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Global-Position Tracking Control
for Multi-Domain Bipedal
Walking With Underactuation’

Accurate control of a humanoid robot’s global position (i.e., its three-dimensional (3D)
position in the world) is critical to the reliable execution of high-risk tasks such as avoiding
collision with pedestrians in a crowded environment. This paper introduces a time-based
nonlinear control approach that achieves accurate global-position tracking (GPT) for
multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is
challenging due to the highly complex robot dynamics that are time-varying and hybrid,
especially for multi-domain walking that involves multiple phases/domains of full actuation,
over actuation, and underactuation. To tackle this challenge, we introduce a continuous-
phase GPT control law for multi-domain walking, which provably ensures the exponential
convergence of the entire error state within the full and over actuation domains and that of
the directly regulated error state within the underactuation domain. We then construct
sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error
system under the proposed GPT control law. We illustrate the proposed controller design
through both three-domain walking with all motors activated and two-domain gait with
inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate
the satisfactory accuracy and convergence rate of the proposed control approach under two
different cases of multi-domain walking as well as various walking speed and desired paths.

[DOI: 10.1115/1.4065323]

1 Introduction

Multi-domain walking of legged locomotors refers to the type of
walking that involves multiple continuous foot-swinging phases and
discrete foot-landing behaviors within a gait cycle, due to changes in
foot-ground contact conditions and actuation authority [1,2].
Human walking is a multi-domain process that involves phases
with different actuation types. For robotic multi-domain walking,
these phases are (1) full actuation phases during which the support
foot is flat on the ground and the number of actuators is equal to that
of the degrees-of-freedom (DOFs); (2) underactuation phases where
the support foot rolls about its toe and the number of actuators is less
than that of the DOFs; and (3) over actuation phases within which
both feet are on the ground and there are more actuators than DOFs.

Researchers have proposed various control strategies to achieve
stable multi-domain walking for bipedal robots. Zhao et al. [2]
proposed a hybrid model to capture the multi-domain robot
dynamics and used offline optimization to obtain the desired motion
trajectory based on the hybrid model. An input-output linearizing
control scheme was then applied to drive the robot state to converge
to the desired trajectory. The approach was validated on a physical
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planar bipedal robot, AMBER?2, and later extended to another biped
platform [1], ATRIAS [3]. Hereid et al. [4] utilized the reduced-
order spring loaded inverted pendulum model [5] to design an
optimization-based trajectory generation method that plans periodic
orbits in the state space of the compliant bipedal robot ATRIAS. The
method guarantees orbital stability of the multi-domain gait based
on the hybrid zero dynamics (HZD) approach [6]. Reher et al.
achieved an energy-optimal multi-domain walking gait on the
physical robot platform, DURUS, by creating a hierarchical motion
planning and control framework [7]. The framework ensures orbital
walking stability and energy efficiency for the multi-domain robot
model based on the HZD approach [6]. Hamed et al. [8,9] established
orbitally stable multi-domain walking on a quadrupedal robot by
modeling the associated hybrid full-order robot dynamics and construct-
ing virtual constraints [10]. While these approaches have realized
provable stability and impressive performance of multi-domain walking
on various physical robots, it remains unclear how to directly extend them
to solve general global-position tracking (GPT) control problems.

In real-world mobility tasks, such as dynamic obstacle avoidance
during navigation through a crowded hallway, a robot needs to
control its global position accurately with precise timing. Notably,
Xiong et al. [11,12] introduced a global-position control framework
for underactuated bipedal robots based on a reduced-order hybrid
model and orbital stabilization. This approach efficiently plans the
desired footstep locations that provably stabilize the desired
periodic orbit of a hybrid reduced-order robot model. The controller
has enabled versatile and robust underactuated walking on a
physical bipedal robot Cassie. Recently, this controller design
methodology has been extended to achieve stable multi-domain
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bipedal walking based on a new multi-domain, reduced-order
dynamics model [13]. Yet, both the HZD-based approaches
[6,14—16] and the reduced-order model based controller frameworks
[11-13] utilize orbital stabilization as their underlying stabilization
mechanism, which may not ensure reliable tracking of a time
trajectory precisely with the desired timing.

We have developed a GPT control approach based on input-
output linearization and Lyapunov stability analysis that achieves
exponential trajectory tracking for the hybrid model of two-
dimensional (2D) fully actuated bipedal walking [17-19]. To
extend our approach to 3D fully actuated robots, we considered the
robot’s lateral global movement and its coupling with forward
dynamics through dynamics modeling and stability analysis
[20-23]. For fully actuated quadrupedal robotic walking on a rigid
surface moving in the inertial frame, we formulated the associated
robot dynamics as a hybrid time-varying system and exploited the
model to develop a GPT control law for fully actuated quadrupeds
[24-26]. However, these methods designed for fully actuated robots
cannot solve the multi-domain control problem directly. This is
essentially because multi-domain walking involves distinct
dynamic behaviors that are significantly more complex than fully
actuated walking. Multi-domain walking typically involves under-
actuation, and controlling underactuated systems based on input-
output linearization is significantly more complex than the input-
output linearizing control of fully actuated systems. As shown in our
previous study [23], a fully actuated system can be exactly and
completely linearized, which allows us to perform the stability
analysis of the nonlinear control system based on the well-studied
linear system theory. In contrast, an underactuated system may not
be exactly and completely linearized. Instead, nonlinear internal
dynamics may exist under an input-output linearizing control law,
whose stability cannot be directly analyzed based on the linear
system theory.

Some of the results presented in this paper have been reported in
Ref. [27]. While our previous work in Ref. [27] focused on GPT
controller design and stability analysis for hybrid multi-domain
models of 2D walking along a straight path, this study extends the
previous method to 3D bipedal robotic walking, introducing the
following significant new contributions:

(a) Theoretical extension of the previous GPT control method
from 2D to 3D multi-domain bipedal robotic walking. The
key novelty is the formulation of a new phase variable that
represents the distance traveled along a general curved
walking path and can be used to encode the desired global-
position trajectories along both straight lines and curved
paths.

(b) Lyapunov-based stability analysis to generate sufficient
conditions under which the proposed GPT control method
provably stabilizes 3D multi-domain walking. Full proofs
associated with the stability analysis are provided, while only
sketches of partial proofs were reported in Ref. [27].

(c) Extension from three-domain walking with all motors
activated to two-domain gait with inactive ankle motors, by
formulating a hybrid two-domain system and developing a
GPT controller for this new gait type. Such an extension was
missing in Ref. [27].

(d) Validation of the proposed control approach through
simulations of a ROBOTIS OP3 humanoid robot (see
Fig. 1) with different types of multi-domain walking, both
straight and curved paths, and various desired global-position
profiles. In contrast, our previous validation only used a
simple 2D biped with seven links [27].

(e) Formulation of the multi-domain control law as a quadratic
program (QP) to ensure the feasibility of joint torque limits,
and comparison of its performance with an input-output
linearizing control law, which were not included in Ref. [27].

This paper is structured as follows: Section 2 explains the full-
order robot dynamics model associated with a common three-
domain walking gait. Section 3 presents the proposed GPT control
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law for three-domain walking. Section 4 introduces the Lyapunov-
based closed-loop stability analysis. Section 5 summarizes the
extension of the controller design from three-domain to two-domain
walking. Section 6 reports the simulation validation results. Section
7 discusses the capabilities and limitations of the proposed control
approach. Section 8 provides the concluding remarks. Proofs of all
theorems and propositions are given in the Appendix.

2 Full-Order Dynamic Modeling of Three-Domain
Walking

This section presents the hybrid model of bipedal robot dynamics
associated with three-domain walking.

2.1 Coordinate Frames and Generalized Coordinates. This
subsection explains the three coordinate frames used in the proposed
controller design. Figure 2 illustrates these frames, with the x-, y-,
and z-axes, respectively, highlighted in red, green, and blue.

2.1.1 World Frame. The world frame, also known as the inertial
frame, is rigidly attached to the ground (see “{World}” in Fig. 2).

2.1.2  Base Frame. The base frame, illustrated as “{Base}” in
Fig. 2, is rigidly attached to the robot’s trunk. The x-direction (red)
points forward, and the z-direction (blue) points toward the robot’s
head.

2.1.3 Vehicle Frame. The origin of the vehicle frame (see
“{Vehicle}” in Fig. 2) coincides with the base frame, and its z-axis
remains parallel to that of the world frame. The vehicle frame rotates
only about its z-axis by a certain heading (yaw) angle. The yaw angle
of the vehicle frame with respect to (w.r.t) the world frame equals
that of the base frame w.r.t. the world frame while the roll and pitch
angles of the vehicle frame w.r.t the world frame are 0.

2.14 Generalized Coordinates. To use Lagrange’s method to
derive the robot dynamics model, we first introduce the generalized
coordinates that represent the base pose and joint angles of the robot.

We use p, € R? and y, € SO(3) to respectively denote the
absolute base position and orientation w.r.t the world frame, and
their coordinates are represented by (xp,yp,25) and (¢p, Op, ;).
Here, ¢, 05, and , are the base roll, pitch, and yaw angles,
respectively. Then, the 6D pose q, of the base is given by

a, = [pL.77]"
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RHipYaw
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RHipRoll
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RAnklePitch |
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Fig. 1 Illlustration of the Darwin OP3 robot, which is used to
validate the proposed GPT control approach. Darwin OP3 is a
bipedal humanoid robot with twenty revolute joints, designed
and manufactured by ROBOTIS Co., Ltd. The reference frame of

the robot’s floating base, highlighted as “{Base},” is located at
the center of the chest.

LHipYaw
LHipPitch
LHipRoll

M| LAnklePitch
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{ Vehicle}.

{World}

Fig.2 lllustration of the coordinate frames used in the proposed
control design

Let the scalar real variables ¢y, ..., g, represent the joint angles of
the n revolute joints. Then, the generalized coordinates of a 3D
robot, which has a floating base and » independent revolute joints,
can be expressed as

q:[q}'l;, q1s - %]TGQ (1)

where Q C R" is the configuration space.

2.2 Walking Domain Description. For simplicity and without
loss of generality, we consider the following assumptions on the
foot-ground contact conditions during 3-D walking:

(A1) The toe and heel are the only parts of a support foot that can
contact the ground [1].

(A2) While contacting the ground, the toes and/or heels have line
contact with the ground.

(A3) There is no foot slipping on the ground.

The assumption of line contact (i.e., assumption (A2)) may
present a challenge in the hardware implementation of human-like
multi-domain walking that involves support-foot rolling motions.
Realizing foot rolling with line contact on hardware can be complex
due to the potential foot sliding. To overcome this issue, hardware
modifications, particularly in the foot component, are often required.
For instance, the design of the AMBER?2 bipedal robot [1] is a
promising option. Although the underlying theoretical controller
design in Ref. [1] prescribes line contact during support-foot rolling
about its toe or heel, the hardware design of AMBER2’s feet employ
a small surface contact at the toe and the heel to prevent foot sliding.

