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ABSTRACT: Quantum information, a field in which great advances have been made in the
past decades, now presents opportunities for advanced chemistry. One roadblock to progress,
especially for experimental chemical science, is that new concepts and technical definitions
need to be learned. In this paper, we review some basic, but sometimes misunderstood,
concepts of quantum information based on the mathematical formulation of quantum
mechanics that will be useful for chemists interested in discovering ways that chemistry can
contribute to the quantum information field. We cover topics including qubits and their
density matrix formalism, quantum measurement as a quantum operation, information theory,
and entanglement. We focus on the difference between the concepts in the quantum context
and the classic context. We also discuss the relation and distinction among entanglement,
correlation, and coherence. We aim to clarify the rigorous definition of these concepts and
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then indicate some examples in physical chemistry.

Quantum information, which has become especially

prominent in the past decade, demonstrated the
potential for new kinds of technology relevant to information
processing, communications, and sensors in the framework of
quantum mechanics." These new ways of handling information
are based on exploiting special correlations encoded in
quantum states that serve as resources. The field began with
the study of nontrivial quantum phenomenon in cold atoms
and quantum optics,” and now researchers are also interested
in detecting nontrivial quantum phenomena in chemical
molecules.” Owing to their small size and fundamentally
quantum-mechanical nature, molecules may provide interest-
ing building blocks for quantum resources.” We already know
of fundamental examples, particularly based on electron and
nuclear spin states. The next challenge is to put quantum
correlations to work to produce new kinds of chemical-scale
functions.

With the development of ultrafast spectroscopy that can
prepare superpositions and resolve the evolution of super-
position states known as wavepackets, coherence phenomena
in molecular and biological systems are drawing more attention
from the chemistry community. The field opens many
fundamental questions such as how to identify functions that
arise from underlying nonclassical dynamics. More recently
still, there has been interest in working out how chemical
systems will be useful for quantum information and related
technologies.” To elucidate these opportunities, it is important
to appreciate fundamentally what constitutes quantum
resources. It is also an open challenge to describe and identify
quantum correlations in complex molecular systems. There are
many challenges to address at the intersection of molecules
and quantum information in chemistry. Questions of interest
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include: How do we design molecules that have quantum
states serving demonstrably as a resource that enables a
quantum function? How do we maintain molecular quantum
states with long coherence time against a noisy environment?
How do we think about unique quantum resources enabled by
chemical systems, but not hidden by the inherent complexity
of those systems? Ways of addressing these kinds of problems
might be inspired by a physical understanding of the basis of
quantum information.

Our aim in this paper is to provide a rigorous, but succinct,
background of the quantum information field relevant to
researchers in physical chemistry. We have tried to use
terminology and examples familiar to this target readership.
The paper is particularly relevant for spectroscopy and
dynamics in physical chemistry, where quantum phenomena
such as quantum coherence are of current interest. We will
briefly review how to describe quantum states as density
matrices, how to control quantum systems via measurement,
and how to understand their important features, including
entanglement and entropy. We will clarify the relation between
the concepts of quantum entanglement, quantum correlation,
and quantum coherence. We will focus on the potential
advantages of quantum systems that differentiate quantum
entanglement and quantum information from classical
correlation and classical information. Some examples of
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chemical systems are provided throughout to illustrate the
utility of quantum information principles in a molecular
chemistry context.”” "

B QUBITS AND SUPERPOSITION

Classical protocols for digital communication and computation
are based on bits, like switches that can toggle between 0 and 1
positions. A system of n classical switches can encode 2"
different classical states, that is, unique configurations of the
switches, e.g. 01110010...

The classical state can be directly generalized to a quantum
state, where each switch is replaced by a two-level quantum
system, such as a spin-half electron or a single-excitation
molecular exciton, known as quantum bits, or qubits. The
quantum state of a sequence of n qubits in the orthonormal
basis 0of 10) and I1) can be constructed from the tensor product,
like 10) 11) 11) 11) 10) 10) 11} 10)... In total, we obtain 2" unique
product states in Hilbert space H, very much like the classical
sequence of switches. This set of product states forms one
possible basis for H.

A critical feature that distinguishes the qubits from classical
bits is quantum superposition, which is similar to wave
interference when added in or out of phase. A qubit may not
be on either 0) or 1) but instead in a coherent superposition
state,'> represented by a wave function hy) = ¢)l0) + ¢,I1),
where ¢y and ¢; are complex numbers satisfying the
normalization condition el + I¢,? 1. Without loss

. 0 .0
generality, we can take ¢, = cos 2, €1 = sin 56“/)’ where 6 and

¢ are in the range 0 < 0 < 7 and 0 < ¢ < 27, respectively.
Here, we drop the global phase between 10) and 11) because it
has no observable effects, and ¢ is the relative phase between |
0) and I1). The physical meaning of & and ¢ can be interpreted
as the polar angle and the azimuth angle of spherical polar
coordinates, which together represent the points on a unit
sphere, known as the Bloch sphere. The details of the Bloch
sphere are discussed in the next section, as summarized in
Figure 2. The wave function of a qubit can be bijectively
mapped (one-to-one correspondence) to a unit vector 7 with
the spherical polar direction (6, ¢)

e 0 0y

ly) = li#) = cos 2|O> + sin 28 1) W
The wave function of a qubit can be expressed by only two real
numbers, a unit vector, instead of two complex numbers.

This wave function formalism is essential to account for the
phase relationships underlying quantum superposition, or
more rigorously, quantum coherence between [0) and I1).
Consider the expectation value of an observable O in the state

ly)
(0) = (ylOly) = Ic,*(01010) + le,*(110I1) + c4e,(11010)
+ ¢eg(olol) (2)

The last two terms on the RHS of eq 2 represent the effect of
superposition, which might be either constructive or
destructive, while in a classical system, we interpret (O) as
the classical probability that our system has property O, and
the expression is solely comprised of the first two terms in eq 2.
Thus, superposition is a unique feature of quantum systems.
Quantum coherence between |0) and I1) then can be defined
by cocff, or its complex conjugate c;cf, to quantify the
magnitude of superposition. The superposition can be easily
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generalized to n qubits in M. Some famous examples of the
biqubit superposition states are the Bell states

1
¥ )ap = f('oh ® )y £ 11), ® 10)3) (3a)
D)\ = %(l())A ® 10) +11), ® I1)p) (3b)

where subscripts A and B label the two qubits and AB labels
the composite system. Bell states form an orthonormal basis.
Bell states are famous examples of quantum entanglement,
which will be discussed in the following sections.

B DENSITY MATRIX FORMALISM

Previously we only discussed pure states in the wave function
formalism. Pure states of practical interest provide an excellent
foundation for understanding but tend to be fragile in
molecular systems. A general way to describe qubits and
other quantum systems is the density matrix formalism."

Mixed State. The idea of mixed states originates from
statistical ensembles, where the states of the quantum system
are not completely known but obey certain statistical
distributions. Statistical ensembles are virtual copies of a real
system, and each virtual system represents a possible state liy;).
Statistically, the real system can be in the state ly;) with the
probability p; (satisfying p; > 0 and Y, p; = 1). The set {p, ly;)}
is known as an ensemble of pure states,” or a mixed state.
Particularly, in the uniform ensemble {1, )} where all the
virtual systems are in the same quantum state, this system can
be simply described by the pure state ly).

The ensemble of pure states {p; ly;)} can be further written
as a density matrix

p =2 By
i (4)

Eq 4 shows that the state representing the ensemble will be a
statistical mixture of pure states. In particular, a uniform
ensemble, i.e. a pure state ) can be similarly expressed in the
density matrix formalism as

(5)

The redundant global phase is eliminated in the density matrix
formalism, and only the necessary relative phase in eq 1 counts.
Thus, density matrices are the more general and concise
expression of quantum states. The expectation value of an
operator O in a state p, i.e., the average of (y|Oly;), is

(0) = )" p(ylOly;) = Tr(Op) ©

Notice that each ly;) in eq 4 does not need to be orthogonal
to others. Thus, {p, ly;)} in eq 4 is not the set of eigenvalues
and eigenstates of p, and the definition of a density matrix (eq
4) is not the eigendecomposition of p. One may also
diagonalize the density matrix

p = ly )yl

p= Alm)ml

m=1

(7)

where Im) is an orthonormal basis in the Hilbert space and N =
dim(p) is the dimension of this Hilbert space. In this paper, we
denote A, as the eigenvalue of the density matrix and {p;} as a
set of probabilities. One can deduce that the eigenvalues of p
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satisfy A,, > 0 and Y n_A,, = L. Thus, {4,} is also a set of
probabilities.

The density matrix is Hermitian (p = p¥), positive
semidefinite ((ylply) > 0 for any given ly)), and of unit
trace (Tr(p) = 1)."* Generally, any operator satisfying these
three conditions is a density matrix. The set comprising all the
density matrices of a certain dimension is called the Liouville
space, which is a space of bounded operators on Hilbert space.
Liouville space is a convex set,” which means that a convex
combination of some density matrices is still a density matrix
in Liouville space, i.e., p = X p,p; with p; = 0 and Y p; = 1,
known as the incoherent superposition. Pure states cannot be a
convex combination of other states in Liouville space, so they
comprise the convex hull of Liouville space’® (Figure 1). This
point turns out to be extremely important for quantum
information because entanglement (and other quantum
correlations) are hidden and diluted in mixed states.

