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Recent work has exposed the idea that interesting
quantum-like (QL) probability laws, including
interference effects, can be manifest in classical
systems. Here, we propose a model for QL states
and QL bits. We suggest a way that huge, complex
systems can host robust states that can process
information in a QL fashion. Axioms that such
states should satisfy are proposed. Specifically, it is
shown that building blocks suited for QL states are
networks, possibly very complex, that we defined
based on k-regular random graphs. These networks
can dynamically encode a lot of information that
is distilled into the emergent states we can use for
QL processing. Although the emergent states are
classical, they have properties analogous to quantum
states. Concrete examples of how QL functions
are possible are given. The possibility of a ‘QL
advantage’ for computing-type operations and the
potential relevance for new kinds of function in the
brain are discussed and left as open questions.

1. Introduction

Quantum states characterize the microscopic world,
where they convey the dual wave-particle basis for
quantum theory. Of special interest is the way proba-
bility laws for quantum states allow for interference
effects and other, more exotic, correlations evidenced
in the effect and outcome of measurements. We thus
find fascinating non-classical phenomena that can be
exploited in quantum information science [1]. Here,
a goal is to leverage quantum correlations at the
molecular scale for function at the human scale.
A well-known challenge, however, is that quantum
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states, at least the most interesting ones, tend to be fragile—easily destroyed by environmen-
tal noise and fluctuations (the process of decoherence [2]). Researchers therefore focus on
stabilizing simple states using techniques such as very low temperature. Here, we explore a
way to produce robust states, comprising highly complex systems, that exhibit ‘quantum like’
properties.

Let us start by defining what we mean, in the present work, by a quantum-like (QL) state.
An important requirement is that these states allow amplitude-level interferences that are
explained by a measurement formulation like that required by the quantum theory. This is a
fairly broad criterion that can be fulfilled by either: (i) states in vector spaces, where we think of
amplitude (vector) additions followed by measurement of probability as the amplitude squared;
or (ii) we can work only with probabilities, but formulate a vector-like model for measurement
sequences (this is the essence of the Véxjo model). In the present work, we would like to take
the QL state framework further, and show how eigenstates of classical systems can be combined
(through interactions between the systems serving as QL-bits) to produce states in a state space
that represents the tensor product of vector spaces or each QL-bit. Since we are dealing with
inner product spaces here, the vector spaces are Hilbert spaces.

Why would complex QL systems be interesting? There are two major motivations for this
work. First, by exhibiting a concrete example of robust QL states, we can suggest ways to
design circuits with quantum like functions. By considering such circuits, we can conceive
of experiments designed to seek QL correlations in a range of different systems. Moreover,
this platform could suggest a way to perform QL computing using simplified hardware that
is a step towards true quantum computing. Second, we establish a hypothesis for what QL
states could ‘look like’ in settings as complex as biology. The key point we will establish is the
feasibility of these states.

The possibility that some kinds of quantum effects provide function in biological systems
has intrigued researchers for over a century. Yet, it is easy to argue against such effects because
the kinds of quantum states that we are familiar with are fragile, and would rapidly decohere in
a noisy environment. This point is well recognized, yet, as enunciated by Penrose [3], calls for
discovery of new kinds of quantum systems that are not only robust in a noisy environment,
but ‘retain their manifest quantum nature at a much larger scale’. Even if such states are not
present, or functional, in living systems, elucidating the principles that enable them would open
up new ways of engaging quantum (like) correlations for technology.

In quantum states, classical correlations are prominent [4]. For example, in the entangled

state |P_) = % [0)a 1 I)p— 1 1)4 1 0)l, it is obvious that if a measurement of qubit A indicates

it is in state 10),, the qubit B (measured in the same basis) must be in the state 1)z In
addition, we note that interference phenomena—a key contributor to quantum function—are
not confined to quantum systems. Related ideas have been previously discussed [5,6]. Thus,
there is reason to believe that classical systems possessing the right kinds of correlations and
with the potential to exhibit interference effects might replicate many (obviously not all) kinds
of quantum phenomena. It is thus proposed that it may not always be necessary to produce
truly quantum devices that exploit quantum correlations. It might often be sufficient to develop
a QL mimic constructed from classical components. Not only does this open new avenues for
engineering systems that can capture some of the properties of quantum systems, but it also
provides a framework for thinking about QL function in nature. The essential advantage would
be that more sophisticated probability laws can be leveraged.

Here, we combine ideas from graph theory and operator theory to demonstrate how
complex networks can serve as a basis for generating complex QL states and producing
functions using those states. We formulate axioms that guide the construction of the states
and demonstrate examples of such states. Importantly, we describe how these states are resilient
in noisy environments. In the discussion, we speculate about functions unique to these states
and how they provide a basis for testable hypotheses for exotic phenomena, including how
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QL processes might augment classical processes in neural networks like the brain. Some of this
might sound far-fetched, but keep in mind that the central finding of this work is to define and
analyse the QL states themselves. From this foundation, perhaps we can begin asking questions
that could not previously be well posed.

One inspiration for the work was to define physical realizations of QL states that can show
properties described by QL probabilities, as proposed by Khrennikov in the framework of a
contextual probabilistic model [7], termed the Viaxjo model. The focus of the Vaxjo model is
on non-Kolmogorov probabilities—that is models where probability can be thought of as a
kind of vector quantity. This allows probability amplitude to interfere, like in quantum theory.
However, there is no requirement of an underlying microscopic quantum state, so the QL
model can be used to analyse problems as far afield as financial markets, psychology, or even
the mind. Our goal in this paper is to propose a concrete model for QL states that are complex
enough to accommodate the idea of ‘context’ in measurement theory.

The main focus of the paper is to formulate examples of QL-states in a vector space, closely
analogous to quantum states, that can be realized in classical set-ups. To do that, we notice that
emergent states of very complex systems are incredibly robust and isolated in the spectrum,
so they can potentially serve as building blocks for QL states [8]. An emergent phenomenon
is manifest when numerous small interactions add coherently to produce a stunning collective
effect that appears above some threshold of the number of coherently interacting systems. In
quantum systems, an emergent state is signalled by a single eigenvalue that splits away from
the many other eigenvalues in the spectrum, opening up an energy gap [9]. The questions that
we solve in the present work include how to design networks that produce stable superposition
states of two basis states, and how to combine those networks to produce a larger state space
that can be mapped onto a state space comprising linear combinations of product states.

