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seven NEON-monitored lakes were submitted in 2023. We assessed how
forecast performance varied among models with different structures,
covariates, and sources of uncertainty relative to baseline null models. A
similar proportion of forecast models were skillful across both variables
(34%-40%), although more individual models outperformed the baseline
models in forecasting water temperature (10 models out of 29) than dissolved
oxygen (6 models out of 15). These top performing models came from a range
of classes and structures. For water temperature, we found that forecast skill
degraded with increases in forecast horizons, process-based models, and models
that included air temperature as a covariate generally exhibited the highest fore-
cast performance, and that the most skillful forecasts often accounted for more
sources of uncertainty than the lower performing models. The most skillful fore-
casts were for sites where observations were most divergent from historical
conditions (resulting in poor baseline model performance). Overall, the
NEON Forecasting Challenge provides an exciting opportunity for a model
intercomparison to learn about the relative strengths of a diverse suite of models

KEYWORDS

INTRODUCTION

Ecological forecasting is a growing field that leverages
predictions of future ecological states to help under-
stand and manage ecosystems (Dietze et al., 2018; Lewis
et al., 2023; Tulloch et al., 2020). Here, we define fore-
casts as predictions of future conditions with specified
uncertainty (Lewis et al., 2022). As environmental con-
ditions increasingly change in response to altered cli-
mate and land use (Arias et al., 2021), ecological
forecasts have considerable potential for improving
management to support ecosystem services now and in
the future (Bradford et al., 2018; Dietze et al., 2018).
Moreover, forecasting future conditions that have yet to
occur inherently requires out-of-sample implementation
of models, which can lead to insights into optimal
modeling approaches (Lewis et al., 2023).

In freshwater ecosystems, rapid environmental
change has led to conditions that are both more variable
and outside of historically observed states, motivating a
particular need for near-term, iterative ecological forecasts
(e.g., Carey, 2023; Richardson et al, 2024; Siam &
Eltahir, 2017). Near-term (i.e., subdaily to decadal) forecasts
allow researchers to evaluate models within management-
relevant timescales (Dietze et al., 2018), and iteratively
updating and evaluating forecasts enables rapid improve-
ment in forecast performance by integrating observational

and advance our understanding of freshwater ecosystem predictability.

ecological forecasting, forecasting challenge, freshwater, near-term forecast, NEON,
uncertainty, water quality

data and updating parameters (Dietze et al., 2018; Loescher
et al., 2017). These near-term iterative ecological fore-
casts will help protect critical provisioning, regulating,
supporting, and cultural services (Dodds et al., 2013;
Lofton et al., 2023; Sterner et al., 2020) that these highly
threatened systems provide (Carrizo et al., 2017;
Dudgeon et al., 2006; Reid et al., 2019), thereby improv-
ing management and mitigation (e.g., Carey et al., 2022;
Huang et al., 2011; Zwart et al., 2023).

Although the number of near-term, iterative water
quality forecasts of freshwater ecosystems is growing
(Lofton et al., 2023), challenges remain in producing
reliable and accurate predictions of changes in these
environments. To date, researchers have implemented
many classes of models to forecast freshwater variables
(reviewed by Lofton et al., 2023), including process-based
(PB) models (Baracchini et al., 2020; Clayer et al., 2023;
Page et al., 2018; Thomas et al., 2020), machine learning
(ML) models (Cheng et al., 2020; Di Nunno et al., 2023;
Read et al., 2019; Zwart et al., 2023), statistical models
(Caissie et al., 2017; McClure et al.,, 2021; Woelmer
et al., 2021), and multimodel and hybrid approaches
(Olsson, Moore, et al., 2024; Qu et al., 2017; Saber
et al., 2020). In addition, forecasts have been generated
using a range of model covariates (i.e., driver variables).
In many cases, weather forecasts are used as covariates
because meteorology is a key driver of many ecosystem
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processes in freshwater ecosystems (Hipsey et al., 2019;
Livingstone & Padisak, 2007; Rousso et al., 2020). Addi-
tionally, some models include autoregressive terms
as covariates (e.g., ARIMA models). While forecasting
methods have demonstrated promise at individual fresh-
water sites or a handful of sites (e.g., Barrachini et al.,
2020; Chen et al., 2024; Ouellet-Proulx et al., 2017; Page
et al., 2018; Thomas et al., 2020; Zwart et al., 2023), to
date there has yet to be a comprehensive analysis of the
performance of forecasting models across a large range of
model classes and model covariates across multiple sites.

