
Large Language Models for Anomaly Detection in
Computational Workflows: from Supervised

Fine-Tuning to In-Context Learning
Hongwei Jin∗, George Papadimitriou†, Krishnan Raghavan∗, Pawel Zuk†,
Prasanna Balaprakash‡ Cong Wang§, Anirban Mandal§, Ewa Deelman†,

∗Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, USA
{jinh, kraghavan}@anl.gov

†Information Sciences Institute, University of Southern California, Los Angeles, USA
{georgpap, pawelzuk, deelman}@isi.edu

‡Computing and Computational Sciences Directorate , Oak Ridge National Laboratory, Oak Ridge, USA
pbalapra@ornl.gov

§RENCI, University of North Carolina at Chapel Hill, Chapel Hill, USA
{cwang, anirban}@renci.org

Abstract—Anomaly detection in computational workflows is
critical for ensuring system reliability and security. However,
traditional rule-based methods struggle to detect novel anomalies.
This paper leverages large language models (LLMs) for workflow
anomaly detection by exploiting their ability to learn complex
data patterns. Two approaches are investigated: 1) supervised
fine-tuning (SFT), where pre-trained LLMs are fine-tuned on
labeled data for sentence classification to identify anomalies,
and 2) in-context learning (ICL) where prompts containing task
descriptions and examples guide LLMs in few-shot anomaly de-
tection without fine-tuning. The paper evaluates the performance,
efficiency, generalization of SFT models, and explores zero-shot
and few-shot ICL prompts and interpretability enhancement
via chain-of-thought prompting. Experiments across multiple
workflow datasets demonstrate the promising potential of LLMs
for effective anomaly detection in complex executions.

Index Terms—anomaly detection, large language models, su-
pervised fine-tuning, in-context learning, computational work-
flows

I. INTRODUCTION

With the increasing complexity and scale of modern sys-
tems, computational workflows are growing in complexity
while their reliability, security, and performance are becom-
ing rather important. A critical factor in ensuring workflow
execution reliability is the ability to detect anomalies. These
anomalies can be indicators of various system issues, and they
are manifested by unexpected behavior in hardware, such as
high usage of computing resources, memory consumption, and
I/O operations. To address the problem of anomaly detection
in modern systems, methods that rely on rule-based systems,
statistical analysis, and machine learning techniques [1]–[4]
have become quite popular in recent years.

Despite their effectiveness, a considerable amount of data
preprocessing must be done to perform this detection because
typical methods are limited to analyzing images or numerical
values. Furthermore, to facilitate this data preprocessing, a
lot of expert knowledge is needed to be put into carefully

collecting and correlating low-level system statistics with
workflow execution metadata that can be used to convert the
raw logs into other formats. Adding to the complexity is the
need for substantial ML expertise to navigate the wide array
of available anomaly detection methodologies effectively. The
field of ML presents a vast spectrum of models and tech-
niques, each with its customization and application nuances.
This diversity, while beneficial, also imposes a steep learning
curve and necessitates a deep understanding of ML principles
to tailor these models to specific anomaly detection tasks.
Furthermore, the process of setting up and training these
models—integrating them into a system’s workflow—poses an
additional challenge. This aspect of ML model deployment and
maintenance may not align well with the skill set of system
administrators, who are typically more versed in direct system
maintenance rather than in the nuances of ML model training
and tuning.

Large Language Models (LLMs) and their wide-spread de-
mocratization efforts have the potential to significantly trans-
form anomaly detection in HPC systems by streamlining data
preprocessing, enhancing pattern recognition, simplifying the
deployment of machine learning models, enabling real-time
monitoring, and fostering a supportive community ecosystem.
By automating complex data processing tasks and offering
advanced analytical capabilities, LLMs reduce the need for
extensive expert knowledge, making sophisticated anomaly
detection accessible to system administrators without deep
technical backgrounds. Furthermore, their ability to process
and analyze streaming data in real-time can ensure prompt
detection and mitigation of potential system issues.

A primary critique of LLMs concerns their energy/power
consumption and model size, which are seen as barriers
to their practical application in HPC data analysis. How-
ever, this perspective overlooks the significant advances in
energy-efficient technologies and the optimization of LLMs

ar
X

iv
:2

40
7.

17
54

5v
1

 [c
s.S

E]
 2

4
Ju

l 2
02

4

for operation on a wide range of devices, from high-end
servers to compact, low-power devices such as smartphones.
These emerging technologies not only mitigate the energy
and resource demands of running sophisticated LLMs but
also expand their accessibility and usability across various
platforms. Consequently, as these energy-efficient techniques
continue to evolve and LLMs become increasingly optimized
for smaller devices, the practicality of deploying LLMs for
anomaly detection in HPC systems—and beyond—becomes
ever more feasible. This trajectory underscores the viability of
LLMs as a transformative tool in anomaly detection, promising
significant advancements in HPC system management and
maintenance.

We develop an approach that leverages pre-trained Large
Language Models (LLMs) to directly detect anomalies from
log files generated during the execution of computational
workflows. Specifically, we adapt these pre-trained models
through Supervised Fine-Tuning (SFT) and Prompt Engineer-
ing via In-Context Learning (ICL). SFT employs a pre-trained
model and trains on a smaller dataset of labeled examples for
a specific task [5]. Unlike the training of LLMs in an unsu-
pervised way, the SFT often consists of an input and a desired
output. By updating the parameters of LLMs again through
SFT, the model improves the performance for a downstream
task. However, one common issue with LLMs is that they can
perpetuate biases present in the data used to train them [6],
especially when for the binary classification problem. Another
common issue is catastrophic forgetting (CF) [7], which occurs
in machine learning when a model forgets previously learned
information as it learns new information. This is a common
problem in supervised fine-tuned models, where the model is
trained on a new task after it has already been trained on one
or more previous tasks.

In-context learning (ICL), on the other hand, is an emerging
paradigm where LLMs perform tasks by leveraging a few
examples provided within the context of query [8] rather
than relying on supervised fine-tuning with labeled data. ICL
heavily relies on prompt engineering, providing examples and
contextual cues that guide the LLMs in efficiently understand-
ing and executing the desired task. A well-engineered prompt
not only presents the LLM with relevant information but subtly
instructs it on generating the appropriate output. It involves
structuring the examples in a way that highlights patterns or
relationships, using natural language templates that align with
the task’s goals, or including explicit instructions that direct
the model’s attention to critical aspects of the problem. This
alignment can be performed specifically for the anomaly de-
tection problem where the prompts contain information about
the job features and brief statistics about the job execution
facilitating anomaly detection in the workflow. Furthermore,
prompts can also include the instruction for reasoning steps
through Chain-of-Thought (CoT [9]), providing explainable
output from LLMs.