Emergent states are characteristic of synchronized complex networks of phase oscillators.
There are many examples of synchronization in a wide variety of systems [10-18]. A few
illustrative examples of synchronization include power networks [19], bacterial networks
interacting via signalling [20], human networks of violin players [21] and mechanisms
underpinning memory processes in the brain [22]. We will discuss synchronization in neural
networks in more detail later in the paper. All these kinds of systems attain a stable synchron-
ized steady state by feedback loops.

Synchronization is usually analysed with the Kuramoto Model [11]; a system of coupled
differential equations that predict how initial conditions and feedback acting in a set of phase
oscillators allow synchronization to emerge. Here, we assume that the initial conditions (phase
offsets) allow the system to be synchronizable. We have studied the connections between
network synchronization and homomorphic quantum eigenstates in other work [23]. This
approach allows us to focus on the eigenstates rather than dynamics. In particular, we are
interested in an ordered eigenstate whose eigenvalue is well separated from the eigenvalues of
the many other random states of a system. We construct the basis for these emergent states in
terms of networks (or graphs).

The main outcome of this paper is to combine these ideas—QL states and emergent states
of networks—to propose a network structure that serves as a building block for the full tensor
product representation of QL states. That is, we show how to mimic linear combinations of
product states. A schematic of the construction that will be developed in the paper is shown in
figure 1. We then discuss how those states might be exploited for function in ways that have not
been considered previously for typical network structures.

Detailed reviews of quantum information science can be found in various books and reviews
[1,24-28]. In recent review type papers [4,29], we describe the idea of entanglement and
qubits and summarize the conceptual ideas behind quantum information science for a broader
readership.
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Figure 1. Example of the way three QL-bits couple to produce any state in the tensor product space. The QL-bits are
comprised of graphs, labelled here for later reference. Connections (edges) between the QL-bits are shown schematically. The
emergent state of the network produces a state that can be mapped to the state in the tensor product of Hilbert spaces of
each QL-bit, as indicated. In reality, there should be many edges between each pair of subgraphs.

2. Graphs and emergent states

A network can be represented as a graph. A graph G(n, m), that we will often write simply
as G, comprises n vertices and a set of m edges that connect pairs of vertices. The size of a
graph or subgraph, that is the number of vertices is written |G|. In the present work, the edges
are assigned semi-randomly —that is there is an overarching ‘rule’ that guides how the edges
are placed randomly. In the present work, we only consider that ‘rule” to be that we construct
k-regular random graphs (we explain these graphs below). In some cases, we also delete some
fraction of the edges randomly after building the graph [8]. Rather than assigning a specific
number of edges, sometimes we assign edges between vertices with probability p, so the graph
is formally G(n, p). Here, we discuss only graphs with no loops and no multiple edges. For
background, see [30-32].

The adjacency matrix of a graph A is the n x n matrix containing entries a;; = a; =1, with
i, j €{1,2,...n}, when an undirected edge joins vertices i and j. The adjacency matrix of a directed
graph contains entries g;; =1 when an edge connects from vertex i to vertex j. We consider also
signed graphs, where the edge entry in the adjacency matrix is designated from {0, 1, -1}.

Undirected graphs can be thought of as representing coupling between entities located at the
vertices—a kind of coupling map of the system. For instance, below we will discuss networks
of interacting oscillating dipoles, so the interaction is the dipole-dipole coupling. That coupling
can be negative, indicating that the coupled oscillators are locked out-of-phase, then we use the
signed graph. Directed graphs indicate a flow, timing, or causal coupling from one vertex to
another. That is often found in physical systems [33], including transportation networks, aspects
of social networks, downstream influence (common in biology) and communication.

The spectrum of a graph G is defined as the spectrum (i.e. eigenvalues) of its adjacency
matrix A. Here, we use the spectrum to detect and characterize emergent states by their
eigenvalues. The spectrum can tell us a lot about the graph, and vice versa, see [34]. The graph
can also be used as a template to construct an ensemble of random matrices, whose spectrum is
analysed [23].

In earlier work we noticed that certain graph types have a spectrum where the lowest (or
highest, depending on the signs of the edges) eigenvalue (or few eigenvalues) are sufficiently
separated from the rest of the spectrum so that those states are resilient to decoherence [23].
Indeed, it is known that there are families of graphs with exceptional properties of this kind
—expander graphs [35-40]. In the present work, expander graphs of a particular type will
underlie our prototypical networks. Expander graphs involve high connectivity throughout the
graph, and are therefore optimal structures for communication or random walks.

Definition 2.1. (Expander graph) Let G be the n-vertex graph with vertex set V and take 0 < ¢ € R.

G is an e-expander if for every vertex subset Y of V with 1Y | < % V|, we have
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Y | 2elYl, @.1)

where Y is the boundary of Y, which means the set of edges in V that have one endpoint in' Y and one
endpointin V\ Y.
Definition 2.2. (Isoperimetric constant) The isoperimetric constant of G, h(G), indicates the
minimum € for the graph:
g

h(G) = min (W] 2.2)

with |Y 1 <21V 1.

The specific expander graphs we study here are the k-regular random graphs.

Definition 2.3. (k-reqular graph) A graph G is k-reqular if every vertex has degree (valency) k. That
is, every vertex connects to k edges.

Definition 2.4. (Expander family, def 1.74 of [36]) Let k be a positive integer. Let (Gy) be a sequence
of k-regqular graphs such that |G,| — oo as n — 0. (G,) is an expander family if the sequence (h(G)) is
bounded away from zero.

Let the eigenvalues of G be 49> 4; = --- 2 4,_1. When G is a k-regular graph, then Ay = k. This

fact is easily demonstrated by noting that the eigenvector associated with 4 is (1,1, 1, ...)/y/n.
The second-largest eigenvalue 1; is bounded by the Alon-Boppana theorem [40,41]. It can then
be shown that the smaller 4; is, the larger h(G) is.
Definition 2.1. (prop 1.84 of [36]) Let G be a k-regular graph, then
k-4

=2 < 1(G) < 2Kk~ ). 2.3)

Conversely, the larger h(G), the larger the spectral gap Ay—4; (recall that A= k). This is the
reason that expander graphs are good candidates for emergent states.