(W) (W | () (|

all the quantum

states represented
by the density

matrices.

|©4) (4| @) (2|

Figure 1. Ilustration for convexity of Liouville space. All pure states
(the black solid curve) comprise the convex hull for the Liouville
space of all the density matrices. These pure states include the Bell
states, shown schematically, in the example.

Purity. Even though the definition of a density matrix (eq
4) may not be its eigendecomposition, the special case of the
pure state (eq S) always is. By comparing eqs S and 7, we can
see that the density matrix is pure if and only if it has only one
nonzero eigenvalue. This is the criterion for a pure state.
Moreover, we can define the purity of a density matrix to
quantify mixedness:

y(p) = Tr(p*) = (p) (8)

Purity is a useful gauge of the mixedness of states in the
Liouville space. A more mixed system has a lower purity.

Equation 8 means that purity is the expectation value of the
density operator. A more uniformly distributed density
operator generates a smaller expectation value.

A density matrix p is a pure state if and only if y(p) = 1, and

otherwise% < y(p) < 1 for mixed states, where N = dim(p) is

the dimension of p. To prove this, one can diagonalize the
density matrix (eq 7) to calculate Tr(p*) = Y n_;A.. Because 0
< A, < 1, one has A2 < 4,. Therefore, y(p) = Ym_14s <

N Am = L. The equality condition is satisfied when 12, = 4,
ie., A,, =0, 1. Due to the unit trace condition Y »_,4,, = 1, only
the pure state has the purity of 1. The lower bound of y(p) can
be proven by the Cauchy—Schwarz inequality: (Y'N_,4,, X 1)

< (IN_22)(3N_11%), which ends up with % < 7(p). The
equality condition for the lower bound is 4,, = %, ie,p = %I .

The normalized identical operator refers to a completely mixed
state, where each eigenstate contributes the same probability.

Purity has many applications in chemistry. For example, in a
molecular aggregate system, a widely used tool to describe the
molecular exciton delocalization' is inverse participation ratio
(IPR),'”"® defined as the second moment of the probability
density:

IPR = )" Kaly)I* o

where ly) is the exciton state and x labels the site of a localized
exciton. An exciton state with a smaller IPR implies more
delocalization. IPR is the purity of the state after projection-
valued measurement (PVM, see eq 14), IPR = y(p’), which
means delocalization can be described by postmeasurement
purity.

Bloch Sphere. Now we can generalize eq 1 to describe a
single qubit beyond the pure state in the density matrix
formalism, i.e., a two-dimensional density matrix p. It is easy to
prove that it can always be decomposed as

1 oo 1
p= E(I +76) = E(I + o, + 10, + 1,0,) (10)
where 5 = (o, oy, 0,) is the Pauli vector with the three
components being the Pauli matrices. 7 is known as the Bloch
vector. The length of the Bloch vector r = [fl is in the range 0 <
r < 1 to satisfy the positive semidefinite condition. The Bloch
vector can be explicitly calculated by

(b)

Figure 2. Illustration of Bloch sphere. (a) Any pure state lyy) (orange) on Bloch sphere can be represented by a unit vector 7, in (6, ¢)) coordinates.
(b) Any mixed state p (blue) inside Bloch sphere can be represented by a Bloch vector 7 in (r,, Ty t,) or (r, 6, ¢) coordinates, whose eigenvectors

are ln) and |-7).
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7= (rx) Ty rz) = Tr(&p) (11)

where each component is r, = Tr(o,p), owing to the relation
Tr(0,05) = 28,5 a, p = X, y, z. Generally, the Pauli matrices
together with the identity operator, {I, o, oy 0,}, form a
complete orthonormal basis spanning the single-qubit Liouville
space when the inner product is defined as

Py pz)zéTr(plsz). Thus, there exists a one-to-one

correspondence between a single-qubit state and a Bloch
vector (eq 10), ie, a bijection mapping from p to 7.
Considering 0 < r < 1, Bloch vectors are the points inside
or on the surface of a unit sphere, the Bloch sphere, as shown
in Figure 2.

The vector length r of the Bloch vector is an indicator for
the mixedness of single-qubit states. To see this, one can
calculate the purity of p

1472
r(p) = 5 (12)
When r = 1, y(p) = 1, p is a pure state. When 0 < r < 1,

% < y(p) < 1, p is a mixed state. When r = 0, y(p) = %, pisa

completely mixed state. Thus, Bloch vectors on the Bloch
sphere represent the pure states, while inside the Bloch sphere,
they represent the mixed states. The closer a state is to the
center of the Bloch sphere, the more mixed it is.

It is also convenient to transform Bloch vectors from
Cartesian coordinates to a spherical coordinate system 7 = (r,,
1y 1,) = (1, 6, §), where r, = rsin @ cos ¢, r, = rsin @ sin g, r, =
r cos 0. In the special case of a pure state (r = 1), we can find
the corresponding state p = %(I + 1-0) = ln)(rl, where n =7
and [n) is defined as eq 1. The polar angle and azimuthal angle
in eq 1 are the same as (6, ¢) in this section. The wave
function formalism for a single qubit can be recovered from the
density matrix formalism with a Bloch sphere. Generally, given
any Bloch vector in the spherical coordinate system, one can
diagonalize p

_ 1+
2

1—7r
2

I7) (Al +

P |—7 ) (-l (13)

% is the unit vector with the same direction (6, ¢)

where 7

as the Bloch vector 7 and—7 is in the opposite direction. [r)
and |—7) are orthogonal to each other: (1 |-7) = 0.

The Bloch sphere provides a useful means of visualizing the
state of a single qubit and often serves as an excellent test bed
for ideas about quantum information.” The quantum dynamics
of a single qubit can be mapped to the dynamics of a Bloch
vector. For example, unitary evolution fixes the Bloch vector on
a sphere because r is invariant. In the orthonormal basis of 10)
and I1), dephasing means the decrease of r, and r,, while decay
from 1) to 10) means the increase of r,. For multiple qubits, if
we are only interested in the coherent spin state or spin
squeezing,'*° the Bloch sphere is also a useful tool. However,
a general description for N-qubits is limited because the
general Bloch sphere lies in a (4¥ — 1)-dimension space.

H QUANTUM MEASUREMENT

In experiments, we perform measurements by interacting the
system of interest with the measuring apparatus and getting a
sequence of outcomes from the apparatus. In the case of a
classical system, our ensemble yields properties of the
probability distribution with respect to an appropriate random
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variable. It is reasonable to believe that the measurement
apparatus only interacts with the system with a negligible
perturbation and therefore does not irreversibly change the
observed system. This feature for classical systems is called
realism.”"

The challenge for measurements on quantum systems is to
construct an analogous map from the set of states to a
probability distribution® such that we account for the
quantum phase encoded in superposition and quantum
coherence. A closed quantum system, which ideally does not
interact with the rest of the world, evolves according to unitary
evolution, without losing quantum coherence. However, when
the measuring apparatus, an external system, observes the
system to obtain the information inside the system, the
interaction makes the system open. Thus, measurement
involves a nonunitary evolution of the system, which may
destroy the fragile quantum coherence. One may think about
studying a large and isolated composite system, the observed
system together with the external system, which again obeys
unitary evolution. But in practice, it is hard to handle such a
closed system because usually we know little about the
environment and a large system means an exponential increase
in mathematical complexity. So we need other ways to describe
the system locally when measuring it, which is called quantum
measurement theory. Quantum measurement theory is some-
times considered one of the fundamental postulates of
quantum mechanics.”

Projective Measurements and PVM. The most typical
example of quantum measurement theory is the wave function
collapse theory. When we measure the system with an
observable M (in the eigenbasis Im) of M), the wave function
ly) will randomly collapse to a certain Im) with probability
[{mly)® and observation value €,. From the view of the
ensemble, after the measurement we obtain a density matrix p’
= Y, [ (mly)* lm)(ml, and the expectation value of M is (M) =
3 (mly)Pe,,.

Generally, given a system prepared initially in a pure state
ly), one can carry out the projective measurement with a series
of projection operators {P,,}, which are Hermitian (P}, = P,),
orthogonal (P,,P, = §,,,P,), and complete (3P, = I). The
measurement operators satisfying these three conditions are
also called projection-valued measure (PVM). Projective
measurement aims to project lyy) from Hilbert space H to
the subspaces H,,. Completeness insures H = @, H,,. After
the measurement, the probability that the result m occurs is p,,

B ly)

N (WIB lyr) ’
mixed state is generated from a pure state by PVM with the
density matrix

= (ylP,ly) and the corresponding quantum state is

PVM
ly) — p' = ) P ly)(wlB,

m

(14)

PVM can be understood by the wave function collapse
theory with an observable, M. P, is chosen to be the spectral
decomposition: M > .€mP,. The spectral theorem’
guarantees Hermiticity, orthogonality, and completeness.
This is a process of PVM where we take P, = Im)(ml.
Operator M is so special because PVM does not change the
expectation value of M, since (WIMly) = Tr(Mp’).