To this end, we make the following contributions to the
scope of this paper:

1) Investigate the efficacy of LLMs for anomaly detection

and evaluate the performance of supervised fine-tuning
models and in-context learning in detecting anomalies
in computational workflows.

2) Address the biases, overcome the catastrophic forgetting,
and explore the generalization through transfer learning
and online detection.

3) Explore the ability of ICL with zero-shot, few-shot
learning, and study the interpretable output from ICL
through Chain-of-Thought (CoT).

With the use of LLMs for anomaly detection in computational
workflows, we seek to contribute to the development of
effective and efficient methods for detecting anomalies in
computational workflows.

II. BACKGROUND AND RELATED WORK

Several approaches have been proposed in the literature
for anomaly detection in computational workflows. These
approaches can be broadly classified into rule-based systems,
statistical analysis, and machine-learning techniques. Rule-
based systems rely on predefined thresholds and patterns to
detect anomalies. For example, [10] proposed a rule-based
system that uses a set of heuristics to identify anomalies in
Linux computational workflows.

While rule-based systems are simple to implement, they
are limited by their inability to adapt to changing patterns
in behavior and are often brittle in the face of new anomalies.
Statistical analysis techniques, that use statistical information
such as mean, median, and standard deviation, have been used
to detect anomalies in computational workflows as well. For
example, [11] proposed an approach that uses statistical meth-
ods to identify anomalies in network traffic logs. However,
statistical analysis techniques are sensitive to outliers and may
not be effective in detecting anomalies that do not deviate
significantly from the mean.

Machine learning techniques, such as decision trees, random
forests, and clustering, have also been applied to anomaly
detection in computational workflows. For example, [12] pre-
sented a simple and effective algorithm for spectral clustering,
a method for grouping data points based on their pairwise
similarities. The algorithm utilizes the eigenvectors of the
graph Laplacian to represent similarities between the data
points. The authors also provide a theoretical analysis of the
algorithm and show that it can be used to cluster data in a
variety of settings.

More recently, deep learning techniques, such as recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs), have been applied to anomaly detection in com-
putational workflows. For example, [13] proposed a general
methodology for mining console logs to detect large-scale
system problems. The authors first parse the logs by combin-
ing source code analysis with information retrieval to create
composite features. They then analyze these features using
machine learning to detect operational problems. The authors
evaluate their methodology on a dataset of console logs from
a large-scale production system and show that it can be used

In-context prompt

Inference

Job x <FEAT_1> is <VAL_1>… <FEAT_n> is <VAL_n> , <LABEL>
…
Job x <FEAT_1> is <VAL_1>… <FEAT_n> is <VAL_n> , <LABEL>

Labeled text data

Pre-trained

Supervised
Fine-tuning

You are a system administration bot. Your task is to assess a job description with couple of features
into one of the following categories:
Normal
Abnormal

You will only respond with the category. Do not include the word "Category". Do not provide
explanations or notes.
A single job has six features, including <FEAT_1> … <FEAT_n>

Example
Instruct: Job <FEAT_1> is <VAL_1>, … <FEAT_n> is <VAL_n>
Category: Normal
Instruct: Job <FEAT_1> is <VAL_1>, … <FEAT_n> is <VAL_n>
Category: Normal
…

1 2
SFT
ICL

In-context
Learning

Fig. 1. Supervised Fine-tuning and In-Context Learning for anomaly detection

to effectively detect a variety of system problems, including
performance problems, software bugs, and malicious activity.

Several works also take advantage of LLMs for anomaly
detection in system logs. LogBERT [14] is a self-supervised
anomaly detection framework based on BERT that learns the
patterns of normal log sequences by two novel self-supervised
training tasks and is able to detect anomalies where the under-
lying patterns deviate from normal log sequences. Similarly,
BERT-log [15] also trains a BERT model but with labeled
data to detect anomalies in logs. UniLog [16] and LTanomaly
[17] are both Transformer-based anomaly detection methods
for system logs, but UniLog is a pre-trained model, while
LTanomaly is a Transformer variant that is specifically de-
signed for syslog anomaly detection. While impressive results
have been demonstrated, these approaches are not easily
extensible and applicable to other workflows beyond the ones
used in these papers. This is because these papers introduce
their own unique tokenization which does not generalize to
different logging systems with different vocabularies. This
limits the usage of these approaches once a new logging
system is deployed. In contrast, our approach leverages pre-
trained models, and therefore, is easy to generalize to different
kinds of logs and different workflows, which is demonstrated
in our results.

III. LLMS FOR ANOMALY DETECTION

In this section, we will describe the supervised fine-tuning
and in-context learning in details, and their advantages in
anomaly detection tasks. An overview of our approach is
provided in Figure 1.

A. Supervised Fine-Tuning

Supervised fine-tuning (SFT) is used to adapt pre-trained
language models to new tasks or domains. The process in-
volves feeding a labeled dataset of the target task or domain
to the pre-trained model and adjusting the model’s parameters
while minimizing the loss on the new task. By using labeled
data from the target task, the model can learn to recognize

patterns and features that are specific to the new task, while
still leveraging the knowledge it has gained from the large
amounts of data it was pre-trained on.

Following this, we detect the anomalies in computational
workflows by fine-tuning the pre-trained models on the labeled
dataset of the target task, i.e., sentence classification. Our
approach involves treating the logs generated by the compu-
tational workflows as a sequence of sentences and applying
the fine-tuned model to classify each sentence as normal or
anomalous. Toward this end, we use a combination of pre-
trained models and evaluate their performance on Flow-Bench
dataset. A template that parses a system log entry into a
sentence with labels is provided in Figure 2.

Instead of training LLMs from scratch as done in [15], [18],
there are several advantages of using the SFT approach:

• Reduced training time and resources: SFT allows us
to leverage the knowledge gained by the pre-trained
model, reducing the amount of training time and re-
sources required to achieve good performance on the
target task. This can save a significant amount of time
and computational resources.

• Improved performance: SFT has been shown to improve
the performance of pre-trained models on a wide range
of NLP tasks, including text classification, sentiment
analysis, and question answering. By adapting pre-trained
models to the target task, we can achieve better perfor-
mance than training a model from scratch.