Forecasting challenges present a useful platform for
bridging this gap and learning about how a range of
modeling methods perform across axes of space, time,
and ecological systems (Humphries et al., 2018; Thomas
et al., 2023). Forecasting challenges typically entail an
open call to the research community with a “challenge”
to forecast a specific variable, standardized requirements,
and formal evaluation of out-of-sample time steps.
Some challenges have aimed to identify a “winner” or
best approach, while others have focused more on com-
munity and knowledge building (Humpbhries et al., 2018;
Makridakis et al., 2020; Thomas et al., 2023). By bringing
together individuals and teams from broad backgrounds,
challenges provide opportunities for innovation and
community-building, and the development of community
cyberinfrastructure can accelerate discipline-wide pro-
gress (Fer et al., 2021). Altogether, this collaborative
effort can facilitate the development of new methods,
standardization of forecasting targets and formats, and
tools and templates that expand the training and educa-
tion to improve accessibility of forecasting (Thomas
et al., 2023). While forecasting challenges are common in
the fields of finance, business, demography (Bojer &
Meldgaard, 2021; Makridakis et al., 2020), and epidemiol-
ogy (Biggerstaff et al., 2018; Johansson et al., 2019; Viboud
et al., 2018), few have existed in ecology until recently
(e.g., Humphries et al., 2018; Wheeler et al., 2024), provid-
ing new opportunities for advancing the discipline. For
example, previous efforts to compare outcomes among
ecological forecasting methods have been hindered by
differences in evaluation metrics, sites, and variables
being forecasted (e.g., Rousso et al., 2020), which can
be addressed by a standardized forecasting challenge
framework.

The National Ecological Observatory Network
(NEON) Forecasting Challenge (hereafter NEON Chal-
lenge), hosted by the Ecological Forecasting Initiative (EFT)
Research Coordination Network, was designed to initiate
these advances in ecological forecasting. The NEON
Challenge is “an open platform for the ecological and
data science communities to forecast NEON data before
they are collected” (Thomas et al., 2023). The challenge

aims to galvanize the forecasting community around a
common framework, with the goals of improving fore-
casting tools (e.g., Dietze et al., 2023), learning about eco-
logical predictability (e.g., Wheeler et al., 2024), and
advancing training (e.g., Willson et al., 2023).

The NEON Challenge provides a unique case study
for examining the performance of freshwater forecasts
across space, time, and ecological systems. Ecological
time series present specific complexities compared with
previous forecasting challenges given the variability in
ecological data collection, irregularities in data resolution,
and the inherent variability of the observations (Farley et al.,
2018; Michener & Jones, 2012). Moreover, unlike previous
forecasting challenges, the NEON Challenge is ongoing and
accepts submissions of as-yet-unmeasured conditions on a
rolling basis, with scoring occurring continuously as new
data are collected and made available in near real time
(Thomas et al., 2023). In the aquatics lake theme of the
NEON Challenge, participants were invited to submit 1- to
30-day-ahead probabilistic forecasts of daily surface mean
water temperature (hereafter, T,,) and dissolved oxygen
concentration (DO) of seven NEON lake sites, with new
forecasts accepted daily (Thomas et al., 2023). Due to
issues relating to data quality, submitted forecasts of chlo-
rophyll a were omitted from our analysis. Forecasts were
solicited across a range of sites, dates, and variables to
understand how skill varies across these three axes. Fore-
casts could be generated using any method but had to
include an estimate of uncertainty.

The inclusion of, and emphasis on, uncertainty was a
novel component of the NEON Challenge, as uncertainty
has been rarely included in previous forecasting chal-
lenges. Meaningful representations of uncertainty are
critical to forecast interpretation and comparison, but
uncertainty quantification is still not ubiquitous across
ecological forecasts (reviewed by Lewis et al., 2022), and
freshwater forecasts in particular. In a review of freshwa-
ter forecasts by Lofton et al. (2023), only 16 out of
61 near-term (subdaily to decadal) forecasts of water
quality variables included an estimate of the uncertainty
associated with a prediction. Uncertainty can arise from
a variety of sources: model process, model parameters,
model initial conditions, model drivers, and observations
(Table 1). The relative importance of each source is often
dependent on the ecosystem process or state being fore-
casted and the forecast horizon (Lofton et al., 2022;
Ouellet-Proulx et al., 2017; Thomas et al., 2020). In addi-
tion, the predictability of an ecological process or state
depends on the magnitude of the forecast spread (forecast
uncertainty) and the rate at which uncertainty increases
across the forecast horizon. Predictability is low when
forecast spread is large enough that it cannot distinguish
between consequential differences in ecosystem processes
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TABLE 1 Definitions of forecast uncertainty sources included in the submitted models, modified from Dietze (2017), Lofton et al.

(2023), and Thomas et al. (2020).

Source of uncertainty Definition

Process Uncertainty from the inability of the model to
replicate the dynamics of the forecasted state.
Parameter Uncertainty in the parameter values of a fitted

model.

Initial condition

and data assimilation).

Uncertainty in estimates of current conditions at
the time of forecast generation (e.g., as a result of
observation uncertainty, missing observations,

Example of how the uncertainty source
could be quantified

Calculating the error from the residuals of the
model fit to historical data.

Sampling from a distribution of parameter
values and assigning different parameter values
to each ensemble member.

Quantifying the spread in updated states
following data assimilation or the previous day’s
forecast.