PVM is very useful because most physical systems can only
be measured in a very coarse manner. PVM has a property
known as repeatability,” which means if we perform a PVM

https://doi.org/10.1021/acs.jpclett.4c00180
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once and obtain the outcome m, repeating the same PVM
immediately gives the outcome m again and does not change
the state. Repeatability originates from the orthogonality of
PVM operators, which is not guaranteed for many other
quantum measurements. To solve this problem, we need a
more universal protocol for quantum measurement, known as
general measurement.

General Measurement and POVM. General measure-
ment provides a perspective to prepare a mixed state p’ from a
pure state. Similar to the repeated test in the laboratory, by
preparing an infinite number of copies of the initial pure state
ly) and doing the same measurement on each copy, we can
summarize all the possible outcomes (labeled by m) and the
corresponding probability p,. We then have p’
bl ) (w,,l, which matches the definition of density matrix
eq 4. This means that a general measurement of a pure state
generates a mixed state. So we say general measurement is an
equivalent way to define the density matrix of a mixed state,
i.e., the ensemble of postmeasurement states. This procedure
works intuitively because the structure of the mixed state
reflects the probability distribution of the postmeasurement
states. Sometimes the measurement may probe a specific
spectral window or interval, so then we only include those
states whose expectation values lie in that window and keep
the other states with zero probability. Same as eq 4,
postmeasurement states ly,,) do not have to be orthogonal
to each other. This feature distinguishes general measurement
from projective measurement.

Rigorously, general measurement is described by a set of
measurement operators {M,} that satisfy completeness
> .MIM,, = L These are operators, which do not have to be
Hermitian, in the state space of the system being measured.
Each outcome m (also known as quantum channel m) occurs

with a probability

B, = (WIMIM,Jy) (15)
and results in the quantum state
M, ly)
hy,) = -
(WIM, M, ly) (16)

The density matrix after general measurement can be written
as

POVM

lyy —— p' = Do M,y ) (wIM;,

m

(17)

Here general measurement is represented by “POVM”, whose
meaning will be discussed later.

If additional conditions of Hermiticity (M, = M,,) and
orthogonality (MM, = 8m'M,,) are imposed on general
measurement, we recover PVM. So PVM is a special case of
general measurement. Moreover, PVM on a composite system
augmented by unitary operations turns out to be completely
equivalent to general measurements on subsystems.”

Sometimes, the postmeasurement state of the system eq 16
is of little interest, and we care more about the probabilities of
the respective measurement outcomes because many statistical
properties only depend on the probabilities. In this case, we
can rewrite general measurement as F,, = M/,M,,, so that the
probability is

p, = (WIEw) (18)
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The set of operators {F,,} is known as positive operator-valued
measure (POVM), which is sufficient to determine the
probabilities of the different measurement outcomes. To
avoid any confusion, in this paper, “positive” means “positive
semidefinite”. Rigorously, the definition of POVM is a set of
operators {F,,} that is positive semidefinite ({¢IF,,l¢p) > 0) and
complete (},,F,, = I). POVM is simple and intuitive when
only the measurement statistics matter. If the postmeasure-
ment states are needed, one can always decompose F,, to
recover M,, by F,, = MM, PVM is also a special case of
POVM where F,, = M,,.

If the initial state is prepared in a mixed state, eqs 15—17 can
be generalized to

Tr(M,pM,,) = Tr(pF,)

b, = (19)
M,pM,,
fu =
Tr(M,pM,,) (20)
POVM
p——1p' =00 = 2 MM on
m m 21

In quantum operation, eq 21 is known as Kraus representa-
tion.”*

Measurement is an important part of quantum informa-
tion.””*>*° In addition to describing measurements of discrete
quantum variables (systems with discrete spectra),”’ PVM and
POVM can be extended to account for continuous measure-
ment.”**” A theory for continuous measurement is needed
when we must account for the time it takes to complete the
measuring process.

B INFORMATION THEORY AND ENTROPY

In this section, we will discuss how to understand the
information in a quantum system, compared to an analogous
classical system. For example, n classical bits can encode 2"
distinct binary numbers, which is the same as the dimension of
the Hilbert Space for n qubits. The maximum information
encoded in either case is the same. However, the quantum
advantage for conveying information comes from using
compression strategies that are only available to quantum
systems. To start, we need to define the amount of
information,””*" and we do so using entropy.

Classical Information and Shannon Entropy. Quanti-
fication of classical information was devised by Claude
Shannon®” as an analogy to Gibbs entropy, known as Shannon
entropy. Given a discrete random variable X with its
probability distribution function p(x), the Shannon entropy
is defined as

H(X) = H({(p®)}) = =X p@)ln p(x)

(22)

Intuitively, the amount of information we obtain from the
occurrence of a certain event X is —In p(X). The total Shannon
entropy can then be understood as the average amount of
information for measuring this random variable: H(X) =
E[-Inp(X)]. Shannon entropy only depends on the
probability distribution. Shannon entropy is defined in this
way to ensure that the total information learned from
independent events is the sum of the information learned
from each event:

https://doi.org/10.1021/acs.jpclett.4c00180
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Figure 3. A set of all the bipartite states (Liouville space) as an illustration for entanglement and witness. The red dashed curve is the boundary
between entangled states and separable states. The ellipses imply the convexity of the sets.

H({py y (%, 5) = py(x)p, (1)})

= H({p,(x)}) + H({p, »)}) (23)

We can view the entropy either as a measure of our
uncertainty before we learn the value of X, or as a measure of
how much information we have gained after we learn the value
of X’ To understand this, we can ask a question: when
transmitting information in a message (e.g., by code,
telephone, etc.), how much error—or uncertainty—can be
tolerated? For exxmple [sic], cxn I get my messxge xcross
sufficiently clexrly if every “a” is erroneously trxnsmitted as “x”?
Obviously, this error is not catastrophic because we use the
information provided by the other letters together with our
knowledge about words in the English language, and possibly
other information gathered by experience, to interpret the
message correctly. We can explain this concept more rigorously
with the following scenario.

In the next examples, we are going to think about searching
for particular pairs of letters on a random page of an English
text. Suppose that we are interested only in two letters in our
document, “Q” and “T”. We scan through the words until we
find either “Q” or “T”. The question is, how much information
does identifying the letter give us? To answer that, we can
normalize the probabilities for the events of finding “Q” and
finding “T” as p(Q) = 0.01 and p(T) = 0.99. Because p(T) >
p(Q), the first “Q” or “T” we find will almost certainly be “T”.
Thus, one measurement resulting in “T” provides very little
information because it is unlikely to change our expectations,
where the amount of information we gain from this
measurement is —In p(T) = 0.010. However, one measurement
resulting in “Q” provides a lot of information, because a rare
event occurs beyond our expectation, where the amount of
information we gain from this measurement is —Inp(Q) =
4.605. From a statistical perspective, the average information
we gain from the measurement is H({p(Q), p(T)}) ~ 0.056.
The Shannon entropy in this example is quite small because,
before any measurement, we anticipate getting “T”. In contrast,
if we are interested in the letters “M” and “W”, the probability
distribution for finding “M” and finding “W” will be p(M) =
0.5 and p(W) = 0.5. Now the measurement provides the most
possible information because we really cannot guess whether
the first “M” or “W” on the page will be “M” or “W”. The
Shannon entropy is as large as H({p(W), p(M)}) = 0.69.

Quantum Information and Von Neumann Entropy.
Classical probability has its analogy in quantum mechanics as a
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density matrix, where coherence is considered. Quantum
information'? is quantified with respect to the density matrix of
the quantum system via the von Neumann entropy:
S(p) = =Tr(pln p) = (=Inp) (24)
Here we naturally replace the classical probability distribution
in eq 22 by the density matrix. In statistical physics, taking p in
1 —H/kyT
Ee
entropy. To calculate S(p) practically, one may diagonalize p

by eq 7 and have S(p) = =Y.N_14,,In 4,.

