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Abstract: This paper concerns the analysis of large quantum states. It is a notoriously difficult
problem to quantify separability of quantum states, and for large quantum states, it is unfeasible.
Here we posit that when quantum states are large, we can deduce reasonable expectations for the
complex structure of non-classical multipartite correlations with surprisingly little information about
the state. We show, with pegagogical examples, how known results from combinatorics can be used
to reveal the expected structure of various correlations hidden in the ensemble described by a state.
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1. Introduction

A point of focus in quantum information science is the states and their properties,
because states are the resource that provide quantum correlations like entanglement. By
state, we mean the density matrix for a finite-size system relevant to a particular measure-
ment or operation. The state is constructed from a suitable average over the ensemble of
systems, states, or measurements, and thus, details about the underlying ensemble are
obscured. So, for example, the density matrix of a two-qubit system can be analysed in
detail to ascertain whether it is separable or not. Whereas, as the number of qubits increases
further, it becomes exponentially harder to decide whether a state is separable or not [1–5].

Here, a different viewpoint is proposed. Rather than trying to quantify entanglement
in large and complex systems, it is suggested that properties of a state can be estimated
using known results from combinatorics. To start with, recall that a mixed state is produced
by some kind of averaging over possible states of the system according to how the state
interacts with its environment and how we observe the state. So, a rather bland-looking
density matrix (of a large system) hides details of these states within the relevant ensemble.
Those states within the ensemble include pure states, but generally, they are states where
correlations (like entanglement) can be local compared to the extent of a large system.
Thus, there is a more evident structure in correlations within these substates. Now, the
approach we will discuss in this paper is based on the notion that instead of analyzing the
density matrix to ask global questions about mixedness of the state, we could analyse the
underlying structure. We might think that is impossible because the structure is hidden.
However, on average, we know what the representative structure almost surely has to be,
provided the system is large enough. This is what the theorems of graph theory inform
us about.

Specifically, it is proposed that the density matrix of large complex systems can be
mapped to a set of random graphs, G(n, p), where n is the number of vertices (the dimen-
sion of the density matrix), and p is the probability that there is an edge connecting each
pair of vertices. That is, a specific pij is the probability of edges connecting vertices i and j.
The vertices of the graph represent the basis states, while the edges indicate correlations
between pairs of basis states for a specific state within the ensemble average. We describe
how to construct such a map in Section 3. Background information on random graph
theory can be found here [6,7]. We can then exploit a rich variety of results known from
combinatorics to suggest probable and improbable structures of correlations embedded in
the state but hidden by the ensemble average.
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Combinatorics concerns counting structures, studying bounding regimes where a
property is almost surely found, or finding parameters ensuring certain patterns and prop-
erties exist. The methods are particularly impactful for analyzing very large or infinite
systems [8]. It is proposed here that we can use this well-developed machinery of combina-
torics to analyse the quantum states of large, disordered systems. Why and how would
we use these techniques? There are many interesting complex systems that might host
quantum correlations, but for such systems, experimental methods for analyzing quantum
correlations are out of reach. For instance, quantum-state tomography is incisive, but it
is limited to very small systems. It seems more practical to use probabilistic methods
to compare expected quantum correlation structure or mixedness in a state. As a first
step, here, it is shown that we can infer a surprising amount about a state with very little
knowledge about it.

The concept suggesting we need a combinatorial analysis is that there are an extraordi-
nary number of ways that large quantum states can be structured. Instead of enumerating
these possibilities, it is more practical to characterize what we expect the correlations
to ‘look like’, almost surely. We can then ask how quantum correlations are distributed,
whether there might be phases or regimes of interest, or what happens to quantum corre-
lations at various size scales. A key point to recognize is that by elucidating correlation
structures encoded by the density matrix, we obtain insight into the make-up of the en-
semble underlying a measurement of a complex quantum system. We could also imagine
reverse-engineering correlations into the structure of materials.

As stated already, even when given very little information, we can say quite a lot
about the structure of correlations likely to be found in a state. As a motivating example,
let us ask whether it is likely for a state to be ‘obviously’ separable. All we know is that
any possible state on n vertices (i.e., n basis states) is equally likely. The graphs we discuss
throughout the paper enumerate possible correlations. The ensemble of those graphs map
to the density matrix, as discussed later in the paper. Thus, disconnected graphs represent
states within the ensemble that are ‘obviously’ separable because they represent sets of
qubits or basis states that are uncorrelated from each other. (But these are not the only
separable states). Is it likely that our state will be ‘obviously’ separable into two or more
such distinct sets of qubits?

