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Abstract—This paper investigates the robot state estimation
problem within a non-inertial environment. The proposed state
estimation approach overcomes the common assumption of static
ground in the system modeling. The process and measurement
models explicitly treat the movement of the non-inertial environ-
ments without requiring knowledge of its motion in the inertial
frame or relying on GPS or sensing environmental landmarks.
Further, the proposed state estimator is formulated as an invari-
ant extended Kalman filter (InEKF) with the deterministic part
of its process model obeying the group-affine property, leading to
log-linear error dynamics. The observability analysis of the filter
confirms that the robot’s pose (i.e., position and orientation) and
velocity relative to the non-inertial environment are observable.
Hardware experiments on a humanoid robot moving on a rotating
and translating treadmill demonstrate the high convergence rate
and accuracy of the proposed InEKF even under significant
treadmill pitch sway, as well as large estimation errors.

Index Terms—state estimation, non-inertial environments, in-
variant filtering, legged robots.

I. INTRODUCTION

Legged robots operating in non-inertial environments, such

as moving vehicles on land, sea, and air, have significant ap-

plications in emergency response, inspection, and surveillance

[1]. These environments present unique challenges for robot

state estimation, as they deviate from the typical assumption of

a static ground, showing continuous and time-varying ground

movements [2]. These environments can also be GPS-denied

and visually constrained, adding to the complexity of filter

design. This paper aims to create an accurate real-time state

estimator for legged locomotion in such challenging settings.

Existing filtering approaches for legged and general ground

robots generally assume a static ground in the inertial frame,

utilizing this static contact point as a pseudo measurement

to ensure accurate state estimation through various odometry

methods and extended Kalman filters [3]–[7]. However, these

methods may fall short in non-inertial settings where ground

movement is temporally persistent and multidirectional.

To relax the zero contact velocity condition, new ap-

proaches have been explored, such as visual-inertial odometry

to account for foot or wheel slippage [8], and inertial-wheel

odometry [9] to reject slippage as outliers. Also, to handle

significant ground accelerations, previous research has relaxed
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Fig. 1: Illustration of the reference frames used in the filter derivation.

the static ground assumption, integrating inertial and leg

odometry without the need for GPS or fixed environmental

landmarks [2]. Yet, this approach assumes accurately known

ground pose and velocity in the inertial frame, which may not

hold in practical scenarios where the ground movement in the

inertial frame cannot be directly sensed or estimated.

State estimation in multi-agent systems, such as those

involving unmanned aerial vehicles, reflects similar complexi-

ties encountered in non-inertial environments where reference

frames move in the inertial frame. Although cameras and laser

scanners can provide data for relative pose estimation [10],

their typical slow data acquisition rates and high costs limit

their applicability for real-world tasks.

Beyond state estimation in non-inertial environments, in-

variant extended Kalman filtering (InEKF) [11]–[13] has been

introduced to enable fast error convergence under significant

errors by exploiting the symmetry reduction for systems

evolving on matrix Lie groups. By the InEKF theory [6], if the

deterministic unbiased process model satisfies the group-affine

property, then there exists an exactly log-linear error dynamics

in the Lie algebra. Also, given an invariant observation, the

filter is provably convergent under arbitrary initial error, and

nonlinear error can be recovered exactly at any time. Although

InEKF has been applied to solve the state estimation problem

for legged [3] and wheeled [4], [14] robots, the applicability

of the InEKF for state estimation in non-inertial environments

remains under-explored due to reasons mentioned earlier.

This paper presents an InEKF approach that estimates the

relative pose and velocity of a legged robot operating in non-

inertial environments under significant estimation errors. The

proposed filter overcomes the common assumption that the
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ground is static in the inertial frame, and its underlying models

explicitly consider the ground movement without requiring

knowledge of the ground motion in the inertial frame. The

key contributions include: (a) We expand the standard leg

odometry-based measurement model to accommodate non-

inertial environments, utilizing the kinetic characteristics of

robot movement on accelerating surfaces. (b) The determin-

istic part of the process model is structured to be group

affine, ensuring that the logarithmic error equations are not

dependent on the state trajectories and are exactly linear.