Different from the classical system, each measurement we do
to the system will lead to a nonunitary evolution. So the
postmeasurement will not perfectly recover the information
carried by the initial density matrix. Suppose a PVM {P,,} is
performed on a quantum system p, but we never learn the
result of the measurement. It can be proven that’

eq 24 as a thermal ensemble, p = , recovers Gibbs

S(p') =S| ) BB | = S(p)
m (25)
where the postmeasurement density matrix p’ is defined by eq
14. The equality condition is reached if and only if p’ = p,
which means p is orthogonal in the basis of {P,,}. Notice that
the PVM causes all of the off-diagonal entries of p to vanish
while leaving the diagonal entries unchanged. Thus, the
diagonal matrix p’ is classical-like; that is, the diagonal
elements of the p’ can then be interpreted as classical
probabilities. So S(p’) is the same as Shannon entropy
H({Tr(pP,)}). This relation underlies an advantage for
quantum information, whereby the information transfer
capacity of a quantum system is constrained differently than
that of a classical system.>
While one qubit does not convey more information than one
classical bit, the quantum correlations in an entangled system
can be exploited to enable information to be more compressed.
The idea is along the lines of superdense coding.” A notable
advantage of quantum information, therefore, is that quantum
dense coding allows quantum communication channels to have
greater capacity than comparable classical channels.”**® A
second advantage is that quantum mechanical laws can be
leveraged to make communication more secure. Communica-
tions can be encrypted in new ways such that it is difficult for
an eavesdropper to copy information, and quantum “keys” can
be more difficult to crack.'”***’

https://doi.org/10.1021/acs.jpclett.4c00180
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B QUANTUM ENTANGLEMENT

Entanglement is a central concept and key resource in
quantum information. In this section, we will give a rigorous
definition of quantum entanglement and discuss the possible
ways to describe entanglement in different cases.

Separability. In quantum mechanics, the opposite of
entanglement is separability,”® which has features correspond-
ing to classical correlation or even uncorrelatedness (see Figure
S). Separable states are the quantum states of a composite
system that can be factorized into individual states belonging
to separate subsystems. For example, a bipartite pure state is
separable if it can be written as a product state

W) =ly)s ® ly)y

More generally, a bipartite mixed state is separable if it can be
decomposed into a sum of tensor products

Pan = 2 0PA ® Py

(26)

(27)

where p; > 0 and Y p; = 1. Without loss of generality, the
separable mixed state can be equivalently defined based on
separable pure states

P = O 4P ap (Pl
i (28)

where g; > 0 and Y.,q; = 1, and I¥'),5 are series of separable
pure states. Equation 27 keeps the convexity of separable
density matrices (any convex combination of separable density
matrices is separable, as shown in Figure 3), and eq 28 shows
that the pure product states (eq 26) comprise the convex hull
of the separable set. The definition of separable states (eq 27)
can be easily generalized to multipartite states by the tensor
product of more subsystems.

Then we can give a rigorous mathematical definition of
entanglement. A nonseparable quantum state is called an
entangled state; that is, entangled states cannot be convexly
decomposed as tensor product states:

s # Z oL ® Py 09

The distinction between entanglement and separability is
illustrated in Figure 3 by the dashed red curve. The convexity
property does not hold for entangled states (Figure 3).

Separable states are important in quantum chemistry
because they have classical and intuitive analogies. One
example is the time-dependent Hamiltonian. Intuitively, a
closed system can only be described by a time-independent
Hamiltonian, so there must exist an external driving for the
time-dependent Hamiltonian. When the system is classically
driven, there is no entanglement between the system and the
external driving, and thus, we can use the time-dependent
Hamiltonian to quantumly study the dynamics of the system
while treating the system-driving correlation classically. A
similar example is the Markov approximation in the open
quantum system approach, which is valid when the bath is
disentangled from the system so that the bath loses its memory
during the dynamics, such as Lindblad or Redfield dynamics.39
However, the breakdown of the Markov approximation
requires non-Markovian dynamics.*’

Another example of separable bipartite pure states comes
from the Born—Oppenheimer (BO) approximation for
electronic structure calculation. The molecule is treated as a
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bipartite system (the electronic subsystem and the nuclear
subsystem). We then use the Born—Oppenheimer approx-
imation to assume that the nuclear degrees of freedom are at a
fixed geometry Ry, and thus, the total wave function is a
product state of the electron wave function and the nuclear
wave function: I¥E°(r, R)) = Iy, (r; Ry)) ® ly,(R)). Such a
separable state is sometimes called a crude BO state,”" as we
roughly assume that y, is independent of R. The crude BO
approach is valid when we are only interested in the static
electronic energy at a certain geometry rather than the
dynamics, or in the dynamics where the vibration is weak and
nuclear geometry does not change too much (e.g, the nuclear
coordinates are far away from the potential energy surface
crossing).

However, in general, the Born—Oppenheimer approxima-
tion W.,(r, R) = w.(r; R)y,(R) can only give a less entangled
state rather than a separable state because the “electronic wave
function” w,(r; R) changes with the nuclear geometry R. More
rigorously, the “electronic wave function” y.(r; R) is actually
not the wave function of the electronic subsystem; it still lies in
the total space containing both electrons and nuclei and carries
electrons—nuclei entanglement. The BO approximation is a
protocol to find a factorization y,(r; R)y,(R) that matches the
exact total wave function ¥,,(r, R), and this factorization often
satisfies the weak (but non-zero) electron—nucleus entangle-
ment in ,(r; R), which can thus be interpreted as the
“electronic wave function”. Sometimes the electron—nuclear
entanglement can even be strong in such BO approximation
(e.g. the BO state is spanned by several crude BO states)
because the entanglement of the BO state (distance measure to
the crude BO state) and the accuracy of the BO approximation
(distance measure to the exact state) are two different
measures.”’ Moreover, the breakdown of the Born—Oppen-
heimer approximation will lead to an entangled molecular
state, which requires a more sophisticated treatment like non-
adiabatic dynamics.*”

Schmidt Decomposition and Entanglement Entropy.
Although the criterion of separability and quantifying
entanglement of a general multipartite system or mixed state
is an NP-hard problem (i.e., it cannot be solved in polynomial
time with respect to the size of the system),” there is a
rigorous and standard approach to quantifying entanglement of
a bipartite pure state, based on Schmidt decomposition.

Schmidt decomposition™ is valid if and only if the quantum
state is bipartite and pure, which can always be decomposed
into a sum of product states factorized by an orthonormal basis
la,)» for subsystem A and an orthonormal basis If,); for
subsystem B

N

) = D A la)s ® 1)y

(30)

where the Schmidt coefficients /4, are the non-negative

n
numbers satisfying > ~;4, = 1. The orthonormal bases la,),
and 1f,) are known as the Schmidt bases of subsystems A and
B, respectively. The upper limit of the summation N =
min {N,, N} is defined by the smaller one between the
dimension of system A and the dimension of system B.

By comparing eq 26 and eq 30, one can see that the
separability criterion for a bipartite pure state is that only one
of the Schmidt coefficients equals 1 and all the other Schmidt
coeflicients are 0. The number of nonzero Schmidt coeflicients

https://doi.org/10.1021/acs.jpclett.4c00180
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is called the Schmidt number. Thus, a bipartite pure state is
entangled if and only if its Schmidt number is larger than 1.

Schmidt decomposition is an application of singular value
decomposition (SVD) in quantum mechanics. The practice
and protocol of Schmidt decomposition are the same as SVD.”
One needs to trace out one of the subsystems and then
diagonalize the reduced density matrix

Tr, (I9)a5(Phs) = P = 2. AJB)6 (Bl

n=1

(31a)

Tiy(IP)ap(Phs) = £, = D AJa)alaly

n=1

(31b)

The eigenvalues of py are actually the square of Schmidt
coeflicients A, while the corresponding eigenvectors are the
Schmidt bases |f,)s. Use the same protocol to calculate
reduced density matrix p, and its eigensvalues 1, and
eigenvectors la,),. It is worth noticing that p, and py share
the same nonzero eigenspectrum A,. Many important proper-
ties of quantum systems such as expectation values of
observables are completely determined by the eigenvalues of
the density matrix, so for a bipartite pure state such properties
of one subsystem will be identical to those of the other
subsystem.”

A bipartite pure state W),y is separable if and only if its
Schmidt number equals 1, so its reduced density matrix py can
only have one nonzero eigenvalue, i.e., py is pure, which is the
separable criterion for bipartite pure states. The purity y(pg) =
Tr(ps) = DaL 1A% of the reduced density matrix of a bipartite
pure state can describe the separability and entanglement.

1
mnmanyy S7lpg) <1

7(ps) = 1 means separability, and
means entanglement.

A more commonly used quantity for entanglement measure-
ment in quantum information is the entanglement entropy,
which is defined as the Von Neumann Entropy of the reduced

density matrix

Eg(py) = S(pg) = — ). An 4,
2,70

(32)

Entanglement entropy quantifies the entanglement of a
bipartite pure state; that is, larger S(pg) indicates a more
entangled state. A separable state has zero entanglement
entropy S(pg) = 0. An entangled state has positive
entanglement entropy S(pg) > 0. A full entangled state has
the maximum entanglement entropy S(pg) = In (min {N,,
Ng}). Intuitively, the quantities to describe entanglement
should not depend on the choice of the subsystem. Actually,
S(ps) = S(pa) and y(pp) = 7(pa), because entropy and purity
are completely determined by the eigenvalues of the reduced
density matrix, as stated above.

In the following, we present some examples of the
application of Schmidt decomposition and entanglement

entropy. Consider a bipartite pure state
|‘I’1>AB = %(lOO) + 110) — 101) — 111)),5. Using the protocol
in eqs 31 and 32, one can calculate

1

prs = 5(10)(01 + 11)(11 = 11)¢0l = 10)(11)g, and S(p, ;) = 0.

