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Abstract—Modern Function-as-a-Service (FaaS) cloud plat-
forms offer great potential for supporting event-driven scientific
workflows. Nonetheless, there remain barriers to adoption by the
scientific community in domains such as environmental sciences,
where R is the focal language used for the development of
applications and where users are typically not well-versed with
FaaS APIs. This paper describes the design and implementation
of FaaSr, a novel middleware system that supports event-driven
scientific workflows in R. A key novelty in FaaSr is the ability to
deploy workflows across FaaS providers without the need for any
managed servers for coordination. With FaaSr: 1) functions are
written in R; 2) the runtime environments for their execution are
customizable containers; 3) functions access data in cloud storage
(S3) with a familiar file-based abstraction supporting both full file
put/get primitives and subsetting using the Parquet format; and
4) function invocation and workflow coordination only requires
S3 cloud object storage, without relying on any dedicated, active
workflow engine server or cloud-specific queues/databases. The
paper reports on the functionality and performance of FaaSr for
micro-benchmarks and two case studies: event-driven forecast
and batch job workflows. These demonstrate the ability to deploy
workflows across multiple platforms (GitHub Actions, Amazon
Web Services Lambda, and the open-source OpenWhisk), without
the need for dedicated coordination servers, across both cloud
and edge resources. FaaSr is open-source and available as a
CRAN package.

Index Terms—cloud, cyberinfrastructure, Function-as-a-
Service, serverless, workflow
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I. INTRODUCTION

As scientific discoveries are increasingly reliant on com-
putational models and driven by data observations, there is
growing demand for cyberinfrastructure that is accessible to
developers and end users across various scientific domains.
Modern cloud platforms for computing and storage hold great
potential to meet this demand: in particular, Function-as-
a-Service (FaaS) serverless computing offers scalable, on-
demand distributed computing, while Simple Storage Service
(S3) offers scalable, resilient distributed storage. The FaaS
serverless approach is especially appealing for event-driven
execution of scientific workflows [1]–[7], as the user does
not need to be burdened with the management of any cloud
servers (hence the term serverless) and computation can be
dynamically triggered as soon as data become available.

However, FaaS platforms have been originally designed
to target Web-based applications, and there is still a major
adoption gap in the scientific community. In particular, this
gap is notable for domains such as the environmental sciences,
where R is the focal language used for the development of
applications and where users are typically not well-versed with
FaaS APIs. Furthermore, while several FaaS platforms exist,
they expose different, non-compatible interfaces. As a result,
if users develop workflows for a particular platform, they can
become locked-in.

To address this gap, this paper describes the design and
implementation of FaaSr, a novel open-source middleware that
supports event-driven scientific workflows with several key
features. With FaaSr: 1) functions are written in the R lan-
guage; 2) functions are composed into Directed Acyclic Graph
(DAG) workflows; 3) the runtime environments are containers
that can be customized per function and reproducibly deployed
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across multiple FaaS providers; 4) functions access persistent
data on S3 cloud storage with simple file I/O interfaces, and
5) all workflow coordination is accomplished using passive S3
cloud storage, requiring no active coordination servers.

FaaSr allows users to write their function code once, using
both a familiar language and a familiar file-based abstraction,
without any knowledge of FaaS-specific APIs. As a result,
it lowers the barrier to entry for scientific workflows to use
event-driven serverless computing. Furthermore, FaaSr does
not depend on any managed servers or provider-specific syn-
chronization and messaging queues. As a result, it providers
users with deployment choice rather than vendor lock-in. In
short, all that a user needs to deploy FaaSr workflows are: 1)
accounts and credentials with one or more FaaS/S3 providers,
2) R functions available in a Git repository, and 3) workflow
configurations in JSON format.

FaaSr accomplishes its goals by: 1) abstracting users from
FaaS-specific APIs by exposing simple interfaces and encapsu-
lating FaaS-specific action invocation, payload handling, and
action triggers in “stubs” transparent to users; 2) integrating
with a well-established community container (Rocker) in the
absence of cloud-native R runtimes; and 3) coordinating DAG
execution among concurrent tasks using file-based locks and
concurrency control atop passive S3 cloud storage without any
providers-specific infrastructure that could be subject to vendor
lock-in. This paper makes the following contributions:

• To the best of our knowledge, FaaSr is the first system to
enable serverless DAG workflows across different FaaS
platforms where: 1) no dedicated workflow server/VM is
required, and 2) each individual function can run on a
different FaaS platform. Together, these two capabilities
are key to lowering barriers to adoption because users: a)
do not need to deploy or manage any workflow engines or
servers, and b) are not subject to vendor lock-in. These
barriers are challenging for individual users and small
research groups in “long end tail of science” and in dis-
ciplines such as environmental sciences, where the over-
heads associated with deploying/managing servers/VMs
and developing for FaaS-specific APIs is a key deterrent.