(c) Our filter fuses leg odometry with data from an IMU

attached to dynamic ground and another onboard the robot,

rendering the robot’s relative position, orientation, and velocity

observable without relying on exteroceptive sensors such as

cameras. (d) Hardware experiments on a humanoid robot

moving on a rotating treadmill validate the theoretical results.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

Consider a matrix Lie group G ⊂ R
n×n. Its Lie algebra

g is the tangent space at the group identity element Id. The

isomorphism, (·)
∧
: Rdimg → g, maps any vector ξ ∈ R

dimg

to the Lie algebra. The exponential map of the Lie group,

exp : Rdimg → G, is given by exp (ξ) = expm
(

ξ∧
)

, where

expm(·) is the usual matrix exponential. For any ξ ∈ R
dimg

and X ∈ G, the adjoint matrix AdX : g → g performs a

change of basis for velocities to account for the change of

observing frame, and is defined as: (AdXξ)
∧
= Xξ∧X−1.

We use (̄·) and (̃·) to denote the estimated value and

measurement of (·), respectively. The right subscript t of

(·)t indicates the time t. We use {D}, {W}, {F} and {B}
to denote the reference frames attached to the non-inertial

dynamic ground, inertial world frame, robot’s stance foot, and

robot’s base link (see Fig. 1). R, p, and v respectively denote

the orientation, position, and velocity of a given object.

The left superscript of a position, orientation, or velocity

variable denotes the coordinate system where the variable is

expressed. If the right superscript contains two letters, then the

first and the second letters respectively represent the reference

frame and the object of interest. For instance, we use DpDB

to represent the position of robot’s base frame {B} relative

to the origin of the dynamic ground frame {D}, expressed

in {D}. If the right superscript only has one letter, then it

represents the object of interest. For example, DRB denotes

the orientation of {B} with respect to (w.r.t.) {D}.

III. PROBLEM FORMULATION

Navigating robots within non-inertial environments requires

that planners and controllers understand the robot’s movement

state relative to the dynamic ground, rather than the inertial

frame. Standard proprioceptive sensors such as IMUs and

encoders do not directly measure these states. Thus, our

proposed filter estimates the robot’s orientation, velocity, and

position relative to the dynamic ground frame {D}.

A. Sensor Measurements

The sensors include (a) a robot’s IMU mounted at the robot

torso (i.e., the base link), which measures the angular velocity

and linear acceleration of the base w.r.t. the base frame {B},

and (b) joint encoders, which measure the joint angles qt of

the robot. Additionally, we consider an external IMU attached

to the non-inertial dynamic ground frame {D} whose data is

shared with the robot. This IMU can be placed at any location

fixed to the dynamic ground. Such an external sensor setting

is general and common as non-inertial platforms such as ships

and airplanes are typically equipped with onboard IMUs.

Without loss of generality, we assume that the IMU frames

of the robot and the dynamic ground are respectively aligned

with the robot’s base frame {B} and the ground frame {D}.

The joint angle data q̃t returned by encoders is assumed to

be corrupted by additive white Gaussian noise. The angular

velocity and linear acceleration data from the two IMUs at

time t are respectively denoted as iω̃Wi and iãWi with i ∈
{B,D}. We assume the sensor data is corrupted by additive

white Gaussian noise, iw
g
t and iwa

t . For brevity, let iω̃t :=
iω̃Wi

t and iãt :=
iãWi

t . Then, we can express the sensor data

as: iω̃t = iωWi
t + iwω

t and iã = iaWi
t + iwa

t , where iωWi

and iaWi are the true angular velocity and linear acceleration.

B. IMU Motion Dynamics

We use WRi
t,

WvWi
t , and WpWi

t to respectively denote

the absolute orientation, velocity, and position of the ref-

erence frame {i} w.r.t. the world frame {W}, with i ∈
{B,D} (see Fig. 1). The IMU dynamics for the frame {i}
are [3]: d

dt

(

WRi
t

)

= WRi
t[
iω̃t −

iwω
t ]× , d

dt

(

WvWi
t

)

=
WRi

t

(

iãt −
iwa

t

)

+ g, and d
dt

(

WpWi
t

)

= WvWi
t , where [ ]×

denotes the skew-symmetric matrix of a vector and g is the

gravitational acceleration.

C. Leg Odometry

We denote the position of the robot’s stance foot relative

to the robot’s base, expressed in the base frame as BpBF
t .