Thus, I¥,),p is a separable state. It can be further verified that
W) = - (0) + 1)), ® —(10) = 1))y, which indeed
matches eq 26.
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A second example is [¥,) 5 = (x00) + yI11)) o5, where x and
y are the coefficients satisfying |xI* + lyl* = 1. Then, one can
work out p, 5 = lx*0)5(Ol + (1 — Ix1*)I1)5(1l5 and thus S(p, )

= —lal In el — (1 — ) In (1 — l?). When & = 2, S(py5) »
0.562. When x = %, I¥,) a5 is the Bell state and S(p, ) = In 2

~ 0.693. Both states are entangled, but quantitatively the latter
contains more entanglement than the former. Actually, all four
Bell states (eq 3) are maximally entangled as they have the
maximum entanglement entropy S(pg) = In 2.

Entanglement Measures. In an axiomatic point of view,'
Vedral et al.*> proposed the postulates that any entanglement
measures E(p) has to satisfy. Here we take bipartite
entanglement as an example. Any entanglement measure
must satisfy the monotonicity condition:

E(pAB) Z E Z MA,m ® MB,mpABMIT\,m ® Mg,m

m

(33)

where {M,,,} and {My,,} are the local POVM of subsystem A
and B, respectively. The global POVM {M, ,, ® My, } makes
{M,,,} and {My,} classically correlated (known as classical
communication) and can only increase the classical-like
correlation among the subsystems. Equation 33 means that
entanglement cannot increase under local operations and
classical communication (LOCC), sometimes known as
entanglement monotone. Entanglement monotone is con-
sidered the only necessary postulate for an entanglement
measure, while other postulates either follow from this basic
axiom or should be treated as optional."”*’

However, building general entanglement measures in this
framework is difficult and computationally complex, so we are
going to focus on the special cases. Apart from the
entanglement entropy for bipartite pure states, we show
some examples of nonstandard entanglement measures for
two-qubit entanglement.

Concurrence. Concurrence was first proposed by Hill and
Wootters*® based on the fidelity operator

R = | [PupPss~/Pag » Where Dap = (Ghoh)pis(choh) and pifs

is the complex conjugate of p,p in ¢* basis. R is Hermitian and
has the eigenvalues 4, in descending order. Concurrence is
defined as

Ec(pyg) = max{0, 4, — 4, — 43 — 4} (34)

Entanglement of Formation. Entanglement of formation®’
is the ensemble average of entanglement entropy:

}{Z EEs(lwAB)}

i

B W) (39)
where the minimum runs over all the possible decompositions

Pas = 2l wi)(w; Nap and Eg(ly;)ap) is the entanglement
entropy (eq 32). For the two-qubit case, it has the closed-form

expression

EF(pAB)

1+ 1 —Ec(p,) 1—1-Eclp,)
H 2 ’ 2

(36)
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Figure 4. A set of all the bipartite states (Liouville space) as an illustration for entanglement and witness. The red dashed curve is the boundary
between entangled states and separable states. The subset of all the separable states is convex. The two green dotted lines represent two examples of
hyperplanes that work as entanglement witnesses ‘W. However, only W, is a good entanglement witness with respect to the system of interest.

where E¢(p,p) is the concurrence (eq 34) and H({p,, p,}) is
the Shannon entropy (eq 22) for binomial distribution.

Relative Entropy of Entanglement. Relative entropy of
entanglement50 is a distance measure between the entangled
state p,p and the separable set S,.

Pas.

Ex(pg) = min {Tr|p,In

Aap €1 £ AB

(37)

In the absence of a closed-form expression, Vedral et al.*®

discussed the properties of Eg(p,p) for a two-qubit system.

Negativity. Negativity is a computationally feasible
entanglement measure,”’ originating from the violation of
“positive semidefinite” of the reduced density matrix of an
entangled state.

gl - 1

(38)

where pp = Try(pap) is the reduced density matrix and

lpgll = Tr,/png is the trace norm.
Entanglement Witness. In general, it is NP-hard to find

the sufficient and necessary criterion of entanglement
qualitatively.*” Moving a step backward, there are some
sufficient but not necessary conditions for entanglement,
regardless of the dimension, known as entanglement
witnesses.”> % An entanglement witness is a Hermitian
operator ‘W(p) that can sufficiently distinguish certain
entangled states p from all the separable states. Specifically,
entanglement witnesses are defined as the Hermitian operators
that obey the inequality Tr(‘W(p)p) > O for all the separable
states. Thus, a negative expectation value Tr("W(p)p) < 0
means that p must be entangled. “W(p) may be linear or
nonlinear depending on p.

The convexity of the set of all separable states ensures the
existence of the witness operator ‘W (p) and the validation of
an entanglement witness." The Hahn—Banach theorem
guarantees that there exists a hyperplane for any entangled
state p that distinguishes this state from the separable set,”” as
shown in Figure 4, where the hyperplanes are represented by
the green dotted lines. These hyperplanes correspond to
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observables ‘W(p), represented by Tr(‘W(p)p) = 0. If there
is one separable state that makes Tr(‘W(p)p) =0, the
hyperplane is at a tangent to the convexity set of separable
states. Such tangent hyperplanes are usually thought to be
efficient entanglement witnesses that reach their tight bound.

It is worth noting that an entanglement witness is just a
sufficient but not necessary condition that qualitatively
describes entanglement.”> Tr(‘W(p)p) < 0 means that p
must be entangled, while the inverse and the converse may
not be true. As shown in Figure 4, some entangled state states
satisfy Tr(W(p)p) > 0. Thus, Tr(‘W(p)p) = 0 does not
imply that p is separable. Entanglement witnesses can only
confirm entangled states but cannot exclude that a state is
entangled. For the same reason, the expectation value
Tr(W(p)p) cannot quantify entanglement; a more negative
value of Tr(‘W(p)p) does not suggest p is more entangled.

Bell's theorem® is a famous example of entanglement
witness. There are many different formalisms of Bell’s
inequality. Here, we focus on the Clauser—Horne—Shi-
mony—Holt (CHSH) inequality.”” Consider a total system
Pas consisting of two half-spins. If p,p is separable, the CHSH
inequality holds

oy I

B
<UA ! (126/1

— (op’03")

(39)

s
Tr(pWepsn) = 2 + <UXZGI§2> -

— (o) > 0

where ¢* = @ - & and (0%0h) = Tr(papoioh). Although
separable states always satisfy the CHSH inequality, entangled
states may disobey Bell’s theorem. In this sense, the CHSH
inequality (and other Bell’s inequalities) can work as
entanglement witnesses, because a quantum state not satisfying
eq 39 must be entangled. We can test the CHSH inequality by
taking the unit vectors a; = (0, 0, 1), a, = (1, 0, 0),

p, = (—%, 0, —%), p, = (%, 0, —%), and the singlet
state ly) = %(IOI) —110)),5- We then work out

(W Weyauly) = 2(1 — V2) < 0, which proves that the
singlet state is entangled. This agrees with the entanglement
entropy for the Bell state.

https://doi.org/10.1021/acs.jpclett.4c00180
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Figure 5. A set of all the bipartite states (Liouville space) as an illustration for entanglement and correlation. The red solid curve is the boundary
between correlated states and uncorrelated states. The red dashed curve is the boundary between entangled states and separable states. The ellipses
imply convexity. Notice that all the uncorrelated states comprise the convex hull of the separable set. Thus, the uncorrelated set is the edge of the

separable ellipse.

The choice of entanglement witness operator Tr(‘W(p)p) is
not unique, because there are infinite witness hyperplanes in
the Liouville space. For example, there is an arbitrariness in
choosing the direction of the unit vector @ and S in eq 39.
Apart from Bell's theorem, variance and quantum Fisher
information are also relevant to building entanglement
witnesses. Among so many entanglement witnesses, their
performance varies based on the system of interest. Specifically,
entanglement witnesses with negative expectation values
regarding the system of interest are good entanglement
witnesses. Figure 4 shows two examples, W, and ‘W, where

W, is a good entanglement witness for the system of interest

but W, is not a suitable witness for the underlying state.
The example of the CHSH inequality also shows that some
witnesses are not good when studying the singlet state. If we
take a, = (01 0; l)) Q= (11 0; 0); ﬂl = ﬂz = (0; O) 1) in eq 39’
the singlet state ly) = %(lOl) — 110)), gives the expectation

value of (W Wepenlw) =2 — /2 > 0. The challenge hence
lies in the construction of useful entanglement witnesses,
tailored for the systems and properties of interest produced in
an experiment. In the Bell test, the correlation between
different spin projections is measured to get a powerful
entanglement witness.

Entanglement witnesses also offer a feasible way to advise
experimentalists on how to prove the existence of entangle-
ment in a quantum system, because we only need to detect the
expectation value of a suitable observable. Entanglement
witnesses are usually treated as one of the most important
practical entanglement certification techniques.”> For example,
Aspect’s experiment is a Bell test that proves the violation of
Bell inequalities by measuring the correlation between
entangled photons.” It has recently been shown that quantum
Fisher information on certain states of a molecular aggregate or
polariton system can be measured by linear absorption
spectroscopy,’9 and an entanglement witness operator
Wari(p) can be built by quantum Fisher information.