Support heel liftoff Swing heel touchdown

UA OA

e

Leading toe touchdown

Fig.3 Thedirected cycle of 3D three-domain walking. The green
circles in the diagram highlight the portions of a foot that are in
contact with the ground. The position trajectory of the swing foot
is indicated by the dashed arrow. The red and blue legs
respectively represent the support and swing legs. Note that
when the robot exits the OA domain and enters the FA domain, the
swing and support legs switch their roles, and accordingly the
leading and trailing legs swap their colors.
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Also, we consider the common assumption below about the
robot’s actuators:

(A4) All the V¢ revolute joints of the robot are independently
actuated.

Let n, denote the number of independent actuators, and n, = n
holds under assumption (A4).

Figure 3 illustrates the complete gait cycle of human-like walking
with a rolling support foot. As the figure displays, the complete
walking cycle involves three continuous phases/domains and three
discrete events connecting the three domains. The three domains
are:

(i) Full actuation (FA) domain, where n equals the number of
DOFs;

(i) Underactuation (UA) domain, where the number of
independent actuators (n) is less than that of the robot’s
DOFs; and

(iii) Over actuation (OA) domain, where #n is greater than the
number of DOFs.

The actuation types associated with the three domains are
different because those domains have distinct foot-ground contact
conditions, which are explained next under assumptions (A1)—(A4).

2.2.1 Full Actuation Domain. Asillustrated in the “FA” portion
of Fig. 3, only one foot is in support and it is static on the ground
within the FA domain. Under assumption (A1), we know both the
toe and heel of the support foot contact the ground. From
assumptions (A2) and (A3), we can completely characterize the
foot-ground contact condition with six independent scalar holo-
nomic constraints. Using n. to denote the number of holonomic
constraints, we have n. = 6 within an FA domain, and the number of
DOFs becomes DOF = n + 6 — n, = n. Meanwhile, n, = n holds
under assumption (A4). Since DOF = n,, all of the DOFs are
directly actuated; that is, the robot is indeed fully actuated.

2.2.2 Underactuation Domain. The “UA” portion of Fig. 3
shows that the robot’s support foot rolls about its toe within a UA
domain. Under assumptions (A2) and (A3), the number of
holonomic constraints is five, i.e., n. = 5. This is because the
support foot can only roll about the line toe but its motion is fully
restricted in terms of the 3-D translation and the roll and yaw
rotation. Then, the number of DOFsis DOF =n+6 —5=n-+ 1.
Since the number of independent actuators, n,, equals n under
assumption (A4) and is lower than the number of DOFs, (n + 1), the
robot is underactuated with one degree of underactuation.

2.2.3  Over Actuation Domain. Upon exiting the UA domain,
the robot’s swing-foot heel strikes the ground and enters the OA
domain (Fig. 3). Within an OA domain, both the trailing toe and the
leading heel of the robot contact the ground, which is described by
ten scalar holonomic constraints (i.e., n. = 10). Thus, the DOF
becomes DOF = n 4+ 6 — n. = n — 4, which is less than the number
of actuators under assumption (A4), meaning the robot is over
actuated.

2.3 Hybrid Multi-Domain Dynamics. This subsection
presents the full-order model of the robot dynamics that corresponds
to multi-domain walking. As multi-domain walking involves both
continuous- and discrete-time dynamics, a hybrid model is
employed to describe the robot dynamics. We first explain the basic
components of a typical hybrid system.

2.3.1 Preliminaries on Hybrid Systems. A hybrid control
system HC is a tuple

HC = (I',D,U,S, A, FG)
where

M The directed circle graph I' = (V, E) comprises a set of vertices
V= {Visv2, .., W} and asetofedges E = {e1,€2,...,en}, where N
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is the total number of elements in each set. In this paper, each vertex
v; represents the i domain, while each edge e; represents the
transition from the source domain to the target domain, thereby
indicating the ordered sequence of all domains. For three-domain
walking, i = 3.

B D is a set of domains of admissibility, which are the FA, UA,
and OA domains for three-domain walking.

B U is the set of admissible control inputs.

B S is a set of switching surfaces determining the occurrence of
switching between domains.

B A is a set of reset maps, and the reset map represents the impact
dynamics induced by foot touchdown.

B FG is a set of control systems within the domains in D and
control inputs in U.

The elements of these sets are explained next.

2.3.2  Continuous-Phase Dynamics. Within any of the three
domains, the robot only exhibits continuous movements, and its
dynamics model is naturally continuous-time. Applying Lagrange’s
method, we obtain the second-order, nonlinear robot dynamics as

M(q)§ + ¢(q.q) = Bu+ J'F, 2)

where M(q) : Q@ — R"9*(™0) j5 the inertia matrix. The vector

¢:7Q — R"® ig the sum of the Coriolis, centrifugal, and
gravitational terms, where 7 Q is the tangent bundle of Q. The
matrix B € R is the input matrix. The vectoru € U C R™
is the joint torque vector. The matrix J(q): Q — R™*("+0)
represents the Jacobian matrix. The vector F. € R™ is the constraint
force that the ground applies to the foot-ground contact region of the
robot. Note that the dimensions of J and F,. vary among the three
domains due to differences in the ground-contact conditions.
The holonomic constraints can be expressed as

J(@)d+J(q.q)g =0 3)

Here, 0 is a zero vector with an appropriate dimension. With an
abuse of notation, we also use 0 to represent a zero matrix with a
proper dimension in this paper.

Combining Egs. (2) and (3), we compactly express the
continuous-phase dynamics model as [20]

M(q)d + ¢(q.q) = B(q)u @

where the vector ¢ and matrix B are defined as ¢(q,q):=
=)' (IM )T (IM 'e—Jq) and B(q):=B-J'(JMJ)!
JM'B.

2.3.3 Switching Surfaces. When a robot’s state reaches a
switching surface, it exits the source domain and enters the targeted
domain. As displayed in Fig. 3, the three-domain walking involves
three switching events, which are

(i) Switching from FA to UA (“Support heel liftoff”);
(i1) Switching from UA to OA (“Swing heel touchdown”); and
(iii) Switching from OA to FA (“Leading toe touchdown”).

The occurrence of these switching events is completely
determined by the position and velocity of the robot’s swing foot
in the world frame as well as the ground-reaction force experienced
by the support foot. We use switching surfaces to describe the
conditions under which a switching event occurs.

When the heel of the support foot takes off at the end of the FA
phase, the robot enters the UA domain (Fig. 3). This support heel
liftoff condition can be described using the vertical ground-reaction
force applied at the support heel, denoted as F., : 7Q x U — R.
We use Sp_.y to denote the switching surface connecting an FA
domain and its subsequent UA domain, and express it as

Spov:={(q.qu) €TQ x U:F,.(q.q.u) =0}

011003-4 / Vol. 147, JANUARY 2025

The UA—OA switching occurs when the swing foot’s heel lands on
the ground (Fig. 3). Accordingly, we express the switching surface
that connects a UA domain and its subsequent OA domain, denoted
as Sy_o, as

Sy—o:= {(q’ q) € T7Q: zwn(q) = 0, Zwn(q,q) < 0}

where zgy: @ — R represents the height of the lowest point within
the swing-foot heel above the ground.

As the leading toe touches the ground at the end of an OA phase, a
new FA phase is activated (Fig. 3). In this study, we assume that the
leading-toe landing and the trailing-foot takeoff occur simulta-
neously at the end of an OA phase, which is reasonable because the
trailing foot typically remains contact with the ground for a brief
period (e.g., approximately 3% of a complete human gait cycle [1])
after the touchdown of the leading foot’s toe. The switching surface,
So—r, that connects an OA domain and its subsequent FA domain is
then expressed as

So-ri= {(q’ Q) € 7Q: zuwi(q) = 0, Zyw(q. q) < 0}

where zg,: @ — R represents the height of the swing-foot toe
above the walking surface.

2.34 Discrete Impact Dynamics. The complete walking cycle
involves two foot-landing impacts; one impact occurs at the landing
of the swing-foot heel (i.e., transition from UA to OA) and the other
at the touchdown of the leading-foot toe between the OA and FA
phases. Note that the switching from FA to UA, characterized by the
support heel liftoff, is a continuous process that does not induce any
impacts.

We consider the case where the robot’s feet and the ground are
stiff enough to be considered as rigid, as summarized in the
following assumptions [6,28]:

(AS5) The landing impact between the robot’s foot and the ground
is a contact between rigid bodies.

(A6) The impact occurs instantaneously and lasts for an
infinitesimal period of time.

Due to the impact between two rigid bodies (assumption (AS)),
the robot’s generalized velocity ¢ experiences a sudden jump upon a
foot-landing impact. Unlike velocity ¢, the configuration ¢ remains
continuous across an impact event as long as there is no coordinate
swap of the two legs at any switching event.

Let ¢~ and q" represent the values of ¢ just before and after an
impact, respectively. The impact dynamics can be described by the
following nonlinear reset map [10]:

Q" =A(q)q” ®)

where A;: Q — RH0x(1+6) 45 4 nonlinear matrix-valued function
relating the pre-impact generalized velocity ¢~ to the post-impact
one . The derivation of A, can be found in Ref. [6]. Note that the
dimension of A, is invariant across the three domains since it
characterizes the velocity jumps of all floating-base generalized
coordinates.

3 Controller Design for Three-Domain Walking

This section introduces the proposed GPT controller design based
on the hybrid model of multi-domain bipedal robotic walking
introduced in Sec. 2. The resulting controller provably ensures the
exponential error convergence for the directly regulated DOFs
within each domain. The sufficient conditions under which the
proposed controller guarantees the stability for the overall hybrid
system are provided in Sec. 4.

3.1 Desired Trajectory Encoding. As the primary control
objective is to provably drive the global-position tracking error to
zero, one set of desired trajectories that the proposed controller aims
to reliably track is the robot’s desired global-position trajectories.
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Since a bipedal humanoid robot typically has many more DOFs and
actuators than the desired global-position trajectories, the controller
could regulate additional variables of interest (e.g., swing-foot
pose).

We use both time-based and state-based phase variables to encode
these two sets of desired trajectories, as explained next.

3.1.1 Time-Based Encoding Variable. We choose to use the
global time variable ¢ to encode the desired global-position
trajectories so that a robot’s actual horizontal position trajectories
in the world (i.e., x; and y,) can be accurately controlled with precise
timing, which is crucial for real-world tasks such as dynamic
obstacle avoidance.