Since the robot’s joint angles qt are directly measurable, we

introduce the forward kinematics function s(qt) satisfying
BpBF

t = s(qt), where s(qt) is known for a given robot.

The usual measurement model built upon the leg odometry

typically assumes a stationary ground in the inertial frame to

ensure the observability of the robot’s base orientation (roll

and pitch) and linear velocity. However, this assumption breaks

down for non-inertial environments. Thus, we will introduce

a new measurement model based on the leg odometry.

IV. PROCESS AND MEASUREMENT MODELS

This section presents the proposed process and measurement

models that serve as the basis of the proposed InEKF.

A. Process Model

The process model describes the propagation step, i.e.,

during the time period between successive instants of measure-

ment updates. For brevity, let Rt :=
DRB

t and pt :=
DpDB

t .

Given the IMU motion dynamics in Sec. III and the relation-

ship DRB
t = (WRD

t )T(WRB
t ), the dynamics of the robot’s

relative orientation DRB
t during the propagation step is:

d
dt
Rt = Rt

[

Bω̃t −
Bwω

t

]

×
−
[

Dω̃t −
Dwω

t

]

×
Rt. (1)

Authorized licensed use limited to: Purdue University. Downloaded on April 09,2025 at 15:36:39 UTC from IEEE Xplore.  Restrictions apply. 



Since the dynamic ground frame {D} translates and rotates

in the inertial frame, the dynamics of the robot’s relative

position during the propagation step are given by:

d
dt
pt = −

[

Dω̃t −wω
D

]

×
pt + vt, (2)

where vt := (WRD
t )T

(

WvWB
t − WvWD

t

)

. Taking the first

time derivative of both sides of this equation yields:

d
dt
vt = −

[

Dω̃t −
Dwω

t

]

×
vt +Rt

(

B ãt −
Bwa

t

)

−
(

Dãt −
Dwa

t

)

.
(3)

The state variables Rt, vt, and pt can be expressed on the

matrix Lie group G ⊂ R
9×9 as: Xt =





Rt vt pt

01,3 1 0
01,3 0 1



, where

0m,n is an m × n zero matrix. Here the Lie group G is the

direct isometries group SE2(3) [15].

Defining the input ut to the process model as: ut =
[

(Bω̃t)
T (Dω̃t)

T (B ãt)
T (Dãt)

T
]

, the process models in

(1), (2), and (3) can be expressed as:

d
dt
Xt = −

D
ŨtXt +Xt

B
Ũt + (Dwt)

∧
Xt −Xt(

B
wt)

∧

=: fut
(Xt) + (Dwt)

∧
Xt −Xt(

B
wt)

∧
,

(4)

where iwt :=
[

(iwg
t )

T (iwa
t )

T 01,3

]T

and i
Ũt :=





[

i
ω̃t

]

×

i
ãt 03,1

01,3 0 1

01,3 0 0



, with i ∈ {D,B}.

Proposition 1: The deterministic part of the system dynamics

in (4), i.e., d
dt
Xt = fut

(Xt), is group affine.

Proof: From the process model in (4), we know fut
(Xt) :=

−DŨtXt +Xt
BŨt. Thus, for any X1,X2 ∈ G, we have:

fut
(X1X2) = −DŨtX1X2 +X1X2

BŨt. (5)

Meanwhile, by the definition of fut
, the following

expressions can be obtained: fut
(X1)X2(−

DŨtX1 +
X1

BŨt)X2, X1fut
(X2) = X1(−

DŨtX2 + X2
BŨt),

and X1fut
(Id)X2 = X1(−

DŨtId + Id
BŨt)X2 =

−X1
DŨtX2 + X1

BŨtX2. Note that for the system in

(4), the group element Id becomes Id = I9 with Im an

m × m identity matrix. Combining these equations yields:

fut
(X1)X2+X1fut

(X2)−X1fut
(Id)X2 = −DŨtX1X2+

X1X2
BŨt = fut

(X1X2). Thus, the group affine condition

defined in Theorem 1 of [6] is met, confirming the determin-

istic part of the proposed process model is group affine. �

B. Process Model Discretization

Since filters are implemented in a discrete-time fashion in

real-world applications, the process model in (4) needs to be

discretized in order to be used during the propagation step.

Let tk denote the time instant of the kth measurement update

with k ∈ N+. With abuse of notation, we use (·)k to represent

the value of a variable (·) at tk. Further, the real scalar

∆t denotes the period between two successive measurement

updates; i.e., ∆t := tk+1 − tk.