Take polariton chemistry as an example. It has been shown
that in the typical electronic coupling regime, WQFI(p) works
as a good multimolecular entanglement witness at room
temperature and can be measured by bound mode absorption.
This is rigorous proof of the existence of long-lived
multimolecular entanglement because of intramolecular
interaction indirectly induced by cavity QED, despite the
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dephasing due to the system—bath interaction at room
temperature.60

Correlation and Coherence. In classical statistics,
covariance cov[X, Y] describes the correlation between two
random variables X and Y: cov[X, Y] = E[XY] — E[X]E[Y],
where E[X], E[Y], and E[XY] are the expectation values of the
X, Y, and their product XY. In quantum mechanics, to study
the correlation between two quantities or operators, the
correlation function can be similarly written as Tr(p0,0,) —
Tr(pO,)Tr(p0,). It is convenient to assume O, and O, have
zero expectation value. Otherwise, we may redefine the
operators by shifting the operators with a constant as O’ =
O — Tr(pO). Typically, the two-point correlation function is
defined as

(0,0,) = Tr(pOlOz) (40)

where the operators do not have to be observable.

The quantification of correlation is well-defined and has
been widely studied in physics and chemistry. For example, in
molecular spectroscopy, it is predicted using autocorrelation of
the dipole operator®”* as (u(t)u(0)). In many-body physics
and field theory, the two-point correlator between creation and
annihilation operators in the time-order {Ta(t)aj(t')) is the
time-ordered Green’s function and propagator.” In quantum
optics, correlation functions are used to characterize the
statistical and coherence properties of an electromagnetic field
&E(%, t), known as the degree of coherence®”

(1) — (8*(?1/t1)8(72, tz)>
VAEG, H)PXIEG, 1))
complex field &. Similarly, the n-point correlation function can
be generalized, for example, to study the higher-order Dyson
series in nonlinear spectroscopy or the degree of second-order
2) _ <8*(7i,t1)8*(7,:,t2)8(7’i, tl)s(;;‘tz))
& T T em eGP

In this paper, we are more interested in the correlation
between two subsystems, to clarify the difference between
quantum correlation and classical correlation, and their
relation to the entanglement between two subsystems. In
this case, we take O, and Og as two local operators on two
subsystems in eq 40. The concept of quantum coherence is
also clarified because when calculating the correlation function,
there will be a contribution from coherence.

Quantum Correlation. Two subsystems that are en-
tangled with each other imply a quantum correlation between
them. Quantum entanglement is a special form of quantum

, where the phase is encoded in the
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coherence
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correlation without classical analogy. To further clarify this
statement, we first define the uncorrelated quantum state,
which is composed of an uncorrelated pair of subsystems:

Pag =Py Py (41)

To find such tensor product decomposition, partial trace can
be applied: p, = Trg(pap) and pg = Try(pap)- If one carries out
a local measurement on subsystem A by a local operator O,,
the expectation value (O,) = Tr(Oppas) = Tr(Oxp,) is
completely determined by the information about subsystem A
and no information will be gained for B from this
measurement. No mutual information is lost during the
measurement. Similarly, the two-point correlator of an
uncorrelated pair is (0,0p) = (0,){Og), which is simply the
multiplication of two expectation values with no cross-term.
Thus, we can reconstruct the uncorrelated quantum state p,p
by doing quantum tomography independently on subsystems
A and B. Equation 41 defines the uncorrelated quantum states.
A classical analogy to uncorrelated quantum systems is
independence in classical probability theory, where the joint
probability of a pair of random variables (X, Y) can be written
as the product of their probabilities: Pyy(x, y) = Py(x)Py(y).

A state with quantum correlation between two subsystems is
then defined as a quantum state that is not uncorrelated, which
means that the density matrix cannot be written as a tensor
product of the reduced density matrices:

Pas F Ti(0ys) ® Tiapyy) = 1y ® py (42)

The distinction between correlated and uncorrelated systems is
demonstrated in Figure S by the red solid curve. Equation 42
offers a simple criterion to examine if a system is correlated.
Furthermore, quantum correlation can sometimes be quanti-
fied by the distance between p,p and p, ® pg, for example,

fidelity Flpy o, ® py) = (Tr(\[J7s (0 ® py) Jup )V’

trace distance T(p,;, p, ® p;) = %Tr(d(pAB -9 ® ,()B)2 ),

and relative entropy (also known as quantum mutual
information this case) I(p, P ®py) =
PaB

()] = S0 + $(00) = 5(a)

As stated before, quantum entanglement is a special form of
quantum correlation. Similarly, by comparing separable states
(eq 27) and uncorrelated states (eq 41), one can find that the
uncorrelated state is a special form of the separable state.
Uncorrelated states comprise the convex hull of the separate
set. Therefore, there exists a set of density matrices that is
correlated but separable (not entangled), known as classical-
like correlation:

in

n=2

P = 2 B ® 1y

pp (43)

where p; > 0 and Y p; = 1 with at least 2 nonzero terms. The
classical analogy in probability theory is Pyy(x, y) =
> 22p.Py(x)Pi(y). Here is an example of a correlated but
not entangled state:
»® = Looyool + 1n1y(iin
) o (44)
If we do a one-time measurement on subsystem A by the local
operator ¢4 and get 10),, we can predict that the following
measurement by the local operator of will result in 10)5, and

4066

vice versa. Therefore, p{Y)
subsystems A and B, despite it being separable.
correlation is classical-like.

On the contrary, a Bell state D, ), = %(IOO) + 111)),p, or

P = 1Dy P, 1y, is entangled. However, p%) contains some

similar intersystem correlation to p{y, because if we do a local
projective measurement o7 first, followed by o5, we will get the
same results as for p(1> Thus, entangled states and classical-like
correlated states share the same local measurement outcome
and the same correlation function, (c%6%)" = (c4c%)® = 1,
which means correlation is not solid evidence of entanglement.

To better understand this, we write the Bell state as a density
matrix p$ = |®,),5(®P, x5 and expand it:

) shows a strong correlation between
This

P = %(loo)(ool + 111111 + 100)(11I + 111)(00l),
(45)

It is now clear that p{) has nonzero quantum coherence in the
chosen basis, while p ) does not. So, it is the quantum
coherence that induces the nonclassical entanglement. When
performing local projective measurements on one subsystem,
we only keep the reduced den51ty and lose coherence, which is
actually a dephasing process. P4 will dephase to p{y) when it
strongly interacts with the measurement instrument. We can
further check that p{Y and p{ share the same reduced density
matrix:

My — @y_ 1
TrB( ) TrB( ) - 2(|O><0| + |1><1|)A (46)

Although quantum correlation is a more general concept
than quantum entanglement, they are related. Correlation
functions can be used as entanglement witnesses that
sufficiently distinguish some entangled states, and the
correlation functions are easy to measure and quantify. As an
example discussed before, Bell’s inequality (eq 39) offers some
constraint of the two-point correlation functions for the
separable states, including those classical-like correlated states,
but the entangled states are not bounded by it. In the Bell test,
the quantum correlation is revealed by noting that the singlet
spin state is unchanged by observing it in any reference frame
(e.g, the observer can rotate the axes and still measure the
same spin-pairing). Bell realized that the extra quantum
correlation can often (but not always) be detected by
comparing two measurements performed in different reference
frames.”

Quantum Coherence. The previous example shows that
the entangled state is not only correlated but also violates
locality and realism. The distinction between classical-like
correlation and quantum entanglement can be understood by
quantum coherence. The concept of coherence originates from
wave interference, where the phase difference leads to
constructive or destructive interference. In quantum mechan-
ics, a pure state is just a wave function. As shown in eq 2, (110l
0) shows the effect of interference and cycf quantifies the
magnitude of interference, known as quantum coherence.

More rigorously, the concept of quantum coherence needs
to be discussed in the density matrix formalism. Quantum
coherence is signaled by the off-diagonal terms of a density
matrix in a particular basis. When studying a density matrix in
this fixed basis, the diagonal terms are considered a series of
classical-like probabilities, while the off-diagonal terms
emphasize the quantum properties of the state. Thus, a
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diagonal density matrix is considered classical-like in this fixed
basis. When doing PVM, we project the quantum state p to
this fixed basis by keeping only the diagonal terms and
dropping all the coherence, resulting in an incoherent and
classical-like quantum state p’ = Y,P, pP,,.

It is important to point out that coherence varies in different
bases of the same quantum state. So specifying the basis is the
first step to studying coherence.

To quantify quantum coherence in a fixed basis, we follow
the rule of monotonicity under incoherent operations
(quantum operations that map the set of incoherent states
onto itself). Baumgratz et al.>® proposed the /;-norm coherence

C(p) = X Mmlp = i) = 3 g, |

mFm, (47)

my,m,

which is the sum of all the /;-norm of the off-diagonal terms.
The relative entropy coherence is defined as

C..(p) = Tr[pln(f]] = S8(p’) = S(p)

(48)

which is just the difference between the von Neumann entropy
of p" and p, where the positivity is guaranteed by eq 25.