The isoperimetric constant is not so easy to calculate. It is closely related to the property of
topological groups called weak containment, specifically a quantity called Kazhdan’s property
(T) [42], which can sometimes be more easily bounded. However, for the present purposes, we
simply point out that the expansion property of a family of graphs is best estimated from graph
spectra. This is demonstrated for k-regular graphs by the Alon-Boppana bound [40,41].

In recent work, we have shown that k-regular random graphs retain their characteristic
spectral properties even when a substantial fraction of edges have been removed at random
[8]. We explain those numerical results on a more formal level, with proofs, in another paper.
We found that the ensemble of graphs has the spectrum of an ensemble of d-regular random
graphs, where d < k is the average valency of vertices for the ensemble of graphs. Therefore,
these graphs can be quite disordered, but still display a prominent eigenvalue that is well-sepa-
rated from those of the remaining ‘random’” states. This particular point, and the reasons that
the emergent state is spontaneously stable, will be developed in another paper.

In other work, it has been shown that complex networks where nodes are coupled with the
structure of k-regular random graphs are highly synchronizable [43]. In that work, the authors
prove that for the case of regular graphs, spectral expansion implies global synchrony. That
is, a network of phase oscillators coupled in the fashion of a k-regular graph will synchronize
regardless of their initial phases. In the present work, we do not necessarily need perfectly
synchronizable networks. In other words, it may be advantageous to suffer some initial
phase arrangements that inhibit synchronization with the benefit of less-stringent construction
requirements for the graph. After all, these networks will be much more robust to disorder and
implementable if they can sustain a significant variance in structure. Our main requirement is
that the graphs are on average d-regular.

Some examples of k-regular random graphs on n = 40 vertices, together with their spectra,
are shown in figure 2. Here, k = 20, so the number of edges in the graph without edge disorder
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is kn/2 = 400. We plot edge-disordered graphs, with various numbers of edges removed. The
deleted edges are indicated by green lines, whereas the retained edges are light blue. We
compare cases where 20, 100 and 300 edges have been randomly removed. The emergent state
—evident as the isolated, largest eigenvalue—is qualitatively stable (that is, separated from the
rest of the spectrum) until more than half the edges have been deleted. The eigenvector of the
emergent state is (1,1, 1, ...)/\/ﬁ.

It is useful to compare these graphs and spectra to those of signed graphs. Let’s say the
largest eigenvalue of the unsigned graph is d, then, if the signs of all vertices are reversed, the
smallest eigenvalue of the signed graph is —d. It is associated with the eigenvector (1,1, 1, ...)/\/n.
We show in figure 3 examples where some fraction of the edges are randomly given negative
sign, according to probability p,. The positive edges are blue, while the negative edges are red.
We compare case of p,=0.2 with p,=0.8. It is evident that signed graphs also preserve the
emergent state, but only when the number of edges with one sign is sufficiently greater than
those of the other sign.

3. Quantum-like states on networks

Here, we define properties that QL states should possess by giving some brief definitions of
the state space we use for quantum systems, and then proposing some axioms that QL states
should satisfy. After that, we build concrete examples of systems that exhibit such states.

(a) Background and axioms

Our aim is to demonstrate stable states of a complex network that are defined in some basis,
{la1), 1az)}, such that we can produce arbitrary states by arbitrary convex combinations of the
basis states,

|A> = a1|a1>+oc2|a2), (31)

where a;, @ € Cor R and by normalization of + o = 1. These vectors will comprise a Hilbert
space H 4.

It might be worth defining Hilbert space here, and for more detail see [44]. A Hilbert space H

is a (complete) vector space over a field K (which can include C or R, for example) with an inner
product (x, y) which generalizes the idea of a dot product of vectors in Cartesian space. For any
vectors X, y, z in ‘H and scalars a € K, we have

(x+y,2)=(x,2) +(y, 2)
(ax,y) = alx, y)
(X, y) =y, %)
(x,x)=az0,
where the overbar means complex conjugate (or its equivalent for the relevant field). Note also
that the “vectors’ can be functions satisfying the properties listed above. The norm is defined in
terms of the inner product:

1
x| =(x, x)2.

We will define in the following sections QL states, constructed using networks that have
emergent states satisfying these properties. Here, our vector spaces are defined explicitly over
R. If we want to define them over C, we should use biased graphs [45-47], with edges taking
values from {0, 1, -1, i, —i}.
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Figure 2. Examples of k-reqular random graphs on n = 40 vertices with k = 20, together with their spectra. See text.

(a) The number of edges is 72 = 380 (note that the maximum possible number of edges is 400). Here, the emergent state is

clearly evident as the isolated state with greatest eigenvalue. (b) The number of edges is 72 = 300. (c) The number of edges

is m = 100. Here, the average valency (degree) of the vertices is too small for the emergent state to separate clearly from

the spectrum of random states.

We propose that those QL states and/or their underlying graphs should satisfy the following
axioms:

(1) The graphs will exhibit an emergent state that is distinguished in the eigenvalue
spectrum.

(2) Each graph will be robust and stable to disorder in its precise construction as well as
respect to disorder in the frequency of the oscillators represented by its nodes (vertices).

(3)  The basis QL bit is a two-state system, but one of the two states is not ‘off” because the
QL bit is defined by turning ‘on” a network of oscillators. Therefore, we need the QL bit
to comprise a basis of two distinguishable ‘on” states. What we mean by ‘on’ and ‘off’
distinguishes QL states from quantum states, where we are happy to have a two-level
system comprising the vacuum, or ground, state and another level. In the case of QL

!
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Figure 3. Examples of k-regular random graphs with n = 40, k = 20 and m = 300 with signed edges. (a) The
probability that an edge is negative is p,, = 0.2. Here, the positive edges dominate, so the emergent state has the greatest
eigenvalue in the spectrum. (b) The probability that an edge is negative is p,, = 0.8. Now, negative edges dominate, so the
emergent state has the least (most negative) eigenvalue in the spectrum.

states, the network needs to be activated (i.e. “on’) to function as a network and to be able
to produce superpositions by interacting with other networks of oscillating dipoles.