• We describe a novel design for cross-platform workflow
coordination among actions in a DAG that allows actions
receiving multiple triggers from N predecessors in the
graph to self-select whether to abort (N → 1 actions)
or continue (single action) using passive S3 object stor-
age for coordination, without relying on cloud-specific
messaging queues. This reduces dependencies on specific
cloud providers and preventing vendor lock-in.

• We describe an implementation of FaaSr that has been
released as open-source software packaged and available
for R users through the widely-used CRAN reposi-
tory [8]. While currently implemented in R, the FaaSr
architecture is generalizable to other languages.

• We evaluate its performance with micro-benchmarks and
application workflows using three different serverless
platforms that cater to a broad set of use cases: GitHub
Actions (a low barrier to entry platform widely used

by the community and with a free tier), AWS Lambda
(a scalable commercial cloud), and OpenWhisk (open-
source FaaS deployed on both cloud and edge). This
shows FaaSr is generalizable to serverless container-based
systems that do not offer typical FaaS APIs (e.g. GitHub).

II. RELATED WORK

While there is an extensive literature in workflow systems,
FaaS-based workflows are a more recent development. Pega-
sus [9] and HTCondor [10] are flagship projects supporting
DAG-based scientific workflows. However, they rely on the
deployment of managed servers/VMs to host the execution
of workflows. In contrast, FaaSr supports serverless platforms
without any managed servers/VMs. Nextflow [11] aims at
enhancing the reproducibility of computational workflows in
cloud and local environments. However, unlike FaaSr, the
cloud bindings in Nextflow are based on managed cloud VMs
(e.g. AWS EC2 and Google Cloud).

In [2], the authors survey serverless computing for scientific
applications, highlighting several of the potential benefits:
intuitive abstraction of functions, facilitating programming
by abstracting away low-level resource management, elastic
resource management, scalability, and packaging of complex
software stacks in containers. In [1], the authors overview dif-
ferent approaches to supporting the deployment of workflows
in FaaS infrastructures, and provide quantitative experiments
validating the use of the HyperFlow engine in both AWS
Lambda and Google Cloud Engine for the Montage applica-
tion. The FaaSr approach is motivated by similar arguments,
but is novel in how it implements the “decentralized model”
described in [1], thereby supporting cross-platform serverless
execution without the need for a managed workflow engine
server/VM. This is fundamentally different from HyperFlow,
which uses a queue model that requires its own workflow
engine server.

A closely-related work also motivated by the potential of
cross-platform serverless computing in scientific workflows is
XFaaS [6], [7]. However, our approach is different from XFaaS
in several ways: 1) while XFaaS uses a dedicated cloud server
as a workflow orchestrator, FaaSr does not require a dedicated
cloud server running a workflow engine; 2) unlike XFaaS,
FaaSr does not require cloud queues or databases—instead,
FaaSr implements a novel approach using passive S3 cloud
storage for coordination; 3) FaaSr integrates support for file-
based I/O over S3 (including Arrow), while XFaaS uses func-
tion payloads for arguments and return values; and 4) FaaSr
provides the flexibility of scheduling functions to providers at
the granularity of individual functions, while XFaaS does so
at the granularity of sub-graphs. QuickFaaS [12] also aims at
portability across FaaS providers, but does not support cross-
platform workflows. Triggerflow [13] implements trigger-
based orchestration of serverless DAG workflows; however,
unlike FaaSr, it requires a controller responsible for creating
workflow workers in Kubernetes, a front-end RESTful API,
and a database.
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Fig. 1: Overview of FaaSr Design. Users write R functions and declare workflow JSON configurations in a FaaS-agnostic,
abstracted fashion. FaaSr client-side tools generate FaaS-specific REST API calls on behalf of the user to configure, register
and invoke actions. FaaSr server-side tools are invoked within the container runtime to access S3 files, log messages, and
trigger successor DAG actions.

PyWren [14] and NumPyWren [15] also leverage serverless
computing but, in contrast to FaaSr, these are specific to the
AWS Lambda service and Python, and do not offer a generic
framework for multiple serverless frameworks or file I/O over
S3 buckets. The funcX system [5] is also Python-based, and
offers a distributed FaaS platform across federated cyberin-
frastructure. Unlike FaaSr, which uses cloud-native FaaS APIs
(e.g. AWS Lambda), funcX primarily focuses on federated
private clouds, and requires the deployment of custom end-
points to execute in public cloud VMs. PONCHO [16] is also
Python-based, and focuses on dynamically packaging software
dependencies for serverless Python applications. A related
R package is targets [17]. A key difference is that FaaSr
is designed to deploy event-driven workflows to serverless
clouds, while targets focuses on increasing the efficiency of
the execution of complex workflows, and does not use FaaS.