Assuming unlabelled qubits (that is, we cannot distinguish the vertices), we consider
the set of correlation graphs on n vertices with no automorphisms. Note that we can
estimate the number graphs on unlabelled vertices asymptotically to be (1 + o(1))2(

n
2)/n!.

If n = 10, then out of 1.2005 × 107 total graphs that show possible correlation maps,
only 2.88 × 105 are disconnected (see https://oeis.org/A000088 (accessed on 3 June 2024).
and https://oeis.org/A001349 (accessed on 3 June 2024)). If n = 16, then there are
6.40 × 1022 total graphs, with merely 3 × 1019 being disconnected. The proportion of
disconnected graphs is small, being about n21−n for large n. This tells us that if we are
given a completely random state on a large number of qubits, it is unlikely to be ‘obviously’
separable into distinct sets of qubits.

The structure of entanglement in large systems is complex [9–12] and underexplored.
Here, we investigate how correlation graphs give insight into the expected entanglement
structures that are hidden in the state. The probabilistic outlook of this paper might
complement theories for the interpretation of quantum mechanics, such as Quantum
Bayesianism [13–15] (QBism), perhaps even providing a means of clarifying the meaning
of a state in the context of the theory. The work might also find applications in event-based
reformulations of quantum mechanics [16].

2. A Physical Basis for Pairwise Correlations

Although we could proceed with an abstract concept of pairwise correlations, it will
help to make the idea concrete. Recall that the graphs represent possible correlations
in pure states within the ensemble. Correlations indicated by the graphs can therefore
be interpreted in terms of a generalized Schmidt number for multipartite systems. The

https://oeis.org/A000088
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Schmidt number is a well-known way to quantify entanglement in bipartite pure states [17].
The concept of the Schmidt number has been generalized to multipartite systems in various
ways [18–21]. For example, Guo and Fan [20] have described a hierarchy of Schmidt
numbers that quantify the dimensions of entanglement. The strategy involves enumerating
the partitions of an m-partite system to show how it can be separable in various ways: fully
separable, two-separable, three-separable, and so on. This analysis emphasizes that the
many states within the ensemble of a mixed state can show a variety of structures. These
structures are represented by correlation graphs.

The process of analyzing graphs that represent special pure multiparty quantum states
using Schmidt measures has been described in prior work [22]. The present work looks
at that problem in reverse—we aim to estimate what graph might be hidden in a general
(mixed) state. The generalized Schmidt decomposition relates to these possible pure states
within the ensemble. An edge in a graph indicates bipartite entanglement between the
vertices (qubits) it connects. In a complete graph on k vertices, Kk indicates that these k
vertices (qubits) are genuinely entangled. Any graph can be decomposed into subgraphs of
various convex sums of elements, including these kinds of basic structures.

The graphs are not necessarily pure states within the ensemble; rather, they should be
thought of as representative correlation maps and are more generally mixed states within
the ensemble. For example, a linear graph u–v–w implies that vertex u is correlated to v,
and v is correlated to w, but u is not correlated to w. That violates the partial order we
would expect for correlations in the state, so it must represent a convex sum of the two
pairwise correlations. Thus, the state is separable, even though the graph is connected.
Keep in mind that the goal is not to be quantitative, but rather to give a qualitative picture
of how the state is structured underneath the ensemble average.

Graph partitions of a four-qubit system can be inferred from Table 3 in ref. [20]. As
the number of vertices (qubits) becomes larger, the variety of possible correlation graphs
becomes richer. See ref. [23] for drawings of all the connected graphs on six vertices.

In Figure 1, we show some examples of randomly generated correlation graphs
representing different strengths of average correlation within the quantum state. Figure 1a
shows graphs where p = 0.1. The disconnected subgraphs indicate that the ensemble state
is strongly separable. Note the many isolated vertices, suggesting very weak correlation. In
Figure 1b, the graphs are calculated with p = 0.2. The typical graphs tend to have larger
connected domains but are mostly strongly separable, like in these examples. In Figure 1c,
p = 0.3. Most of the graphs are now connected, which is expected based on what we
know about the ‘phase transition’ in random graphs [6,24]. Note the diversity of structures,
highlighting how the correlations underlying the ensemble are much richer than might be
expected by simply inspecting the density matrix. That is, these correlation structures are
well disguised by averaging.
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Figure 1. Examples of random graphs G(n, p) on n = 10 vertices. (a) Here, p = 0.1. The disconnected
subgraphs show that this state is strongly separable. Note the many isolated vertices. (b) Here,
p = 0.2. The typical graphs tend to have larger connected domains but are mostly strongly separable,
like in these examples. (c) Here, p = 0.3. Most of the graphs are now connected.