As the process model in (4) is a differential Sylvester

equation [16], the closed-form solution of (4) is:

Xk+1 = DZ−1
k Xk

BZk, (6)

where the matrix iZk with i ∈ {B,D} is defined as [17], [18]:

i
Zk =





Γ0(
iωk∆t) Γ1(

iωk∆t)iak Γ2(
iωk∆t)iak∆t2

01,3 1 ∆t
01,3 0 1



 .

(7)

Given the expression of iZk, we can use (6) to discretize

the process model and propagate the estimated state X̄t during

the propagation step of the filter, as explained later.

C. Measurement Model

When the robot’s foot has static contact with the ground of

the non-inertial environment (i.e., no foot slipping or rolling

on the ground), the foot velocity satisfies: d
dt
(DpDF

t ) = 03,1.

For brevity, we define dt :=
DpDF

t .

Using the kinematics relationship associated with the leg

odometry, we obtain: dt−pt = Rts(qt). Taking the first time

derivative of both sides of this equation gives: d
dt

(dt − pt) =

Rt

(

[

Bωt

]

×
+
[

Dωt

]

×

)

s(qt) +RtJ(qt)q̇t, where J(qt) =
∂s(qt)
∂qt

is the Jacobian of leg odometry s(qt) and q̇t is the

time derivative of the joint angle qt.

Combining the equations above gives the observation as:

yt = h(Xt) + nf , (8)

where h(Xt) = RT

t

(

[

Dω̃t

]

×
Rts(q̃t)− vt +

[

Dω̃t

]

×
pt

)

,

yt =
[

Bω̃t

]

×
s(q̃t) + J ˙̃qt, and nf is the lumped white

Gaussian noise of the uncertainty in the encoder reading q̃t

and foot slippage on the ground.

The deterministic portion of the measurement model in (8)

does not satisfy the right-invariant observation form, which is

defined as yt = X−1
t b with a known constant vector b [6].

Thus, the log-error equation associated with the proposed mea-

surement model does not enjoy the attractive properties of an

invariant observation and is thus not necessarily independent

of state trajectories or exactly linear for the deterministic case.

Instead, we linearize the measurement model as follows:

zt = h(X̄t)− h (Xt) := Htξt + h.o.t (ξt) . (9)

where Ht :=
∂zt

∂ξ
t

. As ηt ≈ Id + ξ∧t , the following first-order

approximations hold: R̄tR
T

t ≈ I3 + [ξRt ]×, v̄t − R̄tR
T

t vt ≈
ξvt , and p̄t − R̄tR

T

t pt ≈ ξ
p
t , with ξRt , ξvt , and ξ

p
t defined as:

ξ
∧

t =:





[

ξR
t

]

×
ξv
t ξ

p
t

01,3 0 0
01,3 0 0



 . (10)

We substitute the definition of h(Xt) from (8) into (9)

and simplify it using the first-order approximations mentioned

above, while dropping the higher-order terms. By differentiat-

ing the resulting equation w.r.t. ξt, we obtain the expression

of the update matrix Ht as:

Ht =
[

Ct −R̄T

t R̄T

t

[

Dω̃t

]

×

]

(11)

with Ct := R̄T

t

[

[

Dω̃t

]

×
R̄ts(q̃)

]

×

−R̄T

t

[

Dω̃t

]

×

[

R̄ts(q̃)
]

×

+R̄T

t

[

[

Dω̃t

]

×
p̄t

]

×

− R̄T

t

[

Dω̃t

]

×
[p̄t]×.
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V. FILTER DESIGN

A. Propagation Step

1) Error Dynamics of Process Model: By the methodology

of InEKF, the right-invariant estimation error ηt between the

state Xt and its estimate X̄t is defined as: ηt = X̄tX
−1
t .

Because of the group-affine property of the proposed pro-

cess model [6], the right-invariant error dynamics in the

absence of noise are independent of state trajectories and

exactly log-linear in the deterministic case.

The dynamics of the right-invariant error ηt is given by [6]:

d
dt
ηt = gut

(ηt) +
(

X̄t(
Bwt)

∧X̄−1
t

)

ηt + (Dwt)
∧ηt, (12)

where gut
(ηt) := fut

(ηt) − ηtf(Id). Note that by the

InEKF theory, the deterministic part of the right-invariant

error ( d
dt
ηt = gut

(ηt)) are state trajectory independent and

accordingly independent of estimation errors.