Overall, a key observation as it relates to FaaSr is that none
of the existing systems surveyed support a combination of: 1)
serverless coordination and a file-based abstraction using S3
object storage, 2) seamless deployment across multiple FaaS
back-ends without requiring managed servers, and 3) native
R-language APIs that support deployment of customizable
containers/micro-VM runtimes.

III. DESIGN

The design of FaaSr encompasses three major modules, as
illustrated in Figure 1: an R package, a container runtime
image, and workflow configuration structured in JavaScript

Object Notation (JSON). The FaaSr R package is instal-
lable from the CRAN repository, and the container runtime
layers FaaSr and its server-side “stubs” upon a baseline
rocker/tidyverse image. Both CRAN and Rocker are widely
used in the community, contributing to lower barriers to
adoption. The FaaSr package contains both client-side tools
for interactive usage at a user’s desktop (e.g. to register and
invoke workflows) and server-side functions that are invoked
at runtime by a FaaS instance (e.g. to access files in S3). This
is done such that user code is completely platform-agnostic;
all FaaS-specific API calls are implemented in FaaSr and
abstracted from the user.

The JSON-formatted configuration declares a FaaSr work-
flow and serves as a blueprint that can be reused, facilitating
sharing. The configuration allows users to declare: 1) which
FaaS and S3 services to use; 2) the names of user functions
to invoke; 3) their dependencies; 4) the Git repositories from
which to fetch function code; and 5) function arguments. In
subsequent sections, the following terminology is used:

• Node: an individual vertex in the graph (DAG) represen-
tation of a FaaSr workflow.

• Action: refers to the run-time invocation of the workflow
node by a FaaS provider, i.e., the container or micro-
VM instance that encapsulates an execution environment
where a user-defined R function is then executed.

• Function: the user-provided R function executed by an
Action.
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A. JSON Configuration
FaaSr exposes workflow configuration as a JSON-formatted

file; the software also provides a GUI tool that allows users
to compose, edit, and generate FaaSr schema-compliant JSON
configurations by declaring:

• ComputeServer: provides FaaS-specific configurations
for one or more serverless systems. Each compute server
platform is described by a unique string name (e.g.
MyAWS, MyOW), its type (e.g., Lambda, OpenWhisk),
and endpoint information (e.g. URL, region).

• DataStore: provides configuration for one or more S3
storage services. Each data store is also described by a
unique string name (e.g. MyAWS, MyMinio), endpoint
URL, and bucket name.

• FunctionList: specifies action names and the user func-
tions they invoke, their arguments, the name of the
ComputeServer used for execution, and the name(s) of
subsequent action(s) to invoke.

The workflow configuration is serialized as a JSON payload
and transferred over HTTPS to each action, along with an
invocation trigger, throughout workflow execution. In FaaSr,
API payloads (which are limited in size) are only used for
workflow configuration; the bulk of data is accessed through
the S3 interface of a DataStore. The credentials used for
ComputeServer and DataStore are stored in the user’s desktop
through credential environment variables that are automatically
inserted by the client-side FaaSr tools upon action invocation.

Fig. 2: Container images for each FaaS provider. The base
image is built to include dependencies common to all FaaS
platforms, while the platform-specific images differ with re-
spect to container entry point and initialization script.

B. FaaSr Container
In the context of supporting R functions, FaaSr adopts

containerization as its underlying technology and consolidates
the R runtime environment and FaaSr package in a unified
container image that can be stored in different registries (e.g.
DockerHub, AWS Elastic Container Registry, and GitHub
Container Registry) and deployed on multiple platforms.

The base/default FaaSr image is built starting from an R run-
time environment actively maintained and widely used in the
community (with over 5 million pulls): rocker/tidyverse. On

top of this base image, the FaaSr package and its dependences
are installed. Finally, to address the inherent heterogeneity
among FaaS providers, each provider-specific container image
(e.g. for GitHub Actions, OpenWhisk and AWS Lambda) is
derived from the FaaSr base image. Specifically, provider-
specific images are configured with distinct entry points and
initialization scripts, aligning with the specific requirements of
each provider (Figure 2).

While the base image works for the majority of R applica-
tions, users are empowered to craft their own custom container
images. This extends the flexibility of the system, enabling
advanced users to tailor the environment to their specific
needs (e.g. by packaging a binary that is invoked by R) while
supporting the common case with a pre-built image. Users can
specify which container image(s) to use in the JSON-formatted
configuration file for their functions. In cases where no explicit
image is specified, FaaSr defaults to the baseline image.

C. FaaSr R Package

The FaaSr R package provides functions exposed for both
client-side (the user’s desktop) and server-side (container or
micro-VM runtime at the FaaS provider). These functions
hide the complexity associated with dealing with low-level
REST API interfaces for FaaS and storage services, including:
FaaS action registration, payload marshaling and parsing, DAG
cycle checking, argument extraction and function invocation,
action triggering, and file I/O.