Although relevant, quantum coherence is very different from
quantum correlation and quantum entanglement. Either
quantum correlation (uncorrelatedness) or quantum entangle-
ment (separability) is basis-independent, unlike quantum
coherence. Intuitively, the correlation or entanglement
between the two subsystems should not depend on the basis
chosen to describe the composite system.

B CONCLUSION

In this article, we reviewed some basic concepts in quantum
information by providing rigorous mathematical definitions
and physical pictures. We attempted to frame the paper
especially for researchers in chemistry and other fields outside
of quantum physics. In particular, we emphasized the basic
tools needed to deal with the generalization of classical
probability theory in classic information theory to density
matrix theory, which is central to quantum information.

With the definition of mixed states, quantum measurements,
and the von Neumann entropy, entanglement can be
rigorously discussed. Although chemistry is dominated by
quantum mechanics, many chemical systems are classical-like
and can be well-described in the classical context. Entangle-
ment is of great interest because it has no classical analogy,
which implies that it can be exploited in ways not possible for
classical systems. Entanglement is defined as a state that cannot
be written as a convex combination of the tensor product states
of the subsystems. For a bipartite pure state, entanglement
entropy (eq 32) quantifies entanglement. While small model
systems can be well studied, chemistry will likely shift focus to
much larger quantum systems. A key point to realize is that it is
NP-hard to pinpoint a general state (with an arbitrary number
of particles and arbitrary dimension) as being entangled”’ and
thus difficult to measure entanglement.*> A sufficient approach
to qualitatively describe multipartite entanglement involves
entanglement witnesses, such as Bell’s inequality,58 variance,””
or quantum Fisher information.””*’ These kinds of techniques
and developments thereof will be of interest for classifying
chemical entanglement.

It is sometimes easy to get confused between quantum
entanglement, quantum correlation, and quantum coherence,
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which, though related, are fundamentally different. Quantum
entanglement is a special form of quantum correlation, but
correlation does not always mean entanglement. The
disentangled correlation is known as the classical-like
correlation. Quantum correlation can be easily quantified by
correlation function both theoretically and experimentally, but
it is usually an NP-hard problem to describe entanglement.
Quantum entanglement is the quantum correlation with no
classical analogy, where the nontrivial quantum effect is
guaranteed by quantum coherence in a fixed basis. However,
quantum coherence does not mean quantum entanglement,
because entanglement and correlation are basis-independent,
but coherence varies with the choice of basis.

Quantum correlation can be used to build entanglement
witnesses. For example, the Bell test aims to measure the
correlation between spins in different directions to sufficiently
detect entanglement. Linear absorption spectroscopy can
measure the dipole autocorrelator to witness entanglement.
As anticipated above, quantum entanglement defies explan-
ation by classical-like correlation. Moreover, we showed how
certain types of quantum correlations come hand-in-hand with
their possible classical analogies, and often the classical
correlations dominate, for example, the adiabatic dynamics
and Markovian dynamics. Physically, this is the same idea that
is exemplified by interference, as seen in the double-slit
experiment. Interference is insufficient evidence for distinctly
quantum correlations, even though it evidences wave-like
properties.

There are many examples of classical correlations exhibited
by chemical systems. These include synchronization produced
by feedback loops, oscillating reactions, or any switched system
under kinetic control. Although these are interesting
phenomena, they are not directly relevant to the nontrivial
features of quantum information. To build the nontrivial
features of entanglement between molecules, intermolecular
interaction is required, and entanglement grows at a rate
proportional to the interaction.’® However, in chemistry, due
to the noisy environment (i.e., the system—bath interaction),
large dephasing destroys entanglement, rendering the system
classical-like. Such chemical systems show mostly classical
behavior and lack the long-lived quantum entanglement
needed in quantum information applications. So we need to
understand entanglement to engineer chemical systems for
quantum information. To build entanglement and maintain it
for a longer time, one way forward is using larger
intermolecular interactions that can compete with dephasing,
such as molecular aggregates”” or cavity QED.**”"° Entangle-
ment witnesses such as quantum Fisher information®® could be
useful to sufficiently prove the existence of entanglement.

We hope this detailed Mini-Review serves as a helpful
primer to provide rigorous background on quantum
information. That, in turn, will serve as a platform for
discovering new examples of, and tools to study, quantum
information in the molecular domain.

B AUTHOR INFORMATION

Corresponding Author
Gregory D. Scholes — Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States;
orcid.org/0000-0003-3336-7960; Email: gscholes@
princeton.edu

https://doi.org/10.1021/acs.jpclett.4c00180
J. Phys. Chem. Lett. 2024, 15, 4056—4069


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gregory+D.+Scholes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3336-7960
https://orcid.org/0000-0003-3336-7960
mailto:gscholes@princeton.edu
mailto:gscholes@princeton.edu
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry Letters

pubs.acs.org/JPCL

Author
Weijun Wu — Department of Chemistry, Princeton University,
Princeton, New Jersey 08544, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.4c00180

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2211326. The authors
thank Ignacio Franco, Ava N. Hejazi, and Alfy Benny for
valuable discussion and review.

B REFERENCES

(1) Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K.
Quantum entanglement. Reviews of modern physics 2009, 81, 865.

(2) Saffman, M.; Walker, T. G.; Molmer, K. Quantum information
with Rydberg atoms. Reviews of modern physics 2010, 82, 2313.

(3) Kaufman, A. M.; Ni, K.-K. Quantum science with optical tweezer
arrays of ultracold atoms and molecules. Nat. Phys. 2021, 17, 1324—
1333.

(4) Chitambar, E.; Gour, G. Quantum resource theories. Reviews of
modern physics 2019, 91, No. 025001.

(5) Scholes, G. D. A molecular perspective on quantum information.
Proceedings of the Royal Society A 2023, 479, 20230599.

(6) Wasielewski, M. R; et al. Exploiting chemistry and molecular
systems for quantum information science. Nature Rev. Chem. 2020, 4,
490—-504.

(7) Nielsen, M. A; Chuang, 1. L. Quantum Computation and
Quantum Information; Cambridge University Press: Cambridge, 2016.

(8) Ballentine, L. E. Quantum Mechanics: A modern development;
World Scientific: Singapore, 2015.

(9) Peres, A. Quantum Theory: Concepts and Methods; Kluwer:
Dordrecht, 1995.

(10) Barnett, S. M. Quantum Information; Oxford University Press:
Oxford, 2009.

(11) Kais, S. Introduction to quantum information and computation
for chemistry. Quantum Information and Computation for Chemistry
2014, 1-38.

(12) Jeong, H,; Kim, M.; Lee, J. Quantum-information processing
for a coherent superposition state via a mixedentangled coherent
channel. Phys. Rev. A 2001, 64, No. 052308.

(13) Kais, S. Entanglement, electron correlation, and density
matrices. Advances in Chemical Physics 2007, 134, 493.

(14) Kadison, R. V.; Ringrose, J. R. Fundamentals of the theory of
operator algebras; American Mathematical Society: Providence RI,
1997.

(15) Webster, R. Convexity; Oxford University Press: Oxford, 1994.

(16) Kramer, B.; MacKinnon, A. Localization: theory and experi-
ment. Rep. Prog. Phys. 1993, 56, 1469.

(17) Evers, F.; Mirlin, A. Fluctuations of the inverse participation
ratio at the Anderson transition. Physical review letters 2000, 84, 3690.

(18) Wegner, F. Inverse participation ratio in 2+ & dimensions.
Zeitschrift fur Physik B Condensed Matter 1980, 36, 209—214.

(19) Ma, J; Wang, X,; Sun, C.-P.; Nori, F. Quantum spin squeezing.
Phys. Rep. 2011, 509, 89—165.

(20) Kitagawa, M; Ueda, M. Squeezed spin states. Phys. Rev. A
1993, 47, S138.

(21) Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical
Description of Physical Reality be Considered Complete? Phys. Rev.
193S, 47, 777-780.

(22) Holevo, A. Probabilistic and Statistical Aspects of Quantum
Theory; Edizioni della Normale: Pisa, 2011.

(23) Lengyel, B,; Stone, M. Elementary proof of the spectral
theorem. Annals of Mathematics 1936, 37, 853—864.

4068

(24) Tong, D; Chen, J.-L; Huang, J.; Kwek, L; Oh, C. Kraus
representation for the density operator of a qubit. Laser physics 2006,
16, 1512—1516.

(25) Kraus, K. States, Effects, and Operations: Fundamental Notions of
Quantum Theory; Lecture Notes in Physics; Springer: Berlin, 1983;
Vol. 190.

(26) Busch, P.; Lahti, P.; Pellonpii, J.-P.; Ylinen, K; Quantum
Measurement; Springer: Switzerland, 2016.

(27) Davies, E. B.; Lewis, J. T. An operational approach to quantum
probability. Communications in Mathematical Physics 1970, 17, 239—
260.