• Easy domain adaptation: SFT allows us to adapt pre-
trained models to new domains, enabling them to learn
domain-specific features and patterns. This can be useful
for tasks like anomaly detection, where the target domain
may be different from the domain the model was pre-
trained on.

• Better Generalization: SFT can lead to better general-
ization to unseen data compared to training a model from
scratch since the pre-trained model has already learned
to recognize many features that are useful for the target

<FEAT_1> is <VAL_1> <FEAT_2> is <VAL_2> ...
<FEAT_n> is <VAL_n>, <LABEL>

Fig. 2. Template of parsed log into a sentence.

task.
• Smaller dataset requirements: SFT can be more ef-

fective with smaller datasets than training a model from
scratch since the pre-trained model has already learned to
recognize many features that are useful for the target task.
This can be particularly useful for tasks where labeled
data is scarce or difficult to obtain, e.g., anomalies in
computational workflows.

B. In-Context Learning

In-context learning (ICL) explores the LLMs’ ability to
enable few-shot learning and improve the generalization ca-
pabilities of the model. In contrast to the SFT, ICL does not
train the model explicitly, instead, it applies prompts (input
context) to guide the LLMs applying on downstream tasks. To
highlight the ICL approach, we highlight several advantages
of using ICL as follows:

• Improved generalization: ICL enables models to learn
from the context provided in the input data, which can
improve their generalization capabilities. This can be
especially useful for anomaly detection in system logs,
where the data can be highly variable and complex.

• Reduced need for labeled data: ICL can enable models
to learn from unlabeled data, reducing the need for
expensive and time-consuming labeling efforts. This can
be particularly beneficial in the context of anomaly de-
tection, where labeling data can be difficult and resource-
intensive.

• Improved interpretability: ICL also provides insights
into the features and patterns that are important for
detecting anomalies, making it easier to interpret the
model’s predictions and identify false positives or nega-
tives. Especially, Chain-of-Thought (CoT) [9] is a method
that can be used to generate prompts that guide the model
to generate the desired output by providing explainable
results.

Under the ICL paradigms, there are different types of prompts
that can be used to guide the LLMs’ learning, including
zero-shot prompts, one-shot prompts, and few-shot prompts.
Zero-shot prompts provide the model with a natural language
description of the task, without any examples. In this case,
the model must rely solely on its prior knowledge and the
context provided to explore the ability of LLMs. One-shot
prompts and few-shot prompts provide the model with either
a single example or a few examples of the task, respectively.
Generally, the examples provided involve the label of cases,
particularly in the anomaly detection task, the example could
be either the normal, anomalous or even mixed examples
together. This is useful for tasks where labeled data is scarce
or difficult to obtain, as it allows the model to learn from
a small amount of data. Figure 3 provides the template of

the prompt for ICL. It contains two parts in general, the task
description, which guides the LLMs to understand the task,
and the examples, which provide the context for the task. In
our case, we explicitly ask the model to output the category
of job described, without any reasoning or explanation. The
contextual example, in this case, is the sentences that describe
the job with its features extracted from the raw log file, and
explicitly note the label of the job.

Besides, another key advantage of ICL is that it can be fine-
tuned based on domain-specific datasets as well, enabling it to
adapt to new domains and tasks. Similar to SFT, fine-tuning
on ICL also applies the labeled data from the target domain,
capturing the specific features and patterns that are relevant to
the task.

Prompt of task for ICL
You are a system administration bot.
Your task is to assess a job description with a couple
of features into one of the following categories:
Normal and Abnormal

You will only respond with the category.
Do not include the word "Category".
Do not provide explanations or notes.
A single job includes <FEAT_1> ... <FEAT_n>

Example prompt
Instruct: <FEAT_1> is <VAL_1>, ... <FEAT_n> is <VAL_n>
Category: Normal

Fig. 3. Template of in-context learning.

C. Pre-trained Models

Pre-trained models, such as BERT [19], GPT [20], and
ALBERT [21] leverage the Transformer architecture [22] to
ascertain statistical patterns and linguistic structures in the
data. These models, trained on the large corpus of freely
available text data have become the backbone of many state-of-
the-art NLP systems, empowering researchers and practition-
ers to achieve remarkable performance with reduced training
time and resources. These models have accelerated progress in
NLP and continue to drive advancements in various language
understanding and generation tasks.

For text classification tasks, where the goal is to assign a
category or label to a given text input, encoder-only models
are commonly employed. These models, such as BERT [19]
(Bidirectional Encoder Representations from Transformers)
and RoBERTa [23] (Robustly Optimized BERT Approach),
process the input text in its entirety and generate contextual-
ized representations, which can then be used for classification.
Typically, the SFT for classification tasks involves adding a
classification head on top of the pre-trained model and fine-
tuning the model on a labeled dataset.

On the other hand, for causal language modeling tasks,
where the objective is to predict the next token in a sequence
given the preceding context, decoder-only models are well-
suited. These models, such as GPT [20] (Generative Pre-
trained Transformer) and its variants, generate text in an
autoregressive manner, making them suitable for tasks like text
generation, machine translation, and summarization. Unlike

the SFT, which predicts the label of the given sentences,
ICL outputs more context-aware results, which involve the
generation of words and sentences based on the context
provided.

To the scope of our anomaly detection task, we will select
a set of encoder-only models for SFT tasks, and decoder-only
models for ICL tasks.

IV. EXPERIMENTS

Our experiments are conducted on a single NVIDIA A100
GPU with 40GB memory. We implemented in PyTorch [24]
and Huggingface’s Transformers library [25] for our experi-
ments. The detailed configurations of each individual model
and optimizer are presented in the Artifact Appendix.

A. Dataset and Data Processing

To conduct our experiments we adopted the workflow data
from Flow-Bench [26], a collection of three computational
workflows for anomaly detection. The contributors of this
dataset manually created a set of anomaly templates that
represent different types of anomalies that could occur in
the workflow data, such as missing data, incorrect data, or
unexpected patterns (e.g., performance degradation). They
then adopted these templates to create instances of anomalies
in the data by injecting them into real workflow executions, at
various points. The benchmark design also took steps to ensure
that the anomalies were realistic and representative of real-
world scenarios. For example, they ensured that the anomalies
were not too frequent or too rare and that they were distributed
across the data in a way that was consistent with real-world
patterns. Flow-Bench contains 1211 execution traces of three
computational workflows, that we briefly describe here.