We use x4(f): Rt — R and y4(r): R — R to denote the
desired global-position trajectories along the x- and y-axis of the
world frame, respectively, and ¥,(¢): R — R is the desired
heading direction. We assume that the desired horizontal global-
position trajectories x4() and y,(¢) are supplied by a higher-layer
planner, and the design of this planner is not the focus of this study.
Given x4(¢) and y,(z), the desired heading direction ¥,(¢) can be
designed as a function of x4(zf) and yu(f), which is
W,(t) == tan~!(ys/x4). Such a definition ensures that the robot is
facing forward during walking.

We consider the following assumption on the regularity condition
of x4(¢) and y4(¢):

(A7) The desired global-position trajectories x,(¢) and y,(¢) are
planned as continuously differentiable on t € R™ with the norm
of %,4(¢) and y,(r) bounded above by a constant number; that is,
there exists a positive constant L, such that

Fa (O] [ya (@) < La ©)

forany r € R*.

Under assumption (A7), the time functions x,(¢) and y,(¢) are
Lipschitz continuous on ¢ € R [29], which we utilize in the
proposed stability analysis.

3.1.2  State-Based Encoding Variable. As walking inherently
exhibits a cyclic movement pattern in the configuration space, it is
natural to encode the desired motion trajectories of the robot with a
phase variable that represents the walking progress within a cycle.

To encode the desired trajectories other than the desired global-
position trajectories, we use a state-based phase variable, denoted as
0(q): © — R, that represents the total horizontal distance traveled
within a walking step. Accordingly, the phase variable 0(q)
increases monotonically within each walking step during straight-
line or curved-path walking, which ensures unique mapping from
0(q) to the encoded desired trajectories. In contrast, in our previous
work [18,23], the phase variable is chosen as the walking distance
projected along a horizontal straight line, which may not ensure such
unique mapping during curved-path walking.

Since the phase variable 0(q) is essentially the length of a 2D
curve that represents the horizontal projection of the 3D walking
path on the ground, we can use the actual horizontal velocities (X,
and y;) of the robot’s base to express 0(q) as

0(a()) = j 20) + 520)dr @

where o € R represents the actual initial time instant of the given
walking step and ¢ is the current time.

The normalized phase variable, which represents the percentage
completion of a walking step, is given by

0
s(0):= 8)

Gmax

where the real scalar parameter 0y, represents the maximum value
of the phase variable (i.e., the planned total distance to be traveled

Journal of Dynamic Systems, Measurement, and Control

within a walking step). At the beginning of each step, the normalized
phase variable equals 0, while at the end of the step, it equals 1.

The phase variable defined in Eq. (7) is valid for directional
bipedal walking but not stepping in place. During stepping in place,
the phase variable as defined in Eq. (7) may not monotonically
increase as a walking phase progresses. Since the monotonic
increase of the phase variable is implicitly required by the proposed
approach, as well as the HZD approach [6], the phase variable design
in Eq. (7) is not suitable for stepping in place. Toward tracking a
stepping-in-place reference, a valid choice of the phase variable is
0(r) = 4L [19], where At represents how long a walking step has
progressed until the given time ¢ and A is the desired duration of the
entire step.

3.2 Output Function Design. An output function is a function
that represents the difference between a control variable and its
desired trajectory, which is essentially the trajectory tracking error.
The proposed controller aims to drive the output function to zero for
the overall hybrid walking process.

Due to the distinct robot dynamics among different domains, we
design different output functions for different domains.

3.2.1 Full Actuation Domain. We use hf(q): @ — R" to
denote the vector of n control variables that are directly commanded
within the FA domain. Without loss of generality, we use the OP3
robot shown in Fig. 1 as an example to explain a common choice of
control variables within the FA domain.

The OP3 robot has twenty directly actuated joints (i.e.,
n = n, = 20) including eight upper body joints. Using n,, to denote
the number of upper body joints, we have n,, = 8.

We choose the twenty control variables as follows:

(1) The robot’s global position and orientation represented by
the 6D absolute base pose (i.e., position p, and orientation
yp) W.r.t. the world frame;

(i) The position and orientation of the swing foot w.r.t the
vehicle frame, respectively denoted as p,,, (q) : @ — R* and
Yow(@): @ — R% and

(iii) The angles of the ny, upper body joints, q,, € R,

We choose to directly control the global position of the robot to
ensure that the robot’s base follows the desired global-position
trajectory. The base orientation is also directly commanded to
guarantee a steady trunk (e.g., for mounting cameras) and the desired
heading direction. The swing foot pose is regulated to ensure an
appropriate foot posture at the landing event, and the upper body
joints are controlled to avoid any unexpected arm motions that may
affect the overall walking performance.

The stack of control variables hf (q) is expressed as

Xp
Vb
¥y

h(q)= | ¢ ©9)

We use hfj(¢,5): R" x [0,1] — R”" to denote the desired trajecto-
ries for the control variables h/ (q) within the FA domain. These
trajectories are encoded by the global time ¢ and the normalized
state-based phase variable s(0) as follows: (i) the desired trajectories
of the base position variables x;, and y;, and the base yaw angle 1/, are
encoded by the global time ¢, while (ii) those of the other (n — 3)
control variables (i.e., the base height z;, base roll angle ¢,, base
pitch angle 6, swing-foot pose py,, and 7, and upper joint angles
q,,) are encoded by the normalized phase variable s(6).
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The desired trajectory hg (t,5) is expressed as
h(t,s) = (10)

where x,(7), y4(t), and ¥ (1) are defined as in Sec. 3.1.1, and the
function ¢’ (s) : [0, 1] — R"~? represents the desired trajectories of
the control variables zj, ¢y, Op, ¥, Py Vows and Q-

We use Bézier polynomials to parameterize the desired function
#" (5) because (i) they do not demonstrate overly large oscillations
with relatively small parameter variations and (ii) their expressions
at the initial and final instants within a continuous phase are compact
[6].

The desired function ¢’ (s) is given by

Froy.— S F m! k(1 )Mfk 11
¢(S)~*;“kms —s (11

where of € R (ke {0,1,...,M}) is a vector of coefficients of
the Bézier polynomials that are to be optimized (Sec. 6), and M is the
order of the Bézier polynomials.

The output function during an FA phase is defined as

h'(1,q):=hl(q) — h)(1s) (12)

3.2.2  Underactuation Domain. Asexplainedin Sec. 2.2, arobot
has (n + 1) DOF within the UA domain but only n actuators. Thus,
only 7 (i.e., n) variables can be directly commanded within the UA
domain.

We opt to control individual joint angles within the UA domain to
mimic human-like walking. By “locking” the joint angles, the robot
can perform a controlled falling about the support toe, emulating
human walking.

Accordingly, the control variable hf,/ (q): Q@ — R"is

h!(q) = | 43 (13)

Leth{(s): [0,1] — IR" denote the desired joint position trajectories
within the UA domain. These desired trajectories hY(s) are
parameterized using Bézier polynomials ¢ (s): [0, 1] — R”; that
is, hg = ¢U(s). The function ¢U(s) can be expressed similar to
¢ (s).

The associated output function is then given by

hY(q):=h{(q) —hY(s) (14)

3.2.3  Over Actuation Domain. Let h?(q): Q — R"* denote
the control variables within the OA domain. Recall that the robot has
n actuators and (n—4) DOFs within the OA domain.

We choose the (n—4) control variables as:

(1) The robot’s 6D base pose w.r.t. the world frame;
(ii) The angles of the ny, upper body joints, q,; and
(iii) The pitch angles of the trailing and leading feet, denoted as
0:(q) and 0;(q), respectively.

Similar to the FA domain, we choose to directly command the
robot’s 6D base pose within the OA domain to ensure satisfactory
global-position tracking performance, as well as the upper-body
joint angles to avoid unexpected arm movements that could
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compromise the robot’s balance. Also, regulating the pitch angle
of the leading foot helps ensure a flat-foot posture upon switching
into the subsequent FA domain where the support foot remains flat
on the ground. Meanwhile, controlling the pitch angle of the trailing
foot can prevent overly early or late ground contact events.

The control variable hf.) (q) is given by

h(q)=| o (15)

The desired trajectory h9(,5): R x [0,1] — R"* within the
OA domain is expressed as

hd(t,s) : (16)

where ¢?(s): [0,1] — R"™* represents the desired trajectories of
Zps Pps Op, 0;, 0, and q,,, which, similar to #" (s) and ¢ (s), can be
chosen as Bézier curves.

The tracking error hO(I, q) is then expressed as

h(t,q):=h?(q) — hJ(t,s) (7

e

3.3 Input-Output Linearizing Control. The output functions
representing the trajectory tracking errors can be compactly
expressed as

v, =h(q) (18)

where the subscript i € {F, U, O} indicates the domain.

Due to the nonlinearity of the robot dynamics and the time-
varying nature of the desired trajectories, the dynamics of the output
functions are nonlinear and time-varying. To reduce the complexity
of controller design, we use input-output linearization to convert the
nonlinear time-varying error dynamics into a linear time-invariant
system.

Let u; (i € {F,U,O}) denote the joint torque vector within the
given domain. We exploit the input-output linearizing control law
[29]

-1
Oh' _ oh' Pht 9 (o
=[=—M'B — M4V, — - = q |

19)

to linearize the continuous-phase output function dynamics in Eq.
(4) into y; = v;, where v; is the control law of the linearized system.
Here, the matrix %%M’IE is invertible on Q because (i) M is
invertible on Q, (ii) %_l; is full row rank on Q by design, and (iii) Bhas
full column rank on Q. It should be noted that uw; has different
expressions in different domains, due to the different expressions of
the control variables and desired trajectories. For instance, as the
output function h¥ is time-independent, the vector 0;:‘; in Eq. (19)
equals zero.

We design v; as a proportional-derivative (PD) control law given
by
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Vi= =Ky — Kd,iy,' (20)

where K,; and K,; are positive-definite diagonal matrices
containing the PD control gains, respectively. It is important to
note that the dimension of the gains K,,; and K,; depends on that of
the output function in each domain; their dimension is #n X n in FA
and UA domains, and (n — 4) x (n — 4) in the OA domain.

We call the GPT control law in Eqgs. (19) and (20) the “IO-PD”
controller in the rest of this paper, and the block diagram of the
controller is shown in Fig. 4.

With the I0-PD control law, the closed-loop output function
dynamics within domain i becomes linear:

V. = —Kuy, — Ky,

Drawing upon the well-studied linear systems theory, we can ensure
the exponential convergence of y; to zero within each domain by
properly choosing the values of the PD gain matrices (K, ; and K;;)
[29].

4 Closed-Loop Stability Analysis for Three-Domain
Walking

This section explains the proposed stability analysis of the hybrid
closed-loop control system under the continuous I0-PD control law.

