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Summary
The FaaSr software makes it easy for scientists to execute computational workflows developed
natively using the R programming language in Function-as-a-Service (FaaS) serverless cloud
infrastructures and using S3 cloud object storage (Amazon, 2024b; MinIO, 2024). A key
objective of the software is to reduce barriers to entry to cloud computing for scientists in
domains such as environmental sciences, where R is widely used (Lai et al., 2019). To this end,
FaaSr is designed to hide complexities associated with using cloud Application Programming
Interfaces (APIs) for different FaaS and S3 providers, and exposes to the end user a set of simple
function interfaces to: 1) register and invoke FaaS functions, 2) compose functions to create
workflow execution graphs, and 3) access cloud storage at run time. The software supports
encapsulation of execution environments in Docker images that can be deployed reproducibly
across multiple providers: AWS Lambda (Amazon, 2024a), GitHub Actions (Github, 2024),
and OpenWhisk (Apache, 2024), where users are able to leverage a baseline image with the
widely-used Rocker/Tidyverse runtime (Nüst et al., 2020), as well as customize their execution
environment if needed. FaaSr is available as a CRAN package to facilitate its installation in R
environments.

Statement of Need
Scientific research increasingly requires extensive data and computing resources to execute
complex workflows that are increasingly event-driven. Cloud computing has emerged as a
scalable solution to meet these demands. However, traditional Infrastructure-as-a-Service (IaaS)
models often prove to be costly and require server management, presenting challenges to many
scientists. In particular, these challenges present barriers to entry for small to medium teams
and in domains where users are not accustomed to cloud server deployment and management
and/or cluster and high-performance computing environments. Function-as-a-Service serverless
computing has the potential to address these concerns by providing a cost-effective alternative
where users are not burdened with server management and can simply focus on writing
application logic instead. Nevertheless, today’s FaaS platforms still present barriers to entry
with respect to usability for scientists, particularly those who heavily rely on the R programming
language, because: 1) R is not widely supported by commercial and open-source FaaS platforms
as a runtime target, and 2) different FaaS providers use different, non-compatible APIs. While
there are systems that enable Python applications to be used in FaaS (such as NumpyWren
(Shankar et al., 2018), PyWren (Jonas et al., 2017), and FuncX (Chard et al., 2020)), there
is a growing need to support R-native applications. Two existing packages for R, lambdr
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(Neuzerling & Goldie, 2023) and aws.lambda (Leeper & Harmon, 2020) provide support for
AWS, but are specific to a single provider and do not generalize to support workflows across
different FaaS providers. This need is addressed by FaaSr through the use of containers
that encapsulate an R-based runtime environment supporting the execution of user-provided
functions. In addition, while existing systems are tailored to a specific FaaS platform, there is
a need to support cross-platform execution to avoid vendor lock-in. This need is addressed
by FaaSr by hiding provider-specific APIs behind function interfaces that work consistently
across multiple serverless providers, including AWS Lambda, GitHub Actions, and OpenWhisk.
Furthermore, there is a need to support complex scientific workflows to express the order of
execution of functions, as well as parallelism. This need is addressed by FaaSr in a way that
remains serverless in nature and does not require dedicated/managed workflow engines.

