-loop simu-
lation. Initially, the quality tracked by the nominal system (Instance 2) aligns closely
with that tracked by the estimator (Instance 3) and that of the true system (Instance
1). Over time, however, we see that the nominal system (Instance 2) fails to account
for inventories of low and high quality relative to the other two instances. This is
expected to result in economic advantages for the controller leveraging the improved
estimate of the state (Instance 3) in comparison to the nominal controller (Instance 2).
For facilities further downstream in the supply chain (that is, R1, . . . , R4) which are
subject to disturbances that accumulate over time, the ability of the nominal system
to track product quality worsens considerably. In contrast, Figure C7 indicates that
the system in (Instance 3) continues to accurately track the quality distribution over
time even for downstream facilities in the supply chain.

Having discussed the (superior) performance of the closed-loop system with es-
timator (Instance 3) in predicting the distribution of product quality, we focus on
investigating its implications on the resulting supply chain management strategy. Fig-
ure C8 (right) shows the daily operating cost over time for each of the three instances
considered. Intuitively, the state feedback instance (Instance 1), which has perfect
information about the system state, exhibits the lowest costs. Nevertheless, it is no-
ticeable that performing state estimation (Instance 3) results in lower operating costs
(by about 40% on average over all demand instances) of the supply chain compared to
the nominal instance (Instance 2). T-tests confirm that: (1) operating costs with state
estimation (Instance 3) are statistically significantly lower than those of the nominal
instance (Instance 2) (p-value < 0.01), and (2) as expected, perfect feedback (Instance
1) leads to statistically significantly lower costs compared to state estimation (p-value
< 0.01). Further details on the statistical tests are provided in the Supporting Infor-
mation.

In this case, the lower costs associated with state estimation (Instance 3) stem from
the ability of the proposed rolling horizon SCM strategy to deliver the appropriate
product quality to retailers with different product quality preferences, significantly
reducing backorder and (to a lesser extent) inventory waste, while increasing revenue
derived from sales as shown in Figure C8 (left). Additional results, shown in Figure
S4 in the Supporting Information, indicate that the relative performance of the three
control instances considered in Figure C8 holds for decreasing demand redundancy
(that is, increasing the nominal demand while keeping production, shipment, and
inventory capacity constant).

Furthermore, if the supply chain were to be operated at the lower limit of product
quality, delivering the minimum quality required at the retail nodes to e.g., minimize
quality dependent production costs, it is expected that the observed advantages of state
estimation-based operation would translate to more considerable waste reduction than
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the one shown in Figure C8 (right). Inventory waste in this case would be minimized
by shipping inventory of lower (estimated) quality to facilities downstream having
the shortest lead time to prevent products from arriving below the required quality
threshold for facilities with long lead times.

Table C1 offers further insights into the contribution of the different cost components
for each instance considered. These results suggest that state feedback has a greater
share of core operating costs (that is, production, shipment and inventory holding
which are necessary to fulfill demand), while the other two strategies that do not rely
on perfect product quality information operate less efficiently as they have a greater
share of backorder and waste costs. It should be noted that the aforementioned cost
contributions are, to a large extent, dependent on the choice of cost parameters, which
in this case were determined similarly to previous studies Lejarza and Baldea (2020a,
2021b); Lejarza, Pistikopoulos, and Baldea (2021); the reader is directed to these works
for further information.

Previous studies Lejarza and Baldea (2020a, 2021b) have demonstrated the re-
silience of feedback-based SCM strategies. Here, we conducted additional numeri-
cal simulations to test our approach under extreme production capacity disruptions.
Specifically, we considered a scenario where production capacity is lost (i.e., the ca-
pacity of both producers drops to zero between t = 20 and t = 30). The results in are
discussed in detail in the Supporting Information.

Lastly, in Figure C9 we evaluate the computational performance of the proposed
rolling horizon optimization and estimation approach for supply chain networks with
increasing number of facilities. The results in Figure C9 correspond to the average of
ten demand realizations for ten iterations (i.e., producing ten executable actions) of
the proposed rolling horizon approach. We note that the CPU time for all instances
considered is well under one day (i.e., the frequency with which supply chain decisions
are updated in this study), suggesting that computational complexity would not hinder
implementation in real-world settings.

8. Conclusions and directions of future research

This work demonstrates the importance of state estimation for managing supply chains
with perishable inventory. Methodologically, we introduced a state-space representa-
tion of supply chain dynamics to derive conditions for controllability and observability.
Based on these results, we proposed a framework for product quality (state) estima-
tion and online optimization to compute optimal production and distribution planning
decisions on a rolling horizon. Numerical experiments demonstrated that employing
state estimation improves the accuracy of predicting product quality distribution at
distribution centers and retailers compared to using nominal quality degradation mod-
els. These enhanced estimates lead to better supply chain management (SCM) policies,
resulting in reduced operating costs through improved inventory allocation tailored to
retailers’ quality preferences. Additionally, state estimation helps reduce waste by ef-
ficiently allocating lower-quality products to facilities with shorter lead times or lower
quality preferences, thereby preventing products from falling below required quality
thresholds at facilities with longer lead times or higher quality preferences. In sum-
mary, our results support the following managerial insights:

• Product quality measurements throughout the supply chain are important and
necessary to guarantee the quality of perishable products delivered to end con-
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sumers. While it is impractical and costly to measure product quality at every
stage of the supply chain, this work introduces a computationally efficient and
scalable approach for estimating product quality from sparse measurements in
the presence of random product degradation.

• A systems theoretic analysis of the perishables supply chain provides insights
regarding uncontrollable and unobservable states, which can support identify-
ing supply chain vulnerabilities and risks, and improve resilience and enhance
decision-making.

• Inventory management policies based on more accurate product quality esti-
mates result in improved operational efficiency by reducing costs associated with
backorder, missed sales, and waste due to product spoilage.