The continuous GPT control law introduced in Sec. 3 with
properly chosen PD gains achieves exponential stabilization of the
output function state within each continuous phase. Yet, the stability
of the overall hybrid system is not automatically ensured for two
main reasons. First, within the UA domain, the utilization of the
input-output linearization technique induces internal dynamics,
which the control law cannot directly regulate [19,30]. Second, the
impact dynamics in Eq. (5) is uncontrolled due to the infinitesimal
duration of the foot-ground impact. As both internal dynamics and
reset maps are highly nonlinear and time-varying, analyzing their
effects on the system stability is not straightforward.

To ensure stability and satisfactory tracking performance for the
overall hybrid closed-loop system, we analyze the closed-loop
stability via the construction of multiple Lyapunov functions [31].
The resulting sufficient stability conditions can be used to guide the
parameter tuning of the proposed I0-PD law for ensuring system
stability and satisfactory tracking.

4.1 Hybrid Closed-Loop Dynamics. This subsection introdu-
ces the hybrid closed-loop dynamics under the proposed 10-PD
control law in Egs. (19) and (20), which serves as the basis of the
proposed stability analysis.

4.1.1 State Variables Within Different Domains. The state
variables of the hybrid closed-loop system include the output
function state y, and y; (i € {F, O, £}). This choice of state variables
allows our stability analysis to exploit the linear dynamics of the
output function state within each domain, thus greatly reducing the
complexity of the stability analysis for the hybrid, time-varying,
nonlinear closed-loop system.

= v; - u;
hZ( 1,5) Ilpput putput =X
= 1nearization
Robot
T q|q
hi(q.q)

Fig. 4 Block diagram of the proposed GPT control law within
each domain. Here ic{F, U, O} indicates the domain type.
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Weusexy € R andxp € R 7% torespectively denote the state
within the FA and OA domains, which are exactly the output

function state
._ yp] ._ [yo}
Xpi= | and xp:= |-
L’F Yo

Within the UA domain, the output function state, denoted as
x: € R¥2 is expressed as

Yu
X = | "
: {yu]

Besides x¢, the complete state xy within the UA domain also
includes the uncontrolled state, denoted as x, € R2. Since the
stance-foot pitch angle 0y (q) is not directly controlled within the
UA domain, we define x,, as

Ost |
¥ g,

Thus, the complete state within the UA domain is

Xy = K; Q1)

4.1.2 Closed-Loop Error Dynamics. The hybrid closed-loop
error dynamics within the FA and OA domains share a similar form,
which are given by

{ Xr = Apxp if (1,%7) & Sku
X, = Ar_y(tX5) if (4,X5) € Sp_y
g (t.XF) | ( : ) @)
X0 = Apxp if (t, XO) g So—r
X;E = A()*}F(l‘, XZ)) if (t, X6) € So_r
with
0 1 0 I
Ap:= and Ap := 23
" { -K,r —Kir ] ¢ [ -K,0 —Kuo ] 3)

where I is an identity matrix with an appropriate dimension, and
Ar—y: RT x R — R¥ 2 and Ag_r: R™ x R¥”% — R? are
respectively the reset maps of the state vectors xr and Xo. The
expressions of Ay_.;y and Ap_.r are omitted for space consideration
and can be directly obtained by combining the expressions of the
reset map A, of the generalized coordinates in Eq. (5) and the output
functions yg, y,, and y,;.

The closed-loop error dynamics associated with the continuous
UA phase and the subsequent UA—OA impact map can be
expressed as

X = Aexe o
{ % = fy(nxyxg) LX) #Sumo

(24)
X5 =Au_o (txz.x,)) if (6,Xy) € Syu—o
where
0 I
As:i= 25
¢ [ -K,v —Kuu ] )

The expression of f, in Eq. (24) can be obtained using the
continuous-phase dynamics equation of the generalized coordinates
and the expression of the output function y,,. Similar to Ar_yy and

Ao—r, we can readily derive the expression of the reset map Ay_.o:
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RT x R* — R*8 based on the reset map in Eq. (5) and the
expression of y;; and y,,.

4.2 Multiple Lyapunov-Like Functions. The proposed sta-
bility analysis via the construction of multiple Lyapunov functions
begins with the design of the Lyapunov-like functions. We use
Vr(xF), Vu(Xv), and Vo (x0) to respectively denote the Lyapunov-
like functions within the FA, UA, and OA domains, and introduce
their mathematical expressions next.

4.2.1 Full Actuation and Over Actuation Domains. As the
closed-loop error dynamics within the continuous FA and OA
phases are linear and time-invariant, we can construct the
Lyapunov-like functions Vr(xr) and Vo(Xo) as [32]

VF(X]:) = X;PFXF and VO (Xo) = XSP()XO
with P; (i € {F,0}) the solution to the Lyapunov equation

PA; + AP, = —Q,
where Q; is any symmetric positive-definite matrix with a proper
dimension.

4.2.2 Underactuation Domain. As the input-output lineariza-
tion technique is utilized within the UA domain, internal dynamics
exist that cannot be directly controlled [33]. We design the
Lyapunov-like function V; for the UA domain as

Vy = Ve(xz) + BlIx| (26)

where V¢ (x¢) is a positive-definite function and f is a positive
constant to be designed.

As the dynamics of the output function state x¢ are linear and time-
invariant, the construction of V¢ (x¢) is similar to that of V- and Vo

V;“(Xg) = nggxgv
where P¢ is the solution to the Lyapunov equation

P:A: +AlP: = —Q;

with Q. any symmetric positive-definite matrix with an appropriate
dimension.

4.3 Definition of Switching Instants. In the following stability
analysis, the three domains of the kth (k € {1,2,...}) walking step
are, without loss of generality, ordered as

FA — UA — OA

For the kth walking step, we respectively denote the actual values of
the initial time instant of the FA phase, the FA — UA switching
instant, the UA — OA switching instant, and the final time instant of
the OA phase as

T51-3, Tsk—2, T3r—1, and T

The corresponding desired switching instants are denoted as
T3k—3, T3k—2, T3k—1, and T3,
Using these notations, the kth actual complete gait cycle on ¢ €

(T3k—3, Tax) comprises

(i) Continuous FA phase on t € (T3_3, T51-2);
(i) FA — UA switching at t = T5;,_»;
(iii) Continuous UA phase on 7 € (T3x_2, T31);
(iv) UA — OA switching atr = T3, _;
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(v) Continuous OA phase on ¢ € (T3, T3:); and
(vi) OA — FA switching at t = T5,.

For brevity, the values of any (scalar or vector) variable x at
t=Ty jandt= T;Lj, ie.,

*(Tj) and#(T5)
are respectively denoted as
*|;k—j and*|3+k—j
forany k € {1,2,...} andj € {0,1,2,3}.

4.4 Continuous-Phase Convergence and Boundedness of
Lyapunov-Like Functions. As the output function state X;
(i € {F,0,¢&}) is directly controlled, we can readily analyze the
convergence of the output functions (and their associated
Lyapunov-like functions, Vg, Vo, and V¢) within each domain
based on the well-studied linear systems theory [29].

ProrosiTion 1. (Continuous-phase output function conver-
gence within each domain) Consider the IO-PD control law in Egs.
(19) and (20), Assumptions (Al )-(A7), and the following condition:

(Bl) For any i € {F,0,¢}, the PD gains K,; and Ky; are

selected such that A; is Hurwitz.

Then, for any i€ {F,0,¢} and any x; € B,(0):= {x;:
[|Xi|| < ri}, there exist positive constants r;, cy;, ¢2i, and c3; such
that the Lyapunov-like function V; satisfies the following inequalities

Cli||X[H2 <Vi(xi) < Cz[HXiHZ and V; < —c3,V; (27)

within their respective domains.
Moreover, Eq. (27) yields

VF‘;k—Z < 6*531-‘(7"3A—2*T3k73)VF|;’,(73 (28)
V0|;k < 6_1730(T3k_T3k—l)V0‘;’k71 (29)

and
ch‘;kf] < e—t'3§(T3k—1—T,u—z)vcr';rkiz (30)

which describe the exponential continuous-phase convergence of
Vi, Vo, and V¢ in their respective domains.

The proof of Proposition 1 is omitted as Proposition 1 is a direct
adaptation of the Lyapunov stability theorems from [29]. Note that
the explicit relationship between the PD gains and the continuous-
phase convergence rates c3r, ¢30, and ¢3¢ can be readily obtained
based on Remark 6 of our previous work [23].

Due to the existence of the uncontrolled internal state, the
Lyapunov-like function V; does not necessarily converge within the
UA domain despite the exponential continuous-phase convergence
of V¢ guaranteed by the proposed I0-PD control law that satisfies
condition (B1). Still, we can prove that within the UA domain of any
k"™ walking step, the value of the Lyapunov-like function Vy; just
before switching out of the domain, i.e., V| 311 1s bounded above
by a positive-definite function of the “switching-in” value of Vy, i.e.,
Vu|i;_s» as summarized in Proposition 2.

ProrposiTioN 2. (Boundedness of Lyapunov-like function within
UA domain) Consider the 10-PD control law in Egs. (19) and (20)
and all conditions in Proposition 1. There exists a positive real
number ryy and a positive-definite function w,(-) such that

Vulsier < WH(VU|3+I<—2)
holds for any k € {1,2,...} and xy € B,,,(0).
Rationale of proof: The proof of Proposition 2 is given in

Appendix A.1. The boundedness of the Lyapunov-like function
Vu(xy) at t = T3, is proved based on the definition of Vy (xy)
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given in Eq. (26) and the boundedness of ||XU‘37/¢71 IE Recall x; :=

< My
the bounds on ||X¢|3,_;|| and ||Xy[3._, ||, which are respectively
obtained based on the bounds of the continuous-phase dynamics of
x¢ and x, and the integration of those bounds within the given
continuous UA phase. |

T
[XT XT] . We establish the needed bound on ||XU|3_,<71 || through

4.5 Boundedness of Lyapunov-Like Functions Across
Jumps. PROPOSITION 3. (Boundedness across jumps) Consider
the 10-PD control law in Egs. (19) and (20), all conditions in
Proposition 1, and the following conditions:

(B2) The desired trajectories hi! (i€ {F,U,0}) are planned to

respect the impact dynamics with a small, constant offset v ,; that

is

[[Ar—u(T3k—2,0)]| < 74 3D
[|Av—o(t3t-1,0)|| < 74, and (32)

[[Ao—r(ar, 0)[| < 74 (33)

(B3) The PD gains are chosen to ensure a sufficiently high
convergence rate (i.e., c3r, €30, and c3¢ in Eqs. (28)—(30)) of Vr,
VQ, and Vg.