Driver Uncertainty from driver data (e.g., future air Using an ensemble of weather forecasts as
temperature). drivers to the model.
Observation Uncertainty from measurement error in the state Calculating the standard deviation of replicate

being forecasted (difference between actual state

and measured state).

water temperature observations.

or states, or when it is no different from random chance.
Forecast spread in turn depends on the sources of uncer-
tainty in the forecast model (Dietze, 2017) and the model
sensitivity to these sources. For example, the predictabil-
ity of ecosystem processes that are sensitive to meteoro-
logical drivers (e.g., air temperature) depends on the
uncertainty in the weather forecasts used as inputs to
the ecological forecast model (Dietze, 2017).

We were specifically focused on uncertainty in our
analysis because forecasts that include well-quantified
uncertainty, in addition to being accurate, have been shown
to improve decision-making outcomes (Mylne, 2002;
Nadav-Greenberg & Joslyn, 2009; Ramos et al., 2013).
NEON forecast submissions were thus evaluated in two
ways that captured different attributes of accuracy and
precision: the continuous rank probability score (CRPS), a
CRPS comparison with a baseline (null) model that acted
as a benchmark to assess relative gains in forecast perfor-
mance (forecast skill; Murphy, 1992; Pappenberger
et al., 2015), and an evaluation of how well the forecast
CIs capture the observation (CI reliability; e.g., if 90% of
the observations in the 90% forecast CI).

In this study, we analyzed a year of submissions to
the aquatics theme of the NEON Challenge and assessed
how model performance varied among model class,
model covariates, and forecast sites. We used the forecast
analysis to answer the following research questions: Q1:
How does model class and inclusion of covariates affect
forecast performance? Q2: To what extent is relative fore-
cast skill affected by the inclusion of different sources of
uncertainty? Q3: How consistent are the patterns in fore-
cast performance across sites? We included all T,, and
DO forecasts in the analysis of Q1 but focused primarily

on T,, forecasts for Q2 and Q3 due to the much higher
number of submissions for that variable (see below). To
the best of our knowledge, our study is the first analysis
that investigates the performance of freshwater forecasts
across multiple model classes, model covariates, and sites
using genuine forecasts of the future.

METHODS
NEON challenge overview

The NEON Challenge has five forecasting themes that
cover a range of ecological populations, communities,
and ecosystems across the NEON network of monitored
freshwater and terrestrial sites. Our coauthor team repre-
sents a group of the Challenge organizers, cyberinfras-
tructure developers, and/or forecast submitters.
Submissions were accepted to the aquatics theme of
the NEON Challenge starting in 2021 and continuing to
the present (>3 years) for forecasts of water quality. Here,
we focus on the forecasts of T,, and DO submitted to lake
sites within the aquatics theme of the NEON Challenge
during 2023, which represented the first full year with suf-
ficient submissions for a robust intermodel comparison.

Challenge design
NEON data

Water quality data were collected at seven lakes across
the United States (Figure 1). T,, and DO were collected
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FIGURE 1 Map of National Ecological Observatory Network (NEON) lake sites located across the contiguous United States, with map
inset showing Alaska. Co-occurring sites are shown by the black centroid and the colored points are offset from this location. The points are
labeled with their four-character NEON site code: BARC, Barco Lake; CRAM, Crampton Lake; LIRO, Little Rock Lake; PRLA, Prairie Lake;

PRPO, Prairie Pothole Lake; SUGG, Suggs Lake; TOOK, Toolik Lake.

using in situ sensors. Full descriptions of the sensors and
protocol are included in the data product metadata pro-
vided by NEON (DP1.20264.001, NEON TSD) for T,, and
DP1.20288.001 for DO (NEON water quality). At each
lake, data were only available at one location (generally
at the center, near the deepest point). For the purposes of
the Challenge, unpublished data were made available to
participants by NEON at a data latency of 2-3 days after
collection. The T,, and DO NEON data products extend
back to 2016, but their temporal coverage varies across
sites in three ways. First, there is variability in the dura-
tion of time-series data available for each site and vari-
able (Appendix S1: Figure S1), ranging from 3.1 to
6.6 years (up to 1 January 2023, the beginning of our
focal forecasting period). Second, at five lake sites, sen-
sors are removed during winter due to ice formation.
Finally, maintenance issues resulted in data gaps at some
sites. Consequently, total data availability varied between
167 and 2154 days for each site/variable combination
(Appendix S1: Figure S1).

Data processing and targets generation
We, as challenge organizers, converted the T,, and DO

data supplied by NEON in near-real time to “targets”—
observations specific to the challenge—by subsetting the

sensor locations, performing additional quality control,
and aggregating 30-min sensor data to daily means.
We used daily mean temperature to focus the Chal-
lenge on predicting day-to-week dynamics in water
quality, rather than subdaily dynamics. The data were
subset to include only the surface measurements (top
1 m of the water column). Using only surface measure-
ments, rather than full water column profiles, enabled
intercomparison across the seven lakes, which had
varying maximum depths that ranged from 3.2 to
27 m. Second, we filtered the data using the existing
NEON flags (see metadata) and applied additional
quality control measures (e.g., additional filtering for
maximum and minimum allowable values for each
variable; see Olsson, Carey, et al., 2024b). The targets
data could then be used by teams to calibrate and train
models and were used for forecast evaluation.