3. Maps to Graphs Derived from the Density Matrix

We have shown how we can conclude a surprising amount about a state by knowing
nothing about it except its size. Methods from combinatorics can be even more powerful if
we consider more information from the state’s density matrix, or even just the expected
nature of the density matrix (e.g., is the state strongly mixed?). To do that, we need to define
an appropriate approximate map, or bounding maps, from the the density matrix on n basis
states, ρn, to the set of random graphs G(n, p). A prior work studied quantum ensembles
of a state defined by the density matrix [25]. Here, we aim to obtain a probabilistic map. We
cannot define a precise map because the heterogeneity of states subsumed by the average
in ρn demands a corresponding (convex sum of) heterogeneity of maps. All we really need
is a reasonable effective map. Or we can choose maps that bound the likely properties from
above and below. One property we do require of the map is that it is size-consistent.

We need to estimate p from the entries in ρn. We can assign a distinct pij mapping from
each ρij off-diagonal entry, which is a straightforward extension of what we will do here.
Here, we will estimate a representative single p. This makes the application of theorems
easier and is also likely to be the most sensible approach because we only want to estimate
expected properties. Indeed, it seems likely that it is sufficient to know how to map very
weak, weak, strong, or very strong correlations to an effective p. As a starting point for
any map, ρn should be non-negative, so from this point on, we consider only |ρn|. Before
proposing a useful map, let us establish bounds.

A simple lower bound is simply the map from off-diagonal entries in |ρn| to the
corresponding pij in G(n, p). Thus, we might take p to be the average of the pij. This is
a lower bound for p because, for example, the coherent state on n vertices with all off-
diagonal entries, 1

n , is a pure state and should correspond to edge probability p = 1, so
as to generate the complete correlation graph Kn. Instead, it maps to a set of graphs that
almost certainly will not contain Kn. Note that this map is not size-consistent. A simple,
and probably too trivial, upper bound can obtained by normalizing the off-diagonal entries
in |ρn| so that the maximum entry is unity. Then, we can use these values for pij or their
average for p.

Figure 1. Cont.
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Figure 1. Examples of random graphs G(n, p) on n = 10 vertices. (a) Here, p = 0.1. The disconnected
subgraphs show that this state is strongly separable. Note the many isolated vertices. (b) Here,
p = 0.2. The typical graphs tend to have larger connected domains but are mostly strongly separable,
like in these examples. (c) Here, p = 0.3. Most of the graphs are now connected.

3. Maps to Graphs Derived from the Density Matrix

We have shown how we can conclude a surprising amount about a state by knowing
nothing about it except its size. Methods from combinatorics can be even more powerful if
we consider more information from the state’s density matrix, or even just the expected
nature of the density matrix (e.g., is the state strongly mixed?). To do that, we need to define
an appropriate approximate map, or bounding maps, from the the density matrix on n basis
states, ρn, to the set of random graphs G(n, p). A prior work studied quantum ensembles
of a state defined by the density matrix [25]. Here, we aim to obtain a probabilistic map. We
cannot define a precise map because the heterogeneity of states subsumed by the average
in ρn demands a corresponding (convex sum of) heterogeneity of maps. All we really need
is a reasonable effective map. Or we can choose maps that bound the likely properties from
above and below. One property we do require of the map is that it is size-consistent.

We need to estimate p from the entries in ρn. We can assign a distinct pij mapping from
each ρij off-diagonal entry, which is a straightforward extension of what we will do here.
Here, we will estimate a representative single p. This makes the application of theorems
easier and is also likely to be the most sensible approach because we only want to estimate
expected properties. Indeed, it seems likely that it is sufficient to know how to map very
weak, weak, strong, or very strong correlations to an effective p. As a starting point for
any map, ρn should be non-negative, so from this point on, we consider only |ρn|. Before
proposing a useful map, let us establish bounds.