By using the first-order approximation ηt = exp (ξt) ≈
Id + ξ∧t , we linearize (12) to yield:

gut
(exp(ξt)) =: (Atξt)

∧ + h.o.t(∥ξt∥) ≈ (Atξt)
∧, (13)

where h.o.t(·) represents the higher-order terms of (·).

Then, the linearized log-error dynamics become:

d
dt
ξt = Atξt +AdX̄t

Bwt +
Dwt. (14)

Since the deterministic part of the right-invariant error

equation are state trajectory independent, the logarithmic error

dynamics are naturally independent of state trajectories in the

absence of noise, as indicated by (14). Further, the linear error

equation (14) is exact in the absence of noise.

Proposition 2: In the absence of the noise terms in the

stochastic process model (4), the deterministic portion of the

logarithmic error dynamics (14), i.e., d
dt
ξt = Atξt, are exact

and represent the true error dynamics during propagation.

Proof: By Proposition 1, the deterministic part of the process

model (4) is group affine. Then, by Theorem 2 in [6], the

logarithmic error dynamics in the absence of noise Bω̃t and
Dω̃t are exact, which completes the proof. �

By Proposition 2, the linear equation in (14) is the exact

dynamics of the error ξt in the absence of noise terms. Such

linearity is rare for nonlinear process models, and holds here

because the deterministic portion of the process model is group

affine for the deterministic case, as stated in the proof.

The log-error equation in (14) is used to form the propa-

gation step of the proposed InEKF, and the advantage of its

exactness is illustrated via experiment results.

To obtain the matrix At, we substitute the right-invariant

error dynamics (12) into (13), which yields:

gut
(exp(ξt)) ≈ f(Id + ξ∧t )−

(

Id + ξ∧t
)

f(Id)

=







−
[

Dω̃t

]

×
ξRt

−
[

Dãt
]

×
ξR −

[

Dω̃t

]

×
ξvt

ξvt −
[

Dω̃t

]

×
ξ
p
t







∧

.
(15)

Then, based on (13), we obtain the matrix At as:

At =







−

[

Dω̃t

]

×
03,3 03,3

−

[

Dãt

]

×
−

[

Dω̃t

]

×
03,3

03,3 I3 −

[

Dω̃t

]

×






. (16)

2) State and Covariance Propagation: Between two suc-

cessive instants of measurement updates, i.e., t ∈ [tk, tk+1)
(k ∈ N+), the estimated state X̄t can be propagated [18] using

the discretized process model in (6): X̄k+1 = DZ−1
k X̄k

BZk.

By the theory of the standard Kalman filtering for

continuous-time systems, the covariance matrix Pt is propa-

gated based on the following Riccati equation [19] associated

with the linearized log-error equation in (14):

d
dt
Pt = AtPt +PtA

T

t + Q̄t, (17)

where Q̄t is the process noise covariance defined as Q̄t =
AdX̄t

Cov(Bwt)AdTX̄t
+ Cov(Dwt), with Cov(iwt) the co-

variance of iw̃t (i ∈ {B,D}).

In filter implementation, the discrete version of the Riccati

equation (17) is used for covariance propagation.

B. Update Step

Based on the measurement model introduced in Sec.

IV-C, the update equations of the proposed InEKF

are: X̄+
t = exp

(

Kt(yt − h(X̄t))
)

X̄t and P+
t =

(I9KtHt)Pt (I9 −KtHt)
T
+KtNtK

T

t , where X̄+
t and P+

t

are the updated values of the state estimate X̄t and covariance

matrix Pt, respectively, Kt is the Kalman gain, and Nt is

the measurement covariance matrix. The Kalman gain Kt

is given by: Kt = PtH
T

t S
−1
t , St := HtPtH

T

t + Nt, and

Nt := R̄tCov(nf )R̄
T

t .

VI. OBSERVABILITY ANALYSIS

Assuming that IMU measurements are constant over the

propagation step on [tk, tk+1), the matrix Ak is constant.