These processed target data were publicly available to
all Challenge teams at a persistent URL location and
were updated daily as new data became available. To
further support modeling efforts by the teams, we also
provided supplementary hourly water temperature
profile data collected by NEON at each of the lake sites
(derived from NEON DP1.20264.001, see Olsson, Carey,
et al., 2024b). These supplemental data were available to
teams to use in model development and training but were
not used in forecast evaluation.
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Ancillary driver data

NOAA’s Global Ensemble Forecasting System (GEFS;
Hamill et al., 2022) weather forecast data were made avail-
able to forecast teams via functions in the custom
R package neon4cast (Boettiger & Thomas, 2024). NOAA
weather data for all NEON sites were downloaded each
day and standardized to be used as driver data and
covariates in forecast models. Teams were not required to
use weather covariates, but providing standardized NOAA
weather forecasts ensured that the teams that used
weather covariates had consistent data, and weather fore-
cast performance was therefore not the primary driver of
differences in aquatic forecast performance among model
submissions. Two NOAA data products were used by fore-
cast teams: an ensemble forecast of future weather and a
historic weather product. The ensemble weather forecast
consisted of 31 ensemble members up to 35 days into the
future at each of the seven sites. The historic product
consisted of stacked 1-day-ahead forecasts from each day
as an estimate of observed historical conditions that was
consistent with the ensemble weather forecast data avail-
able to teams to forecast (i.e., having similar biases, com-
pared with observational weather data) and could be used
to calibrate models. Teams were also able to use any other
openly-available covariate data in their forecasts, although
none chose to do this.

Forecast submission guidelines

Challenge teams were invited to forecast T, and DO in
all of the lakes or in any subset of sites or variables. Fore-
cast submissions were required to have a daily time step
of the focal variable(s) over a forecast horizon of at
least 1-30 days into the future and include an estimate
of uncertainty in the forecast. Uncertainty could be
represented by submitting a probabilistic forecast
(Gneiting & Katzfuss, 2014), either in the form of a
mean and a SD for a normally distributed forecast or as
an ensemble forecast for which the uncertainty was
represented as a series of predictions that represent a
range of future conditions (Gneiting & Katzfuss, 2014).
Submissions were required to follow a standardized for-
mat (Dietze et al., 2023; Thomas et al., 2023) to enable
automated evaluation and processing. New forecasts
were accepted every day and evaluated as new observa-
tional data became available (see Forecast evaluation).
During 2022 and 2023, we ran multiple workshops to
introduce the Challenge to a cross-section of aquatic and
data scientists and managers to increase forecast submis-
sions to this theme (Meyer et al., 2023; Olsson, Boettiger
et al., 2024). In total, more than 300 people attended the

workshops in person or online. Workshop materials were
also available online for individuals or groups to use inde-
pendently (Olsson, Boettiger et al., 2024).

Baseline model

Following forecast evaluation best practices (Harris
et al., 2018; Lewis et al., 2022), we generated a baseline
model that represents a limited (naive) understanding of
the system for comparison with the submitted forecast
models. It can be helpful to compare submitted forecasts
with forecasts generated from baseline models as part of
forecast evaluation to identify whether new methods pro-
vide additional, useful information beyond uninformed
models (Jolliffe & Stephenson, 2012; Makridakis
et al., 2020; Pappenberger et al., 2015). Specifically, we gen-
erated a model that assumes the forecast for a particular
day-of-year (DQOY) is equal to the mean of historical data
on that DOY. The DOY baseline model assumes dynam-
ics will follow the mean conditions for that date in pre-
viously observed years (Hyndman &
Athanasopoulos, 2021; Jolliffe & Stephenson, 2012). The
uncertainty in this DOY forecast was generated by cal-
culating the SD of the past observations (see
Appendix S1: Text S1). The SD of the daily average for
the forecast period was used to represent the uncer-
tainty for the whole horizon. The DOY forecast was
assumed to follow a normal distribution, given by a
mean and SD for each day of year calculated separately
for each site and variable.

The baseline model was selected based on the
observed dynamics of the variable of interest (Jolliffe &
Stephenson, 2012; Pappenberger et al., 2015) as well as
being a common baseline for ecological forecasts
(e.g., Lewis et al., 2022; Thomas et al., 2020; Wheeler
et al., 2024). The DOY model is particularly useful as a
baseline when the target variable’s dynamics follow
a seasonal cycle (Pappenberger et al., 2015), such as vari-
ables primarily driven by meteorological forcing. A sec-
ond baseline model that assumes a forecast is equal to
the last observation (persistence; Jolliffe & Stephenson,
2012) was also included in submissions.