1) Client-Side Functions: Client-side functions play a cru-
cial role in simplifying user interaction with the FaaS platform.
FaaSr introduces a layer of abstraction on top of the provider-
specific REST API, consolidating the necessary command sets
for users. These client-side functions operate within the user’s
desktop computer environment (e.g. the Rstudio graphical user
interface) and assist in actions such as registering, invoking,
and setting programmable ’cron’ timers for event triggers.
FaaSr invokes REST API calls using cURL. Users need to
have the appropriate authorization credentials configured at
their client for each FaaS and S3 provider.

2) Server-Side Functions: Server-side functions are in-
voked when the FaaS provider deploys the FaaSr container.
These functions allow users to write functions in R without any
FaaS-specific code. In other words, users need not worry about
how functions are invoked, how to parse payloads to extract
their arguments, or how to trigger downstream functions in the
DAG workflow. Specifically, server-side FaaSr functions check
workflow configurations for cycles; parse arguments from the
JSON configuration file; invoke the user-provided R function;
coordinate execution when multiple triggers are present; and
print any error messages to logs. The key functions are:

FaaSr::faasr invoke start: is the FaaSr entry point that
executes in a deployed container and implements: download-
ing user functions (and dependencies) from external sources
(e.g. CRAN, GitHub), reading the configuration payload, and
initiating the execution by calling FaaSr::faasr start (below).
Because different FaaS providers invoke this entry point in
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different ways (e.g. OpenWhisk uses a custom Python “actio-
proxy”, whereas AWS uses a shell script) this function handles
FaaS-specific invocation methods.

FaaSr::faasr start: is the “pre-user-function” stub that
implements: JSON schema validation, argument parsing, and
invoking the execution of the user-provided function (see
below). It verifies the workflow’s correctness (i.e. no cycles
nor unreachable nodes) and verifies that the S3 storage REST
API endpoint can be accessed. It also determines whether to
proceed or self-abort (Section III-D) before invoking the user
function, and manages states and logs.

FaaSr::faasr run user function: is invoked by
FaaSr::faasr start if an action does not self-abort. FaaSr::
faasr run user function reads the JSON configuration,
extracts the function name and arguments, and proceeds to
execute the user’s R function with the provided arguments. In
addition, this function handles errors generated by the user’s
function and issues warnings to users through logs.

Fig. 3: FaaSr server-side triggering function. FaaSr parses
the JSON configuration payload, and checks that there are
no cycles in the graph. If an action has successors, they are
invoked using the REST APIs of configured platform (AWS
Lambda, OpenWhisk, GitHub Actions) automatically; users
are not exposed to the trigger interface.

FaaSr::faasr trigger: is the “post-user-function” stub used
to trigger subsequent workflow actions, potentially on differ-
ent FaaS platforms. FaaSr utilizes a JSON configuration to
identify and trigger the invocation of the next set of action(s).
Depending on the FaaS type associated with these actions,
FaaSr generates a REST API call directed at each respective
FaaS provider. These requests are singular in occurrence, non-
blocking, and any potential errors are managed through the
response provided by the API call. The method of triggering
is depicted in Figure 3.

D. Workflows and S3-backed serverless coordination

FaaSr supports the representation of workflows as a static
directed acyclic graph (with a single entry/invocation node)
encoded in a JSON-formatted document. The JSON-encoded
workflow is sent to the entry action as a payload using REST
APIs of the FaaS provider, and actions forward the workflow
representation to successor actions. Each action performs a
correctness check on the workflow graph; this check verifies
that nodes have unique names and uses a Depth-First Search
(DFS) to ensure that the graph is cycle-free and that all nodes
are reachable. If these checks fail, the action self-aborts before
executing the user function, and no actions are triggered.

Because each action parses the workflow at runtime, each
action can build the sets of both its predecessors and suc-
cessors in the graph. These sets are used to determine: 1)
which actions to trigger after executing the user function
(successor set, in faasr trigger), and 2) which actions to wait
for completion before executing the user function (predecessor
set, in faasr start). The simplest (and common-case) pattern
of a node in the DAG having a single predecessor and a single
successor is handled by the action executing immediately after
receiving a trigger, and sending a single trigger at the end of
execution. A node with multiple successors is handled by the
action iterating over the successor set, and sending multiple
triggers, where each trigger uses the REST API of the target
action. The case that requires additional complexity is when
a node has multiple predecessors in the graph.

Consider a simple example where node A in the graph has a
predecessor set (B,C). At runtime, FaaSr actions corresponding
to both B and C will send triggers to invoke A’s action.
Thus, two FaaS actions will be invoked for node A. Using the
representation A.1 and A.2 for these two actions, the approach
taken by FaaSr is that one and only one of the actions (i.e.
A.1 or A.2) should successfully execute a user function, while
the other action should self-abort—after parsing the graph,
but before executing the user function. Generalizing to a
predecessor set of size N, only a single action should execute
the user function through completion, after all predecessors
have completed, while the other N-1 actions should self-abort.

