
FaaSr: R Package for Function-as-a-Service Cloud
Computing
Sungjae Park 1*, Yun-Jung Ku1, Nan Mu1, Vahid Daneshmand 1, R.
Quinn Thomas 3, Cayelan C. Carey 2, and Renato J. Figueiredo 1*

1 Department of Electrical and Computer Engineering, University of Florida, FL, USA 2 Department of
Biological Sciences and Virginia Tech Center for Ecosystem Forecasting, Virginia Tech, VA, USA 3
Department of Forest Resources and Environmental Conservation and Virginia Tech Center for
Ecosystem Forecasting, Virginia Tech, VA, USA * These authors contributed equally.

DOI: 10.21105/joss.07027
Software

• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @tyson-swetnam
• @yadudoc
• @gvegayon

Submitted: 16 July 2024
Published: 01 November 2024
License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The FaaSr software makes it easy for scientists to execute computational workflows developed
natively using the R programming language in Function-as-a-Service (FaaS) serverless cloud
infrastructures and using S3 cloud object storage (Amazon, 2024b; MinIO, 2024). A key
objective of the software is to reduce barriers to entry to cloud computing for scientists in
domains such as environmental sciences, where R is widely used (Lai et al., 2019). To this end,
FaaSr is designed to hide complexities associated with using cloud Application Programming
Interfaces (APIs) for different FaaS and S3 providers, and exposes to the end user a set of simple
function interfaces to: 1) register and invoke FaaS functions, 2) compose functions to create
workflow execution graphs, and 3) access cloud storage at run time. The software supports
encapsulation of execution environments in Docker images that can be deployed reproducibly
across multiple providers: AWS Lambda (Amazon, 2024a), GitHub Actions (Github, 2024),
and OpenWhisk (Apache, 2024), where users are able to leverage a baseline image with the
widely-used Rocker/Tidyverse runtime (Nüst et al., 2020), as well as customize their execution
environment if needed. FaaSr is available as a CRAN package to facilitate its installation in R
environments.

Statement of Need
Scientific research increasingly requires extensive data and computing resources to execute
complex workflows that are increasingly event-driven. Cloud computing has emerged as a
scalable solution to meet these demands. However, traditional Infrastructure-as-a-Service (IaaS)
models often prove to be costly and require server management, presenting challenges to many
scientists. In particular, these challenges present barriers to entry for small to medium teams
and in domains where users are not accustomed to cloud server deployment and management
and/or cluster and high-performance computing environments. Function-as-a-Service serverless
computing has the potential to address these concerns by providing a cost-effective alternative
where users are not burdened with server management and can simply focus on writing
application logic instead. Nevertheless, today’s FaaS platforms still present barriers to entry
with respect to usability for scientists, particularly those who heavily rely on the R programming
language, because: 1) R is not widely supported by commercial and open-source FaaS platforms
as a runtime target, and 2) different FaaS providers use different, non-compatible APIs. While
there are systems that enable Python applications to be used in FaaS (such as NumpyWren
(Shankar et al., 2018), PyWren (Jonas et al., 2017), and FuncX (Chard et al., 2020)), there
is a growing need to support R-native applications. Two existing packages for R, lambdr

Park et al. (2024). FaaSr: R Package for Function-as-a-Service Cloud Computing. Journal of Open Source Software, 9(103), 7027. https:
//doi.org/10.21105/joss.07027.