Thus, the discrete-time state-transition matrix, denoted as

Φk, is given by [20]: Φk = expm(Ak∆t)





φk
11

03,3 03,3

φk
21

φk
22

03,3

φk
31

φk
32

φk
33



,

where φk
11 = φk

22 = φk
33 = expm(−[Dωk]×∆t),

φk
21 =−[Dak]×expm(−[Dωk]×∆t)∆t, φk

31 = − 1
2 [

Dak]×
expm (−[Dωk]×∆t)∆t2, and φk

32 =expm(−[Dωk]×∆t)∆t.

Then, the local observability matrix O [21]

at the state estimate X̄k is expressed as: O =
[(H−

k )
T, (H−

k+1Φ
+
k )

T, (H−

k+2Φ
+
k+1Φ

+
k )

T, . . .]T. By

definition, O can be computed as:

O =













Ct −R̄T

k RT

k

[

Dωk

]

×

o21 o22 RT

k+1

[

Dωk+1

]

×
φk

33

o31 o32 R̄T

k+2[
Dωk+2]×φ

k+1
33 φk

33,
...

...
...













, (18)

where o21 = Ck+1φ
k
11−R̄T

k+1φ
k
21+R̄T

k+1[
Dωk]×φ

k
31, o22 =

−R̄T

k+1φ
k
22 + R̄T

k+1[
Dωk]×φ

k
33, o31 = Ck+2φ

k+1
11 φk

11 −

R̄T

k+2φ
k+1
21 φk

11 −R̄T

k+2φ
k+1
22 φk

21 + R̄T

k+2[
Dωk+2]×φ

k+1
31 φk

11

+R̄T

k+2[
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Fig. 2: Experimental setup that includes a Digit robot, motion capture cameras,
a pitch sway treadmill, and an IMU mounted on the dynamic ground.

To evaluate the observability of each variable of interest,

we examine whether the associated column vectors in the

observability matrix O are linearly independent.

From the expression of O, the observability of the state

variables depends on the estimated relative orientation R̄t as

well as the linear acceleration data Dat and angular velocity

data Dωt of the dynamic ground. The estimate R̄t is always

a non-zero matrix. Thus, when the ground is rotating and

translating (i.e., Dat ̸= 0 and Dωt ̸= 0), all columns of O
are linearly independent, indicating the relative orientation Rt,

velocity vt, and position pt are observable.

When the ground is stationary, the angular velocity data
Dω̃t is zero in the absence of sensor noise, and thus the entire

third column block becomes zeros, indicating the relative

position pt is no longer observable. Also, when the ground

is not moving, Dãt remains nonzero because Dãt includes

the vertical gravitational acceleration. Thus, the third column

of
[

Dat
]

×
is zero, indicating the yaw angle is non-observable

when the ground is stationary.

VII. EXPERIMENTAL VALIDATION

A. Experimental setup

Experiments are conducted on a Digit humanoid robot

(Agility Robotics, Inc.) and a Motek M-Gait treadmill (Fig. 2).

Digit is 1.6 m tall with 6 encoders on each leg. The robot

stands on the treadmill commanded by its proprietary con-

troller. The treadmill serves as a dynamic ground, simul-

taneously performing a pitch motion of 10◦ sin πt
2 and a

sway motion of 0.05mcos πt
2 . An IMU (WT901BLECL from

WitMotion Co.,Ltd) is attached to the treadmill and measures

the angular velocity and linear acceleration of the dynamic

ground frame at 200 Hz via Bluetooth. The robot IMU and

encoders return data at 500 Hz. Additionally, a Vicon motion

capture system gives the ground-truth value of the state Xt.

TABLE I: NOISE STANDARD DEVIATION

Measurement types SRS Proposed

Robot linear acc. (m/s2) 0.3 0.1
Ground linear acc. (rad/s) NA 0.1

Robot angular vel. (m/s2) 0.01 0.01
Ground angular vel. (rad/s) NA 0.01
Encoder reading 1◦ 0.1 m/s
Contact vel. (m/s) 0.01 NA

The proposed filter is compared with an InEKF [3] designed

for locomotion on a static, rigid surface (denoted as “SRS"),

so as to highlight the advantage of explicitly treating the

environment/ground motion in the filter formulation.