FaaSr coordinates this process with the only requirement
being that the actions have read/write access to S3 objects.
This allows it to support the execution of individual actions
across different FaaS platforms, without relying on either
platform-specific workflow support (e.g. AWS Step Functions,
OpenWhisk Composer) or cloud queues (e.g. AWS Simple
Queue Service). The coordination works as follows.

First, each workflow run is associated with a unique identi-
fier (e.g. a UUID), and a folder in S3 storage is created with
this name. Within this folder, an action (also with a unique
name, e.g. B or C) commits a file to storage with a well-
defined name derived from the action (e.g. B.done, C.done)
after finishing execution of the user function. This allows a
successor action to self-abort if the rank of the set of done
actions is smaller than the rank of the predecessor set. Figure
4 illustrates this scenario.
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Fig. 4: Example where graph nodes B and C are predecessors
of A. At runtime, actions B and C both invoke action A, leading
to two FaaS action invocations A.1 and A.2. In this timeline,
action A.1 is triggered by action B; however, action C has
not committed C.done yet. As a result, action A.1 self-aborts,
while A.2 eventually executes the user function.

While checking the set of .done file in S3 allows for early
self-aborts, it is not sufficient - in general, all predecessors may
write their .done state concurrently and trigger their respective
successors. FaaSr manages coordination when all predecessors
are marked done by using an additional candidate set file,
also stored in S3. Actions compete to append their unique
identifiers to the candidate set file to determine which one
will execute and which ones will abort. Every action initially
verifies the presence of the candidate set file. If the file
does not exist, an action generates the candidate set file and
attempts to append it with a single line: its unique ID. The
action that successfully appends the first line of the candidate
set self-selects as the one to execute the user function, while
all remaining actions self-abort. This is illustrated in Figure 5

S3-compatible storage (e.g. AWS S3 and Minio) enforce
a read-after-write consistency model. This model ensures
that concurrent PUT operations from users do not result in
corruption, and subsequent GET operations retrieve the most
recent version of objects. However, despite this consistency
model, S3 does not provide an atomic read-and-set primitive.
This introduces race conditions when multiple writers append
to the same object using S3 PUTs/GETs. While the lack of
atomic appends does not affect the per-action done objects, it
impacts the shared candidate set file, which is written by all
predecessors and read by their successor.

To overcome this issue, FaaSr implements a locking mech-
anism on top of S3 primitives to ensure before-or-after single-
writer updates to the candidate set, without relying on support
from S3 object storage for atomic appends1. The strategy,

1S3 versioned storage allows for writes to create new versions and could
in principle be leveraged; however, this is not the default mode of operation
and applies to an entire bucket, exposing challenges of managing versions and
garbage-collection to users. Hence, FaaSr uses default, non-versioned buckets.

Fig. 5: If all predecessor actions are marked as done state,
each successor action attempts to write to the candidate file.
In this example, action X.m, where 1 ↑ m ↑ n, adds its
distinct identifier as the first line in the candidate file object.
Only action X.m (the ”winner” that appends the first line)
proceeds with execution while the other actions (the ”losers”
that append to subsequent lines) self-abort.

inspired by Lamport’s solution [18] and sketched in [19],
involves the utilization of a shared flag array to implement
an atomic read-and-set primitive. It bootstraps a read-and-
set primitive when a single read or write is a before-or-
after operation, which is satisfied by S3. This is then used
to establish a critical section to append to the candidate
set. Then, the single action that appends the first line of the
candidate set executes the user-provided function, while all
other actions self-abort without executing the user function. To
handle the (uncommon) case and prevent fate-sharing where
an action fails while holding a lock, actions self-abort after a
timeout if they are unable to acquire the lock.

Note that this entire process of action triggering and coordi-
nation is abstracted away from users and implemented by the
faasr start and faasr trigger stubs. The end user only needs
to compose a valid DAG graph, which can be done in one of
two ways: 1) directly editing a JSON file to conform to the
FaaSr schema, or 2) using a graphical user interface (GUI) that
automatically generates a compliant JSON. While there is a
cost associated with self-aborts of concurrent actions, these
tend to occur early in action execution and be short compared
to the time taken by typical user functions.

E. File I/O and Logging
When actions terminate, no memory or local storage

is retained. FaaSr also uses cloud S3 storage not
only for coordination (Subsection III-D) but also
for file I/O and for logging. FaaSr simplifies user
interaction with storage objects with high-level functions:
:faasr put file, faasr get file, faasr delete file,
faasr get folder list, faasr arrow s3 bucket and
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faasr log. These methods include error handling and the
setup of S3 credentials, exposing a simple primitive to the
user. Users can utilize faasr put file and faasr get file
to upload/download files to/from storage and faasr log
to record logs to storage. Users can also access S3 data
using efficient Apache Parquet columnar representation using
Apache Arrow over S3.