(4)  Unitary operations on graphs and subgraphs should be defined.

(5) We need a construction that couples graphs or subgraphs in such a way that allows
production of a state space homomorphic to superpositions of product states.

(b) The quantum-like bit

Khrennikov ef al. initiated a program for identifying how classical systems could produce
probabilistic outcomes like those peculiar to quantum mechanical systems. Progress has largely
concerned how probability laws are modified, and how probability is measured, as we review
in a later section. In the course of many examples, they refer to suitable QL states. In one paper
[48], a specific example is proposed for a single neuron. Here, we take a different approach
by exploring the possibility that QL states can be composed from interacting networks. A
main motivation is that these states can be surprisingly robust to decoherence —whereas typical
quantum states are likely to decohere quickly in disordered environments, which is the main
objection to the idea that quantum phenomena play any functional role in biological systems.
It is worth reiterating, too, that these states are not strictly quantum mechanical states; they are
QL states.

Building blocks proposed for QL states are networks, possibly very complex, that we define
using graphs. Networks have been extensively studied [49] and can have the properties of
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Axioms 1 and 2, as discussed earlier in this paper. Networks are known to provide insights
into social networks, neural networks, biochemical and biological networks, communications
systems and so on. They can be functionally sophisticated and encode a lot of information.
Networks can evolve through feedback to shift their balance and condense consensus. In short,
these building blocks are rich and powerful structures, although in the present work, we solely
consider their emergent eigenstates.

The emergent states of networks are classical. They arise from nonlinear interactions among
the vertices so that synchronization—the key characteristic of the emergent state—arises from
feedback [11,12]. This produces a stable eigenstate of the network of oscillators, which for
n oscillators is the state (1,1,1,...)/\/n. Our task is to develop a way to build from these
classical states new states that have properties analogous key characteristics of quantum states.
Specifically, we first need to define a QL bit | A) that ‘lives in” a Hilbert space 4.

It is proposed that QL states can be built from QL bits defined by partitioning an edge-dis-
ordered k-regular random graph G into blocks, giving the subgraphs G, and G,, and the
tensor sum structure for the graph’s adjacency matrix, A = A, @ A,. We need to ensure that
there is a lower probability of edges interconnecting the subgraphs than within each subgraph

(for reasons discussed below). Thus, we should delete some fraction of the interconnecting
edges (those spanning G,, and G,,). In the demonstrations below, we start from unconnected
subgraphs (no edges between G, and G,), then randomly add edges with some probability.

The edges within subgraphs, or those edges connecting subgraphs, can be positive or
negative—that is these are signed graphs. The physical interpretation of signed graphs is
discussed below. The QL bit thus defined has a bipartite construction with respect to the vertex
sets of the constituent pair of subgraphs G,, and G,, (but is not a bipartite graph). It has intrinsic
k-regular random structure, ensuring that the emergent states are robust.

Some examples of QL bits are shown in figure 4a,b. Here, each subgraph is on 30 vertices,
k =20 and the probability of an edge between any two vertices within a subgraph is approxi-
mately 0.23. The two subgraphs, G,; and G, are shown coloured blue and green, respectively.
Coupling edges, that connect the subgraphs, are drawn in red. The left-hand drawing shows the
graph and all vertices, whereas the middle drawing shows the separated subgraphs, including
all their edges, and the coupling edges are drawn schematically. In figure 44, the probability of
adding a coupling edge between any two vertices, one in G, and the other in G,,, is 0.01. That
probability is 0.1 in figure 4b. In these examples, the edges within the subgraphs are all positive,
whereas the coupling edges are negative. Note also that the value of the coupling edge (the
coupling strength) is set to 1 because we are plotting the spectra of the adjacency matrices. This

. . . . 1
configuration makes the largest emergent eigenstate, shown in the spectra, ﬁ(al - @) and the

second largest %(al + @), as indicated. Here, a; means the emergent eigenstate of subgraph G,
The order of these eigenstates can be reversed by changing the signs of the coupling edges.

The emergent superposition state can be tuned to a mixed state—that is where it could be a;
or a, with classical probability —by reducing the number of coupling edges (or their coupling

strength), so that the subgraphs are not synchronized and the eigenvalues of %(al -a) and

%(m +ap) converge. This is seen by comparing the graph spectra in figure 4a,b. Conversely,

when the number of coupling edges is increased, the graph G becomes overall k-regular; it is
no longer described as a pair of coupled k-regular random subgraphs. Then, the second largest
eigenvalue converges into the density of random states (figure 4c). This is why we want to
balance the density of edges within each of G, and G,, relative to those coupling edges that
connect the subgraphs.

To summarize, the keys to the proposal of these QL bits are:
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Figure 4. Examples of networks that produce QL states, as described in the text. The left diagrams show the network. The
middle pictures shows the subgraphs G,, and G,,, separated in space, and a schematic indications of the coupling edges

between them. On the right, the spectra of the graphs are shown. The eigenstates are written as linear combinations of
the eigenstates of the subgraphs, that is a; is the emergent eigenstate of G, and so on. In the graphs, the red edges are
negative. Other edges are taken to be positive in these examples.

(i) By coupling a pair of k-regular random subgraphs G,, and G, we can produce convex
combinations of the eigenstates of the subgraphs. These states therefore serve as basis
states that can be generated as superposition states.

(ii) The subgraphs are k-regular random graphs, which ensures that the basis states and their
superpositions are very robust for networks of arbitrary complexity and are identified
clearly by their emergent eigenvalue.

(iii) The k-regular random subgraph construction also ensures that, regardless of the number
of nodes (vertices) in each subgraph, the emergent eigenvalues are found at the same
frequencies, that is d, where d is the average degree of vertices in the subgraph. d is less
than k when the graphs are disordered and have randomly missing edges [8].