Incorporating state estimation into SCM strategies offers significant economic and
environmental benefits. With supply chains under increasing pressure from uncertain
customer demand and stricter product quality standards, state estimation techniques
can greatly enhance network efficiency and sustainability. Future research should ex-
plore adaptive or learning-based approaches, such as reinforcement learning, to develop
supply chain policies that adapt to temporal variations in uncertainties. Additionally,
applying the proposed framework to specific instances of perishables supply chains
would further validate its effectiveness.
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Appendix A. Proof of Claim 1

Proof. The proof consists of showing that the pair (A,B) of the supply chain state-
space satisfies the Hautus controllability criteria in Lemma 4.7. The two conditions
in Claim 1, imply that matrix B has at least a bidiagonal structure, where each
state variable is associated with two distinct control inputs. The resulting bidiagonal
structure implies that there are distinct control inputs for increasing and decreasing
inventory at each facility and quality level. Intuitively, in the bidiagonal case, the
column rank of matrix B satisfies rank(B) = nx, hence rank

[
λI −A B

]
= nx ∀ λ ∈ C

and the system is controllable irrespective of the structure of matrix A. Similarly,
by the definition of the controllability matrix in (19), rank(B) = nx implies that
controllability matrix in (19) satisfies rank(C) = nx, meaning that the supply chain
network is controllable.

Appendix B. Proof of Claim 2

Proof. By definition, the quality variables are bounded from above and below so that
q∞ ≤ q(t + 1) ≤ q(t) ≤ q0. This follows from the monotonicity assumption which
establishes that dq(t)/dt < 0, and implies that eventually the product spoils such that
limt→∞ q(t) = q∞ ≤ qi,min and inventory losses occur. Clearly, q∞ is an asymptotically
stable equilibrium for product quality, which implies that limt→∞ x = 0, and the origin
is an asymptotically stable equilibrium point for the states. Physically, this means that
eventually all inventory that is not shipped downstream or sold at a given facility will
spoil and will be discarded.

Furthermore, stability defined in the BIBO sense is guaranteed by the fact inventory
will always be non-negative, will not exceed storage capacity for all time periods, and
can always be discarded to preserve stability (i.e., each state variable corresponding to
inventory amount and quality has an additional associated control input corresponding
to inventory disposal not depicted in Figure C2). Similarly, the input will always be
bounded considering that production and shipment capacity is finite, reflected by the
constraints in (18).
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Appendix C. Proof of Claim 3

Proof. Intuitively, if backorder is measured there is no need to demonstrate observ-
ability for these state variables (i.e., observability is guaranteed since the output model
for these state variables corresponds to the identity matrix so that the local observabil-
ity matrix is of rank equal to the number of bacorkder variables, which corresponds
to the number of retailer facilities).

For inventory variables we begin by considering a single facility i having a number
of states corresponding to the number of quality levels |Q|. The state and output
matrices are given by:

Ai =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . 1

0 0 0 0 . . . 0


q1 q2 q3 q4 . . . q|Q|

∈ R|Q|×|Q|, Ci =
[
1 1 . . . 1 1

]
q1 q2 . . . q|Q|

∈ R1×|Q| (C1)

where output matrix Ci implies that inventory is measured in aggregate, without
distinguishing the amount of inventory at each quality level in the measurement.

From the structure of Ai all information regarding the lowest quality inventory is lost
in the subsequent state reflecting the fact that low quality inventory goes to waste. In
contrast, for all higher quality levels, Ai reflects quality degradation of inventory form
one quality level to the next based on its off-diagonal structure. Therefore, if inventory
of quality q1 is accounted for in the measurement (whether it is measured individually,
or measured in aggregate with the rest of the quality levels), it straightforwardly
follows that

rank(Oi) = |Q| (C2)

rendering the states for single facility i observable.
For a supply chain comprised of multiple facilities given by set N , we have that the

state and output matrices have the following block-diagonal structure:

A =


A1 000 . . . 000

000 A2
. . . 000

...
. . .

. . .
...

000 000 . . . A|N |

 ∈ R(|N ||Q|)×(|N ||Q|), C =


C1 000 . . . 000

000 C2
. . . 000

...
. . .

. . .
...

000 000 . . . C|N |

 ∈ R|N |×(|N ||Q|)

(C3)
where 000 is a matrix of zeros of appropriate dimensions. The observability matrix has
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a similar block diagonal structure:

O =




C1 000 . . . 000

000 C2
. . . 000

...
. . .

. . .
...

000 000 . . . C|N |



C1A1 000 . . . 000

000 C2A2
. . . 000

...
. . .

. . .
...

000 000 . . . C|N |A|N |


...

C1A
|Q|−1
1 000 . . . 000

000 C2A
|Q|−1
2

. . . 000
...

. . .
. . .

...

000 000 . . . C|N |A
|Q|−1
|N |





T

(C4)

Because each of the columns of the matrix in (C4) corresponds to a verticall matrix
of of rank |Q| (based on the observability property of each facility), and since each
column clearly has a different range, then it follows that rank(O) = |Q||N | and the
system is observable.
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Figure C1. Caption: Structure and variable definition for supply chain networks with
product quality dynamics for an illustrative example. All control inputs and state
variables are respectively outlined at the top and bottom of the supply chain network
diagram.

Figure C1 Alt-text: A supply chain structure with three entities: a producer, a dis-
tribution center and a retailer. The nomenclature of the inventory variables for each
entity is shown, along with the production rate and product demand
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Figure C2. Caption: Illustration of state-space formulation (x+ = Ax + Bu +w) for
supply chain network with product quality dynamics for the illustrative example in
Figure C1. The illustration highlights the sparsity pattern (i.e., non-zero entries) of
matrices A and B, and uses the same color coding as in Figure C1 to highlight the
control inputs and state variables of the supply chain example. Demand represents the
disturbance for the backorder state.

Figure C2 Alt-text: A matrix equation showing the evolution of the state x of a state-
space system. The state at the next sample time, x+ is computed by summing the
product of the system matrix A with the current state vector x, with the product of
the input matrix B with the current input vector u, and with the disturbance vector.
Matrices are represented as a grid. The blocks of matrices A and B that correspond to
the three entities in Figure C1 are highlighted. The non-zero elements of the matrices
are shown using black dots, and the zero elements are blank.
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Figure C3. Caption: Linear model y = Cx for computing the output variables for a
supply chain network with product quality dynamics for an illustrative example.