• The 1000 Genome Workflow identifies mutational over-
laps using data from the 1000 Genomes Project [27] in
order to provide a null distribution for rigorous statistical
evaluation of potential disease-related mutations across
populations. The instance of the workflow DAG available
in the dataset, has a total of 137 jobs nodes and 289 edges.

• The Montage Workflow uses the Montage astronomical
image toolkit [28] to transform astronomical images,
captured by the Digitized Sky Survey (DSS) [29], into
custom mosaics for further analysis of the deep sky. The
instance of the workflow DAG available in the dataset,
has a total of 539 nodes and 2838 edges.

• The Predict Future Sales Workflow uses real historical
sales data in order to train machine learning models that
accurately predict the sales of the following month. The
instance of the workflow DAG available in the dataset,
has a total of 165 nodes and 581 edges.

Additionally, in Flow-Bench, alongside the normal - baseline
data, the authors have included two main anomaly classes that
model performance degradation, CPU and HDD, with multiple
subclasses based on the magnitude of the slow downs. In the
CPU case, the authors instructed their workers to advertise a
fixed number of cores, but then use affinity and cgroups to
limit the actual cores that could do processing. In the case of

TABLE I
DATASET STATISTICS

Dataset Split # of normal nodes # of anomalous nodes % of anomalies

1000 Genome
train 25911 12558 0.3264

validation 3258 1551 0.3225
test 3229 1580 0.3286

Montage
train 109738 28246 0.2047

validation 13735 3513 0.2037
test 13756 3492 0.2025

Sales
Prediction

train 58043 13237 0.1857
validation 7250 1660 0.1863

test 7316 1594 0.1789

HDD, they limited the average read and write speed of their
workers. For a more detailed description of the workflows and
the data available in Flow-Bench we would like to redirect the
reader to [26].

To process the logs, we first convert them into tabular
format, where each row represents a log entry and each column
represents a field in the log, including timestamps, job status,
time duration, I/O operations, etc. In order to omit the variance
of timestamps, we select time durations of states of a job,
along with I/O and CPU operations as the features for anomaly
detection. Figure 2 provides a template of the parsed log into
sentences.

Having generated the parsed sentences for each job, we
split the entire dataset into train, validation, and test sets with
the ratio of 8:1:1. Table I shows the statistics of the dataset,
including number of normal and anomalous nodes (jobs), and
the percentage of anomalies in each split.

B. SFT Models

We begin our results by validating how much we can gain
from supervised fine-tuning by comparing the performance of
pre-trained models and SFT models on the test set. Figure 4
shows the accuracy of pre-trained models and SFT models on
the test set of 1000 Genome dataset. Notably, SFT models
outperform pre-trained models in general, with a significant
margin of improvement in several models. In addition to the
LLMs, we include conventional machine learning models,
MLP and GNN, as baselines for comparison. Following the
setup of models in the work [30], our results demonstrate
that the SFT models achieve comparable performance to these
classical machine learning models. However, the SFT models
offer the advantage of being more versatile and accessible for
the anomaly detection task, even without requiring extensive
machine learning expertise.

We also try to identify the relationship between model
size and its performance. Figure 5 shows the training time
of 1000 Genome dataset and the number of parameters for
the SFT models. The training time increases with the number
of parameters, which is expected. However, the performance
of SFT models does not necessarily increase with the num-
ber of parameters. For example, two distilbert models
have a good performance in accuracy, while a larger model,
xlnet-base-cased takes a longer time to train with a
larger amount of parameters, resulting in worse performance
when compared with distilbert. It is not necessary to

al
be

rt-
ba

se
-v

2

al
be

rt-
la

rg
e-

v2

be
rt-

ba
se

-c
as

ed

be
rt-

ba
se

-u
nc

as
ed

be
rt-

la
rg

e-
ca

se
d

be
rt-

la
rg

e-
un

ca
se

d

di
st

ilb
er

t-b
as

e-
ca

se
d

di
st

ilb
er

t-b
as

e-
un

ca
se

d

ro
be

rta
-b

as
e

ro
be

rta
-la

rg
e

xl
ne

t-b
as

e-
ca

se
d

xl
ne

t-l
ar

ge
-c

as
ed

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

MLP GNN Pretrain LLM SFT LLM

Fig. 4. Reported accuracy from pre-trained models and SFT models on 1000
Genome dataset.

10 20 30 40 50 60 70
Training time (min)

0

50

100

150

200

250

300

350

Nu
m

be
r o

f p
ar

am
et

er
s (

M
)

albert-base-v2 albert-large-v2

bert-base-uncased

bert-large-cased
bert-large-uncased

distilbert-base-uncased

roberta-base

roberta-large

xlnet-base-cased

xlnet-large-cased

distilbert-base-cased

bert-base-cased

Fig. 5. Training time vs. number of parameters.

conclude that a larger model is not helpful; the performance
highly depends on the model being fine-tuned and the size
of data used for training. Insufficient training data may re-
sult in underfitting in the xlnet model due to a limited
ability to learn better embeddings for the task. Lastly, we
also evaluate the performance of SFT models concerning
the training epochs. As training LLMs requires a significant
investment of time and resources, we aim to determine the
potential benefits of increasing the number of epochs. Figure 6
shows that accuracy, F1, precision, and recall scores on the
validation set improve with just a few epochs of training.
However, additional epochs leads to overfitting, resulting in
worse performance. It is worth pointing out that the training
time per epoch on 1000 Genome data is about 260 seconds
on average. Therefore, in practice, a few epochs of supervised
fine-tuning are sufficient to transfer the model to the target
task.

0 10 20 30 40 50
Epoch

0.7

0.8

Sc
or

es

Accuracy Precision F1 Recall

Fig. 6. Validation scores with SFT.

C. Online Detection

Online detection of anomalies in computational workflows
is a critical task that can help identify potential security threats
or system failures in real time. SFT models have emerged as
a powerful tool for this task, leveraging the knowledge gained
from large amounts of labeled data to adapt to new tasks and
domains. With the automatically parsed text sentence, we can
apply the SFT models to predict the label of the system logs
in real time.