How do we think about what these graphs represent physically? Our working model is that
each vertex is an oscillator. The concept of an oscillator is very broad, but the idea is that the
vertex can flip periodically between two states or phases. It might be the phase of a neuron
firing, it might represent the ‘for or against’ an opinion given some information specific to a
social sub-network, it might represent the phase of an electrical pulse in a circuit, or perhaps the
concentration—above or below a threshold —of a biochemical marker. The coupling between
vertices maps out interactions among these states. In this paper, we describe the networks
within each QL bit as perfectly correlated (all the edges within each subgraph have the same
sign). That is not necessary for these constructions, as suggested by figure 3. We simply need
consensus within the network.
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The QL bit can be synchronized to a superposition state of the constituent subgraphs, or it
can display either subgraph probabilistically, thus satisfying Axiom 3. The physical concept of
the graph is that it represents a network of oscillating dipoles, one positioned at each vertex.
Edges indicate the dipole-dipole coupling between vertices. Negative edges denote coupling
between oppositely phased dipoles.

Unitary operations, including QL gates, can be imagined for these networks as graph
homomorphisms. In particular, we simply need operations that flip subgraph or coupling edge
phases. We will explain this, with examples, in a later section. The QL bits thus satisfy Axiom 4.

Lastly, these states are presented as spectra and associated states of graphs, that is of the
graphs’ adjacency matrices. Therefore, the non-zero off-diagonal terms are all set to unity. In
a realistic system, these off-diagonal terms have energy values reflecting the coupling and the
diagonal entries can have frequency disorder [23]. Here, we do not need to examine various
parameters because we are attempting to establish ‘existence” of the prescribed QL states—are
they feasible with the right kind of network? The key to the argument in favour is that the
eigenvalue gap between the emergent state and the next state is fixed by the mean valency
of the disordered k-regular graph, d. For large networks, then, we simply need to ensure that
d is ‘large enough’ so that the QL-bit superposition state is emergent, that is, distinct in the
spectrum.

(c) Quantum-like states

Two or more QL bits can be suitably coupled so that QL states are constructed. By imagining
the QL bit as an oscillating dipole (or transition density [50,51]), we can propose how ‘wiring
diagrams’ can lock the relative phases of subgraphs of each QL bit in lock-step across the
multi-QL bit network. Then the coupling between two QL bits labelled A and B, with basis
states aj, a; and by, by, respectively, can be thought of, conceptually, as a dipole-dipole coupling
[51]. The coupling Hamiltonian is given by:

H=hvy | AXA| +hvg | BYB| +0J(1 AXB| + | BXAI), (3.2)

where v, is the oscillation frequency of QL bit A, vy is the oscillation frequency of QL bit B and
J is the coupling. We have ¢ = +1 depending on whether the QL bit pairs are coupled so that the
oscillations a; — a, and b; — b; are in-phase or anti-phased, respectively. In our calculations of
the graph adjacency matrices, we have v4 = 5 =0 and J = 1. The basis states are emergent states
of the subgraphs, for example by a;, we mean the emergent state of subgraph G,,.

If we think of each QL bit conceptually as an oscillator in a superposition of states of its
subgraphs |x;) and |x,), where x € {a, b,c, ...}, then we can envision how suitable connections
among QL bits can produce a variety of synchronized states reminiscent of the set of states in
HiQ@ Hp® He® ... To do this, we introduce signed edge sets that lock subgraphs of the QL

bits in- or out-of-phase with each other, so that the entire graph is locked relative to a global
phase.

What we need to establish is a representation of the basis of the relevant tensor product of
Hilbert spaces as a pattern of phases (relative phases) of the eigenstates of network subgraphs
in the emergent eigenstate of the entire network of coupled QL-bits. The product basis for
quantum states has inbuilt correlations that we can represent as linear combinations in a
free vector space that will serve as the QL representation, physically laying out the phase
correlations across the network. In future work, we report a significant further development,
enabling us to exhibit a one-to-one map from graphs to arbitrary tensor product states. The
particular advance was to consider graph products. While the method proposed here enables
us to produce superpositions of states within any excitation subspace, generating more complex
states requires our more recent developments. The idea, for the present, is that a set of
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appropriate linear combinations of QL-bit states (naturally produced by joining QL-bits by
edges) allows us to construct a QL state.

Here, we only consider the Bell states in order to explain the concept (figure 5). Figure 5a
shows how the superposition states are produced by coupling the QL bits. Any of these four
states can be selected as the emergent state by suitable choice of signs of the couplings within
each QL bit and between the QL bits. The case of positive-signed edges between the QL bits is
shown here. The phases of the blocks of coefficients in the resulting eigenstates are indicated,
with ordering aj, ap, by, by. In figure 5b,c, we show schematics of how to construct networks
that emulate two of the Bell states, |W_) and |'W.). The pictures of the networks shows the idea
of how the coupling between subgraphs controls their relative phases. The analogy of coupled
dipoles shows the same concept and the phase map sketches indicate how the subgraph phases
are phase-locked to each other. Calculated spectra are shown in the other panels (figure 54—g).
First, for reference, in figure 5d, we show the spectrum of G, & G,, ® Gy, @ Gy, where none

of the subgraphs are coupled. This is the perfectly mixed state. In figure 5¢, the spectrum of
the network where the subgraphs within each QL-bit are coupled (with random edges between
subgraphs within each QL-bit added with probability p = 0.2), but the QL-bits are not coupled
to each other. So, here we have QL-bits but no entangled states. The adjacency matrix is
therefore represented as two blocks, G4 @ Gp.

In figure 5fg, we show spectra where QL-bits are coupled, removing the block form of
the adjacency matrix, to produce an emergent state corresponding to the Bell state |'\V_). The
inter-QL-bit coupling edges are added with p=0.05 and with signs as indicated in figure 5b.
In figure 5g, we show the spectrum when all coupling edges are added with p =0.05, that is
both the intra- and inter-QL-bit edges. For each calculation, the composition of the emergent
eigenstate is indicated.

We can characterize the resulting states according to the overall ‘excitation number’ of the
[x;) states, that is just like the excitation subspaces of H, ® Hp® Hc ® .... Synchronization

locks the QL bit array into a particular global state (which can also be a mixed state, caused
by insufficient synchronization). Just like in the coupled dipole analogy, when N QL bits are
coupled, we can specify N states that map to superpositions of product states comprising one

Ix;) state and N -1 of the |x;) states—the single excitation subspace. We have (2’ ) double

excitation states, and so on. A frequency difference between |x,) and |x;) is allowed, but not
essential, depending on how the states are detected.