IV. IMPLEMENTATION

FaaSr has been implemented in R, is hosted on a GitHub
repository, and is distributed as a package [8] compliant to the
requirements of CRAN (Comprehensive R Archive Network),
the package repository widely used by the R community. The
FaaSr package invokes REST APIs using curl for OpenWhisk
and GitHub Actions, and paws for AWS Lambda and S3.
On the client-side (e.g. a user’s desktop running RStudio),
the package offers a simple abstract interface to the user,
with functions: faasr(), which creates an object holding the
workflow configuration and credentials; register workflow(),
which registers workflow nodes with one or more FaaS
providers; and invoke workflow(), which triggers the work-
flow execution, either immediately, or on a timer schedule.

In addition to the main FaaSr package, additional code
repositories are available to automatically build and publish
custom container images (from baseline Rocker images) to
DockerHub, GHCR (GitHub Container Registry), and AWS
ECR (Elastic Container Registry) for OpenWhisk, GitHub
Actions, and Lambda runtimes, respectively. Furthermore, a
graphical user interface tool is available to create and edit
workflows and generate FaaS-compliant JSON configurations.

V. CASE STUDIES

We consider application case studies as well as micro-
benchmarks in our evaluation. The case studies are from
the lake ecology domain and highlight the ability of FaaSr
to execute complex R functions (including invocation of a
binary executable from R) in multiple FaaS platforms and
S3 buckets for two common workflow patterns: “bag of task”
batch (where independent jobs execute as concurrent actions)
and event-driven DAG workflow invocation (representative of
a forecasting use case). These exercise both the whole-file S3
put/get interface and range requests through Apache Arrow
over S3 using Parquet files.

A. GLM-AED
This case study deploys concurrent actions that run several

iterations of the General Lake Model - Aquatic EcoDynamics
(GLM-AED) lake ecosystem model [20]. GLM-AED is an
open-source process-based model widely used by the lake
ecology community and is integrated with R through the
GLMr package. In this use case, we generate output for a
large batch of GLM-AED model simulations, where each
simulation is run under different conditions. Specifically, each
simulation uses a unique set of parameter values (e.g., different
growth rates for lake phytoplankton) to generate a training
data set for a statistical model that abstracts the ecological

processes in GLM-AED (i.e., a surrogate model [21]), with the
ultimate goals of improving model fidelity to lake observations
and speeding computation time. Other research objectives that
could be addressed using the same approach include assessing
model sensitivity to changes in parameter values [22] or gen-
erating diverse training data sets for machine learning models
when environmental observations are sparse [23]. The original
code developed to run the batch of model simulations executed
each model simulation sequentially in a user’s desktop. In this
case study, we took the sequential code originally developed
as an R script, and converted it into an R function where
parallelism is extracted by partitioning the N executions of
GLM-AED (iterations of a loop) across k FaaSr actions. The
process of converting the sequential code to FaaSr required
modifications that were primarily limited to 1) converting
Rscript into a functional format with arguments, 2) passing
arguments defining the task range (i.e., the parameter values
for the model simulations) to the main loop, and 3) adding a
faasr put file call to commit outputs to remote S3 object
storage. The modifications (illustrated in the code snippets
below) were limited to approximately 3.9% of the code; the
runtime improvement is elaborated in the next Section.

1 glm3_assemble_surrogate_dataset <-
2 function(
3 start, end, output_folder,
4 calibration_repo){

1 faasr_put_file(
2 local_file=model_run_file,
3 remote_folder=output_folder,
4 remote_file=filename)

B. FLARE (Forecasting Lake and Reservoir Ecosystems)
FLARE is a system used to forecast water quality in lakes

and reservoirs [24]. It has provided both context and moti-
vation for FaaSr, as the design of FaaSr has been inspired by
lessons learned from FLARE, which provides automated near-
term forecasts for lakes and reservoirs in the US and abroad,
including lakes from the U.S. National Ecological Observatory
Network [25], Virginia [24], [26], and New Hampshire [27].
In this case study, we use the FLARE workflow for Falling
Creek Reservoir (FCR), a drinking water reservoir in Virginia
where FLARE has previously been used [24]

In its original design, FLARE was tightly integrated with
a single serverless platform - initially with OpenWhisk [28]
and later with GitHub Actions. The FaaSr-enabled FLARE,
in contrast, has demonstrated the ability to seamlessly run
actions from the same workflow in any of three different FaaS
platforms (GitHub Actions, OpenWhisk, AWS Lambda), as
well as demonstrating the ability to execute a workflow across
edge and cloud resources.