Forecast evaluation

Initially, forecasts were evaluated against observations
using the CRPS, as implemented in the scoringRules
R package (Jordan et al., 2019). CRPS evaluates the prob-
ability distribution of the forecast and assesses both the
accuracy and precision of the forecast relative to observa-
tions and is calculated as follows:
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CRPs=j<F<y>—H<y—y0bs>>2dy 1)

where y is the value for the forecasted variable, y, is the
observation, and F(y) is the cumulative distribution func-
tion of the probabilistic forecast at the value of y. H is the
indicator or step function, which is zero if y <y, and
one otherwise (Jordan et al., 2019). CRPS is a generaliza-
tion of mean absolute error for probabilistic forecasts and
is expressed in the same units as the variable, and ranges
from an optimal value of zero to infinity (Pappenberger
et al., 2015). In addition, we used a relative forecast skill
(hereafter, CRPSq;; or skill) metric to describe how
much additional information is gained in each model
over a naive baseline model. CRPSg;; was calculated
based on the difference in CRPS score between the sub-
mitted forecast and the DOY baseline model, following
Equation (2):

CRPSgy = forecast_score — DOY_score (2)

with positive values indicating a submitted forecast show-
ing lower skill and higher error, relative to the DOY
model, and negative values indicating that the submitted
model performed better with lower error rates, as quanti-
fied using CRPS. We used this convention to ease compari-
son with other papers that synthesized submissions to the
NEON Ecological Forecasting Challenge (e.g., Wheeler
et al., 2024). We opted to focus on CRPSg), relative to the
DOY model rather than the persistence baseline model as
the DOY model had lower average CRPS and was the bet-
ter performing of the baseline models for more of the
30-day-ahead forecast horizons (27 out of the 30 days;
Appendix S1: Figure S2).

Analyses

We assessed the performance of the forecast models
across different horizons and sites by aggregating raw
CRPS,yy metrics at different temporal and spatial scales.
To identify the best performing models per variable, we
calculated the mean CRPSg;; aggregated across all fore-
cast submission dates, horizons, and sites. To ensure that
the comparisons among models were based on a similar
number of submissions, we only included models in the
analysis that had submissions for 80% of evaluated days
(i.e., days with observations). We allowed teams to
“catch-up” their forecasts (i.e., submit forecasts that were
not “real time” but “retroactive forecasts” following
Jolliffe & Stephenson, 2012) when they missed submis-
sions due to any issues with automated cyberinfras-
tructure. Retroactive forecasts could only use target data

and forecasted covariates that would have been available
if the forecast was generated in real time (i.e., a retroac-
tive forecast of water temperature for 1 July 2023 only
used observations before this date for model training and
was driven by NOAA weather forecasts generated on 30 June
2023 or earlier). No model was represented only by retroac-
tive forecasts. In our analysis, we removed the 16-day-ahead
horizon from evaluation because of processing issues when
downloading NOAA weather forecasts. The 16-day-ahead
horizon had an artificially low variance in the forecast that
was not present in the other horizons due to an error in the
post-processing of the weather forecast from the 6- to 1-h
time resolution. The 1- to 16-day-ahead forecast becomes
available for download from NOAA earlier than the 17- to
35-day-ahead forecast. When combining the two sets of fore-
casts and temporally downscaling to a 1-h time step, ensem-
ble members were not matched correctly, resulting in
reduced variance at the concatenation point. The processing
issue was resolved during the period of evaluation, but we
excluded the affected horizon, regardless, so that we could
compare forecasts throughout all of 2023.

The reliability of the CIs was calculated by estimating
the percentage of observations that fell within a specified
CI. Reliability refers to the statistical agreement of fore-
cast probabilities with observed relative frequencies of
events (Gneiting et al., 2007; Schepen et al., 2016; see also
calibration and coverage). A forecast that has perfectly
reliable CIs will have the equivalent proportion of the
observations falling within the CI (Jolliffe & Stephenson,
2012; Thomas et al., 2020): for example, 80% of observa-
tions falling within the 80% CI and 95% of observations
falling within the 95% CI. “Underconfident” forecasts are
represented by CIs that are too wide and result in more
observations falling within them (e.g., 90% of observa-
tions falling within an 80% CI), whereas “overconfident”
forecasts have CIs that are too narrow and fail to capture
the observations (e.g., only 40% of observations falling
inside an 80% CI) (following Ouellet-Proulx et al., 2017;
Thomas et al., 2020; Zwart et al., 2023). We opted to look
at the 80% and 95% CIs as the 80% CI covers the bulk of
the forecast distribution, and the 95% CI shows the ability
of the forecast to represent the values in the tails of the
distribution.

RESULTS
Forecast inventory

Individuals and teams submitted a total of 100,475 daily
forecasts for 1- to 30-day-ahead horizons using 28 differ-
ent models (Olsson, Carey, et al., 2024a) to the aquatics
lake theme of the NEON Challenge in 2023. Here, we
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define one forecast as a collection of predictions for
1-30 days in the future for a unique combination of fore-
cast starting date, forecast site, forecasted variable, and
forecasting model. The 28 models were used in addition
to the two baseline models (persistence and DOY models)
submitted by Challenge organizers (n = 30 models total).
The forecasted variables were unevenly represented in
the submissions: 14 models (plus two baselines) were
used to submit forecasts for both variables (T, DO),
14 models were used to submit forecasts for only T,,, and
no models submitted forecasts for only DO (total model
submissions for each variable: T,, = 30, DO = 16). Across
all submissions, forecasts of water temperature for the
lake sites were the most numerous (n = 63,189; 63% of
total lake forecasts) and had a greater diversity of model
classes and covariates.