Then, there exists a positive real number r such that for any
ke{1,2,...}, x,€B,(0) and ic{F,U,0}, the following
inequalities

e S Ve SVl 3 < S VR S VRS

e SVuli SVl < - S Vol S Vulf

34
and )

e Vo3 < Voli

IN

. <Vols < Voly

hold; that is, the values of each Lyapunov-like function at their
associated “switching-in” instants form a nonincreasing sequence.

Rationale of proof: The proof of Proposition 3 is given in
Appendix A.2. The proof shows the derivation details for the first
inequality in Eq. (34) (i.e., VFBLk < VF|;/(73 forany k € {1,2,...}),
which can be readily extended to prove the other two inequalities.

The proposed proof begins with the analysis of the time evolution
of the three Lyapunov-like functions within a complete gait cycle
from ¢ = T3, 5 tot = T5,, which comprises three continuous phases
and three switching events as listed in Sec. 4.3. Specifically, the
bounds on the Lyapunov-like functions V, V, and Vy; at the end of
their respective continuous phases are given in Propositions 1 and 2,
and their bounds at the beginning of those continuous phases are
established through the analysis of the reset maps Ay_y, Ay—o,and
Ao_.r. Finally, we combine these bounds to prove Vp|3+k < VF‘;}{_3
under the given conditions.

The offset y, is introduced in condition (B2) for two primary
reasons. First, since the system’s actual state trajectories inherently
possess the impact dynamics, the desired trajectories need to respect
the impact dynamics sufficiently closely (i.e., 7, is small enough)
[34,35]. If the desired trajectories do not agree with the impact
dynamics sufficiently closely, the tracking errors at the beginning of
a continuous phase could be overly large even when the errors at the
end of the previous continuous phase are small. Such error
expansion could induce aggressive control efforts at the beginning
of a continuous phase, which could reduce energy efficiency and
even cause torque saturation. Second, while itis necessary to enforce
the desired trajectories to respect the impact dynamics (e.g., through
motion planning), requiring the exact agreement with the highly
nonlinear impact dynamics (i.e., y, = 0) could significantly
increase the computationally burden of planning, which could be
mitigated by allowing a small value of the offset 7.
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4.6 Main Stability Theorem. We derive the stability con-
ditions for the hybrid error system in Egs. (22) and (24) based on
Proposition 3 and the general stability theory via the construction of
multiple Lyapunov functions [31].

THeEOREM 1. (Closed-loop stability conditions) Consider the 10-
PD control law in Egs. (19) and (20). If all conditions in Proposition
3 are met, the origin of the hybrid closed-loop error system in Egs.
(22) and (24) is locally stable in the sense of Lyapunov.

Rationale of proof: The full proof of Theorem 1 is given in
Appendix A.3. The key idea of the proof is to show that the closed-
loop control system satisfies the general multiple-Lyapunov
stability conditions given in [31] if all conditions in Proposition 3
are met. |

5 Extension From Three-Domain Walking With Full
Motor Activation to Two-Domain Walking With Inactive
Ankle Motors

This section explains the design of a GPT control law for a two-
domain walking gait to further illustrate the proposed control
approach. The controller is a direct extension of the proposed
controller for three-domain walking (with full motor activation). For
brevity, this section focuses on describing the distinct aspects of the
two-domain design compared to the three-domain case explained
earlier.

We consider the case of two-domain walking where under-
actuation is caused by intentional ankle motor deactivation instead
of loss of full contact with the ground as in the case of three-domain
walking. Bipedal gait is sometimes intentionally designed as
underactuated through motor deactivation at the support ankle
[36]. Specifically, by switching off the support ankle motors, the
controller can treat the support foot as part of the ground and only
handle a point foot-ground contact instead of a finite support
polygon, thus simplifying the controller design.

Figure 5 illustrates a complete cycle of a two-domain walking
gait, which comprises an FA and a UA domain, with the UA phase
induced by intentional motor deactivation. The FA and UA phases
share the same foot-ground contact conditions; that is, the toe and
heel of the support foot are in a static contact with the ground. Yet,
within the UA domain, the ankle-roll and ankle-pitch joints of the
support foot are disabled, leading to DOF =n, +2 > n, (ie.,
underactuation).

To differentiate from the case of three-domain walking, we add a
“7” superscript to the left of mathematical symbols when
introducing the two-domain case.

5.1 Hybrid Robot Dynamics. The continuous-time robot
dynamics within the FA domain of two-domain walking have exactly
the same expression as those of the three-domain dynamics in Eq. (2).

Ankle motor deactivation

FA Active UA

Disabled
ankle ankle
motors motors

“
TP ORI

T Swing foot touchdown

Fig. 5 lllustration of a two-domain gait cycle. The green circles
show the portions of the feet that touch the ground. The legs in
red and blue are the support and the swing legs, respectively. The
dashed arrow shows the motion direction of the swing leg.
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The robot dynamics within the UA domain are also the same as Eq. (2)
except for the input matrix B (due to the ankle motor deactivation).

The complete gait cycle contains one foot-landing impact event,
which occurs as the robot’s state leaves the UA domain and enters
the FA domain. The form of the associated impact map is similar to
the impact map in Eq. (5) of the three-domain case. For brevity, we
omit the expression and derivation details of the impact map.

There are two switching events, F—U and UHF within a
complete galt cycle. The associated switching surfaces, 'Sp_y and

'Sy_p, are given by

Spﬂyf{(]GQ 9 >l}and
TSU_J: = { q,q €TQ: st( ) = O,st(q,CI) < 0}

where 0(q) is defined as in Eq. (7) and the scalar positive variable /s
represents the desired traveling distance of the robot’s base within
the FA phase.

5.2 Local Time-based Phase Variable. To allow the conven-
ient adjustment of the 1ntended period of motor deactivation, we
introduce a new phase variable 0( ) for the UA phase representing
the elapsed time within this phase: 9( ) = t — Ty, where Ty is the
initial time instant of the kth UA phase. .

The normalized phase variable is defined as 's('0) .= %, where
0, 1is the expected UA duration. J,, can be treated as a gait
parameter that a motion planner adjusts to ensure a reasonable
duration of motor deactivation.

5.3 Output Functions. The output function design within the
FA domain is the same as the three-domain case.

The control variables within FA, denoted as *hf (q), are chosen
the same as the three-domain walking case in Eq. (9). Then, we have
*hf (q) = hf (q). Accordingly, the desired trajectories 'hf ,(1,8) can
be chosen the same as hf 4(1,5), leading to the output function
expressed as: h' (1,5)=' hf(q)—'khg(t, s).

With two ankle (roll and pitch) motors disabled during the UA
phase, the number of variables that can be directly controlled is
reduced by two compared to the FA domain. Without loss of
generality, we choose the control variables within the UA domain to
be the same as the FA domain except that the base roll angle ¢, and
base pitch angle 0, are no longer controlled.

The control variables 'hY within the UA domain are

Xb
Vb
¥y
Zp
Pow (4)
Ysw ()

'nY(q) = (35)

The desired trajectories %hg are given by

xq(t)
"W (z's) = alt 36
hY(s,'s) : o (36)

"oU(Ts)

~—

< =

where "¢Y('s) 1 [0,1] — R~
of zp, Pgy» and 7y, .
Then, we obtain the output function hU(t q)as

represents the desired trajectories

h(r,q):= h’(q)— 'hY(1's) (37)

With the output function "hiGe {F,A, U}) designed, we can use
the same form of the IO-PD control law in Egs. (19) and (20) and the
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stability conditions in Theorem 1 to design the needed GPT
controller for two-domain walking.

6 Simulation

This section reports the simulation results to demonstrate the
satisfactory global-position tracking performance of the proposed
control approach.

6.1 Comparative Controller: Input-Output Linearizing
Control With Quadratic Programming. This subsection intro-
duces the formulation of the proposed IO-PD controller as a
quadratic program (QP) that handles the limited joint-torque
capacities of real-world robots, incorporates the realistic friction
cone constraint to prevent potential foot slippage, and simulta-
neously ensures a relatively accurate global-position tracking
performance. We refer to the resulting controller as the “IO-QP”
controller. Besides enforcing the feasibility constraints and providing
tracking performance guarantees, another benefit of the QP formulation
lies in its computational efficiency for real-time implementation.

6.1.1 Constraints. To incorporate the friction cone constraint,
we explicitly include the ground reaction force F,. as an optimization
variable. Thus, we employ the continuous-phase dynamics model in
Eq. (2) together with the holonomic constraint in Eq. (3) to represent
the system dynamics in the optimization problem, rather than
directly utilizing the effective dynamics model in Eq. (4) that does
not contain F... This ensures that the presence of . is retained within
the formulation. We also consider the IO-PD controller in Egs. (19)
and (20) as an equality constraint.

We use Uy and iy, (i € {F,U,0}) to denote the upper and
lower limits of the torque command w; given in Eq. (19),
respectively. Then, the linear inequality constraint that the control
signal u; should respect can be expressed as Umin; < U; < Umay -

To ensure the control command u; respects the actuator limits, we
incorporate a slack variable dpp € R™ in the equality constraint
representing the IO-PD controller

u; = Ni(q,q) + dpp (38)

where Ni = (M- B) M - 2MTF. v - S
—% (% q) qJ. To avoid overly large deviation from the original

control law in Eq. (19), we include the slack variable in the cost
function to minimize its norm as explained later.

To enforce the holonomic constraint, the following equality needs
to hold:

Na(q.q) =0 39)
where N, = —JM ‘¢ + JM 'Bu; + IM'J'F, + Jq.
Lastly, the friction cone constraint is expressed as

F. e FC (40)

where FC represents the linearized friction cone.

6.1.2 Cost Function. The proposed cost function is the sum of

two components. One term 1is uiTui and indicates the magnitude of

Table 1 Mass distribution of the OP3 robot

Body component Mass (kg) Length (cm)
Trunk 1.34 63
Left/right thigh 0.31 11
Left/right shank 0.22 11
Left/right foot 0.07 12
Left/right upper arm 0.19 12
Left/right lower arm 0.04 12
Head 0.15 N/A
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Table 2 Desired global-position trajectories

Traj. index xq(t) (cm) va(t) (cm) Time interval (s)
(GP1) 8t 0 [0, -+00)
(GP2) 19.1¢ 5.9 [0, +-00)
(GP3) 251 0 [0,3.13)
—3. —3.13 3.13,4.25
3000 sin =3 13) +78.2 3000 cos <t 3.1 ) — 3000 [ )
24(r — 4.25) 1 120 —7(r—425)-03 [4.25, +00)

the control command u,. Minimizing this term helps guarantee the
satisfaction of the torque limit and the energy efficiency of walking.