A simple lower bound is simply the map from off-diagonal entries in |ρn| to the
corresponding pij in G(n, p). Thus, we might take p to be the average of the pij. This is
a lower bound for p because, for example, the coherent state on n vertices with all off-
diagonal entries, 1

n , is a pure state and should correspond to edge probability p = 1, so
as to generate the complete correlation graph Kn. Instead, it maps to a set of graphs that
almost certainly will not contain Kn. Note that this map is not size-consistent. A simple,
and probably too trivial, upper bound can obtained by normalizing the off-diagonal entries
in |ρn| so that the maximum entry is unity. Then, we can use these values for pij or their
average for p.

Figure 1. Examples of random graphs G(n, p) on n = 10 vertices. (a) Here, p = 0.1. The disconnected
subgraphs show that this state is strongly separable. Note the many isolated vertices. (b) Here,
p = 0.2. The typical graphs tend to have larger connected domains but are mostly strongly separable,
like in these examples. (c) Here, p = 0.3. Most of the graphs are now connected.

3. Maps to Graphs Derived from the Density Matrix

We have shown how we can conclude a surprising amount about a state by knowing
nothing about it except its size. Methods from combinatorics can be even more powerful if
we consider more information from the state’s density matrix, or even just the expected
nature of the density matrix (e.g., is the state strongly mixed?). To do that, we need to define
an appropriate approximate map, or bounding maps, from the the density matrix on n basis
states, ρn, to the set of random graphs G(n, p). A prior work studied quantum ensembles
of a state defined by the density matrix [25]. Here, we aim to obtain a probabilistic map. We
cannot define a precise map because the heterogeneity of states subsumed by the average
in ρn demands a corresponding (convex sum of) heterogeneity of maps. All we really need
is a reasonable effective map. Or we can choose maps that bound the likely properties from
above and below. One property we do require of the map is that it is size-consistent.

We need to estimate p from the entries in ρn. We can assign a distinct pij mapping from
each ρij off-diagonal entry, which is a straightforward extension of what we will do here.
Here, we will estimate a representative single p. This makes the application of theorems
easier and is also likely to be the most sensible approach because we only want to estimate
expected properties. Indeed, it seems likely that it is sufficient to know how to map very
weak, weak, strong, or very strong correlations to an effective p. As a starting point for
any map, ρn should be non-negative, so from this point on, we consider only |ρn|. Before
proposing a useful map, let us establish bounds.

A simple lower bound is simply the map from off-diagonal entries in |ρn| to the
corresponding pij in G(n, p). Thus, we might take p to be the average of the pij. This is
a lower bound for p because, for example, the coherent state on n vertices with all off-
diagonal entries, 1

n , is a pure state and should correspond to edge probability p = 1, so
as to generate the complete correlation graph Kn. Instead, it maps to a set of graphs that
almost certainly will not contain Kn. Note that this map is not size-consistent. A simple,
and probably too trivial, upper bound can obtained by normalizing the off-diagonal entries
in |ρn| so that the maximum entry is unity. Then, we can use these values for pij or their
average for p.
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For a map to be size-consistent, the off-diagonal entries of |ρn| should be normalized
by n or a factor that scales appropriately with n. A map that uses this concept can be
applied to normalize |ρn| by dividing all entries by the maximum diagonal entry in |ρn|.
Then, p is estimated as the average renormalized off-diagonal entry of |ρn|. This is the map
we will study for the remainder of this section.

First, we test this map on a very small system, the density matrix for certain mixed
states in the system of two qubits, labelled A and B. We index the rows and columns of
ρ4 as |0⟩A|0⟩B, |0⟩A|1⟩B, |1⟩A|0⟩B, |1⟩A|1⟩B. Peres [1] wrote the density matrix so that a
singlet state makes up a fraction x of the mixed state, while the remaining (1 − x) fraction
is a ‘random fraction’, comprising equal admixture of the singlet and three triplet states to
produce a fully mixed fraction of the state:

ρmixed =


(1−x)

4 0 0 0
0 (1+x)

4 − x
2 0

0 − x
2

(1+x)
4 0

0 0 0 (1−x)
4

. (1)

We know that if x = 1, then the state is a pure (singlet) state. Setting x = 1 and
mapping ρ4 to G(n, p) gives an adjacency matrix with entries of 1 or 0, and G(n, p) encodes
solely the complete graph K2, which is in a pure state, as required. If x < 1

3 , then the state is
separable (see ref. [1], or the tutorial explanation in [26]). Let us put x = 1

3 into ρ4; then, the
map sets the non-zero edge probabilities to 1

2 , which is a reasonable value for the threshold
value. Keep in mind this example is simply a calibration; the methods proposed here are
best suited for studying large quantum systems.