The 30 T, models included a range of model classes
and exogenous covariates. The self-reported model clas-
ses included empirical models (statistical and time
series), ML, and PB models, as well as multimodel
ensembles (MME; i.e., predictions were based on an
aggregation of other model forecast submissions).
Within the MMEs, forecasts were generated by combin-
ing process models, baseline and process models, empir-
ical and baseline models, and an MME of the two
baselines (Table 2; Appendix S1: Table S1). Forecast
models included a range of exogenous covariates from
the NOAA GEFS weather forecasts, with forecasted air
temperature being the most commonly used covariate
(n =19; Appendix S1: Table S1). No other exogenous
covariates (i.e., non-NOAA GEFS weather covariates)
were included in any model. Details of all of the models

TABLE 2

that submitted forecasts in 2023 that met the criteria for
inclusion in this analysis are provided in Appendix S1:
Text S1 and Olsson, Carey, et al. (2024a).

The 16 DO models represented less diversity in model
classes and covariates than the T,, models (Figure 2). The
model classes for the DO models included only empirical
and ML models (in addition to the baseline models), and
air temperature was used as a covariate in six of the
16 DO models (38%).

How does model class affect forecast
performance across all variables?

More T,, forecast models (n = 10) outperformed the DOY
baseline than DO forecast models (n = 6; Figure 2). Only
six of the submitted DO models outperformed the DOY
baseline model across all forecast dates and sites
(i.e., models had mean negative CRPSy;;, with a mean
between —0.01 and —0.08 mg/L aggregated across the 1-
to 30-day-ahead horizon; Figure 2c). These six highest
performing DO models included both ML and empirical
models, of which the highest performing models were
ML models that used air temperature as a covariate
(Random Forest, Lasso, and XGBoost). The models that
did not outperform the baseline were all empirical, and
no PB models were used to forecast DO in lakes.

Unlike DO, the best performing models for water
temperature (T,,,) were from the full range of model clas-
ses (Figure 2a,b). Of the 30 submitted models, 10 T,, fore-
cast models outperformed the DOY baseline model when
forecasts were aggregated across all sites and horizons for

Representation of uncertainty within the best performing water temperature (T,,) models (sorted in descending order) that

had negative mean CRPSg; (i.e., outperformed the day-of-year baseline) over the 1- to 30-day-ahead forecast horizon.

Source of uncertainty represented

Model Model classification Driver
FLARE-GLM PM X
FLARE-GLM-noDA PM X
FLARE-GOTM PM X
XGBoost ML X
Random Forest ML X
LER-Baselines MME MME (PB, Baseline) X
FLARE-LER MME MME (PB) X
FLARE-GOTM-noDA PM X
Prophet ML

Lasso ML X

Parameter Process Initial conditions Observation
X X X X
X X X X
X X X X
X
X X X X
X X X X
X X X X
X X

Note: See Table 1 for definitions of uncertainty types. Model type classification as categorized by model teams: ML, machine learning model; MME, multimodel
ensemble; PM, process model. For the MME model type, the constituent model class is shown in parentheses. For the comprehensive list of uncertainty sources

for all submitted models and all variables, see Appendix S1: Table S1.
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the year of forecasts. Across all sites and forecasts, a PB
model had the best skill (Figure 2a), with a mean
CRPSgiy of —0.22°C aggregated across the 1- to 30-day-
ahead horizon. Although the overall top three models
were PB models, not all PB models were high
performing, as four PB models had a positive mean
CRPSgin (Figure 2b)

Altogether, of the different model classes used to sub-
mit forecasts of T,,, 4 of the 8 PB models, 1 of the
13 empirical models, 2 of the 4 MME, and all 3 of the ML
models outperformed the baseline DOY model on aver-
age over the year (Figure 2a). Machine learning models
accounted for three models in the top 10 T,, forecast
models, as XGBoost, Random Forest, and Lasso models
all had negative CRPSyy;. Empirical models exhibited
the worst performance among the model classes, as only
one (the Prophet model, Figure 2a) outperformed the
DOY baseline model across all forecasts. Given the better
performance of forecasts for T, (10 models beating the
baseline), as well as the higher diversity of model classes
represented in these higher performing models (n = 4),
further analyses for addressing Q1, Q2, and Q3 were
conducted on the T, forecasts only.

Among T,, models, how does model class
and inclusion of covariates affect
performance across the forecast horizon?

Nine out of the 10 T,, models that outperformed the
baseline model included air temperature as a covariate
(Figure 2a). The specific inclusion of air temperature as a
covariate appeared to confer some skill, as it was not
included in any of the five lowest performing models
(Figure 2b). However, the inclusion of exogenous
covariates did not guarantee high performance of a
model, as 10 of the models exhibiting positive CRPSgy
included air temperature as a covariate, as well as other
NOAA weather covariates such as humidity and precipi-
tation (Appendix S1: Text S1). There was only one model
that outperformed the baseline model, the empirical
Prophet model, which was based solely on observations
and included no exogenous covariates (Figure 2a).