Design
The FaaSr package consists of server-side and client-side functions. The server-side functions
are executed when an action is deployed by a FaaS platform. The FaaSr server-side interfaces
perform various operations, on behalf of the user, in stubs that are automatically inserted before
and after user function invocation. These include: 1) reading the JSON workflow configuration
file payload, 2) validating it against the FaaSr schema, 3) checking for reachability of S3
storage, 4) executing the user-provided function, 5) triggering the invocation of downstream
function(s) in the workflow, and 6) storing logs. These functions are invoked at runtime by
the containers deployed in an event-driven fashion by FaaS providers; the entry point of the
container invokes the FaaSr package. Furthermore, some of the server-side interfaces are
exposed to users, and implement functions to: 1) use S3 storage to download (get) and upload
(put) full objects as files, 2) use Apache Arrow over S3 to efficiently access objects stored in
columnar format using Apache Parquet, and 3) store logs.
The client-side functions are executed iteratively by a user from their desktop environment
(e.g., RStudio). The primary client-side functions exposed to users allow them to: 1) register
workflows with FaaS providers, 2) invoke workflows as either a one-off or to set timer schedules
for triggering workflows at pre-specified intervals, and 3) copy execution logs from S3 storage to
their desktop. The client-side interfaces build on the R faasr function, which creates an object
instance in memory in an R session for the user, and which can then be subsequently used to
register and invoke functions. This function takes as arguments the name of a JSON-formatted
(Pezoa et al., 2016) workflow configuration file, and (optionally) the name of a file storing
FaaS/S3 cloud provider credentials. The JSON schema for this file is also stored in the
FaaSr-Package repository.
FaaSr supports the execution of workflows that can be expressed as a Directed Acyclic Graph
(DAG) of functions. The graph (specifying functions and their dependences) is described in
JSON format, which can be generated automatically from a Web-based graphical editor using
the FaaSr-JSON-Builder tool (FaaSr, 2024a). Figure 1 shows an example workflow DAG graph
with ten functions for an ecological forecasting application.
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Figure 1: Fig. 1. FaaSr Example Workflow.

Description of Software
The FaaSr software is itself written in R. The main GitHub repository, FaaSr-Package, imple-
ments the core functionalities to register and invoke functions and to access data at runtime
via S3 as well as via Apache Arrow (Richardson et al., 2024) over S3. FaaSr exposes both
a client-side interface (intended for end users interactively using R/RStudio environments)
and a server-side interface (intended for runtime invocation once functions are executed on
FaaS platforms). These use cURL (Hostetter et al., 1997) and API-based packages httr
(Wickham, 2023) and paws (Kretch & Banker, 2023) for sending requests to three supported
FaaS providers: GitHub Actions, OpenWhisk, and AWS Lambda. Users are only required to
have accounts, keys, and proper access policies for those providers that they wish to utilize.
The client-side interface is available by invoking the FaaSr::faasr() function with a valid payload
as argument:
faasr_instance <- FaaSr::faasr("payload.json")

With the instance faasr_instance returned by the faasr function, users can register actions
in the workflow to the FaaS provider(s) specified in the workflow JSON configuration. For
example:
faasr_instance$register_workflow()

Users can trigger the action in the workflow by using the invoke_workflow function. The
default action is the first action of the workflow designated in the JSON configuration as
FunctionInvoke. For example:
faasr_instance$invoke_workflow()

Users can also call set_workflow_timer to establish a timer event that will automatically
invoke the workflow. This is based on the cron (Reznick, 1993) specification of time intervals.
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For example:
faasr_instance$set_workflow_timer("*/5 * * * *")

The server-side interface allows functions to interact with storage. For example, to download a
file from an S3 server to local storage:
faasr_get_file(remote_folder=folder, remote_file=input1, local_file="df0.csv")

To upload a file from local storage to an S3 server:
faasr_put_file(local_file="df1.csv", remote_folder=folder, remote_file=output1)

To read/write from an S3 bucket with Apache Arrow and Parquet:
s3 <- faasr_arrow_s3_bucket()

To write a log message:
faasr_log("Function compute_sum finished")

The software also includes a FaaSr-Docker repository (FaaSr, 2024b) with code and actions
used to build, configure, and upload container images to the respective container registers for
the three platforms currently supported by FaaSr (GitHub’s GCR, AWS’s ECR, and DockerHub).
These are used to build the base and default runtime environment for FaaSr (based on Rocker
and TidyVerse) as well as for advanced users who may want to build their custom images
starting from the base image.
Finally, the software also includes a FaaSr-JSON-Builder repository (FaaSr, 2024a) with code
for an R-native graphical user interface Shiny app that allows users to create and edit workflows
interactively and generate FaaSr schema-compliant JSON files.

Documentation
The software has been released on The Comprehensive R Archive Network (CRAN) (https:
//cran.r-project.org/web/packages/FaaSr/) and the documentation is available on both CRAN
and the FaaSr website (https://faasr.io/documentation)
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