The other term indicates the weighted norm of the slack variable
dgp, i.e., p(‘igPéQp, with the real positive scalar constant p the slack
penalty weight. By including the slack penalty term in the cost
function, the deviation of the control signal from the original I0-PD
form, which is caused by the relaxation, can be minimized.

It is crucial to point out that the slack variable is not a manually
chosen parameter; rather, it is an inherent outcome of the solution
generated through the proposed QP. Although we do not directly
control the slack variable itself, we do have the flexibility to
designate the slack penalty weight p, which dictates how
aggressively we seek to minimize the slack variable.

6.1.3 Quadratic Program Formulation. Summarizing the con-
straints and cost function introduced earlier, we arrive at a QP given
by

. T T
min u; u; + p o,p0op
u;.50p Fe i P or?0

s.t. u;, =N; + 5QP
F. € FC (41)
N, =0

u; Z Umin,i, Wi S Umax,i

We present validation results for both I10-PD and IO-QP in the
following to demonstrate their effectiveness and performance
comparison.

6.2 Simulation Setup

6.2.1 Robot Model. The robot used to validate the proposed
control approach is an OP3 bipedal humanoid robot developed by
ROBOTIS, Inc. (see Fig. 1). The OP3 robot is 50 cm tall and weighs
approximately 3.2 kg. It is equipped with 20 actuated revolute joints,
as shown in Fig. 1. The mass distribution and geometric
specifications of the robot are listed in Table 1. To validate the
proposed controller, we use the MATLAB ODE solver ODE45 to
simulate the dynamics models of the OP3 robot for both three-
domain walking (Sec. 2) and two-domain walking (Sec. 5). The
default tolerance settings of the ODE45 solver are used.

6.2.2  Desired Global-Position Trajectories and Walking Pat-
terns. As mentioned earlier, this study assumes that the desired
global-position trajectories are provided by a higher-layer planner.
To assess the effectiveness of the proposed controller, three different
desired global-position (GP) trajectories are tested, including single-
direction and varying-direction trajectories. These trajectories are
specified in Table 2.

The GPs include two straight-line global-position trajectories
with distinct heading directions, labeled as (GP1) and (GP2). We set
the velocities of (GP1) and (GP2) to be different to evaluate the
performance of the controller under different walking speed. To
assess the effectiveness of the proposed control law in tracking the
desired global-position trajectories along a path with different
walking directions, we also consider a walking trajectory (GP3)
consisting of two straight-line segments connected via an arc. For
the desired horizontal global-position trajectories (GP1) and (GP2)
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that are straight lines, the desired heading angles are constant and are
respectively set as 0 deg and 17.2 deg. For the desired curved-path
trajectory (GP3), the desired heading angle changes from 0 deg to
16.3 deg.

The desired functions ¢, ¢!, and ¢ are designed as Bézier
curves (Sec. 3.2). To respect the impact dynamics as prescribed by
condition (B2), their parameters could be designed using the methods
introduced in [6]. In our future work, we will optimize the Bézier
polynomial coefficients rather than relying on manual tuning to obtain
the desired walking patterns. The desired walking patterns corre-
sponding to the desired functions ¢”, ¢Y, and ¢° used in this study
are illustrated in Fig. 6. In three-domain walking (lower plot in Fig. 6),
the FA, UA, and OA phases take up approximately 33%, 8%, and
59% of one walking step, respectively, while the FA and UA phases of
the two-domain walking gait (top plotin Fig. 6) last 81% and 19% of a
step, respectively. For both walking patterns, the step length and
maximum swing foot height are 7.1 cm and 2.4 cm , respectively.

6.2.3 Simulation Cases. To validate the proposed controller
under different desired global-position trajectories, walking pat-
terns, and initial errors, we simulate the following three cases:

(Case A): Combination of desired trajectory (GP1) and two-
domain walking pattern (Fig. 6(a)).
(Case B): Combination of desired trajectory (GP2) and two-
domain walking pattern (Fig. 6(a)).
(Case C): Combination of desired trajectory (GP3) and three-
domain walking pattern (Fig. 6(b)).

Table 3 summarizes the initial tracking error norms for all cases.
Note that the initial swing-foot position tracking error is roughly
30-40% of the nominal step length.

6.2.4 Controller Setting. For the IO-PD and 10-QP controllers,
the PD controller gains are set as K,,; = 225 -Tand K,;; = 50 - I to
ensure the matrix A; (i € {F,U,0}) is Hurwitz. For the 10-QP
controller, the slack penalty weight p (Eq. (41)) is set as p = 107.
This value ensures that the controller is still stabilizing while having
enough freedom to satisty the feasibility constraints. On a computer
with an i7 CPU and 32GB RAM running MATLAB, it takes
approximately 1 ms to solve the QP problem in Eq. (41).

To verify the stability of the multi-domain walking system, we
construct the three Lyapunov-like functions Vg, Vi, and Vo as
introduced in Sec. 4. In all domains, the matrix P; (i € {F, &, 0}) is
obtained by solving the Lyapunov equation using the gain matrices
K,; and K;; and the matrix Q;. Without loss of generality, we
choose Q; as an identity matrix. For the UA phase, the value of f§ in
the definition of Vy; in Eq. (26) is set as 0.001.

6.3 Simulation Results. This subsection presents the tracking
results of our proposed IO-PD and I0-QP controllers under Cases A-
C. The simulation video is available online.*

6.3.1 Global-Position Tracking Performance. Figures 7 and 8
show the tracking performance of the proposed 10-PD and 10-QP
controllers under Cases A and B, respectively. As explained earlier,
Cases A and B share the same desired walking pattern of two-
domain walking, but they have different desired global-position
trajectories and initial errors. For both cases, the IO-PD and I0-QP

“https://youtu.be/IfvYfRINXHI
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( e swing leg support leg ) Table 3 Initial tracking error norms for three cases
03 Tracking error norm Case A Case B Case C
. . . Swing foot position (% of step length 27.5 27.5 40
0.25f w Base %)rientftion (deg(g) plensth) 0 17 12
Base position (% of step length) 15 15 8
0.2 F cotzzzees
base
:é; 015 F height: conFrpllers satisfactorily Qrive thp robpt’s actual horizontal glob:al
o 20 cm position (x,, yp) to the desired trajectories (x4 (¢), y4(t)), as shown in
the top four plots in each figure. Also, from the footstep locations
0.1F displayed at the bottom of each figure, the robot is able to walk along
swing foot the desired walking path over the ground. In particular, the footstep
|| height: trajectories in Fig. 8 demonstrate that even with a notable initial
0.05 2.4 cm error (approx. 17 deg) of the robot’s heading direction, the robot is
0 i able to quickly converge to the desired walking path.

0.3

025k walking direction

02}k base
height:
= 22 cm \

E 015 \
5 \ y‘;}
Olf : |

support foot
0.05 }: rotation: |
N - .
1.3 1.4 1.5 1.6 1.7
X,, (m)
(b)

Fig. 6 Desired walking patterns for (a) two-domain walking
(Cases A and B) and (b) three-domain walking (Case C) in the
sagittal plane. The labels Xy and Yy, represent the x- and y-axes
of the world frame, respectively.

Figure 9 displays the global-position tracking results of three-
domain walking for Case C (see Fig. 10 for visual illustration). The
top two plots, i.e., the time profiles of the forward and lateral base
position (x;, and yj), show that the actual horizontal global position
diverges from the reference within the UA phase during which the
global position is not directly controlled. Despite the error
divergence within the UA phase, the actual global-position error
still converges to close to zero over the entire walking process thanks
to convergence within the FA and OA domains, confirming the
validity of Theorem 1.

The video clearly illustrates that the robot’s heading direction is
closely aligned with that of the desired walking path (as specified in
Sec. 6.2.2) throughout the walking process. In Cases A and B, the
robot’s heading direction angles are respectively close to the desired
angles of 0 deg and 17.2 deg throughout the test cases. In Case C, as
the desired heading angle changes from 0 deg to 16.3 deg, the actual
heading angle also increases from around 0deg to approximately
16.0 deg.

6.3.2 Convergence of Lyapunov-Like Functions. The
Lyapunov-like functions under the IO-PD and IO-QP control laws
for Case C are illustrated in Fig. 11. Both control laws ensure the
continuous-phase convergence of Vy and V), satisfies condition
(B1). Although Vy diverges during the UA phase, it remains
bounded and satisfies condition (B3). Moreover, the desired
trajectories parameterized as Bézier curves are planned to satisfy
(B2). Thus, the Lyapunov-like functions behave as predicted by

FA domain UA domain | desired position = = = = = actual position |
—~ = 25 | 2‘5---'
S P o e
Q i -
3 02 % 02
S
0 1 . L L L L f . . . . .
5 1 1
g 1 1
z B0 02 L~ 0.2
-
225 \ . . 1 . . . . . . . . A \
0 1 2 3 4 5 7 8 0 1 2 3 4 5 6 7 8
time (s) time (s)
10 Desired walking path
S s s O s o [
\CT)/ 0_--_-----_------ _--'---_--_--_--
3
e
[ 11 | | | | |- | .. v | | [ | | | |
“eeve Actual footsteps [«-==*1"
_10 1 1 1 1 1 1 1 1
0 20 40 60 0 20 40 60
Xw (cm) Xw (cm)
(@) (b)

Fig. 7 Satisfactory global-position tracking performance under Case A. The top row shows the global-position
tracking results, and the bottom row displays the straight-line desired walking path and the actual footstep

locations. The initial errors are listed in Table 3. (a) 10-PD
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and (b) 10-QP.
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Fig. 8 Satisfactory global-position tracking performance under Case B. The top row shows the global-position
tracking results, and the bottom row displays the desired straight-line walking path and the actual footstep

locations. The initial errors are listed in Table 3. (a) 10-PD and (b) I0-QP.
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conditions (C1)—(C3) in the proof of Theorem 1, indicating closed-
loop stability.

6.3.3 Satisfaction of Torque Limits. Figure 12 illustrates the
joint torque profiles of each leg motor under the I0-PD and I0-QP
control methods for Case B. The torque limits umax; and umin;
(i € {F,U,0}) are set as 4.1N and —4.1N, respectively. It is
observed that the torque experiences sudden spikes due to the foot-
landing impact at the switching from the UA to the FA phases. Due
to the notable initial tracking errors, there are also multiple spikes in
the joint torques at the beginning period of the entire walking
process. These spikes tend to be more significant with the IO-PD
controller than with the IO-QP controller. In fact, all of the torque
peaks under I0-QP are within the torque limits whereas some of
those peaks under I0-PD exceed the limits. This is because the I0-
QP controller explicitly enforces the torque limits but IO-PD does

Journal of Dynamic Systems, Measurement, and Control

Fig. 9 Satisfactory global-position tracking performance under Case C. The top row shows the global-position
tracking results, and the bottom row displays the desired walking path and the actual footstep locations. The
desired walking path consists of two straight lines connected by an arc. The initial errors are listed in the Table 3. (a)
10-PD and (b) 10-QP.