Figure C3 Alt-text: A matrix equation showing the calculation of the output y of a
state-space dynamical system. The output is computed as the product of the output
matrix C with the current state vector x. The matrix is represented as a grid. The
blocks that correspond to the three entities in Figure C1 are highlighted. The non-zero
elements of the matrix are shown using black dots, and the zero elements are blank.

35



Figure C4. Caption: Illustration of rolling horizon concept for simultaneous state es-
timation and control for supply chain management of perishable inventory.

Figure C4 Alt-text: The combination of rolling horizon estimation and rolling horizon
control for supply chain management of perishable products is illustrated. With ref-
erence to the current sample time k = 0, rolling horizon estimation utilizes state and
output data from the past Ñ sample times as well as measured outputs from the cur-
rent sample time to estimate all the system states at the current time. Rolling horizon
estimation overlaps at the current sample time with rolling horizon control. Rolling
horizon control computes the optimal system inputs for N future sample times based
on the estimated current state and predicted future system states. The first element
of the optimal system inputs is implemented in the supply chain, and the estimation
and control time horizons are shifted to the right (into the next sample time), then
the estimation and control process are repeated.
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Figure C5. Caption: Simultaneous state estimation and control for supply chain man-
agement of perishable inventory.

Figure C5 Alt-text: The connections and information exchange between state estima-
tion, control, and the supply chain are shown. The information exchange proceeds in a
cycle. The state estimator receives information regarding inventory quality at producer
nodes, net inventories and shipments at and between all nodes, and sales. It produces
an estimate of inventory at all quality levels at all nodes of the supply chain, which is
transmitted to the controller. The controller receives this information along with de-
mand forecasts, and utilizes these data to compute production quantities for producers
and shipment quantities between all entities. These decisions are transmitted to and
implemented in the supply chain. The supply chain is subject to disturbances such as
changes in customer demand and product quality. New measurements are transmitted
from the supply chain to the estimator and the cycle repeats.
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Figure C6. Caption: Estimation performance resulting from rolling horizon and by
tracking the nominal state (that is, assuming that no product quality disturbances
occur and ϵq,q̄ = 0 in equation (4)). (Left) Shows the RMSE between the nominal
and estimated states with respect to the true state of the system. Solid lines denote
the mean of ten random simulations (for both demand and quality disturbances) and
shaded region shows the 95% confidence interval around the mean. (Right) Shows the
ratio of the RMSE values shown on the left for the estimated states over the nominal
states. Grey lines correspond to the values for all ten random instances evaluated.

Figure C6 Alt-text: There are four figures grouped in two columns of two figures each.
The figures show the results of ten random simulations of the supply chain example.
The two figures in the first column show the evolution in time of the root mean square
error (RMSE) computed as the difference between the predicted supply chain state
(material inventories at all quality levels) and the actual supply chain state for the
distribution center node and for one of the retailer nodes. The sample time is one
day and the abscissa is marked in days. The case where the proposed state estimation
approach is used is compared to a nominal case where it is assumed that no product
quality disturbances occur. The figures show that the RMSE is lower for the case where
the proposed state estimation approach is used. The two figures in the second column
represent plots of the evolution in time of the ratio of the RMSE computed for the
two cases. The ratio is less or equal to one for the distribution center and for the retail
node at all sample times, illustrating the point that the state predictions produced by
the proposed approach are more accurate than when considering the nominal case.
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Figure C7. Caption: Distribution of inventory quality over time corresponding to the
case of perfect state feedback, feedback with the nominal state, and for feedback
using state estimation. Shaded vertical regions correspond to a period of time, and for
brevity only a few time periods are shown. From top to bottom, the figures correspond
to cumulative (cml.) inventory at the distribution center (D1), and at the four retailers
(R1, . . . , R4). Recall that Q = {1, . . . , 30} quality levels are considered, with ∆q = 1.

Figure C7 Alt-text: Three inventory control strategies are compared: perfect state
feedback, feedback with the nominal state, and feedback with the state computed using
the proposed state estimation strategy. The figure shows snapshots of the inventory
quality distribution at the distribution center node and the four retailer nodes as a
function of time. There are five rows of snapshots, one for each of the five nodes.
Snapshots are shown at seven sample times that are seven days apart, starting from
day 7. It is shown that in the case where feedback control decisions are made based on
the nominal state, the quality of the inventory degrades more significantly over time
than in the case where decisions are based using the state estimated with the proposed
approach, and that the results with the proposed state estimator align closely to those
corresponding to decisions made using the true state of the system. The discrepancies
between inventory distribution obtained using the nominal state and the other two
cases become more stark in the case of the retailer nodes, which are further away from
the producer node than the distribution center.
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Figure C8. Caption: Comparison of daily operating costs corresponding to the case
of perfect state feedback, feedback with the nominal state, and for feedback using
state estimation. (Left) Aggregated total costs over time. (Right) Breakdown of cost
function components aggregated over time. Solid lines and bars denote the mean cost
for ten random simulations (for both demand and quality disturbances), and shaded
region and error bars show the 95% confidence interval around the mean.

Figure C8 Alt-text: The daily operating costs corresponding to the case of perfect state
feedback, feedback with the nominal state, and for feedback using state estimation, are
compared. There are two plots. In the left plot, the daily cost for the three strategies
(averaged for ten random simulations) is plotted as a function of time. Perfect state
feedback yields the lowest cost, feedback using nominal state has the highest cost,
while feedback control using the estimated state has higher cost than the perfect state
feedback case, but its cost is considerably lower (by about 40%) than in the case of
feedback with the nominal state. 95% confidence intervals are shown for each data set.
In the right plot, normalized costs for the six components of the objective function
(shipment, production, inventory, backorder, sales and waste) are compared for the
three feedback control cases.
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Figure C9. Caption: Computational performance of different cases (perfect state feed-
back, feedback with the nominal state, and for feedback using state estimation) for
five supply chain network instances with increasing number of facilities, each solved
for ten random demand realizations.