The FLARE FaaSr workflow (illustrated in Figure 6) first
executes three actions that generate the ‘target’ data, which
are observed data converted into a standardized format for use
in the model execution (inflow and meteorological data) and
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data assimilation (in-situ observations from the reservoir). The
three targets files are stored in an S3 bucket. Next, the targets
are combined with meteorological forecasts to generate an
inflow forecast that is stored in an S3 bucket. Finally, once the
inflow forecast is completed, the reservoir water temperature
forecast is executed with the forecast output stored on an S3
bucket. Transitioning the FLARE R package and the FCR
workflow to FaaSr consisted of primarily replacing low-level
aws.s3 R package [29] interfaces with FaaSr’s interfaces for
S3 and Arrow, and enabling dynamic configuration of multiple
S3 servers/buckets via arguments serialized through the FaaSr
JSON payloads.

Fig. 6: FLARE forecast application workflow DAG for FCR.
FaaSr supports the execution of this workflow in different FaaS
platforms and different S3 buckets - the user only configures
their endpoints and credentials.

While FaaSr has been primarily motivated by serverless
cloud computing, its cross-platform nature generalizes to
event-driven edge to cloud workflows. In ecological fore-
casting, such end-to-end workflows can include data pre-
processing at the edge and model execution and data assimi-
lation in the cloud. While computational capacity is limited in
edge devices, a benefit of an event-driven workflow that uses
the same abstractions/APIs (FaaS-invoked containers and S3
object storage) is to simplify workflow development, deploy-
ment, and reuse. To demonstrate the feasibility of this model,
this case study includes an OpenWhisk cluster deployed in a
low-power fitlet3 edge device and shows that, with FaaSr, a
single FLARE workflow executes across one edge and three
cloud FaaS resources, without any managed/active workflow
engine.

VI. EVALUATION

We have performed several experiments to evaluate the
functionality and performance of FaaSr using the set of
resources summarized in Table I.

TABLE I: FaaS and storage resources used in experiments

Label Resource
OW-J OpenWhisk, Jetstream2 [30] “medium” VM (8 core, 32GB RAM)
OW-C OpenWhisk, CloudLab [31] cluster (48 cores, 186GB RAM)
OW-E OpenWhisk on fitlet3 edge device (4 core, 8GB RAM)
AWS AWS Lambda, US-east-1
GHA GitHub Actions, free tier
S3-A S3 service, AWS US-east-1
S3-M S3 service, Minio on Jetstream2 “medium” VM
D-M1 Desktop: Macbook Air, 8-core M1, 8GB RAM

A. Null-function micro-benchmark
This function is designed to perform no computation, but

still requires a FaaS invocation. It is used to assess FaaSr over-
head, as follows (Figure 7). First, the faasr start function
is invoked upon container invocation. This acts as a stub that
performs JSON payload validation, workflow DAG validation,
S3 reachability check, and self-aborting for coordination (Sub-
section III-D). The stub then invokes the user function and,
upon its return, the faasr trigger function in the stub invokes
subsequent functions, if applicable. FaaSr then wraps up by
logging state and outputs to S3 and terminates. Figure 8(a)
shows the latency distribution at each step for 10 runs in each
of different FaaS providers. While start-up, trigger, and wrap-
up latencies vary across providers, they are on the order of
one or a few seconds.

Fig. 7: Life cycle of a FaaSr action. FaaSr-specific overhead
is introduced by its “stub” code surrounding user function
invocation: faasr start, faasr trigger, and wrap-up.

We also evaluate the overhead of self-abortion on multiple
invocations (Section III-D). We instrument faasr start and
vary the number of predecessors from 2 to 64. We deploy
our own FaaS cluster and S3 storage (OW-C, S3-M) to create
a controlled experimental setup. Containers were invoked
simultaneously, and each action competes to acquire the flag
and lock. As shown in Figure 8(b), while there is a variance in
faasr start times, the increase is not linear with the number
of predecessors, and the latency is again on the order of a
few seconds for up to 64 predecessors. Lock contention is
mitigated by using exponential back-off.

Triggering successors introduces overhead because R seri-
alizes the faasr trigger function, where each step involves
data processing, formatting, and a REST API call. Results
(Figure 8(c)) show that the time to invoke all triggers increases
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(a) (b)

(c)

Fig. 8: Null function. (a) Overhead of each FaaSr stage; (b)
start time, multiple predecessors; (c) trigger time, multiple
successors. Resources: GHA (blue), AWS (red), OW-C (green)

linearly with the number of triggers. Note that while the
sending of triggers by a predecessor is serialized, successors
execute concurrently once triggered. Overall, these results
show acceptable overheads for the target FaaSr use case
scenarios, where functions take seconds to minutes to execute
and where the primary goal is not raw performance, but rather
to reduce barriers to entry.