To estimate appropriate values of p, we performed numerical studies. In a prior
work [27], we investigated the states and their mixedness, encoded by k-regular random
graphs. In particular, we introduced structural disorder by randomly removing some
fraction of the edges. The mixedness of the states, as a function of the number of edges
deleted, was reported. The emergent state is a pure state, but when sufficient edges are
deleted, it merges into the random states. Thus, we have a way of tuning the mixedness of
the state. See Figure 2 of ref. [27]. We use the same technique here to produce a series of
density matrices with a range of mixedness, which we quantify using the relative entropy
of coherence [28]. Quantum relative entropy, Sρ∥σ, quantifies the distance of a state ρ from
the nearest incoherent (mixed) state σ:

Sρ||σ = Tr(ρ log2 ρ)− Tr(ρ log2 σ).

The state σ is constructed by setting the off-diagonal entries from the density matrix of ρ to
zero. The relative entropy therefore explicitly measures how far a state is from a comparable
mixed state.

We have n = 600 vertices and k = 20; then, we delete a fraction of the total kn/2 edges
randomly. For each density matrix, we estimate p, the mean pairwise edge probability, as
described above: we take the mean of the off-diagonal entries of |ρn|, normalized by the
maximum diagonal entry. The mean pairwise edge probability translates to the ratio of
actual edges to total possible edges, averaged over all the graphs in the ensemble. For each
graph, with the actual number of edges being m, the pairwise edge probability is 2m/kn.
Notice this is not for edges of any pair of vertices, but only for the pairs that ensure the
graph is precisely k-regular.

The results are plotted in Figure 2. Notice the almost linear relationship between
relative entropy of coherence and the estimated values of p for this system. The plot allows
us to qualitatively label the regimes of correlations as follows: very weak, p < 0.001; weak,
p < 0.01; medium, 0.01 ≤ p ≤ 0.1; and strong p > 0.1 correlations.
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Figure 2. Correlation of the average pairwise probability of correlation p with the relative entropy
of coherence. Calculations are for an ensemble of k-regular random graphs with edge disorder (see
text), with the state associated with the largest eigenvalue in the spectrum.

4. Combinatorial Analysis of States

We start by returning to the question about the likelihood of finding cliques in quantum
states—that is, complete correlations among r qubits, which are represented by complete
subgraphs Kr. We can use a result stated in Bollobás and Erdös [29]. A clique in a graph is
an induced subgraph on r vertices that is a complete graph, Kr. Define Yr to be the number
of r-cliques in G(n, p). The expectation of Yr is as follows:

E(Yr) =

(
n
r

)
p(

r
2). (2)

In Figure 3, we plot the expectation of Yr as a function of p for a graph with 2000 vertices.
The plot highlights the thresholds for onsets of cliques with various sizes. Thus, a distribu-
tion of cliques is expected, and its make-up depends strongly on p. Clearly, small cliques
overwhelm large cliques, meaning that most multipartite correlations will be found among
small numbers of vertices.

r = 3

r = 4 r = 5 r = 6 r = 7 r = 8

Figure 3. Estimated expected number of cliques as a function of p for random graphs G(n, p) on
2000 vertices.

We may obtain further insight using Ramsey theory [30,31]. Here, we use edge
colouring rather than vertex colouring.

Theorem 1. Two-colour Ramsey’s Theorem for Graphs: Let r, s be any two positive integers. There
exists a least positive integer R(r, s), for which every edge colouring of the complete graph on R(r, s)
vertices using two colours, say red and blue, contains a blue clique on r vertices or a red clique on
s vertices.

The R(r, s) are known as Ramsey numbers. The classic example is for R(3, 3) = 6,
which can be explained as follows. Take any group of at least six guests randomly at a
party. It is certain that either three guests all know each other or that three guests have
never met. What Ramsey theory tells us about multipartite correlations is that there is a
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threshold value (not necessarily sharp) of global correlation such that below the threshold
a particular multipartite correlation (a complete correlation graph Kr) does not exist, but
above the threshold, it certainly does exist. For example, let us say we have a quantum
state comprising about 100–160 qubits. Given that the Ramsey number R(6, 6) lies in the
range [102, 165], then we know for sure that the state either contains six qubits that are not
mutually correlated at all or six qubits that are six-partite entangled. The known values for
R(r, s) indicate that large multipartite correlations are not very likely in large states.