Figure C9 Alt-text: The average CPU time of ten demand realizations for ten itera-
tions (i.e., producing ten executable actions) of the proposed rolling horizon control
approach are shown for supply chains with increasing numbers of facilities (10, 20
and 30). 95% confidence intervals are provided. The CPU time for the largest sup-
ply instance is less than 20 minutes. This observation holds true for the three cases
considered (perfect state feedback, feedback with the nominal state, and for feedback
using state estimation).
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Figure C10. Caption: Sparsity pattern of controllability matrix C corresponding to the
state-space model in Figure C2.

Figure C10 Alt-text: The controllability matrix for an example system with ten states
and 12 inputs is visualized. The matrix has ten rows and 120 columns. The non-
zero entries are shown as black squares and the zero entries of the matrix are blank.
There are at least ten columns with unique non-zero entry patterns, showing that the
rank of the matrix is ten (full row rank) and therefore the system in this example is
controllable.
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Figure C11. Caption: Sparsity pattern of observability matrix O corresponding to the
output model in Figure C3.

Figure C11 Alt-text: The observability matrix for an example system with ten states
and seven outputs is visualized. The matrix has 70 rows and ten columns. The non-
zero entries are shown as black squares and the zero entries of the matrix are blank.
There are at least ten rows with unique non-zero entry patterns, showing that the
rank of the matrix is ten (full column rank) and therefore the system in this example
is observable.
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Table C1. Contribution of cost components to total operating costs for the case of
perfect state feedback (Instance 1), feedback with the nominal state (Instance 2), and
feedback using state estimation (Instance 3) for the results in Figure C8. Total costs
correspond to the 50 day time window considered in Figure C8 (Left). Costs are in
arbitrary units (a.u.)

State Feedback (%) Estimation (%) Nominal (%)

Shipment 17.3% 8.4% 5.1%
Production 1.9% 1.2% 0.8%
Inventory 35.1% 15.2% 10.3%
Backorder 37.1% 62.4% 75.4%
Waste 8.6% 12.9% 8.4%
Total cost (a.u.) 1.59× 105 3.88× 105 6.44× 105
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Table C2. Nomenclature for indices, sets, parameters, and decision variables used to
formulate the production and distribution planning optimization problem.

Notation Description

Indices
i facility index, i ∈ N
i, j index pair for route between facilities i and j, (i, j) ∈ A
q quality index, q ∈ Q
t time index
Sets
P Set of all producers
D Set of all distribution centers
R Set of all retailers
N Set of all facilities, N = P ∪ D ∪R
A Set of all routes
Q Set of discrete quality levels
v(i) Set of successors to facility i ∈ N
Parameters
cpi Per unit production costs at facility i ∈ P
csi,j Per unit shipment costs for route i, j ∈ A
chi Per unit inventory holding costs for facility i ∈ N
cwi Per unit waste/disposal costs for facility i ∈ N
cbi Per unit backorder costs for facility i ∈ R
ρi,q Per unit quality-dependent sales revenue i ∈ R, q ∈ Q
τpi Production lead time for facility i ∈ P
τi,j Shipment lead time for route i, j ∈ A
∆q Quality degradation for inventory in storage over one time period
∆qi,j Quality degradation for inventory in transit over the τi,j
qi,min Minimum quality requirement for facility i ∈ N
pUB
i Production capacity over a single time period for facility i ∈ P
sUB
i,j Shipment capacity over a single time period for route i, j ∈ A
IUB
i Inventory capacity over a single time period for facility i ∈ N
Isi , BO

s
i Steady-state inventory and backorder terminal conditions for i ∈ R

Decision variables
Ii,q,t Inventory at facility i ∈ N , of quality q ∈ Q, at time t
BOi,t Backorder at facility i ∈ R, at time t
pi,q,t Amount produced at facility i ∈ P , of quality q ∈ Q, at time t
si,j,q,t Amount shipped on route i, j ∈ A, of quality q ∈ Q, at time t
ri,q,t Amount sold at facility i ∈ R, of quality q ∈ Q, at time t
Ωi,t Amount wasted at facility i ∈ P , at time t
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Complete production and distribution planning optimization problem

Table S1 summarizes the nomenclature used to denote indices, sets, parameters and decision
variables in the model. The objective corresponds to minimizing the operating costs of the supply
chain as follows:

min

N∑
t=0

PCt + SCt + ICt +WCt +BCt + SRt

where PCt are production costs, SCt are shipment costs, ICt are inventory holding costs, WCt are
waste costs, BCt are backorder costs, and SRt are sales revenue (such that SRt ≤ 0). These cost
components are de�ned as:

PCt =
∑
i∈P

∑
q∈Q

cpi pi,q,t

SCt =
∑
i,j∈A

∑
q∈Q

csi,jsi,j,q,t

ICt =
∑
i∈N

∑
q∈Q

chi Ii,q,t

WCt =
∑
i∈N

cwi Ωi,t

BCt =
∑
i∈R

cbiBOi,t

SRt =
∑
i∈R

∑
q∈Q

ρi,qri,q,t

The system constraints correspond to inventory balances for producers, distribution centers and
retailers, given by:

Ii,q,t+1 = Ii,q+∆q,t −
∑

j∈J (i)

si,j,q,t + pi,q,t−τpi
+ εiq,t ∀i ∈ P , q ∈ Q, t ∈ {0, N − 1}

Ii,q,t+1 = Ii,q,t −
∑

j∈J (i)

si,j,q,t +
∑
j∈v(i)

sj,i,q+∆qj,i,t−τj,i + εiq,t ∀i ∈ D, q ∈ Q, t ∈ {0, N − 1}

Ii,q,t+1 = Ii,q,t +
∑
j∈v(i)

sj,i,q+∆qj,i,t−τj,i − ri,q,t + εiq,t ∀i ∈ R, q ∈ Q, t ∈ {0, . . . , N − 1}

∗ Corresponding author mbaldea@che.utexas.edu Email addresses: lejarza@utexas.edu (Fernando Lejarza),
shashank.v@utexas.edu (Shashank Venkatesan), mbaldea@che.utexas.edu (Michael Baldea)
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The backorder balances for retail facilities are give by:

BOi,t+1 = BOi,t −
∑
q∈Q

ri,q,t + di,t ∀i ∈ R, t ∈ {0, . . . , N − 1}

The following additional constraints are introduced to re�ect the following:

� Inventory that falls below the minimum quality requirement at a given facility is accounted
for as waste:

Ωi,t =

qi,min+∆q−1∑
q=qi,min

Ii,q,t +
∑
j∈v(i)

qi,min+∆qi,j−1∑
q=qi,min

sj,i,q+∆qj,i,t−τj,i ∀i ∈ N , t ∈ {0, . . . , N − 1}

� Sales must not exceed demand plus backorder:∑
q∈{Q|q≥qi,min }

ri,q,t ≤ BOi,t + di,t ∀i ∈ R, t ∈ {0, . . . , N − 1}

� Inventory must exceed sales from a given retail facility:

ri,q,t ≤ Ii,q+∆q,t ∀i ∈ R, q ∈ Q, t ∈ {0, . . . , N − 1}

� Inventory must exceed outgoing shipments from a given facility:∑
j∈v(i)

si,j,q,t ≤ Ii,q+∆q,t ∀i ∈ N , q ∈ Q, t ∈ {0, . . . , N − 1}

� Production must not be exceeded capacity:∑
q∈{Q|q≥qi,min }

pi,q,t ≤ pUB
i,t ∀i ∈ P , t ∈ {0, . . . , N − 1}

� Shipment must not be exceeded capacity:∑
q∈{Q|q≥qi,min }

si,j,q,t ≤ sUB
i,j,t ∀i, j ∈ A, t ∈ {0, . . . , N − 1}

� Inventory must not be exceeded capacity:∑
q∈{Q|q≥qi,min }

Ii,q,t ≤ IUB
i,t ∀i ∈ N , t ∈ {0, . . . , N − 1}

� Terminal constrains at the end of the time horizon:∑
q∈Q

Ii,q,N = Isi ∀i ∈ N

BOi,N = BOs
i
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Table S1: Nomenclature for indices, sets, parameters, and decision variables used to formulate the production and
distribution planning optimization problem.

Notation Description

Indices

i facility index, i ∈ N
i, j index pair for route between facilities i and j, (i, j) ∈ A
q quality index, q ∈ Q
t time index

Sets

P Set of all producers
D Set of all distribution centers
R Set of all retailers
N Set of all facilities, N = P ∪ D ∪R
A Set of all routes
Q Set of discrete quality levels
v(i) Set of successors to facility i ∈ N
Parameters

cpi Per unit production costs at facility i ∈ P
csi,j Per unit shipment costs for route i, j ∈ A
chi Per unit inventory holding costs for facility i ∈ N
cwi Per unit waste/disposal costs for facility i ∈ N
cbi Per unit backorder costs for facility i ∈ R
ρi,q Per unit quality-dependent sales revenue i ∈ R, q ∈ Q
τpi Production lead time for facility i ∈ P
τi,j Shipment lead time for route i, j ∈ A
∆q Quality degradation for inventory in storage over one time period
∆qi,j Quality degradation for inventory in transit over the τi,j
qi,min Minimum quality requirement for facility i ∈ N
pUB
i Production capacity over a single time period for facility i ∈ P

sUB
i,j Shipment capacity over a single time period for route i, j ∈ A
IUB
i Inventory capacity over a single time period for facility i ∈ N
Isi , BOs

i Steady-state inventory and backorder terminal conditions for i ∈ R
Decision variables

Ii,q,t Inventory at facility i ∈ N , of quality q ∈ Q, at time t
BOi,t Backorder at facility i ∈ R, at time t
pi,q,t Amount produced at facility i ∈ P , of quality q ∈ Q, at time t
si,j,q,t Amount shipped on route i, j ∈ A, of quality q ∈ Q, at time t
ri,q,t Amount sold at facility i ∈ R, of quality q ∈ Q, at time t
Ωi,t Amount wasted at facility i ∈ P , at time t
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Details for numerical experiments

We consider the following quality preference value functions for each retailer:

ρi,q =


−√

q if i = R1

−q if i = R2

−q3 if i = R3

−q2 if i = R4

(S1)

D1

P1P2

R3R2R1 R4

Figure S1: Supply chain network structure used for numerical experiments.

Table S2: Values and con�gurations of numerical experiments

Parameter Value

Horizon length N 20 days
Quality levels Q = {1, . . . , 30} with ∆q = 1
Initial inventories Ii,q,0 = 350∀i ∈ R, q = 30, else Ii,q,0 = 0
Initial backorders BOi,0 = 0∀i ∈ R
Production capacity pUB

i = 400, 000∀i ∈ P units per day
Shipment capacity sUB

i,j = 500, 000∀i, j ∈ A units per day

Inventory capacity IUB
i = 50, 000∀i ∈ N units per day

Production costs cpP1
= 0.1, cpP2

= 4

Shipment costs csi,j = 2∀i, j ∈ A
Holding costs chP1

= 3, chP2
= 3, chD1

= .5, chR1
= 2, chR2

= 2, chR3
= 2, chR4

= 2

Backorder costs cBO
R1

= 50, cBO
R2

= 54, cBO
R3

= 58, cBO
R4

= 82

Waste costs cwi = 25∀i ∈ N
Prod. lead time τpi = 0∀i ∈ P
Ship. lead time τP1,D1 = 5, τP2,D1 = 2, τD1,R1 = 1, τD1,R2 = 2, τD1,R3 = 3, τD1,R4 = 4
Nominal demand di = 40∀i ∈ R