Figure 7 depicts an illustration of real-time anomaly detec-
tion. The figure shows the timestamp at T1 the computational
workflows indicate that the wms_delay is 6.0, which the
SFT model identifies as a normal occurrence. However, as
new log data becomes available, e.g., at T4, the SFT model is
able to detect anomalies in real time, allowing for the prompt
identification and mitigation of potential issues.

Meanwhile, we also evaluate the early detection of SFT
models by checking the first time the model predicts a correct
label of the job. Figure 8 shows the statistics of early detection
in the test set of 1000 Genome dataset, where the x-axis is
the feature processed from the log in sequential order and the
y-axis is the number of samples that are first identified suc-
cessfully. Recall the feature of the job, involving the timestamp
of each stage, we can identify the stage of the job when the
anomaly is detected. For example, the anomaly is detected at
the first stage of the job, which is the wms_delay stage. The
figure shows that the SFT models can detect anomalies at the
early stage of the job, which could significantly help mitigate
the potential issues of the job.

D. Debiasing LLMs

In the context of anomaly detection, the LLMs may output
biased labels for normal and anomalous inputs, which can lead
to incorrect or unfair results. One source of bias in SFT is the
pre-trained LLM itself. LLMs are trained on massive datasets
of text and code, which may contain biases that are reflected
in the model’s output. For example, an LLM trained on a
dataset of news articles may be biased towards certain political
viewpoints.

Another source of bias in SFT is the dataset utilized for fine-
tuning. If the dataset is not representative of the population that
the LLM will be used on, this can lead to biases in the model’s

T1: wms_delay is 6.0
==> label: LABEL_0, score: 0.7708

T2: wms_delay is 6.0 queue_delay is 22.0
==> label: LABEL_0, score: 0.8103

T3: wms_delay is 6.0 queue_delay is 22.0 runtime is 2090.0
==> label: LABEL_0, score: 0.6631

T4: wms_delay is 6.0 queue_delay is 22.0 runtime is 2090.0 post_script_delay is 5.0
==> label: LABEL_1, score: 0.5780

T5: wms_delay is 6.0 queue_delay is 22.0 runtime is 2090.0 post_script_delay is 5.0 stage_in_delay is 1310.0
==> label: LABEL_1, score: 0.5742

Fig. 7. Example of online detection.

wms_d
ela

y

qu
eu

e_d
ela

y

run
tim

e

po
st_

pro
ces

s

sta
ge

_in
_de

lay

sta
ge

_ou
t_d

ela
y

by
tes

_in

by
tes

_ou
t

cpu
_tim

e
0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f s
am

pl
es

2761

279
18

717

2098 176

Fig. 8. Early detection with online detection.

output. For example, if the dataset for a text classification task
only contains examples written by white males, the model may
be biased against other groups of the population. Ideally, given
the empty sentence, which means without any pre-knowledge
of the job, the model should predict normal and abnormal jobs
with almost equal probability.

In Figure 9(a), we present the prediction of an empty string
[“ ”] from the pre-trained models with 10 independent runs.
The figure shows that for a couple of models, the prediction
is biased either towards normal or anomalous. To address this,
we artificially increase the size of training data by inserting
both labels into the empty input sentence, preserving its
prediction to be fair without any pre-knowledge of the job.
The model is forced to learn more robust features and reduce
its reliance on any single feature or pattern extracted from
the job, thus helping to mitigate the impact of biases in the
data and improve the model’s performance on unseen data.
Figure 9(b) shows the prediction of the same empty string
from the debiased models by augmented training data. Clearly,
the gap between normal and anomalous prediction is reduced,
which indicates the model is less biased towards normal or
anomalous.

E. Transfer Learning

Furthermore, SFT has been increasingly applied in the con-
text of transfer learning, which is a technique that allows mod-
els to leverage knowledge learned from one task to improve
performance on another related task. In transfer learning, a pre-
trained model is fine-tuned on a new dataset, and SFT is used

to adapt the model to the new task’s specific characteristics.
By using SFT, the model can learn to recognize new features
and patterns that are relevant to the new task while still
leveraging the knowledge learned from the pre-training task.
This approach has been shown to be effective in various NLP
tasks such as language translation, question answering, and
text classification. For instance, a pre-trained language model
can be fine-tuned on a new language pair using SFT to improve
its translation accuracy. SFT has also been applied in computer
vision tasks such as image classification, object detection, and
segmentation, where a pre-trained model is fine-tuned on a
new dataset to improve its performance on the new task.

To demonstrate the effectiveness of SFT in transfer learning,
we first present the performance of the transferred model
without fine-tuning the new dataset. Figure 10 shows the
accuracy scores of models that were trained on one dataset and
evaluated on another dataset. The y-axis of the graph shows
the dataset that the model was trained on, and the x-axis shows
the accuracy score on the dataset that the model was evaluated
on. For example, the model trained on the sales prediction
dataset but evaluated on the 1000 Genome dataset still achieves
an accuracy of 0.7523, meaning that the underlying hidden
features learned from the Sales Prediction dataset can be
generalized to the 1000 Genome dataset. However, it is not
always the case in the opposite direction. A model learned
from 1000 Genome does not perform well on Montage and
Sales Prediction workflows. Therefore, a fine-tuning step is
required to adapt the model to the new task, meaning that
given a small set of labeled data from the target task, we
can fine-tune the model to improve its performance on the
target task. Figure 11 shows the accuracy scores of an SFT
model trained on the 1000 Genome dataset and with accu-
mulated training data from Montage, the evaluated accuracy
on Montage workflow is improved from below 0.7 to above
0.8. Notably, having more available data in the target domain
may not always lead to better performance, as the model may
overfit the target domain and lose its ability to generalize to
other domains.

The transfer learning enables the SFT to be more effective
and fine-tuned on new datasets, which can iteratively increase
the generalization of updated parameters for LLMs and im-
prove the performance of anomaly detection.

F. Overcoming Catastrophic Forgetting

CF is a problem because it can lead to the model performing
poorly on the previous tasks. To overcome this issue, we can

(a) Model prediction without data augmentation. (b) Model prediction with data augmentation.

Fig. 9. Comparison of model predictions with and without data augmentation.

10
00

 G
en

om
e

M
on

ta
ge

Sa
le

s P
re

di
ct

io
n

1000 Genome

Montage

Sales Prediction

0.8143 0.6867 0.6462

0.8136 0.8137 0.4899

0.7523 0.7921 0.949

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 10. Transfer learning. pre-trained model: bert-base-uncased.