1

https://orcid.org/0009-0000-5357-804X
https://orcid.org/0000-0003-4181-1806
https://orcid.org/0000-0003-1282-7825
https://orcid.org/0000-0001-8835-4476
https://orcid.org/0000-0001-9841-6060
https://doi.org/10.21105/joss.07027
https://github.com/openjournals/joss-reviews/issues/7027
https://github.com/FaaSr/FaaSr-package
https://doi.org/10.5281/zenodo.14026585
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/tyson-swetnam
https://github.com/yadudoc
https://github.com/gvegayon
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07027
https://doi.org/10.21105/joss.07027

(Neuzerling & Goldie, 2023) and aws.lambda (Leeper & Harmon, 2020) provide support for
AWS, but are specific to a single provider and do not generalize to support workflows across
different FaaS providers. This need is addressed by FaaSr through the use of containers
that encapsulate an R-based runtime environment supporting the execution of user-provided
functions. In addition, while existing systems are tailored to a specific FaaS platform, there is
a need to support cross-platform execution to avoid vendor lock-in. This need is addressed
by FaaSr by hiding provider-specific APIs behind function interfaces that work consistently
across multiple serverless providers, including AWS Lambda, GitHub Actions, and OpenWhisk.
Furthermore, there is a need to support complex scientific workflows to express the order of
execution of functions, as well as parallelism. This need is addressed by FaaSr in a way that
remains serverless in nature and does not require dedicated/managed workflow engines.

Design
The FaaSr package consists of server-side and client-side functions. The server-side functions
are executed when an action is deployed by a FaaS platform. The FaaSr server-side interfaces
perform various operations, on behalf of the user, in stubs that are automatically inserted before
and after user function invocation. These include: 1) reading the JSON workflow configuration
file payload, 2) validating it against the FaaSr schema, 3) checking for reachability of S3
storage, 4) executing the user-provided function, 5) triggering the invocation of downstream
function(s) in the workflow, and 6) storing logs. These functions are invoked at runtime by
the containers deployed in an event-driven fashion by FaaS providers; the entry point of the
container invokes the FaaSr package. Furthermore, some of the server-side interfaces are
exposed to users, and implement functions to: 1) use S3 storage to download (get) and upload
(put) full objects as files, 2) use Apache Arrow over S3 to efficiently access objects stored in
columnar format using Apache Parquet, and 3) store logs.
The client-side functions are executed iteratively by a user from their desktop environment
(e.g., RStudio). The primary client-side functions exposed to users allow them to: 1) register
workflows with FaaS providers, 2) invoke workflows as either a one-off or to set timer schedules
for triggering workflows at pre-specified intervals, and 3) copy execution logs from S3 storage to
their desktop. The client-side interfaces build on the R faasr function, which creates an object
instance in memory in an R session for the user, and which can then be subsequently used to
register and invoke functions. This function takes as arguments the name of a JSON-formatted
(Pezoa et al., 2016) workflow configuration file, and (optionally) the name of a file storing
FaaS/S3 cloud provider credentials. The JSON schema for this file is also stored in the
FaaSr-Package repository.
FaaSr supports the execution of workflows that can be expressed as a Directed Acyclic Graph
(DAG) of functions. The graph (specifying functions and their dependences) is described in
JSON format, which can be generated automatically from a Web-based graphical editor using
the FaaSr-JSON-Builder tool (FaaSr, 2024a). Figure 1 shows an example workflow DAG graph
with ten functions for an ecological forecasting application.

Park et al. (2024). FaaSr: R Package for Function-as-a-Service Cloud Computing. Journal of Open Source Software, 9(103), 7027. https:
//doi.org/10.21105/joss.07027.

2

https://doi.org/10.21105/joss.07027
https://doi.org/10.21105/joss.07027

Figure 1: Fig. 1. FaaSr Example Workflow.

Description of Software
The FaaSr software is itself written in R. The main GitHub repository, FaaSr-Package, imple-
ments the core functionalities to register and invoke functions and to access data at runtime
via S3 as well as via Apache Arrow (Richardson et al., 2024) over S3. FaaSr exposes both
a client-side interface (intended for end users interactively using R/RStudio environments)
and a server-side interface (intended for runtime invocation once functions are executed on
FaaS platforms). These use cURL (Hostetter et al., 1997) and API-based packages httr
(Wickham, 2023) and paws (Kretch & Banker, 2023) for sending requests to three supported
FaaS providers: GitHub Actions, OpenWhisk, and AWS Lambda. Users are only required to
have accounts, keys, and proper access policies for those providers that they wish to utilize.
The client-side interface is available by invoking the FaaSr::faasr() function with a valid payload
as argument:
faasr_instance <- FaaSr::faasr("payload.json")