Customer demand disturbance

The nominal demand is time invariant and has a value of 40 units per day for all retailers as
indicated in Table S2. At each sampling time t, after computing control input ut based on the value
of the state estimate x̃. The realized demand is simulated as follows:

di,t = dsi,t + δit (S2)
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where δit is sampled from a normal distribution given by:

δδδt ∼ N (µµµ,ΣΣΣ) (S3)

where δδδt = [δR1
t , . . . , δR4

t ] and µµµ is the mean demand vectors, and Σ is the covariance matrix. For
performing numerical experiments, the following mean vector and covariance matrix were used:

µµµ =


0

0

0

0

 , ΣΣΣ =


20 0 0 0

0 20 0 0

0 0 20 0

0 0 0 20

 (S4)

Production quality disturbance

Disturbances for production quality are simulated by sampling values of random variable αi,q ∈ R
at each sampling time t, and enforcing the following constraints on the production rate:

αi,q

∑
q∈Q

pi,q,t ≤ pi,q,t ∀i ∈ P , q ∈ Q

αi,q ∼
1

βi
N (µp

i,q, σ
p
i,q) ∀i ∈ P , q ∈ Q

βi =
∑
q∈Q

αi,q ∀i ∈ P

(S5)

The equations in (S5) imply that the fraction of inventory produced at a given quality is random,
re�ecting the fact that manufacturing of perishable products (e.g., fresh produce) often results in
heterogeneous and uncontrollable quality. In this case, βi is used as a normalization constant to
ensure that the sum of αi,q for all quality levels is equal to one. The following values were used for
the distribution of α:

(µp
i,q, σ

p
i,q) =



(0.05, 0.025) if q ∈ {13, 19}
(0.09, 0.045) if q ∈ {14, 18}
(0.19, 0.095) if q ∈ {15, 17} ∀i ∈ P
(0.29, 0.145) if q = 16

(0, 0) otherwise

(S6)

Inventory quality disturbance

We consider disturbances to the quality of inventory in storage as described by equation (7) of the
main paper. Because of the discrete nature of inventory, ϵiq,q̄,t must be a discrete random variable.
To simulate this disturbance, we draw from a multinomial distribution where the probabilities are
calculated from a normal distribution. We begin by de�ning a range of possible values of the
disturbance:

γ = [−Ii,q,t,−Ii,q,t + 1, . . . , Ii,q̄,t − 1, Ii,q̄,t] (S7)

we then compute upper and lower bounds as:

γU = γ + 0.5, γL = γ − 0.5 (S8)

5 of 13



The probability of each value of γ, denoted by P(γ), is approximated using the normal cumulative
density function fσ(x), with zero mean and standard deviation σ:

P(γ) = f(γU , σ)− f(γL, σ) (S9)

which are then normalized so that the probabilities sum to one:

P(γ) =
1∑
P(γ)

P(γ) (S10)

Lastly, ϵiq,q̄,t is sampled from the resulting non-uniform discrete distribution of γ. Figure S2 illus-
trates the discrete probability distribution of ϵiq,q̄,t for increasing values of the standard deviation.

Figure S2: Example probability distribution for inventory quality disturbance ϵiq,q̄,t for di�erent standard deviation
values for Ii,q,t = 10 (shown in vertical dashed grey line), and Ii,q̄,t = 12 (shown in vertical dashed black line).

Statistical validation

The supply chain optimization problem was solved for each of the three instances (state feedback,
estimation, and nominal) for 40 random simulations for the demand and disturbance. The resulting
data was used to perform t-tests to establish statistical signi�cance around the claims of the estima-
tor performance. All data and code used to perform the statistical validation can be found online
in our GitHub repository (https://github.com/Baldea-Group/perishables_SCM_estimation).
The table below summarizes the hypotheses tested and the test results:

Table S3: Summary of statistical validation tests for 40 random samples for each optimization instance.

Hypothesis Comparison
Mean

t-statistic p-value Signi�cant
Test Control

H1: State estimation provides
more accurate states than the
nominal case

RMSE estimation (test) <
RMSE nominal (control)

0.222 0.241 7.31 1.1× 10−10 Y

H1: State estimation results
in lower operating costs than
we using the nominal states

Costs estimation (test) <
Costs nominal (control)

26,100 13,200 16.0 3.5× 10−23 Y

H1: Perfect feedback results
in lower operating costs than
we using state estimation

Costs perfect feedback (test)
< Costs estimation (control)

3,680 26,100 23.6 2.0× 10−31 Y
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Extreme disruptions and decreasing capacity redundancy scenarios

This section includes details regarding the extreme scenario disruption simulations to assess the
resilience of the proposed supply chain management method. While demand and product quality
disturbances are present at every time period, we now consider the case where there are unforecasted
production disruptions for an extended period of time. More speci�cally, we simulate the scenario
in which there is no production capacity, i.e. inventory cannot be sourced from producers P1 and
P2, from t = 20 to t = 30, and the duration of the outage is unforecasted and unknown. That is, at
every time period we assume that production capacity is restored, but orders placed to producers
are not getting ful�lled. As a result, retailers deplete all their inventory (Figure S3 top left), and
retailer backorder builds up (Figure S3 top right), which also causes operating costs to increase
due to rising unful�lled demand (Figure S3 bottom right). When production at P1 and P2 is
back online, we see that the system states (inventory and backorder) and operating costs rapidly
return to their previous operating levels for both solution approaches (State feedback, and state
estimation). Table S4 shows the integral error (IE) comparison for inventory and state variables for
all instances considered, con�rming that both state feedback and estimation approaches cope with
extreme disruptions comparably well. The integral absolute error is given by:

IE =

∫ tf

t0

|x(t)− xss| dt (S11)

where x(t) corresponds to the system states and and xss corresponds to the steady state. For
simplicity, we compute the intgeral error over the aggregated states, corresponding to the total
retailer inventory and backorder, given by:∑

i∈R

∑
q∈Q

Ii,q,t,
∑
i∈R

BOi,t (S12)

The integral error is estimated numerically using the trapezoidal rule and the inventory and
backorder trajectories shown in Figure S3. The steady state value is intended to be a meaningful
reference in this case, and is compute as the average for the inventory and backorder states of the
undisturbed system after the system stabilizes (based on empirical observation, this was considered
to happen at t > 20).