Focusing on T,,, CRPSg;; in the most skillful fore-
casts generally worsened across the forecast horizon
(Figure 3a), and, on average, were unable to outperform
the DOY baseline at horizons of 15-25 days ahead. The
exceptions to this pattern were the Lasso and Random
Forest ML models, which showed improvement in skill
for the first 7 or 8 days ahead and then decreases in
skill at horizons longer than 8 days. Generally, the PB
models and MME forecasts showed larger rates of
degradation compared with the ML and empirical models
(Figure 3a). The Prophet ML model exhibited the
smallest degradation in skill (—0.16-0.08°C) across the
30 days, although its skill at 7- to 16-day-ahead horizons
was the worst of any model that outperformed the base-
line (Figure 3a). In comparison, two MME forecasts
showed the largest rates of degradation (LER baselines
MME and FLARE-LER MME), from high performance at
short horizons (—0.58 and —0.64°C) to poor performance
at the longest horizons (0.24 and 0.32°C). Only one model
had negative CRPSg; across the full forecast horizon,
the XGBoost ML model, which had a low rate of skill
degradation across the 30 days (0.32°C; Figure 3a). The
models that exhibited poorer skill throughout the 30-day
forecast horizon generally showed consistently worsening
performance into the future (Appendix S1: Figure S3),
although the worst performing models had poor perfor-
mance irrespective of forecast horizon.

Of the 10 models that outperformed the DOY model
on average, 7 models also outperformed the persistence
model at all forecast horizons. Only the empirical
Prophet model and the ML Lasso and Random Forest
models did not outperform the persistence model at all
horizons; the persistence model was better performing
during the first 3 days of the forecast (Appendix S1:
Figure S4). The persistence model had its highest perfor-
mance at the shortest horizons (1-3 days-ahead) and was
the best performing baseline model at these horizons
(Appendix S1: Figure S2).

Out of all T\, models that outperformed the DOY
baseline (as determined by the aggregation of skill over
the full forecast horizon; Figure 2a), XGBoost had nega-
tive CRPSg; for the full forecast horizon, outperform-
ing the DOY and persistence models at all horizons

FIGURE 2 Mean relative skill (CRPSg;, compared with day-of-year [DOY] baseline model) of water temperature (T,,) and dissolved
oxygen (DO) forecasts for the submitted models (averaged across sites, submission dates, and 1- to 30-day-ahead horizons). Negative values

indicate that a submitted model performed better, on average, than the DOY baseline and positive values indicate that the baseline
performed better. (a) The T,, models that outperformed the DOY baseline as defined by CRPSgy; (b) all T,, models; (¢) CRPSg;; for DO
models. The shading of the bars indicates the model structure; color indicates model class (empirical, machine learning [ML], multimodel

ensemble [MME)], process), and pattern indicates the inclusion of air temperature as a covariate. A second baseline model (persistence) is

shown in gray (b, c) and models that outperformed the DOY baseline are highlighted by the gray background shading. Constituent model

classes of the multimodel ensemble models are given in Table 2 and Appendix S1: Table S1. CRPS, continuous rank probability score.
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FIGURE 3 (a) Relative skill, (b) mean standard deviation (SD), and (c) mean absolute bias across the 30-day-ahead forecast horizon for
the models that outperformed the day-of-year (DOY) baseline for water temperature. Relative skill was calculated as the difference in
continuous rank probability score between the focal model and the DOY baseline, with negative values indicating that a submitted model
performed better, on average, than the DOY baseline and positive values indicating that the baseline performed better. The metrics in each
panel were averaged across all sites and forecast submission dates. Models are listed in the key in ascending order of mean skill aggregated
over the forecasting period.

(Appendix S1: Figure S5). The FLARE-GLM PB model
and the Random Forest ML model had the next longest
durations, where they outperformed the DOY (i.e., 19

and 27 days, respectively, over the 30-day forecast
horizon), but differed in the timing of these days. The
Random Forest model had positive CRPSg; at the start
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of the forecast horizon and FLARE-GLM had positive rela-
tive skill at the end of the forecast period (Figure 3a),
although both were only marginally worse-performing than
the baseline on the days when their CRPSy;; was positive.
FLARE-GLM was the most skillful model for the first
16 days of the forecast horizon, dropping only to the
fourth highest performer overall at other horizons. In
contrast, the best performing model at 30 days ahead,
the Random Forest model, was the second worst-
performing model at 1-4 days ahead.

To what extent is relative forecast skill
affected by the inclusion of different
sources of uncertainty?

Although submissions were required to include an
estimate of forecast uncertainty (Thomas et al., 2023), the
sources of uncertainty varied among the models.
The most commonly represented source of uncertainty in
T,, models was driver uncertainty (n = 22; Appendix S1:
Table S1), with 13 models including only one source of
uncertainty, seven models including two sources, one
model including three sources, and eight models includ-
ing all five sources of uncertainty (defined in Table 1).