With the instance faasr_instance returned by the faasr function, users can register actions
in the workflow to the FaaS provider(s) specified in the workflow JSON configuration. For
example:
faasr_instance$register_workflow()

Users can trigger the action in the workflow by using the invoke_workflow function. The
default action is the first action of the workflow designated in the JSON configuration as
FunctionInvoke. For example:
faasr_instance$invoke_workflow()

Users can also call set_workflow_timer to establish a timer event that will automatically
invoke the workflow. This is based on the cron (Reznick, 1993) specification of time intervals.

Park et al. (2024). FaaSr: R Package for Function-as-a-Service Cloud Computing. Journal of Open Source Software, 9(103), 7027. https:
//doi.org/10.21105/joss.07027.

3

https://doi.org/10.21105/joss.07027
https://doi.org/10.21105/joss.07027

For example:
faasr_instance$set_workflow_timer("*/5 * * * *")

The server-side interface allows functions to interact with storage. For example, to download a
file from an S3 server to local storage:
faasr_get_file(remote_folder=folder, remote_file=input1, local_file="df0.csv")

To upload a file from local storage to an S3 server:
faasr_put_file(local_file="df1.csv", remote_folder=folder, remote_file=output1)

To read/write from an S3 bucket with Apache Arrow and Parquet:
s3 <- faasr_arrow_s3_bucket()

To write a log message:
faasr_log("Function compute_sum finished")

The software also includes a FaaSr-Docker repository (FaaSr, 2024b) with code and actions
used to build, configure, and upload container images to the respective container registers for
the three platforms currently supported by FaaSr (GitHub’s GCR, AWS’s ECR, and DockerHub).
These are used to build the base and default runtime environment for FaaSr (based on Rocker
and TidyVerse) as well as for advanced users who may want to build their custom images
starting from the base image.
Finally, the software also includes a FaaSr-JSON-Builder repository (FaaSr, 2024a) with code
for an R-native graphical user interface Shiny app that allows users to create and edit workflows
interactively and generate FaaSr schema-compliant JSON files.

Documentation
The software has been released on The Comprehensive R Archive Network (CRAN) (https:
//cran.r-project.org/web/packages/FaaSr/) and the documentation is available on both CRAN
and the FaaSr website (https://faasr.io/documentation)

Acknowledgements
FaaSr is funded in part by grants from the National Science Foundation (OAC-2311123,
OAC-2311124, EF-2318861, EF-2318862). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References
Amazon. (2024a). Lambda. [Online], Available: https://aws.amazon.com/lambda/.
Amazon. (2024b). S3. [Online], Available: https://aws.amazon.com/s3/.
Apache. (2024). Open source serverless cloud platform. [Online], Available: https://openwhisk.

apache.org/.
Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B., Foster, I., & Chard, K.

(2020). Funcx: A federated function serving fabric for science. Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed Computing, 65–76.
https://doi.org/10.1145/3369583.3392683

Park et al. (2024). FaaSr: R Package for Function-as-a-Service Cloud Computing. Journal of Open Source Software, 9(103), 7027. https:
//doi.org/10.21105/joss.07027.

4

https://cran.r-project.org/web/packages/FaaSr/
https://cran.r-project.org/web/packages/FaaSr/
https://faasr.io/documentation
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.21105/joss.07027
https://doi.org/10.21105/joss.07027

FaaSr. (2024a). FaaSr JSON-builder. [Online], Available: https://github.com/FaaSr/
FaaSr-JSON-Builder.

FaaSr. (2024b). FaaSr-docker repository. [Online], Available: https://github.com/FaaSr/
FaaSr-Docker.