Table S4: Integral absolute error for state feedback (Instance 1) and estimation (Instance 3) for the nominal and
production disruption scenarios.

Instance Inventory IE Backorder IE

State feedback 643.5 994.5
State feedback (disrupted) 2565.5 6240.3
Estimation 626.0 868.1
Estimation (disrupted) 2553.5 6186.2

We also performed numerical experiments for increasing demand values at the same production,
shipment and inventory capacities to evaluate if our managerial claims hold for decreasing system
redundancy. The results for these numerical experiments are shown in Figure S4, which indicate that
increasing demand loads (that is lower supply chain redundancy) do not change the performance
of the proposed estimation technique relative to when perfect information (i.e. state feedback) is
implemented.
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Figure S3: Inventory (top left), backorder (top right), operating costs (bottom left) and production (bottom right)
trajectories comparing the proposed receding horizon strategy using perfect feedback (Instance 1) and state estimation
(Instance 3) for the undisrupted and production disruption scenarios.

Figure S4: Costs for Estimation and Nominal instances relative to State Feedback for increasing demand loads. The
demand load corresponds to factor used to scale the nominal demand in Table S2 to simulate a supply chain operated
with lower redundancy.
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Practical Implementation Guidelines for Online Estimation of Perishable Inventory in
Supply Chains

Step 1. Gather Required Data and Supply Chain Parameters

The following information is required in order to set up the proposed model:

� Number of Facilities (n): Total number of nodes in the supply chain, including producers,
distribution centers, and retailers.

� Capacities (Ci): Maximum capacity of each facility, such as production capacity for produc-
ers (pUB

i ), shipment capacity for routes (sUB
i,j ), and inventory capacity for distribution centers

(IUB
i ).

� Distances (di,j): Distance between nodes i and j, such as between producers and distribution
centers, and between distribution centers and retailers.

� Demand (Di): Demand at each retailer i for perishable products, considering product shelf
life and consumer demand patterns.

� Production Costs (cpi ): Per unit production costs at facility i for producers.

� Shipment Costs (csi,j): Costs associated with moving perishable products from node i to
node j.

� Inventory Holding Costs (chi ): Per unit inventory holding costs at facility i.

� Waste/Disposal Costs (cwi ): Per unit waste or disposal costs for facility i.

� Backorder Costs (cbi): Per unit backorder costs at retailer i.

� Quality-Dependent Sales Revenue (ρi,q): Per unit quality-dependent sales revenue at
retailer i, for quality q.

� Lead Times (τPi , τi,j): Production lead time (τPi ) at facility i and shipment lead time (τi,j)
for route i to j.

� Degradation Rate Model: f(q(t), k(t)): A model of how a particular perishable good
degrades over time t, potentially in�uenced by transportation conditions, storage conditions,
and handling (Equation (1)). This will be utilized as described in Step Step 2.

� Minimum Quality Requirement (qmini ): Minimum quality requirement for facility i.

� Steady-State Inventory and Backorder (Ii, BOi): Steady-state inventory and backorder
terminal conditions for facility i.

� Transportation Costs (ci,j): Costs associated with moving perishable products from pro-
ducers to distribution centers and from distribution centers to retailers, including costs related
to maintaining product quality during transit (e.g., refrigerated transport).

� Fixed Costs (fi): Fixed costs associated with operating each node in the supply chain, such
as production costs for producers, storage costs for distribution centers, and operational costs
for retailers.

9 of 13



� Planning Horizon (T): The period over which the supply chain decisions with the given
network parameters are planned. While shorter horizons enable more frequent replenishment
cycles thus reducing the risk of spoilage, longer horizons may be necessary for seasonal planning
or capacity decisions.

� Prediction and Control Horizons (N): The time span that represents how far ahead the
controller forecasts the system's state and outputs to make decisions.

Step 2. Build Discretized Version of the Product Quality Degradation Model

� Following Algorithm 1 of Lejarza and Baldea (2021b), determine the minimum number of
quality levels for the perishable product under consideration. This makes use of the known
product quality degradation dynamics as provided by Equation (1) in the paper. The algo-
rithm will provide the number of discrete quality levels, |Q| (q ∈ {1, 2, . . . , |Q|}), as well as
∆q, ∆qi,j , which represent the quality degradation over one time period during storage (∆q),
or in transit (∆qi,j) over shipment time (τi,j).

� Per Assumptions 4.5 and 4.6, normalize quality levels such that the quality degradation rate
becomes unity. Therefore, |Q|= ceil(|Q|/∆q) and ∆q′ = 1.

Step 3. Build Linear State-Space Model of the Supply Chain Network and Determine

Observability and Controllability Properties

� Build a State-Space representation of the system dynamics by including inventory and back-
order balances as outlined in Section 4 of the paper. Construct the state-space matrices
A, B, C, D followed by the observability and controllability matrices.

� If the system is not observable (Matrix O in Equation 19 does not meet the rank condition in
Lemma 4.8 ), the MHE algorithm's estimates may be unreliable or even infeasible. In this case,
the observability analysis can inform decisions on implementing additional measurements to
make the system observable.

� The primary challenge in practice arises from partial/inadequate sensing. This implies that if
Assumption 4.5 is not met (e.g., when the net inventory/shipment measurements are either
unavailable at certain instants or are received with time delays), the approach will not be
e�ective.

Step 4. Set up the Moving Horizon Estimation (MHE) Framework

Set up the MHE framework with known initial system states (inventories/backorders) and an
initial guess for the process noise covariance matrix Q (Equation 23 in the paper). In principle,
for a fully observable system, Q can be estimated using approaches such as the Expectation Maxi-
mization (EM) algorithm with the di�erence between the estimated states from successive iterations
serving as a proxy for residuals. Since all measurements concerning net inventory levels in storage
and transit are assumed to be perfect, measurement noise is absent in the MHE objective function
(and constraint equations).