(28) Ozawa, M. Quantum Measuring Processes of Continuous
Observables. J. Math. Phys. 1984, 25, 79—87.

(29) Jacobs, K; Steck, D. A. A straightforward introduction to
continuous quantum measurement. Contemp. Phys. 2006, 47, 279—
303.

(30) Stone, J. V. Information Theory: A tutorial introduction; Sebtel
Press: Middletown, DE, 2015.

(31) Ash, R. B. Information Theory; Dover: New York, 1990.

(32) Shannon, C. E. A mathematical theory of communication. Bell
system technical journal 1948, 27, 379—423.

(33) Yuen, H.; Ozawa, M. Ultimate Information Carrying Limit of
Quantum-Systems. Phys. Rev. Lett. 1993, 70, 363—366.

(34) Mattle, K; Weinfurter, H.; Kwiat, P.; Zeilinger, A. Dense
coding in experimental quantum communication. Phys. Rev. Lett.
1996, 76, 4656—4659.

(35) Gisin, N.; Thew, R. Quantum communication. Nat. Photonics
2007, 1, 165—171.

(36) Bennett, C. H.; Brassard, G. Quantum cryptography: Public key
distribution and coin tossing. Theor. Comp. Science 2014, 560, 7—11.

(37) Pirandola, S.; et al. Advances in quantum cryptography. Adv.
Opt. Photonics 2020, 12, 1012—1236.

(38) Werner, R. F. Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40,
4277.

(39) Wu, W,; Sifain, A. E;; Delpo, C. A; Scholes, G. D. Polariton
enhanced free charge carrier generation in donor—acceptor cavity
systems by a second-hybridization mechanism. J. Chem. Phys. 2022,
187, 161102 DOI: 10.1063/5.0122497.

(40) Breuer, H.-P.; Laine, E.-M,; Piilo, J.; Vacchini, B. Colloquium:
Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys.
2016, 88, No. 021002.

(41) Izmaylov, A. F,; Franco, 1. Entanglement in the Born—
Oppenheimer approximation. J. Chem. Theory Comput. 2017, 13, 20—
28.

(42) Tully, J. C. Perspective: Nonadiabatic dynamics theory. J.
Chem. Phys. 2012, 137, 22A301.

(43) Gurvits, L. Classical complexity and quantum entanglement.
Journal of Computer and System Sciences 2004, 69, 448—484.

(44) Acin, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J.; Tarrach,
R. Generalized Schmidt decomposition and classification of three-
quantum-bit states. Phys. Rev. Lett. 2000, 85, 1560.

(45) Vedral, V.; Plenio, M.; Rippin, M.; Knight, P. Quantifying
entanglement. Phys. Rev. Lett. 1997, 78, 2275-2279.

(46) Vidal, G. Entanglement monotones. Journal of Modern Optics
2000, 47, 355—376.

(47) Popescu, S.; Rohrlich, D. Thermodynamics and the measure of
entanglement. Phys. Rev. A 1997, 56, R3319.

(48) Hill, S. A.; Wootters, W. K. Entanglement of a pair of quantum
bits. Physical review letters 1997, 78, 5022.

(49) Wootters, W. K. Entanglement of formation of an arbitrary
state of two qubits. Phys. Rev. Lett. 1998, 80, 224S.

(50) Vedral, V. The role of relative entropy in quantum information
theory. Rev. Mod. Phys. 2002, 74, 197—234.

(51) Vidal, G.; Werner, R. F. Computable measure of entanglement.
Phys. Rev. A 2002, 65, No. 032314.

(52) Friis, N.; Vitagliano, G.; Malik, M.; Huber, M. Entanglement
certification from theory to experiment. Nature Reviews Physics 2019,
1, 72-87.

https://doi.org/10.1021/acs.jpclett.4c00180
J. Phys. Chem. Lett. 2024, 15, 4056—4069


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weijun+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00180?ref=pdf
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1098/rspa.2023.0599
https://doi.org/10.1038/s41570-020-0200-5
https://doi.org/10.1038/s41570-020-0200-5
https://doi.org/10.1002/9781118742631.ch01
https://doi.org/10.1002/9781118742631.ch01
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1002/9780470106600.ch18
https://doi.org/10.1002/9780470106600.ch18
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1007/BF01325284
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.2307/1968623
https://doi.org/10.2307/1968623
https://doi.org/10.1134/S1054660X06110041
https://doi.org/10.1134/S1054660X06110041
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1063/1.526000
https://doi.org/10.1063/1.526000
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1103/PhysRevLett.70.363
https://doi.org/10.1103/PhysRevLett.70.363
https://doi.org/10.1103/PhysRevLett.76.4656
https://doi.org/10.1103/PhysRevLett.76.4656
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1063/5.0122497
https://doi.org/10.1063/5.0122497
https://doi.org/10.1063/5.0122497
https://doi.org/10.1063/5.0122497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1021/acs.jctc.6b00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4757762
https://doi.org/10.1016/j.jcss.2004.06.003
https://doi.org/10.1103/PhysRevLett.85.1560
https://doi.org/10.1103/PhysRevLett.85.1560
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1080/09500340008244048
https://doi.org/10.1103/PhysRevA.56.R3319
https://doi.org/10.1103/PhysRevA.56.R3319
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1038/s42254-018-0003-5
https://doi.org/10.1038/s42254-018-0003-5
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry Letters

pubs.acs.org/JPCL

(53) Giihne, O.; T6th, G. Entanglement detection. Phys. Rep. 2009,
474, 1-75.

(54) Terhal, B. M. Bell inequalities and the separability criterion.
Phys. Lett. A 2000, 271, 319—326.

(55) Peres, A. Separability criterion for density matrices. Phys. Rev.
Lett. 1996, 77, 1413—1415.

(56) Bell, J. S. On the einstein podolsky rosen paradox. Physics
Physique Fizika 1964, 1, 195.

(57) Collins, D.; Gisin, N. A relevant two qubit Bell inequality
inequivalent to the CHSH inequality. Journal of Physics A:
Mathematical and General 2004, 37, 1775.

(58) Aspect, A. Proposed experiment to test the nonseparability of
quantum mechanics. Physical review D 1976, 14, 1944.

(59) Sifain, A. E.; Fassioli, F.; Scholes, G. D. Toward witnessing
molecular exciton entanglement from spectroscopy. Phys. Rev. A
2021, 104, No. 042416.

(60) Wu, W.; Fassioli, F.; Huse, D. A.; Scholes, G. D. Molecular
Entanglement Witness by Absorption Spectroscopy in Polariton
Chemistry. To be submitted.

(61) Bloembergen, N. Nonlinear optics and spectroscopy. Rev. Mod.
Phys. 1982, 54, 685.

(62) Shen, Y.-R. Principles of nonlinear optics. 1984.

(63) Peskin, M. E. An introduction to quantum field theory; CRC
Press, 2018.

(64) Zernike, F. The concept of degree of coherence and its
application to optical problems. Physica 1938, S, 785—795.

(65) Baumgratz, T.; Cramer, M. Plenio, M. B. Quantifying
coherence. Physical review letters 2014, 113, 140401.

(66) Li, Z.-Z.; Chen, W.; Abbasi, M.; Murch, K. W.; Whaley, K. B.
Speeding up entanglement generation by proximity to higher-order
exceptional points. Phys. Rev. Lett. 2023, 131, 100202.

(67) Hestand, N. J.; Spano, F. C. Expanded theory of H-and J-
molecular aggregates: the effects of vibronic coupling and
intermolecular charge transfer. Chem. Rev. 2018, 118, 7069—7163.

(68) Frisk Kockum, A.; Miranowicz, A.; De Liberato, S.; Savasta, S.;
Nori, F. Ultrastrong coupling between light and matter. Nature
Reviews Physics 2019, 1, 19—40.

(69) Forn-Diaz, P.; Lamata, L; Rico, E; Kono, J; Solano, E.
Ultrastrong coupling regimes of light-matter interaction. Rev. Mod.
Phys. 2019, 91, No. 025005.

(70) Mandal, A.; Taylor, M. A.; Weight, B. M.; Koessler, E. R; Li,
X.; Huo, P. Theoretical advances in polariton chemistry and
molecular cavity quantum electrodynamics. Chem. Rev. 2023, 123,
9786—9879.

4069

https://doi.org/10.1021/acs.jpclett.4c00180
J. Phys. Chem. Lett. 2024, 15, 4056—4069


https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1088/0305-4470/37/5/021
https://doi.org/10.1088/0305-4470/37/5/021
https://doi.org/10.1103/PhysRevD.14.1944
https://doi.org/10.1103/PhysRevD.14.1944
https://doi.org/10.1103/PhysRevA.104.042416
https://doi.org/10.1103/PhysRevA.104.042416
https://doi.org/10.1103/RevModPhys.54.685
https://doi.org/10.1016/S0031-8914(38)80203-2
https://doi.org/10.1016/S0031-8914(38)80203-2
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.131.100202
https://doi.org/10.1103/PhysRevLett.131.100202
https://doi.org/10.1021/acs.chemrev.7b00581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1021/acs.chemrev.2c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.2c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