The QL bits are networks that can be spatially separated from each other (like shown in
figure 5), or they can be completely entwined. They can be different sizes (different numbers
of nodes) and can be slightly detuned from one another (thus changing how the states mix).
There are a rich variety of ways that the system can be composed. The important rule is that
the expander subgraphs are approximately d-regular, so that the eigenvalues of each QL bit are
close to resonance with the others.

4. Context and the Vaxjo model

A model for QL measurements has been developed to apply to a wide range of classical
systems, the Vaxjo model [7]. These developments complement our definition of QL states,
which give concrete examples of how to engineer or identify complex systems that yield QL
probability laws.

The Viaxjo model does not require specification of systems and their states. Instead, it focuses
on measurement and probability laws. Specifically, how probability laws might be formulated
so that interference-like phenomena are accounted for. By appending our observables with
extra structure that relates to conditions of the measurement and other information potentially
gathered through prior measurements—context—Khrennikov shows how probabilistic laws
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can incorporate interference effects. He defines the probability for obtaining a = a by observing
a under context C as:

pd(a)=P(a=alC), (4.1)
where each contextual probability satisfies p¢(a) > 0 and,

pé(on) + -+ pé(ay) + - =1, (4.2)

for any context C.
Definition 4.1. (Khrennikov) Contextual expectation E[a | C] of an observable a € O with respect to

context C is given by:
ac=E[alCl=aupi(oq) + - +a,pé(ay) + ... . (4.3)

Definition 4.2. (Viixjo model) A contextual probability model is a contextual probability space
P =(C, O, m) such that C contains a special subfamily of contexts {Cila e 0,« € x, Which are interpreted

as [a = a]-selection contexts. Context C§ corresponds to the selection with respect to the result a = a.

Moreover, it is assumed that C§ satisfies the condition:
Pla=alC%=1. (4.4)

It is assumed that, for each observable a € O and its value a, the selection context C§ is uniquely
determined in the class of contexts C of the model.

We also need to define what Khrennikov terms ‘transition probabilities” using a conditional
probability construction:

Ppra=P(b=Fla=a)=P(b=E1C3), (4.5)

because QL probability laws will be evidenced by measurements on two observables, a and b.
The reader is referred to Khrennikov [7] for more details.

The formula for total probability in the usual, Kolmogorov, model (i.e. without the structure
of contexts) is:

p’(B) =) P @)psia- (4.6)

But, as Khrennikov argues, this formula is not guaranteed to hold in the Vaxj6 model, where
probability distributions in the set of data for a, b,C may not be described by a single proba-

bility space. For instance, the context for observation a might vary depending on whether
we previously learned something about b, through observation (or vice versa). That concept is
exploited by the ‘question order effect’, discussed below.

The deviation of the contextual total probability from the Kolmogorov law serves as a kind
of interference term, 6(8 | a, C):

P(b=81C)= pt(B) = ), pé(@psia+8(B1a,C). (4.7)

The interference term is the key to connection with quantum systems, where interference of
probability amplitudes is a defining feature. The interference term identified here is the classical
counterpart to conditional expectation in quantum theory [52].

The QL states of classical synchronized systems proposed in the previous section can
represent states encoded with context. That context essentially means that the QL bit networks
or collective QL states respond and change as information is gathered by other QL bits—that
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is we make measurements. This could be accomplished in various ways by connecting QL bits
and/or adding additional ‘context’ networks.

5. Examples of quantum-like function

Here, we provide two simple, but very different, examples of how QL bits might serve as the
basis for information processing. The first example integrates the QL bits into Khrennikov’s
concept of the question order effect, that exploits interference effects that come from context,
reflecting the order that information is gathered. It indicates how to think about measurement
of QL states. The second example is a textbook protocol that exploits entanglement. It provides
a reference point for assessing QL state functions.

It is important to note that quantum states and QL-states do not necessarily enable functions
that are impossible to achieve by classical processes, but the different mechanisms that they
allow to achieve the function could have advantages. The examples below illustrate different
mechanisms of quantum functions.

(a) The question-order effect

Khrennikov ef al. have studied how QL measurement theory can be useful for explaining
psychological measurements [53-55]. That work provides an example of how the action of
measurement matters when we are dealing with QL states. A prototypical example is the
‘question-order effect’. The question-order effect refers to the statistical observation that the
answers to questions, for example in a survey, can depend on the order in which the questions
are presented. Here, we describe the QL measurement model for the question-order effect
qualitatively, using figure 6. We refer the reader to the paper by Ozawa and Khrennikov [54] for
the details.

The system comprises a pair of ‘entangled’ QL states. These projections A and B on the
Hilbert space of the system, , correspond to questions labelled A and B, respectively. For each

question, we can think about eigenvalues corresponding to answers of yes or no. To measure
the quantum state of our system, for example to measure the answer to question A, we need to
interact the system with a measurement probe. This probe also comprises an entangled pair of
QL states with projections on the Hilbert space K. During measurement of A, for example the

composite system evolves according to a unitary operator U, acting on H ® K. The interaction

encodes the probe with the eigenvalue of A that can be read out using a meter observable. The
interaction concomitantly changes the state of the system, so that a subsequent measurement
on B can give a different answer than if this measurement were carried out before the measure-
ment on B. This interplay between system and measurement can model the question-order
effect.

The example shows how an appropriate ‘read-out’ of states is important for the kinds
of sophisticated functions enabled by networks, in particular when a sequence of evolving
answers or iterations may be needed. A good example is interactions among the states to reach
‘consensus’.

(b) Superdense coding for sensing or processing

Superdense coding is a strategy whereby a quantum resource (entanglement) can mediate
communication of two classical bits of information, potentially over a long distance. In an
illustrative example, we send two classical bits (00, 10, 01 or 11) using a single qubit [1].
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Figure 6. Diagram that shows the way networks interact for the steps needed to understand the question order effect
described in the text.

Two QL bits can be ‘entangled’, that is synchronized, to produce a reference Bell-like state.
Now, apply a quantum gate to QL-bit A in isolation. In practice, this means we switch phases
appropriately of the subgraphs in the QL network A. This can be understood intuitively using
the analogy where each QL bit comprises a pair of coupled oscillating dipoles. In practice, we
simply need to flip the signs of the edges within subgraphs and/or of the coupling edges. The
details for each quantum gate are shown in figure 7. Here, we use the usual notation [4] for the
states and name QL-bit A Alice and QL-bit B Bob. We can associate 10), with la;) and |1), with
| ap), etc.