For another example we use the following [32]:

Theorem 2. Erdös and Szekeres: If G is a graph on n vertices, then G contains either a clique or an
independent set of size ≥ 1

2 log2 n.

That is, for any system of n qubits, at least 1
2 log2 n qubits are completely correlated

among themselves or completely uncorrelated. This example also shows how applications
of Ramsey theory can be useful [30].

As an example, if n = 100, then the graph contains either a clique or a stable set of size
at least 3. How likely is it that the graph contains a stable set of size 3 and no clique of size
3? We can estimate this in the case of labelled vertices using a Corollary found in ref. [33]
(stated here as a theorem):

Theorem 3. Erdös, Kleitman, and Rothschild: Let Gk(n) be the number of graphs with n vertices
and with no subgraph of type Kk. Then,

log2(Gk(n)) =
n2

2

(
1 − 1

k − 1

)
+ o(n2).

Putting k = 3 for cliques of size 3 (triangles, K3) we can see that the number of triangle-
free graphs is asymptotically extremely small compared to the total number of labelled
graphs on n vertices, 2(

n
2). The same conclusion also holds for unlabelled graphs.

The chromatic number is a property of graphs that tells us something about the
global connectivity [34], albeit in a way which means that interpretation depends, to some
extent, on the kinds of graphs being studied. Chromatic number and graph colouring give
information on sets of vertices that are not directly coupled to each other. Thus, a simple,
general idea is that the larger the chromatic number, the more connected the graph (the
more correlations). In fact, this is not strictly true [35], but it can be a good guide if used
carefully. We start with some definitions [36].

Definition 1. Vertex colouring: Let G be a graph on V vertices labelled v, w, . . . . A vertex
colouring of G is a map c : V → S such that c(v) ̸= c(w) whenever v and w are adjacent. The
elements of the set S are the colours.

Definition 2. Chromatic number: We find the smallest integer k such that G has a k-colouring.
That is, the set S has a minimum size of |S| = k. Then, k is the chromatic number of G, written
as χ(G).

The chromatic number of random graphs has been studied, and its expectation can be
bounded [37,38]. Alon and Krivelevich [39] have shown how various regimes of random
graphs have remarkably similar chromatic number values. In fact, it is easy to see with
numerical experiments that for any given n and p, there is not a wide variation in χ(G(n, p)).
In Figure 4, we plot three graphs randomly selected for n = 100, and values of p are
indicated. The vertex colouring is shown in the plots, and the chromatic number of
each graph is noted. These graphs are typical of others randomly generated with these
parameters, as can be easily checked.
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(a) (b) (c)

Figure 4. Randomly generated graphs on 100 vertices, G(n, p), with vertices coloured using a greedy
colouring algorithm. (a) p = 0.2; chromatic number χ(G) = 10. (b) p = 0.05; chromatic number
χ(G) = 5. (c) p = 0.02; chromatic number χ(G) = 3.

Graphs can have remarkably intricate structures, which are often the basis for conjec-
tures and theorems. Quantum states, therefore, contain related subtle substructures. For
instance, see the following [40]:

Theorem 4. Kühn and Osthus: For every k there exists d = d(k). This means that every graph G
with an average degree of at least d contains a subgraph of average degree of at least k whose girth is
at least six.

That is, we will find a subgraph that contains the shortest cycle of ≥6, provided that
d for the graph G is sufficiently large. The result is surprising because, intuitively, we
expect that subgraphs with small girth will dominate when the average degree is large, as
suggested by the results shown in Figure 3.

The following conjecture has led to many interesting examples of induced subgraphs
that are certain to be found in graphs with a large chromatic number [41–43]. Let H be any
graph, and let G(H) denote the set of all graphs not containing H as an induced subgraph.
If F is a forest, does there exist a function fF such that

χ(G) ≤ fF(ω(G)) (3)

for all G ∈ G(F)? ω(G) denotes the size of a maximum complete subgraph of G (the
clique number).

A graph H-consistent with the conjecture is termed an χ-bounding graph. So, here,
the assertion is that every forest is χ-bounding, which is true only when all the components
of the forest—the trees—are χ-bounding.