Github. (2024). GitHub actions. [Online], Available: https://docs.github.com/actions.
Hostetter, M., Kranz, D. A., Seed, C., Terman, C., & Ward, S. (1997). Curl: A gentle slope

language for the web. World Wide Web Journal, 2(2), 121–134.
Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., & Recht, B. (2017). Occupy the cloud:

Distributed computing for the 99%. Proceedings of the 2017 Symposium on Cloud
Computing, 445–451. https://doi.org/10.1145/3127479.3128601

Kretch, D., & Banker, A. (2023). paws: Amazon Web Services software development kit.
https://doi.org/10.32614/CRAN.package.paws

Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J., & Ma, K. (2019). Evaluating the popularity
of R in ecology. Ecosphere, 10(1), e02567. https://doi.org/10.1002/ecs2.2567

Leeper, T., & Harmon, J. (2020). Aws.lambda: AWS Lambda client package. https:
//doi.org/10.32614/CRAN.package.aws.lambda

MinIO. (2024). The object store for AI data infrastructure. [Online], Available: https:
//docs.min.io/.

Neuzerling, D., & Goldie, J. (2023). lambdr: Create a runtime for serving containerised R
functions on AWS Lambda. https://doi.org/10.32614/CRAN.package.lambdr

Nüst, D., Eddelbuettel, D., Bennett, D., Cannoodt, R., Clark, D., Daróczi, G., Edmondson,
M., Fay, C., Hughes, E., Kjeldgaard, L., Lopp, S., Marwick, B., Nolis, H., Nolis, J., Ooi,
H., Ram, K., Ross, N., Shepherd, L., Sólymos, P., … Xiao, N. (2020). The rockerverse:
Packages and applications for containerisation with R. The R Journal, 12(1), 437–461.
https://doi.org/10.48550/arXiv.2001.10641

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., & Vrgoč, D. (2016). Foundations of JSON
schema. Proceedings of the 25th International Conference on World Wide Web, 263–273.
https://doi.org/10.1145/2872427.2883029

Reznick, L. (1993). Using cron and crontab. Sys Admin, 2(4), 29–32.
Richardson, N., Cook, I., Crane, N., Dunnington, D., François, R., Keane, J., Moldovan-

Grünfeld, D., Ooms, J., Wujciak-Jens, J., & Apache Arrow. (2024). Arrow: Integration to
’Apache’ ’Arrow’. https://doi.org/10.32614/CRAN.package.arrow

Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S., Stoica, I., Recht, B., & Ragan-
Kelley, J. (2018). numpywren: Serverless linear algebra. arXiv Preprint arXiv:1810.09679.
https://doi.org/10.48550/arXiv.1810.09679

Wickham, H. (2023). httr: Tools for working with URLs and HTTP. https://doi.org/10.
32614/CRAN.package.httr

Park et al. (2024). FaaSr: R Package for Function-as-a-Service Cloud Computing. Journal of Open Source Software, 9(103), 7027. https:
//doi.org/10.21105/joss.07027.

5

https://github.com/FaaSr/FaaSr-JSON-Builder
https://github.com/FaaSr/FaaSr-JSON-Builder
https://github.com/FaaSr/FaaSr-Docker
https://github.com/FaaSr/FaaSr-Docker
https://docs.github.com/actions
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.32614/CRAN.package.paws
https://doi.org/10.1002/ecs2.2567
https://doi.org/10.32614/CRAN.package.aws.lambda
https://doi.org/10.32614/CRAN.package.aws.lambda
https://docs.min.io/
https://docs.min.io/
https://doi.org/10.32614/CRAN.package.lambdr
https://doi.org/10.48550/arXiv.2001.10641
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.32614/CRAN.package.arrow
https://doi.org/10.48550/arXiv.1810.09679
https://doi.org/10.32614/CRAN.package.httr
https://doi.org/10.32614/CRAN.package.httr
https://doi.org/10.21105/joss.07027
https://doi.org/10.21105/joss.07027

	Summary
	Statement of Need
	Design
	Description of Software
	Documentation
	Acknowledgements
	References