Bell-like states correspond to the four unique ways the two pairs of oscillating dipoles are
locked in sync (figure 7). Relative to the fixed phases of QL bit B, then, we can rotate the
phases in QL bit A. The information sent to QL bit B amounts to a single QL bit. However,
a read-out of the total Bell-like state of the A-B QL-bit pair translates into two classical bits
of information. Two qubits are needed to encode two classical bits. Therefore, we have the
same total information supplied by four Bell states as four classical pair states. However, by
making use of entanglement, QL bit A can communicate a pair of classical bits by sending only
a single qubit. Notice that Alice’s QL-bit has four possible states, but pairs of them differ only
by an overall phase, so they do not convey different information in isolation. It is only with the
context of the QL state that the four QL-bit states translate to four different interpretations. The
key is that context is provided by referencing phase mutually among the QL-bits.

The total Bell-like state of the A-B QL-bit pair could be detected by its spectrum. It is not
obvious that the scheme would be useful for network communication when the entangled
network states are close together, because we cannot exploit ‘spooky action at a distance’.
However, the protocol might allow QL-bit A to serve as a quantum sensor, with read-out
facilitated by QL-bit B. The proof of principle may also inspire ways that QL circuits could be
constructed for more sophisticated processing operations.

A main conclusion from this example is that it is feasible to implement various QL gates
on the network states. For instance, a Hadamard gate that ‘rotates’ la;) to the superposition
(la) + la))/4/2 could be achieved by activating the coupling edges between subgraphs and
activating the network corresponding to Gg,. Then, the state with the frequency of the emergent
state—recall that it is fixed by the valency of the k-regular graphs—becomes the required

superposition. These gates are quantum like because the states and gates are composed by
dynamic structures of the network, not by matrix operations. Nevertheless, the set of ways the
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Figure 7. A table that shows how Alice rotates the state of her QL-bit by a series of quantum gates and how that changes the
QL state observed by Bob. The operations within the networks that produce the QL states are indicated schematically as a’
phase map.

network can be reconfigured offers a representation for the set of matrix operations that, in
turn, represent maps on states in the relevant Hilbert space.

6. Discussion

In this study, we have asked: Is it worth looking for quantum effects in very complex, ‘mes-
sy’ systems? The standard answer is that quantum states are too fragile to exist in such
systems, including biological settings. However, given the many relevant new ideas that have
emerged over the past decades—including, for instance, more sophisticated understandings of
networks, synchronization phenomena, and advances in solving quantum dynamics for large
and complicated systems—we argue that the time is right to revisit this question. Furthermore,
perhaps we do not need true ‘quantum states’, but instead sufficiently QL states will suffice.
That inspires a shift from the common idea that we need to make chemical systems pristine in
order to host quantum states in the form of qubits, to the idea that there are new opportunities
to discover by identifying more abstract, but surprisingly robust states. These states can even be
realized in electronic circuits. The main objective of this work is to propose concrete examples
of very large and complex networks that host states resilient to disorder and displaying QL
properties.

By considering suitably constructed graphs with expander properties, it turns out that we
can find robust QL states that can inhabit huge, complex systems and that satisfy the axioms
proposed in §3(a). A requirement for states of any large and complex quantum system, whose
structure is, in a sense, ‘organic’, is that they must be especially stable with respect to various
kinds of disorder. This is where the concept of emergent or collective phenomena is important
because it allows the state of interest to be distinguished from the many other states in the
spectrum. This emergence property thus protects the state. To abstract a suitable model, we
need to account for an underlying structure that could be encoded by some kind of rule
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(here, the rule is that the graph is k-regular). Then, we allow disorder in that structure or on
the structure so that there is a large margin for flexibility in the precise structure. Frequency
disorder at sites in a network is an example of disorder on the structure [23]. Disorder caused
by randomly deleting edges from the network is an example of disorder in the structure [8]. We
explicitly included this latter kind of disorder in the examples exhibited in the present work.

We identified k-regular graphs as examples of networks that can serve as the basis for QL
states. However, any expander graph would serve this purpose. The best possible expanders are
Ramanujan graphs [56-58], but ideal expansion properties do not appear to be crucial because
in many interesting or useful ‘real-world” scenarios, it is desirable for the graphs to be disor-
dered —so that precise construction is not needed. The expander graphs also have intrinsically
interesting properties that are desirable for networks involved in communication and informa-
tion transfer and processing [38,59,60]. Expanders are not necessary for the constructions, just
sufficient. Other graphs might be of interest, including chiral graphs that could host states
analogous to electron spins or photon polarization.

By positing a QL bit structure based on coupled expander graphs and combining that with
the concept of QL states, here an ‘existence proposal’ for huge quantum states was described.
The work opens up many questions for future work. Below, we discuss two open questions:
(i) Is there a ‘QL’ advantage for function? (ii) Could QL states and function be used by neural
networks in the brain?

(a) Is there a QL advantage?

Synchronized networks of QL states could serve as a hardware platform for information
processing. There are three big questions: (i) what is the QL advantage for certain functions?
(ii) what platforms could be designed to produce and test QL states? and (iii) what experiments
could test the QL functions of QL states?

The main point argued in the present work is that we defined construction of a QL bit
|A) so that its emergent states ‘live in” a Hilbert space #,4, just like quantum states. A set of
axioms is proposed that guide the properties the states need to have. We exhibited examples of
these states and the way they are measured. It was also shown how QL gates can be imple-
mented by controlling phases—specifically, signs of edges within each QL bit. Based on this
framework, one can in principle adapt circuit designs from quantum processing systems. This
is a key direction for future work that will provide answers to how QL states can have a QL
advantage for function. However, two elements of the program need consideration. First, what
are appropriate ways to scale the number of QL bits? Here, we proposed a simple mapping
as a starting point, but in further work, we will report a one-to-one mapping between graph
constructions and arbitrary tensor product states. Second, we need to evaluate quantitatively
how the classical resources are required to make QL states scale.