Choosing an appropriate horizon length Ñ for MHE involves several considerations, and some trial
and error may be involved:

� System dynamics:
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� In faster systems, shorter time horizons are typically adequate, whereas slower systems
may require longer horizons to e�ectively capture signi�cant dynamics. The selected hori-
zon length should be su�ciently long to encompass the slowest dynamics of the systems,
including delays associated with shipments. One strategy could involve determining the
longest duration of shipping delays and degradation times, then adding a few additional
time steps.

� Theoretically, MHE remains stable as long as the horizon length exceeds the system's
order or observability index. Another practical guideline is to set the horizon length to
twice the system's order [10].

� Computational resources: Available processing power and memory constrain the maximum
practical horizon length.

� Estimation accuracy: Longer horizons typically improve estimation accuracy but with dimin-
ishing returns beyond a certain length.

Step 5. Compute Implementable Policy and Transfer to Supply Chain

� Compute implementable policy as described in Section 6.1. In practical scenarios where the
true state of the system is unknown, robust control/chance-constrained optimization ap-
proaches may be necessary to guarantee that the computed control inputs remain feasible
under certain assumptions about the distribution of state estimation errors.

Computational Aspects

� To optimize computational e�ciency without sacri�cing accuracy, careful consideration of
the control horizon length, as outlined previously, is essential. Additionally, heuristics for
quality level discretization and reducing the overall MPC problem size, as detailed in Lejarza,
Pistikopoulos, and Baldea [8] and Lejarza and Baldea [7], can further enhance computational
performance.

� For representing MHE problems, specialized modeling languages and libraries can greatly sim-
plify implementation by providing high-level abstractions for de�ning dynamic optimization
problems. Our implementation leveraged Pyomo in conjunction with other Python libraries.
The solver selection depends on the problem structure, size, and real-time requirements and
we have chosen CPLEX as the solver given its compatibility with the linear constraints and
quadratic objective functions in our problem. All the code and data that support the �ndings
of this study are openly available in https://github.com/Baldea-Group/perishables_SCM_

estimation, and can be used as a basis for practical implementation.
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Table S5: Summary of relevant literature and comparison to the present work.

Reference Topic Modeling Approach Perishable In-
ventory

Unertainty source Information Availability Control/Estimation

Rong, Akkerman,
and Grunow [11]

Production planning in food
supply chains

Deterministic production
planning using MILP

Yes None Complete (all inventories and
shipments at all quality levels
in all supply chain entities)

No / No

Grunow and Pira-
muthu [3]

Role of RFID in reducing
wastage of perishable food
items

Economic order quantities un-
der various conditions with
RFID availability

Yes Demand, product qual-
ity

Complete (when RFID tech-
nology is implemented)

Yes / No

Amorim, Alem,
and Almada-Lobo
[2]

Risk-averse production plan-
ning in food supply chains

Risk-averse production plan-
ning using MILP models,
comparing CVaR and UPM

Yes Stochastic demand and
product degradation

Discrete scenarios for demand
and degradation

No / No

Amorim, Gün-
ther, and
Almada-Lobo
[1]

Production scheduling and
distribution planning in food
supply chains

Deterministic, multi-objective
MINLP models

Yes None Complete (all inventories and
shipments along with deter-
ministic known consumer de-
mands)

No / No

Subramanian,
Rawlings, and
Maravelias [12]

Production and distribution
planning with integration of
scheduling and control

Model predictive control with
multi-objective cost function
re�ecting economic costs and
risks

No Demand Complete (perfect inventory
measurement and feedback)

Yes / No

Wang and Rivera
[14]

Supply chain management in
semiconductor manufacturing

Model predictive control with
state estimation via Kalman
Filtering

No Demand, throughput
times, and yield

Partial (inventory measure-
ments at certain nodes and
forecasted demand informa-
tion)

Yes / Yes

Villegas and Pe-
dregal [13]

Time series forecasting for
supply chain decision support

Hierarchical time series fore-
casting using state space mod-
els and Kalman �lter

No Demand Partial (aggregated demand,
e.g., at regional level)

No / Yes

Mor et al. [9] Time series forecasting for
supply chain decision support

Time series forecasting mod-
els, including moving aver-
ages, multiple regressions, and
Holt�Winters

Yes Demand Complete (historical data
available)

No / Yes

Lejarza and
Baldea [6]

Production and distribution
planning for supply chains of
perishable inventory

Model predictive control with
MILP for production and dis-
tribution planning

Yes Demand and degrada-
tion rate

Complete (perfect inventory
measurement and feedback)

Yes / No

Lejarza, Pis-
tikopoulos, and
Baldea [8]

Production and distribution
for large-scale supply chains of
fresh produce

Model predictive control with
e�cient strategies for MILP
production and distribution
planning

Yes Demand Complete (perfect inventory
measurement and feedback)

Yes / No

Lejarza and
Baldea [7]

Production and distribution
planning for supply chains of
perishable inventory

Deterministic production
planning using MILP, solved
with e�cient strategies

Yes None Complete (all inventories and
shipments at all quality levels
for all attributes in all supply
chain entities)

No / No

Ketzenberg,
Bloemhof, and
Gaukler [4]

Time and temperature infor-
mation for managing perish-
ables

Markov Decision Processes
comparing informed vs. unin-
formed inventory policies

Yes Demand and product
degradation

Partial (demand and prod-
uct quality distributions avail-
able)

Yes / No

Ketzenberg,
Gaukler, and
Salin [5]

Perishable inventory control
and expiration date setting

Retailer replenishment poli-
cies via Markov Decision Pro-
cess (MDP)

Yes Demand and product
degradation

Partial (demand and prod-
uct quality distributions avail-
able)

Yes / No

Present Paper Product quality estimation
and production and distri-
bution planning for supply
chains of perishable inventory

Moving horizon estimation
and control with MILP for
production and distribution
planning

Yes Demand and product
degradation

Partial (aggregated inventory
levels available only for certain
facilities)

Yes / Yes
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