Examining this conjecture [44,45] has led to the identification of special kinds of trees
for which the conjecture holds—aptly named caterpillars, brooms, stars, and so on. These
subgraphs must conversely be found in graphs that have a large chromatic number [46],
specifically graphs where

χ(G) > fF(ω(G)). (4)

Recognizing that structure can be built into ‘random’ graphs, it may be interesting to
inquire whether we can invert our analysis. That is, can we design disordered quantum
materials that encode certain non-trivial correlation structures? How would that influence
the properties of those materials?

5. Conclusions

There are an extraordinary number of ways that large quantum states can be structured.
Here, we made the case that, instead of enumerating these possibilities explicitly, it can be
more practical to characterize what we expect the correlations to ‘look like’. We can then
ask how quantum correlations are distributed, whether there might be phases or regimes
of interest, or what happens to quantum correlations at various size scales. A key point to
recognize is that by elucidating correlation structures encoded by the density matrix, we
obtain insight into the make-up of the ensemble (of not necessarily pure states) underlying
a measurement of a complex quantum system. We could also integrate reverse-engineering
correlations into the structure of materials. We showed in this paper that by using the
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results from combinatorics, certain properties of the expected structure of correlations can
be revealed with remarkably little information about the state. Finally, it may come as a
surprise to realize there is so many interesting structural features in ‘random’ graphs and,
therefore, large quantum states, even when correlations are weak. However, there is order
hidden in almost all random systems if they are sufficiently large. For example, arithmetic
progressions have been widely studied. One recent paper [47], for example, improved the
bound on the size of a set of integers, guaranteeing that it contains a three-progression
(i.e., a, a + b, a + 2b). Finally, the approach described in this paper might inspire ways of
estimating the properties and structure of correlations in very large and complex systems,
where quantitative experimental methods like state tomography are impractical.
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23. Cvetković, D.; Petrić, M. A table of connected graphs on six vertices. Discrete Math. 1984, 50, 37–49. [CrossRef]
24. Bollobás, B. The evolution of random graphs. Trans. Am. Math. Soc. 1984, 286, 257–274. [CrossRef]
25. Hughston, L.P.; Jozsa, R.; Wootters, W. A complete classification of quantum ensembles having a given density matrix. Phys. Lett.

1993, 183, 14–18. [CrossRef]
26. Scholes, G.D. A molecular perspective on quantum information. Proc. R. Soc. A 2023, 479, 20230599. [CrossRef]
27. Scholes, G.D. Large Coherent States Formed from Disordered k-Regular Random Graphs. Entropy 2023, 25, 1519. [CrossRef]
28. Streltsov, A.; Adesso, G.; Pleniok, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003.

[CrossRef]
29. Bollobás, B.; Erdös, P. Cliques in random graphs. Math. Proc. Camb. Phil. Soc. 1976, 80, 419–427. [CrossRef]
30. Robertson, A. Fundamentals of Ramsey Theory; CRC Press: Boca Raton, FL, USA, 2021.

http://doi.org/10.1103/PhysRevLett.77.1413
http://www.ncbi.nlm.nih.gov/pubmed/10063072
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/j.jfa.2007.12.017
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1103/PhysRevA.92.042329
http://dx.doi.org/10.1103/PhysRevA.86.052330
http://dx.doi.org/10.1103/PhysRevA.90.032312
http://dx.doi.org/10.1103/PhysRevA.96.032312
http://dx.doi.org/10.1088/0031-8949/90/1/015104
http://dx.doi.org/10.1103/PhysRevA.65.022305
http://dx.doi.org/10.1119/1.4874855
http://dx.doi.org/10.1038/s41598-023-44550-4
http://www.ncbi.nlm.nih.gov/pubmed/37857671
http://dx.doi.org/10.1119/1.17904
http://dx.doi.org/10.1007/s10773-020-04386-4
http://dx.doi.org/10.1016/0375-9601(95)00315-T
http://dx.doi.org/10.1142/S0219749915500252
http://dx.doi.org/10.1103/PhysRevA.61.040301
http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1016/0012-365X(84)90033-5
http://dx.doi.org/10.1090/S0002-9947-1984-0756039-5
http://dx.doi.org/10.1016/0375-9601(93)90880-9
http://dx.doi.org/10.1098/rspa.2023.0599
http://dx.doi.org/10.3390/e25111519
http://dx.doi.org/10.1103/RevModPhys.89.041003
http://dx.doi.org/10.1017/S0305004100053056


Entropy 2024, 26, 764 10 of 10

31. Bollobás, B. Extremal Graph Theory; Academic Press: London, UK, 1978.
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