Compelling demonstration of QL state function requires a hardware platform for producing
those states. The obvious approach is to design circuits of coupled electronic oscillators [61].
These kinds of systems could be miniaturized, and may be well suited for tasks like pattern
recognition [62]. QL states might also be implemented in the framework of spiking neural
networks, thereby taking advantage of neuromorphic hardware systems [63]. It would also be
interesting to explore connections with and applications using random circuit sampling [64].

Later work can adapt the concepts for more complex networks in optical, biological,
chemical and other systems. Biological systems are certainly an intriguing target because they
comprise a huge number and diversity of networks. Many times, these networks are so dense
and complicated that they are referred to as ‘hairballs’ [65]. The QL-states proposed here
provide a platform for rethinking quantum biology because it is much more likely to find
QL-states than quantum states in such complex systems.
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(b) Quantum neural networks

It is well-known that neurons are connected to form the complex networks of the brain. It
is now generally accepted that the ways these networks process signals and information to
produce responses and functions do not simply involve signal transmission. Rather, informa-
tion can be encoded in the timing and spatial coherence of signal oscillations [22,66-72]. We are
not attempting to review that field here, but simply to sketch a small part of what is known
to give examples of how networks function in what is arguably nature’s most sophisticated
machine—the brain.

One key discovery is that information processing seems to be facilitated by oscillations of
neuron activity. There are characteristic frequencies for these oscillations, grouped into bands
denoted delta (<4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz), in the low-fre-
quency range, to the high frequencies in the gamma band (30-80 Hz) and above.

One example is shown in figure 8. Here, gamma band oscillations are studied in the visual
cortex of a monkey as it was presented with an image [73]. In the experiment, neuronal activity
was detected using an electrocorticographic grid that monitored the left brain hemisphere of a
macaque monkey. A number of prior studies had shown that neuronal gamma-band synchroni-
zation in the visual cortex is associated with various kinds of functions. This study suggested
that 50-80 Hz gamma-band activity plays a key role in the process of viewing. Figure 8 shows
the main result of the paper, a unipolar local field potential trace taken as the monkey looks at
two oranges.

A second example serves to illustrate that brain function involves the interaction of widely
distributed cortical regions. Long-range synchronization has been implicated in enabling the
coordination of these regions across the brain and to communicate between brain regions [69].
For example, how do we map sound to meaning [68]? In Hipp et al. [74], the authors study the
perception process. They used an analysis of EEG recordings in humans that allowed correla-
tion of brain oscillations to be mapped. The experiment involved the subject watching a screen
where two bars come together, then move apart. There is an audio cue when the bars meet.
The measured power response during the stimulus is collected in maps, depicting the theta
(4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz), low gamma (32-64 Hz) and high gamma (64-128
Hz) band activity across the brain. The main finding of the work was enhanced long-range
beta-synchrony during stimulus processing, which was accompanied by local suppression of
beta-band activity.

There is an immense body of work exploring brain function. A key question is how
different sensory inputs are linked to appropriate processing circuits to draw conclusions. It
has been proposed that ‘binding’ of these units is facilitated by phase synchronization [66]. It
has also been proposed that the oscillation frequencies allow these disparate computations to
associate [70]. Further ideas hypothesize that a complex interplay of oscillations is important for
perception [72].

In sum, on one hand, the brain functions using a complex network of networks that
become synchronized during function. Here is where there is compelling evidence that coherent
oscillations on complex networks are functionally operative in the brain, so a connection
with the ideas hypothesized in the present paper—that QL function is possible—is feasible.
However, it remains an enticing idea that requires further work. In particular, the way the
dynamic networks interplay in the brain, and even how coherence is exploited are questions
that have not yet been elucidated in detail. The present work at least provides a framework for
devising testable hypotheses for additional, likely surprising, mechanisms that might be at play
in the sophisticated networks of the brain. Other workers have investigated the idea that true
quantum phenomena are at play in the brain. We leave this topic for discussion in future work,
but a helpful recent summary can be found here [75].

In prior work, Khrennikov [76] has asked whether we can define the concept of a geometry
for the mind, a ‘mental space’, that captures the hierarchical structure of information and
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Figure 8. Gamma band oscillations observed in the visual cortex of a monkey as it was presented with an image. The
monkey’s focus is tracked by the line on the image. Reproduced with permission from monkey1.

connections. The graphs we have described in the present work may aid this quest. Treelike
structures have been associated with information processing in the brain and other biological
systems, but notably, the graphs proposed in the present work are not explicitly trees. How-
ever, our graphs do contain a great many trees as implicit subgraphs, and it might be worth
exploring the roles of such embedded structure in future work.

7. Conclusion

We proposed a QL bit structure based on coupled expander graphs. Combining that with the
concept of QL states, we suggest a way that huge, complex systems can host states that can
process information in a QL fashion.

Specifically, it was suggested that building blocks suited for QL states are networks, possibly
very complex, that we defined using graphs. These networks can be functionally sophisticated
and encode a lot of information that is distilled into the emergent states we can exploit for QL
like processing. The emergent states of networks are classical. They arise from feedback. We
developed a way to build from these classical states, new states that have properties analogous
to quantum states. Specifically, we based this construction on a QL bit that ‘lives in” a Hilbert
space ‘H,. We demonstrate a candidate QL bit by partitioning an edge-disordered k-regular

random graph G, into two blocks, giving the subgraphs G, and G,,, then connect those blocks

to yield superposition states of the emergent states of each subgraph. The intrinsic k-regular
random structure ensures that the emergent states are robust.

The work opens up many questions for future work. We explicitly discussed two major
open questions: (i) Is there a ‘QL" advantage for function? Perhaps this could be leveraged
in hardware for QL-computing, which would be greatly simplified from that needed for true
quantum computing, but may offer an attractive compromise between classical and quantum
architectures. (ii) Could QL states and function be used by neural networks in the brain? We
conclude that QL states can exist in arbitrarily complex systems and that it is worthwhile
investigating further examples and working out where they can have a functional advantage.
The primary advance of the paper was to overcome the main objection for various proposals
of quantum states in biology, the brain and other complex systems—that is that quantum states
are too fragile to serve a functional role. This was done by proposing, first that we should think
about ‘quantum like’ states [7], not quantum states. Second, that we can devise a blueprint
for suitable states, satisfying the axioms proposed above, by exploiting expander properties of
graphs so that complex networks yield a single key state in their spectrum.
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