The key difference between the proposed and SRS filters

is that the SRS filter assumes a static ground. Accordingly,

the SRS filter aims to estimate the absolute base position,

orientation, and velocity w.r.t. the world frame, which is

different from the proposed filter. Although the process models

of the two filters are different due to different choices of

state variables, both models meet the group-affine property

for the deterministic case. This indicates that both filters obey

the attractive property of invariant filtering, such as the exact

linearity and state independence of log-error dynamics for the

deterministic part of the process model. Also, the measurement

models of both filters exploit the leg odometry, with the

SRS and proposed filters using position- and velocity-based

ones, respectively. Yet, the baseline filter has a right-invariant

measurement model, while the proposed one does not.

The setting of the standard deviation (SD) of both filters

is shown in Table I. All the SD values are individually tuned

based on the IMU specifications provided by the manufacturers

for the two filters to achieve their respective best performance.

Both filters are assessed using the same hardware sensor data.

To highlight the proposed InEKF can handle large errors, 50

simulations of each filter were performed, using the same ini-

tial position, velocity, and orientation errors uniformly sampled

from [−3, 3] m, [−1, 1] m/s, and [−23, 23] deg, respectively.

B. Results

1) Convergence Rate: Figure 3 presents the results of the

proposed filter for the relative velocity vt, orientation Rt, and

position pt w.r.t. {D} in subplot a), and the baseline filter

results for the absolute velocity WvWB , orientation WRB , and

position WpWB w.r.t. {W} in subplot b). Both filters drive

the errors of the base roll, pitch, and velocities close to zero,

confirming the observability analysis results from Sec. VI and

previous work [3]. Both filters show fast error convergence

for their respective observable state even under large initial

errors, thanks to InEKF’s provable error convergence under

the deterministic case. The proposed filter shows a much faster

convergence rate than that of the SRS filter due to its explicit

treatment of the ground motion.

2) Yaw and Position Observability: Notably, under the

proposed filter, the robot’s relative base yaw and position

converge to the ground truth, confirming that they are indeed

observable during ground motion. In contrast, the absolute
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Fig. 3: Estimation results of a) relative velocity, orientation, and position under
the proposed filter and b) absolute velocity, orientation, and position under
the existing filter. The same set of robot on-board sensor data is used. The
red, dashed lines are the ground truth. The solid lines are the state estimations
corresponding to different initial errors. The light blue and white background
denotes the transient and steady-state periods, respectively.

TABLE II: RMS ERROR COMPARISON

State variables SRS Proposed

(vx, vx, vx) (m/s) (0.048, 0.080, 0.041) (0.017, 0.018, 0.040)
(roll, pitch, yaw) (°) (1.889, 1.520, 10.91) (1.886, 0.980, 2.871)
(px, py , pz) (m) (1.145, 1.688, 1.225) (0.283, 0.336, 0.165)

yaw and position under the SRS filter are not observable as

predicted by the previous study [3].

3) Estimation Accuracy: The estimation results with white

background in Figure 3 show the steady-state periods on

t ∈ [2, 15]s. Table II reports the comparison of the root-mean-

square (RMS) errors between the state estimate and the ground

truth for both filters. As the state variables estimated by the two

filters have different physical meanings, directly comparing

their specific accuracy may not be meaningful. Still, the

smaller errors of the proposed method do highlight the need to

explicitly consider the ground motion in the state estimation,

especially under significant ground motions such as the tested

treadmill movements. Without explicit treatment, the ground

motion acts as temporally persistent, significant uncertainties

that could notably degrade estimator performance.

VIII. CONCLUSION

This paper developed a real-time state estimation approach

for legged locomotion inside a non-inertial environment with

an unknown ground motion. The process and measurement

models underlying the estimator were formulated to explicitly

consider the movement of the non-inertial environment. A

minimal suite of proprioceptive sensors and an inertial mea-

surement unit attached to the environment were used to inform

the proposed InEKF. The observability analysis revealed that

all state variables (i.e., relative pose and linear velocity)

are observable during environment translation and rotation.

Hardware experiment results and comparison with a baseline

InEKF demonstrated the fast convergence rate and high accu-

racy of the proposed filter under various ground motions and

substantial estimation errors. The proposed system modeling

can be readily used in filtering and optimization frameworks

beyond InEKF, and can be combined with data returned by

exteroceptive sensors such as cameras and LiDARs. Future

work includes the study of fully onboard sensing and learning-

aided methods to remove the need for an external IMU

attached to the moving environment.
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