B. Arrow micro-benchmark

This experiment demonstrates how FaaSr enables partial
S3 object transfers by leveraging Apache Arrow [32] and
Parquet [33] files on S3. For example, the FLARE case study
uses the Arrow package, which exposes easy-to-use APIs in
R that improve performance by: 1) splitting large datasets
across multiple Parquet files with key/value pairs establishing a
hierarchical folder namespace, and 2) storing each Parquet file
in an efficient column-oriented format with metadata to allow
byte-range transfers. The experiment uses a public dataset of
taxi trip record data [34] (158 Parquet files, one per month,
with total dataset size of 70GB) and the example R query [35]
to find the median tip percentage for rides with fares greater
than $100 in a time period. We measured the total traffic
between container and S3 server using tcpdump, and logged
the total number of bytes transferred during the query, repeated
20 times. For per-year and per-month queries, the average
data transfer size was 480MB and 41.8MB, respectively, or
approximately 0.6% and 0.06% of the 70GB dataset. A per-
month query only transferred 11.1% of a single Parquet file.

C. GLM-AED application
In this experiment, we demonstrate the ability of FaaSr to

seamlessly distribute a “bag of tasks” consisting of indepen-
dent GLM-AED model runs across three different serverless
platforms (OW-J, AWS, and GHA, Table I). Table II sum-
marizes the experimental results, both for the execution of
a single action in each platform, and the execution of 40
actions across the platforms (20 in GHA, 10 in OW-J, and
10 in AWS) as well as in a local desktop (D-M1). While each
platform exhibits different execution times due to differences
in hardware resources, the key conclusion is that FaaSr allows
the workflow to scale out (compared to a local platform) and
provides the user with a choice of which FaaS platform(s) to
use, without the need for any FaaS-specific code.

TABLE II: GLM-AED case study: execution time of single
action in each platform, and for 40 actions (concurrently in
FaaSr, sequentially in D-M1)

Task Resource Start Execution Total Time

Single
action

OW-J
AWS
GHA

D-M1.

4s
11s

1m 45s
-

7m 26s
13m 28s
7m 51s
7m 14s

7m 30s
13m 39s
9m 36s
7m 14s

40
actions

OW-J+AWS+GHA
D-M1

7s
-

15m 36s
294m 52s

15m 43s
294m 52s

D. FLARE application
The FLARE FCR workflow (Figure 6) successfully executes

across multiple FaaS and S3 platforms. Specifically, referring
to Table I, the cross-platform workflow is deployed across
GHA for start and met data, OW-E for inflow data, OW-J
for run inflow, and AWS for both in-situ data and run flare,
with buckets in both S3-A and S3-M. Experimental results
(shown in Table III) show that, while each platform show-
cases unique characteristics (for example, GHA lacks warm
container startup, resulting in differing invocation times), users
can seamlessly deploy workflows across FaaS platforms of
their choice (cloud and edge), without being exposed to low-
level FaaS APIs nor vendor lock-in.

TABLE III: FLARE FCR forecast workflow execution times
for each cloud FaaS platform (OW-J, AWS, GHA), and across
four platforms (including an edge device, OW-E)

Action OW-J AWS GHA OW-J+OW-E
+AWS+GHA

met-
data

Start
Exec

6s
49s

8s
9m 30s

1m 48s
1m 9s

1m 45s
1m 25s

in-situ-
data

Start
Exec

6s
46s

9s
1m 1s

1m 47s
46s

9s
59s

inflow-
data

Start
Exec

7s
10s

10s
14s

1m 45s
12s

45s
32s

run-
inflow

Start
Exec

6s
6s

8s
9s

50s
9s

5s
6s

run-
flare

Start
Exec

6s
6m 49s

9s
11m 9s

1m 45s
10m 52s

9s
11m 36s

Total - 8m 2s 21m 13s 16m 33s 15m 6s
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VII. CONCLUSIONS

This paper describes the design and implementation of
FaaSr, a novel middleware that reduces barriers to entry for
users to leverage serverless computing for scientific work-
flows. A key novel aspect is its ability to support cross-FaaS
workflow execution using passive S3 storage for coordination
rather than a dedicated workflow engine, thus avoiding vendor
lock-in. Micro-benchmark results show that the performance
overhead is acceptable for use case scenarios where functions
take on the order of seconds to minutes to execute, and that
partial S3 data transfers are possible using Apache Arrow and
Parquet. Case studies based on realistic lake ecology applica-
tions show that FaaSr workflows can be successfully deployed
across both edge and cloud resources—without the need for
FaaS-specific user code nor managed workflow engines or
servers. This allows the use of a consistent serverless abstrac-
tion of event-driven container deployment for workflows, both
reducing barriers to entry and fostering workflow reuse.
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