0 20 40 60 80 100
Percentage of training data (%)

0.70

0.75

0.80

Ac
cu

ra
cy

 sc
or

e

Fig. 11. Fine-tuning for transfer learning.

freeze the parameters of the model that were learned during
pre-training, and only update the parameters that are specific
to the new task. It prevents the model from making significant
changes to its parameters. When the model is trained on a
new task, it needs to make changes to its parameters in order
to learn the new task. However, if the model is making too
many changes to its parameters, then it may forget the previous
tasks. By freezing a large portion of the model parameters,
we are preventing the model from making significant changes

TABLE II
FREEZING PARAMETERS. PRE-TRAINED MODEL: BERT-BASE-UNCASED

SFT (D1) SFT (D1 + D2) SFT (D1 + D2)

Param. updated All All Linear

Accuracy 0.8155 0.7065 0.7305
Precision 0.7251 0.5589 0.9150
Train time (sec.) 801 2849 314

to its parameters. This helps to reduce the risk of the model
forgetting the previous tasks. This also allows the model to
retain the knowledge it has gained from pre-training while
still adapting to the new task and has shown to be effective in
the domain of computer vision [31].

To show the effectiveness of freezing the parameters, we
compare the performance of SFT models with and without
freezing the parameters. Table II shows the performance of
SFT models on 1000 Genome dataset (denoted as D1 in the
table) with different training strategies. Columns of SFT (D1)
(All) and SFT (D1 + D2) (All) indicate the supervised fine-
tuning of the entire model based on 1000 Genome dataset
and fine-tuned transfer learning based on the Montage dataset
(denoted as D2) again, respectively. The last column SFT
(D1 + D2) (Linear) indicates the training by freezing the pre-
trained parameters and only updating the last linear layer for
prediction on both 1000 Genome and Montage datasets. The
results show that without freezing the parameters, the model
gets worse once it is fine-tuned on a new dataset. However, by
freezing the parameters, the model can retain the knowledge
it has gained from what learned on D1 while still adapting to
the D2. Meanwhile, the precision score is even higher than
the model purely trained on D1. This is mainly due to the
new dataset D2 that has a different distribution of normal
and anomalous jobs, which can help the model to learn more
robust features and reduce its reliance on any single feature or
pattern extracted from the jobs. Another advantage of freezing
the parameters is that it can significantly reduce the training

TABLE III
ACCURACY WITH IN-CONTEXT LEARNING ON 1000 GENOME DATASET

Model All
param.

LoRA
param(%) FT Few-shot

(neg. only)
Few-shot

(pos. only) few-shot

GPT2 127 M 2 M
(1.86%)

No 0.54 0.57 0.66
Yes 0.68 0.73 0.72

Mistral 7 B 27 M
(0.38%)

No 0.64 0.65 0.68
Yes 0.73 0.68 0.78

LLama2 7 B 34 M
(0.50%)

No 0.60 0.63 0.65
Yes 0.68 0.71 0.76

0 2 4 6 8
Number of samples in prompt

0.4

0.6

0.8

Ac
cu

ra
cy

gpt2
llama
mistral

pos+neg
pos
neg

Fig. 12. Number of examples in prompts for ICL.

time, as the model only needs to update a small portion of its
parameters, which is indicated in the last row of the table.
G. ICL results

In this section, we present the results of the in-context learn-
ing (ICL) approach. As ICL is essentially a text generation
task, we explore the performance on a set of different decoder-
only models, including GPT2 [32], Mistral-7B-v0.1 [33], and
LLama2-7B [34].

For the model training, as LLMs are large and computa-
tionally expensive to train, we use the pre-trained models and
apply the quantization and LoRA techniques to reduce the
memory footprint and improve the inference speed.

a) Quantization.: To save memory and reduce the in-
ference time, we apply the quantization technique [35] to
the fine-tuned model. Quantization is a model compression
technique that reduces the memory footprint and improves the
inference speed of deep learning models by converting the
model’s weights from floating-point to fixed-point numbers.
More specifically, we apply the BitAndBytes [36] with enabled
4bit quantization to replace the linear layers and enabled
float16 computational type for the tensors which might be
different than the input time.

b) LoRA.: To further reduce the memory footprint and
improve the inference speed, we apply the Low-Rank Adap-
tation (LoRA) [37] technique to the fine-tuned model. LoRA
is a parameter-efficient fine-tuning (PEFT) technique that has
gained significant importance in the field of LLMs. Mod-
els like Mistral-7b and LLama-7b typically have billions of
parameters, making them computationally expensive to fine-
tune and deploy in resource-constrained environments. LoRA
addresses this challenge by introducing a small number of
task-specific rank decompositions to the model’s weight matri-

TABLE IV
ZERO-SHOT LEARNING VS. UNSUPERVISED LEARNING.

Model ROC-AUC Ave. Prec. Prec. @ k

IF [38] 0.504 0.497 0.560
PCA [39] 0.500 0.500 0.523
MLPAE [40] 0.545 0.518 0.508
GCNAE [41] 0.610 0.519 0.398
AnomalyDAE [42] OOM

GPT2 (w/o FT) 0.412 0.432 0.500
GPT2 (w/ FT) 0.610 0.519 0.398
LLama2 (w/o FT) 0.500 0.497 0.508
LLama2 (w/ FT) 0.652 0.626 0.547
Mistral (w/o FT) 0.521 0.521 0.521
Mistral (w/ FT) 0.643 0.626 0.578

ces. Instead of updating all the parameters during fine-tuning,
LoRA only modifies a small subset of parameters, reducing the
memory footprint and computational requirements. This ap-
proach allows for efficient adaptation of LLMs to specific tasks
or domains while maintaining the model’s general language
understanding capabilities. Without further clarification, we set
the rank of the LoRA to 64, the scaling factor to 128, and the
LoRA layer dropout to 0.05 for all models. Table III shows
the accuracy of the ICL models on the 1000 Genome dataset.
We compare the accuracy scores of pre-trained models with
and without fine-tuning in few-shot settings. To demonstrate
the efficiency of quantization and LoRA, we also provide the
number of trainable parameters and their percentage of the
total parameters in the model as well. First, LoRA significantly
reduces the number of parameters in training, getting less than
2% of its total parameters. Second, we also present few-shot
with different types of examples for ICL. This is crucial for the
anomaly detection problem because getting the ground truth
label in the real world is expensive and time-consuming. We
present three different settings, with negative-only samples
(normal jobs), positive-only samples (anomalous jobs), and
mixed samples (both normal and anomalous jobs). We set the
number of examples to be 5 for each setting, and the results
show that given a mix of both positive and negative samples,
the LLMs can achieve better accuracy. Moreover, comparing
the positive-only and negative-only cases, the examples of
positive samples contribute more to the model’s prediction,
meaning that the model leads to more observable anomalies.