(a) two-domain walking and (b) three-domain walking

Fig.10 Time-lapse figures of OP3 walking in maTLAB simulations:
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Fig. 11 Time evolutions of multiple Lyapunov-like functions
under Case C. The closed-loop stability is confirmed by the
behaviors of the multiple Lyapunov functions, which complies
with conditions (C1)—(C3) stated in the proof of Theorem 1 for
both (a) 10-PD and (b) 10-QP control laws.

not. This comparison highlights the advantage of using I0-QP over
IO-PD in ensuring satisfaction of actuation constraints.

6.3.4 Additional Webots Simulation Results. To gain prelimi-
nary insights into the potential hardware implementation of the
proposed control approach, 3D realistic simulations in Webots are
performed, with the results shown in Fig. 13. The figure illustrates
the global-position tracking performance and the associated ankle
joint torque profiles for two-domain walking in Webots. The desired
global-position trajectory in the forward direction is x4(f) =
4.4t — 3 (cm). As the plot reveals, despite a nonzero initial tracking
error, the global-position tracking error is within an acceptable small

bound. The robot initiates its motion with its right leg, and it is
noteworthy to observe the zero support-ankle torque during the
underactuated phase caused by ankle motor de-activation. Also, the
percentage of the underactuation phase for the two-domain walking
is approximately 16%. This is considerably longer than the three-
domain walking results (8%), and comparable to human-like
walking [1] during which the underactuation phase constitutes
around 18% of a gait cycle.

7 Discussion

This study has introduced a nonlinear GPT control approach for
3D multi-domain bipedal robotic walking based on hybrid full-order
dynamics modeling and multiple Lyapunov stability analysis.
Similar to the HZD-based approaches [4,8,37] for multi-domain
walking, our controller only acts within continuous phases, leaving
the discrete impact dynamics uncontrolled. Another key similarity
lies in that we build the controller based on the hybrid, nonlinear,
full-order dynamics model of multi-domain walking that faithfully
captures the true robot dynamics and we exploit the input-output
linearization technique to exactly linearize the complex continuous-
phase robot dynamics.

Despite these similarities, our control law focuses on accurately
tracking the desired global-position trajectories with precise timing,
whereas the HZD-based approach may not be directly extended to
achieve such global-position tracking performance. This is
essentially due to the different stability types that the two approaches
impose. The stability conditions proposed in this study enforce the
stability of the desired global-position trajectory, which is a time
function encoded by the global time. In contrast, the stability
conditions underlying the HZD framework ensure the stability of the
desired periodic orbit, which is a curve in the state space on which
infinitely many global-position trajectories reside. Similar to the

= L hip yaw
= Lhiproll
L hip pitch

— Lknee
—— L ankle pitch

L ankle roll

— R hip yaw
= R hip roll
R hip pitch

.................................................................................

N\I pm! r?' r\_:' — R ankle pitch

— R knee

R ankle roll

[
w
&~

time (s)

(b)

Fig.12 Torque profiles of each leg motor under the proposed (a) |0-PD and (b) I0-QP controllers for Case B. “L” and “R”
stand for left and right, respectively. The red circles highlight the occurrence of torque limit violations. The torque peaks
under the 10-PD controller are more significant than the I0-QP controller because the latter explicitly meets the torque
limits. The blue dotted lines represent the torque limits. It is evident that the torque profile of the |0-QP controller adheres
to the torque limits, whereas the torque profile of the |I0-PD controller may exceed the torque limits.
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HZD-based approaches, the global-position control approach
designed for underactuated walking [12] is also based on orbital
stabilization. Therefore, although the recent global-position control
approach [12] can ensure accurate tracking of the desired global
path, it may not guarantee the precise timing for tracking a time
trajectory along the global path. Still, one distinct advantage of [12]
and the HZD-based approaches is that they can provably stabilize
underactuated walking, which the proposed approach is not able to
achieve in its current form. Our future work will focus on the GPT
control of underactuated walking.

Our previous GPT controller design [17] for the multi-domain
walking of a 2D robot is only capable of tracking straight-line paths.
By explicitly modeling the robot dynamics associated with 3D
walking and considering the robot’s 3D movement in the design of
the desired trajectories, the proposed approach is capable of
ensuring satisfactory GPT performance for 3D walking.

One limitation of the proposed approach is that it may be
nonfeasible to meet the proposed stability conditions in practice if
the duration of the UA phase, d,, is overly large. From Eq. (A20) in
the proof of Proposition 3, we know that as J., increases, o, will also
increase, leading to a larger value of N. If N is overly large, Eq. (34)
will no longer hold, and the stability conditions will be invalid. To
resolve this potential issue, the nominal duration of the UA domain
cannot be set overly long. Indeed, the percentage of the UA phase
within a complete gait cycle is respectively 8% and 19% of the
simulated three-domain and two-domain walking. Thanks to the
explicit dependence of the Lyapunov-like function V; on the state
variable, we can obtain the upper bound of the UA phase duration
corresponding to the bound of the Lyapunov-like function V.
Specifically, we could use the inequalities in Eqs. (AS5) and (A6) to
determine the upper bound of the UA duration defined by the small
number ¢y. Since the bound of the Lyapunov-like function Vy also
depends on ¢, we can then translate this bound onto the UA duration
bound through ¢;. While the percentage of the UA phase within a
complete two-domain gait cycle is 19% and comparable to that of
human walking (i.e., 18% [1,37]), the UA phase percentage of the
three-domain walking, 8%, is notably lower. We hypothesize that
how much we can maximize the UA percentage of three-domain
walking largely depends on the configuration of OP3’s proprietary
foot design. OP3 has one-piece, highly stiff feet, which are typically
suitable for single-domain walking such as fully actuated walking,
instead of multi-domain walking that involves support-foot rolling.

FA domain
— Reference traj. x,4(f)

UA domain
— Actual traj. X

0.1 | | | |
—— L ankle roll —— L ankle pitch

D . . , .

— R ankle roll — R ankle pitch

time (s)

Fig. 13 Two-domain walking results in 3D realistic Webots
simulation under the proposed 10-QP controller. “L” and “R”
stand for left and right, respectively. The UA phase is approx-
imately 16% of a gait cycle. The global-position tracking error
remains small, and the ankle torque is well bounded.
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Thanks to its small surface contact at the toe and the heel, the foot
design of the AMBER2 robot [1] mentioned earlier is more suitable
for multi-domain walking than OP3. Inspired by the success of Zhao
et al. [1], our future experiments will incorporate such a foot design
modification of commercial robot platforms (e.g., the OP3 robot
used in this study). Our future work will also redesign the output
functions to indirectly regulate the divergence rate during the UA
phase. For input-output linearizing control [6,29], the internal
dynamics or zero dynamics during a UA phase cannot be directly
controlled. Yet, the definition of the output function will impact the
expression of the zero dynamics and thus affect its stability and
convergence/divergence rate. Thus, similar to Westervelt et al. and
Gu et al. [6,19], we can parameterize the output functions as Beziér
polynomials and optimize the Beziér coefficients to reduce the
divergence rate or even achieve convergence for the underactuation
phase. Note that this optimization method is theoretically valid for
general multi-domain walking involving underactuation, including
both two-domain and three-domain walking.

Another limitation of our control laws lies in that the robot
dynamics model needs to be sufficiently accurate for the controller
to be effective, due to the utilization of the input-output linearization
technique. Yet, model parametric errors, external disturbances, and
hardware imperfections (e.g., sensor noise) are prevalent in real-
world robot operations [38]. To address this issue for our future
hardware experiments, a common solution is to employ a joint-level
PD controller [6]. Although the actual PD controller implemented
on hardware is not exactly the theoretically derived input-output
linearizing controller, the actual controller can still be effective for
two main reasons. First, the desired joint-level trajectories that the
PD controller tracks are typically obtained by using the robot’s full-
order inverse kinematics model to translate the desired task-space
trajectories into the configuration space [20]. This translation
preserves the agreement of the desired trajectories with the system
dynamics and feasibility conditions. Second, the joint-level PD
controller is by nature a feedback controller and thus has its inherent
robustness against a certain range of uncertainties. From previous
studies [6] and our work [20,23], it has been proven that the inherent
robustness of the joint-level PD control with appropriate controller
parameters can mitigate a reasonable level of real-world uncertain-
ties for ensuring stable fully actuated and underactuated walking on
physical bipedal robot platforms. To further enhance the robustness
of the proposed controller for real-world applications, we can
incorporate robust control [22,39—41] into the GPT control law to
address uncertainties. Furthermore, we can exploit online footstep
planning [12,36,42—45] to adjust the robot’s desired behaviors in
real-time to better reject modeling errors and external disturbances.

8 Conclusion

This paper has introduced a continuous tracking control law that
achieves provably accurate global-position tracking for the hybrid
model of multi-domain bipedal robotic walking involving different
actuation types. The proposed control law was derived based on
input-output linearization and proportional-derivative control,
ensuring the exponential stability of the output function dynamics
within each continuous phase of the hybrid walking process.
Sufficient stability conditions were established via the construction
of multiple Lyapunov functions and could be used to guide the gain
tuning of the proposed control law for ensuring the provable stability
for the overall hybrid system. Both a three-domain and a two-
domain walking gait were investigated to illustrate the effectiveness
of the proposed approach, and the input-output linearizing controller
was cast into a quadratic program to handle the actuator torque
saturation. Simulation results on a three-dimensional bipedal
humanoid robot confirmed the validity of the proposed control law
under a variety of walking paths, desired global-position trajecto-
ries, desired walking patterns, and initial errors. Finally, the
performance of the input-output linearizing control law with and
without the quadratic program formulation was compared to
highlight the effectiveness of the former in mitigating torque
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saturation while ensuring the closed-loop stability and trajectory
tracking accuracy.
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Appendix: Proofs of Propositions and Theorem 1

A.1 Proof of Proposition 2. Integrating both sides of the UA
closed-loop dynamics in Eq. (24) over time ¢ yields

T3i-1
Xplapog = J f, (s, x,,(s),xé(s))ds + x,1|3+,{72 (A1)