Furthermore, we also provide the number of examples in
the prompts for ICL with the pre-trained model in Figure 12,
where we differentiate models by line styles and few-shot
learning by colors. Note that when the number of examples
equals 0, it’s zero-shot learning in general without accessing
the contextual information. The figure shows that the number
of examples in the prompts is increasing with the model size,
which is expected. Furthermore, considering the efficiency of
LLMs, smaller models like GPT2 are more applicable under
ICL as they only require a few examples to achieve a similar
performance compared with large models like Mistral-7B and
LLama2-7B.

For the zero-shot learning, Table IV provides its perfor-

You are a system administration bot. Your task is to assess a job description with a couple
of features into one of the following categories:
Normal
Abnormal

You will only respond with the category. Do not include the word "Category". Do not provide
explanations or notes.

A single job has six features, including <FEAT_1> … <FEAT_n>

Example
Instruct: Job <FEAT_1> is <VAL_1>, … <FEAT_n> is <VAL_n>
Category: Normal
Instruct: Job <FEAT_1> is <VAL_1>, … <FEAT_n> is <VAL_n>
Category:

Please think about it step by step.

Model input

Sure, here's the step-by-step reasoning:
1. Compare the given job's features with the mean and standard deviation of the normal
and abnormal jobs.
2. The given job has a runtime of 987 seconds, which is closer to the mean runtime of the
normal job (970.9 seconds) than the mean runtime of the abnormal job (1775.6 seconds).
3. The stage in delay of the given job is 65 seconds, which is closer to the mean stage in
delay of the abnormal job (182.6 seconds) than the mean stage in delay of the normal job
(69.7 seconds).
4. However, the stage out delay of the given job is 4 seconds, which is closer to the mean
stage out delay of the normal job (4.8 seconds) than the mean stage out delay of the
abnormal job (6.1 seconds).
5. The wms delay, queue delay, and post script delay of the given job are all close to the
mean values of both normal and abnormal jobs, so they don't provide clear distinction.
6. Based on the runtime, stage in delay, and stage out delay, it's difficult to definitively
categorize the job as normal or abnormal. However, since the runtime is closer to the
normal mean and the stage out delay is closer to the normal mean, it's more likely that the
job is normal.
Therefore, the category is likely Normal, but it's a close call.

Model output

Fig. 13. Chain-of-Thought (CoT) for interpretability.

mance compared to unsupervised learning with different met-
rics, which is presented in Flow-bench [26]. To start, the zero-
shot on larger LLMs (e.g., LLama2-7b and Mistral) achieve
similar scores compared to unsupervised learning, from both
having no access to the labeled data. It reveals the LLMs’
capacities to learn the underlying patterns even without getting
access to the ground truth labels. Fine-tuning LLMs with even
a small amount of labeled data can improve their anomaly
detection performance compared to unsupervised learning
methods. Unsupervised methods can be expensive to train
and run, and may even encounter issues like running out of
memory. This makes LLMs a promising approach for anomaly
detection, especially in situations where labeled data is scarce
(zero-shot or few-shot learning). In these cases, LLMs can be
effective without the need for complex model development.
H. Interpretability by CoT

Instead of providing the simple category of a job from
ICL, we also explore the interpretability of the model by
generating the chain-of-thought (CoT) [9] reasoning. The
chain-of-thought approach in ICL involves breaking down
the decision-making process into a series of logical steps,
similar to how humans reason through a problem. Instead of
providing a single opaque prediction, ICL models can generate
a sequence of intermediate steps that explicitly outline the
thought process leading to the final output. This transparency
allows for a deeper understanding of the model’s decision-
making rationale, enabling users to scrutinize the validity of
the reasoning and identify potential flaws or biases.

Figure 13 provides the examples of CoT under ICL, wherein
the model input, we explicitly remove the instruction that
asks the model to only output the category of the job, and

10
00

 G
en

om
e

M
on

ta
ge

Sa
le

s P
re

di
ct

io
n

1000 Genome

Montage

Sales Prediction

0.814 0.753 0.814

0.814 0.827 0.698

0.799 0.823 0.894

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 14. ICL with transfer learning.

instead, we ask the model to think about it “step-by-step”.
It clearly prompts the model’s output to be more explainable
and interpretable, which can be used to validate the model’s
decision-making process. In this case, the model reasons
through the value of each feature, and determines its decision
based on simple statistics of those features. Finally, the model
outputs the category of the job, which is normal in this
case. By exposing the chain of thought, ICL models become
more interpretable and trustworthy, particularly in high-stakes
domains where decisions can have significant consequences.

I. Transfer Learning with ICL

Similar to the SFT models, we also explore the potential
of transfer learning with the ICL approach, and we report the
accuracy based on the Mistral-7B model. Figure 14 presents
the transfer learning results of the fine-tuned models (10
epochs) from one dataset to another. In the inference stage,
we randomly select 10 examples from both positive and
negative examples in the prompts. The diagonal values in a
prediction matrix indicate the model’s performance on the
dataset used for training, while the off-diagonal values show
its performance in a transferred setting. To give an example,
a pre-trained Mistral-7B model trained on the 1000 Genome
dataset was used to make predictions on the Montage dataset.
In this case, the accuracy achieved was 0.753. Note that
fine-tuning a model from observations in one dataset can
enable it to make inferences on a similar dataset that has
the same contextual information but different values in detail.
This allows the model to leverage the additional examples
introduced in its prompts to improve its performance on the
new dataset. Additionally, when comparing the results of
transfer learning and fine-tuning in Figure 11, it is observed
that the ICL approach achieves better accuracies, as expected
from the additional examples provided to improve its transfer
inference capacities.

V. CONCLUSION

In this paper, we explored the application of large language
models (LLMs) for anomaly detection in computational work-
flows through two main approaches - supervised fine-tuning
(SFT) and in-context learning (ICL). For SFT, pre-trained

LLMs were effectively fine-tuned on labeled workflow data,
achieving high anomaly detection performance across multiple
datasets while requiring relatively little task-specific data and
training time. The fine-tuned models also demonstrated strong
generalization via transfer learning. The ICL approach using
prompts enabled LLMs to perform reasonably well at few-shot
anomaly detection without fine-tuning, though performance
lagged behind SFT. Incorporating chain-of-thought prompting
improved interpretability.

Overall, the study highlights the promising potential of
LLMs and transfer learning for accurate and efficient anomaly
detection crucial for ensuring reliability in complex workflow
executions. As LLMs rapidly advance, their applicability to
this task is expected to increase further, making them valuable
tools for detecting anomalies and maintaining robust compu-
tational systems.

ACKNOWLEDGMENTS

This work is funded by the Department of Energy under
the Integrated Computational and Data Infrastructure (ICDI)
for Scientific Discovery, grant DE-SC0022328.

REFERENCES

[1] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance computing
systems,” in Proceedings of the AAAI Conference on artificial intelli-
gence, vol. 33, no. 01, 2019, pp. 9428–9433.

[2] M. Kiran, C. Wang, G. Papadimitriou, A. Mandal, and E. Deelman,
“Detecting anomalous packets in network transfers: investigations using
PCA, autoencoder and isolation forest in TCP,” Machine Learning, vol.
109, pp. 1127–1143, 2020.

[3] J. D. Herath, C. Bai, G. Yan, P. Yang, and S. Lu, “Ramp: Real-time
anomaly detection in scientific workflows,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 1367–1374.

[4] H. Jin, K. Raghavan, G. Papadimitriou, C. Wang, A. Mandal,
P. Krawczuk, L. Pottier, M. Kiran, E. Deelman, and P. Balaprakash,
“Workflow anomaly detection with graph neural networks,” in 2022
IEEE/ACM Workshop on Workflows in Support of Large-Scale Science
(WORKS). IEEE, 2022, pp. 35–42.

[5] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[6] A. Wang and O. Russakovsky, “Overwriting pretrained bias with fine-
tuning data,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 3957–3968.

[7] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang, “An empir-
ical study of catastrophic forgetting in large language models during
continual fine-tuning,” arXiv preprint arXiv:2308.08747, 2023.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[9] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[10] B. L. Thompson, D. S. Gardner, and W. Liu, “Detecting anomalies
in linux computational workflows: A rule-based approach,” 2015 IEEE
International Parallel and Distributed Processing Symposium, pp. 1212–
1221, 2015.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[12] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, ser.
NIPS’01. Cambridge, MA, USA: MIT Press, 2001, p. 849–856.

[13] W. Xu, L. D. Mann, A. X. Chang, and M. I. Jordan, “Detecting large-
scale system problems by mining console logs,” Proceedings of the 22nd
ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’09),
pp. 253–266, 2009.

[14] Y. Liu, J. Zhu, Y. Chen, J. Dong, X. Zheng, J. Zhang, and J. Yang, “Log-
bert: Log anomaly detection via bert,” arXiv preprint arXiv:2103.04475,
2021.

[15] Z. Wang, X. Zhang, X. Zheng, Y. Liu, Y. Chen, and J. Yang, “Bert-
log: Anomaly detection for system logs based on pre-trained language
model,” IEEE Access, vol. 10, pp. 91 810–91 821, 2022.

[16] J. Zhu, Y. Chen, Y. Liu, J. Dong, X. Zheng, J. Zhang, and J. Yang,
“Unilog: Pre-trained transformer for multitask anomalous logs detec-
tion,” arXiv preprint arXiv:2103.11371, 2021.

[17] Y. Xu, X. Zhang, X. Zheng, Y. Liu, Y. Chen, and J. Yang, “Ltanomaly:
A transformer variant for syslog anomaly detection based on multi-scale
representation and long sequence capture,” MDPI Electronics, vol. 13,
no. 13, p. 7668, 2022.

[18] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,”
in 2021 international joint conference on neural networks (IJCNN).
IEEE, 2021, pp. 1–8.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[20] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[21] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[25] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
conference on empirical methods in natural language processing: system
demonstrations, 2020, pp. 38–45.

[26] G. Papadimitriou, H. Jin, C. Wang, K. Raghavan, A. Mandal, P. Bal-
aprakash, and E. Deelman, “Flow-Bench: A dataset for computational
workflow anomaly detection,” arXiv preprint arXiv:2306.09930, 2023.

[27] 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, pp. 68–74, 2012.

[28] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity, E. Deel-
man, C. Kesselman, G. Singh, M.-H. Su, T. A. Prince, and R. Williams,
“Montage: An Astronomical Image Mosaicking Toolkit,” Astrophysics
Source Code Library, record ascl:1010.036, p. ascl:1010.036, Oct. 2010.

[29] I. Association of Universities for Research in Astronomy, “Digitized
sky survey,” 1994. [Online]. Available: https://catcopy.ipac.caltech.edu/
dois/doi.php?id=10.26131/IRSA441

[30] H. Jin, K. Raghavan, G. Papadimitriou, C. Wang, A. Mandal, M. Kiran,
E. Deelman, and P. Balaprakash, “Graph neural networks for detecting
anomalies in scientific workflows,” The International Journal of High
Performance Computing Applications, p. 10943420231172140, 2023.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[32] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[33] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[34] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

https://catcopy.ipac.caltech.edu/dois/doi.php?id=10.26131/IRSA441
https://catcopy.ipac.caltech.edu/dois/doi.php?id=10.26131/IRSA441

[35] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network inference.
arxiv 2021,” arXiv preprint arXiv:2103.13630, 2021.

[36] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, “8-bit optimizers
via block-wise quantization,” in International Conference on Learning
Representations, 2021.

[37] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[38] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[39] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier,” Mi-
ami Univ Coral Gables Fl Dept of Electrical and Computer Engineering,
Tech. Rep., 2003.

[40] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014
2nd workshop on machine learning for sensory data analysis, 2014, pp.
4–11.

[41] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[42] H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual autoencoder for
anomaly detection on attributed networks,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 5685–5689.

	Introduction
	Background and Related Work
	LLMs for Anomaly Detection
	Supervised Fine-Tuning
	In-Context Learning
	Pre-trained Models

	Experiments
	Dataset and Data Processing
	SFT Models
	Online Detection
	Debiasing LLMs
	Transfer Learning
	Overcoming Catastrophic Forgetting
	ICL results
	Interpretability by CoT
	Transfer Learning with ICL

	Conclusion
	References