T3k

Then

T3-1

|Xnl3e-1]] < HJ £ (s,x”(s),xds))dsu + ||X11|;rkfz||

T3k

T3k-1 (42)
= J [[F (5% (5), Xe(9)) [l + | %y l50-2]|

T3k

Since the expression of f; (+) is obtained using the continuous-phase
dynamics of the generalized coordinates in Eq. (4) and the
expression of the output function y, in Egs. (17) and (18), we
know f, (£, Xy, X¢) is continuously differentiable int, x,,, and x¢. Also,
we can prove that there exists a finite, real, positive number 7, such

o, o, o,
that || 5 oxe o |

xB, (0). Then, f,(1,x,,X¢) is Lipschitz continuous on
(T3—2, Tsx—1) % By, (0) [29], and we can prove there exists a real,
positive number k¢ such that

, and ||

are bounded on (T3—2,T3—1)

I (1%, (1), x§(1‘))|| <k (A3)

holds for any ¢ x (x,,X¢) € (T3—2,T3x-1) X By, (0).
Combining the two inequalities above, we have

I1X%al3e-1]] < kr (Tsem1 = Taiez) + |[%g s | (Ad)

The duration (75,1 — T3;—2) of the UA phase can be estimated as

[T3c—1 — T3k—2| = |T3e—1 — T3k=1 + T3k—1 — T34—2| (AS)
<|T3p—1 — 1301 | + 04y

where J;,, := 731 — T3—2 is the expected duration of the UA phase
and |T5;—1 — T3;—1] is the absolute difference between the actual and
planned time instants of the UA—OA switching.
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From our previous work [20], we know there exists small positive
numbers ., and ry; such that

|T3k—1 — t36—1] < €ydy, (A6)
holds for any k € {1,2,...} and xy € B,,, (0).
Thus, using Egs. (A4)—(A6), we have
(Xal3e-1]] < ke (1 + €v)dey + |y l32]| (A7)
Substituting Egs. (30) and (A7) into Eq. (26) gives
Vol = Velyor + /3|\X11‘3+k7|||2
SOOIV el

+2BKF (1 + €y)?07,
<Vl + 28K (1 + &)’

Thus, for any Xy € B, (0) with ry := min(ry, 7o)
Vol <wa(Vuliis)

holds, where w, (Vu4,_,) = Vuly_, + 2Pk (1 + ey)’. Clearly,
Wy VU‘3+/<72 is a positive-definite function.

A.2  Proof of Proposition 3. For brevity, we only show the
proof for ... < VF‘;/( < VF|3+,(73 <...< VF|3+ < VFH, based on
which the proofs for the rest inequalities in Eq. (34) can be readily
obtained.

To prove that Vp\;,\, < VF|3+,(73 forany k € {1,2, ...}, we need to
analyze the evaluation of the state variables for the k™ actual
complete gait cycle on ¢ € (T5;_3,T3;), which comprises three
continuous phases and three switching events.

* Analyzing the Continuous-Phase State Evolution: We
analyze the state evolution during the three continuous phases
based on the convergence and boundedness results established in
Propositions 1 and 2.

Similar to the boundedness of the UA—OA switching time
discrepancy givenin Eq. (A6), there exist small positive numbers &,
€0, I'r, and 1o such that for any xr € B, (0) and xp € B,, (0)

[T3i-2 — tax—2| < €pdy, and [Ta — 13| < €90y, (A9)
hold, where 6., and J., are the desired periods of the FA and OA
phases of the planned walking cycle, with 0., := t3;_o — T3_3 and
Oy = T3k — T3y

Substituting Eq. (A9) into Egs. (28) and (29) yields

- CoF 23 (14ep)dyy,
xebecal) < e S el (A0

and

_ C _ 90 P}
HX0|3kH < /ﬁe 2120<1+€0) 10||X0|;rk,1|| (All)

for any x; € B;.(0) (i € {F,0}), with the small positive number 7;
defined as 7;:= min{r;, r;; }.

From the definition of the Lyapunov-like function V; in Eq. (26),
the continuous-phase boundedness of Vy in Eq. (AS8), and the
continuous-phase convergence of V: in Eq. (30), we obtain the
following inequality characterizing the boundedness of the state x;
within the UA phase:

5
&1

_ oy
Xulse | < 2$HXU|;_2H2 + (1+e) (A12)
<

where the real scalar constants ¢i¢ and ¢,¢ are defined as ¢y¢:=
min(cy¢, f) and ¢¢ := max(c¢, f).

Transactions of the ASME

620z 14dy 60 U0 N9 ueA ‘epehese 1sap Je Aisianun anpind Aq 4pd €001 L0 LO ZPL SP/Z8EEIEL/S00L LO/L/LY L /3Pd-soie/sWalsAsolweukp/Bio swse  uonos|joofe)bipswse;/:diy woy papeojumoq



Since

2pk;
||Xu\3k 2| +—5(1 +ev)

={4/2z ||XUI3H||+\/ (1+6u)

we rewrite Eq. (A12) as

S 2[}(2
— [~ C2¢ + | f
|| U|3k l|| - 5]{” U‘Sk 2” Eli ( EU) ( 13)

=0 ||xU\3+k,2|| + o

2

A

 Analyzing the State Evolution Across a Jump: Without loss of
generality, we first examine the state evolution across the F—U
switching event by relating the norms of the state variable just before
and after the impact.

Using the expression of the reset map Ar_y at the switching
instant r =Ty, , (k€ {l1,2,...}), we obtain the following
inequality:

||XU|3+/¢72|| = | Ar—v (Tse-2,Xr |32 |
= || (A0 (T3r-2, Xe 532) = At (T3-2,XE[312))

+ (Ar—u (T2, Xrl55) — Ar—u(t31-2,0))

+ Ay (32, 0) ||

< ||Ar-u (T3t—2.Xrl32) — Ar—u (T3k—2aXF|3_k_2)||

+||Ar-u (T3t-2.Xrl35) — AFHU(T3k—2s0)H

+ ||AF—»U(T31<—2, 0)||
(A14)

Next, we relate the three terms on the right-hand side of the
inequality in Eq. (A14) explicitly with the norm of the state just
before the switching (i.e., Xp|3;_,).

Recall that the expressions of Ar_,y (1, Xr) solely depends on the
expressions of: (i) the impact dynamics A;(q)q, which is
continuously differentiable on (q,q) € 7 Q; (ii) the output func-
tions y(t,q), which is continuously differentiable on 7 € R" and
q € Q under assumption (A7); and (iii) the time derivative
Vx(t.q,q), which, also under assumption (A7), is continuously
differentiable on s € R™ and (q.q) € T Q. Thus, we know Ag_y is
continuously differentiable for any + € R* (i.e., including any
continuous phases) and state Xy € R,

Similarly, under assumption (A7), we can prove that there exists a
small, real constant ;, such that || (?Aa% || and || ‘%;—FU || are bounded

for any t+€ R™ (including all continuous FA phases) and
xr € By, (0). Thus, for any k € {1,2,...}, the function Ap_y is
Lipschitz continuous for any ¢ € [T3_2; t3_2] and xg € By, (0),
where [T3k,2;’r3k,2] equals [T3k—27'53k—2} if T3r_2 < 1342, and it
equals [’531(,2,T3k,2] if Tap_p > T332

Then, there exist Lipschitz constants L, and L, such that

[|Ar—v (Ts—2.Xr|33_5) — Ar—u (T3t—2, XF |3_) I

(A15)
SLip|Ta—s — T31—2]

and

= Ar—u(t36-2,0)|| < Lur||XF |32 |
(A16)

||AFHU (T3k72sXF|37k72>

hold on [T31_2; T31—2] X By, (0) for any k € {1,2,...}.
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From condition (A2) and Egs. (31), (A9), and (A14)—(A16), we
know that

(X0 B || < Lor|[XFl5_a|| + Lir€rder + 74 (A17)

Analogous to the derivation of the inequality in Eq. (A17), we can
show that there exist a real, positive number /; and Lipschitz
constants L,; and L,y such that

(%o lsie1 || < Lav|[Xu s || + Lwewdey + 74 (A18)

holds for any xy|3;,_; € By, (0).

As the robot has full control authority within the OA domain, we
can establish a tighter upper bound on HXF‘MH than Egs. (A17) and
(A18) by applying Proposition 3 from our previous work [23]. That
is, there exists a real, positive number /p and Lipschitz constants Lo
and L, such that

c
HXF‘zkH < Lo 20" o0
V cio

for any xo|3; € By, (0).
From Egs. (A10), (A11), (A13), and (A17)—(A19), we obtain

|X0|3A 1| +LA0HX0|31¢H (A19)

|l < N+ Ly el (A20)
where
N :=(Lyeyds, + 74 + L (o Lipepdy, + oy, + o))

Lo 20,350 + Lo €20,z 1+<0)0%
Cio Ci0

and

= CoF 1
L Z:LXUOQLXF —e 2‘ T2l +e,,)
CiF

€20 305 €20 339 (14¢9)d
N Loy [ 0% 1, [Ce T (14€0)0z,
C10 C10

Using Egs. (27) and (A20), we obtain

2C2[:E2

V|3 < 206N + Vel s (A21)

Note that the scalar positive parameters N and L in Eq. (A21) are
both dependent on the continuous-phase convergence rates of the
Lyapunov-like functions within the OA and FA domains (i.e., c3p

and c30), Specifically, N and L (and accordingly Z‘ZIFF L and 2c2rN?)
will decrease toward zero as the continuous-phase convergence
rates increase toward the infinity.

If condition (A3) holds (i.e., the PD gains can be adjusted to

ensure a sufficiently high continuous-phase convergence rate), we

2c ZFL

can choose the PD gains such that is less than 1 and 2¢,zN? is

sufficiently close to 0, which will then ensure Vp|3k < VF‘3/<_3
any k € {1,2,...}.

A.3 Proof of Theorem 1. By the general stability theory based
on multiple Lyapunov functions [31], the origin of the overall hybrid
error system described in Eqs. (22) and (24) is locally stable in the
sense of Lyapunov if the Lyapunov-like functions Vp, Vo, and Vy
satisty the following conditions:

(C1) The Lyapunov-like functions Vy and Vy exponentially
decrease within the continuous FA and OA phases, respectively.
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(C2) Within the continuous UA phase, the “switching-out” value
of the Lyapunov-like function V, is bounded above by a positive-
definite function of the “switching-in” value of V;; and

(C3) The values of each Lyapunov-like functions at their
associated “switching-in” instants form a nonincreasing
sequence.

If the proposed I0-PD control law satisfies condition (B1), then

the control law ensures conditions (C1) and (C2), as established in
Proposition 1 and 2, respectively. By further meeting conditions

(B
ho

2) and (B3), we know from Proposition 3 that condition (C3) will
Id. Thus, under conditions (B1)—(B3), the closed-loop control

system meets conditions (C1)—(C3), and the origin of the overall

hy

in

brid error system described in Egs. (22) and (23) is locally stable
the sense of Lyapunov.
|
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