Of the 10 T,, models that had mean negative skill
aggregated over the forecast horizon for T, (Figure 2a),
seven included at least three sources of uncertainty and
six included five sources (Table 2). All but one model
(n =9) included driver uncertainty (in the form of the
NOAA GEFS weather ensembles as covariates), with
parameter and process uncertainty the next most com-
mon uncertainty source included with these top models
(n = 8 models represented this source of uncertainty). In
comparison, T,, models that failed to outperform the
baseline rarely included sources of uncertainty other than
driver data uncertainty (Appendix S1: Table S1).

The degradation in relative skill for the majority of
T,, models at longer horizons was concurrent with an
increase in bias (i.e., lower accuracy; Figure 3c) and SD
(i.e., lower precision; Figure 3b). The improvement in
relative skill exhibited by two ML models (Lasso and
Random Forest) across the first 7 days of the forecast
horizon (Figure 3a) was concurrent with reductions in
absolute bias (Figure 3c). Across the first 10 days, the PB
models (FLARE-GLM, FLARE-GOTM) and MMEs that
included the PB models (FLARE-LER MME and LER
baselines MME) exhibited the lowest absolute bias, which
increased steadily across the horizon up to ~20 days
ahead. In comparison, the forecast accuracy and to a cer-
tain extent, precision, in the Prophet, XGBoost, and Ran-
dom Forest ML models degraded less, resulting in lower
bias and SD at longer horizons (Figure 3c).

Increased SD (i.e., greater uncertainty) across the
forecast horizon may indicate a reduction in precision in
the forecasts, which can degrade CRPSg;; and reliability
of the forecast CIs. The top performing T,, models were
primarily underconfident (Figure 4a) for the 80% ClIs,
meaning that >80% of observations fell within the 80%
CIs. Generally, the confidence of the forecasts changed
little over the horizon, especially beyond the first 5 days
(Figure 4a). Beyond this horizon, only the Random
Forest and Lasso ML models showed shifts in confi-
dence beyond 5 days, becoming less overconfident
and eventually becoming underconfident at horizons
greater than 8 days (Figure 4). The XGBoost ML model
yielded the most reliable forecasts, with 80.4% of observa-
tions in the 80% CI when averaged across horizons
(Figure 4). The Prophet model was the only model that
outperformed the baseline that was overconfident for the
whole forecast horizon, with its uncertainty changing little
across the forecast horizon (74%-79% of observations in the
80% CI; Figure 4a). The two MME models showed
the highest rates of underconfidence, with 91.5% and 96.2%
points falling on average into the 80% CI (Figure 4). Among
the poorer performing T, models, there was a greater rate
of overconfidence, especially at horizons less than 7 days
ahead, with 9 out of the 18 models overconfident. The rate
of overconfidence increased among all models at the 95% CI
(Figure 4b,d), demonstrating poor calibration for models
when forecasting observations at the tails of the distribution.

Are the patterns in performance consistent
across sites?

Within model classes, T,, forecast CRPSg;; showed
similar patterns among sites, with the exception of empir-
ical models (Figure 5a). Generally, ML, PB models,
and MMEs had negative CRPSy;; at PRLA, PRPO,
and TOOK, although the latter had a limited number of
forecasts given its much shorter buoy deployment dura-
tion (Appendix S1: Figure S1). In comparison, ML
models, PB models, and MMEs generally exhibited posi-
tive CRPSgi; at SUGG, BARC, and CRAM (Figure 5a).
Mean CRPSg;; (from the T,, models that outperformed
the baseline, as shown in Figure 2a) degraded across the
forecast horizon for all sites, but remained negative at
PRPO and PRLA for the full 30-day horizon and at TOOK
for the first 18 days (Figure 5b). In contrast, at CRAM,
LIRO, BARC, and SUGG, CRPSg;; was negative between
1 and 12 days ahead. This better CRPS;; at PRPO, PRLA,
and TOOK is likely due to the relative gains against more
poorly performing DOY baseline forecasts at these sites
(Appendix S1: Figure S6). Focusing on the 4 months when
all lakes had data availability (i.e., when all lakes had
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FIGURE 4 Reliability plot (percentage of observations falling within the 95% and 80% confidence intervals (CI for the water
temperature models that (a, b) outperformed the day-of-year baseline and (c, d) those that did not (gray lines). Perfectly confident forecasts

would have an equal percentage of observations within the CI as the percentage covered by the CI. Values above the dashed line indicate

that the forecast is underconfident (forecast precision is too wide) and values below the line indicate that the forecast is overconfident

(forecast precision is too narrow). Values above the dotted threshold indicate that the forecast is underconfident (i.e., there are too many

observations falling within the specified CI) and values below the line indicate that the forecast is overconfident. Note the differences in
scale between Panels (a, b) and (c, d) that show the 80% and 95% Cls, respectively.

buoys deployed) versus longer time periods did not sub-
stantially alter the differences in CRPSgy;; observed among
lakes (Appendix S1: Figure S7).

Climate variability may have influenced why some
models performed better than others in forecasting out-
of-sample conditions. Observations for water tempera-
tures in 2023 show that PRPO and PRLA were warmer
than historical conditions represented in the DOY model,
especially in May and June (Figure 6). In comparison,
CRAM and LIRO, for which models performed worse than
the baseline on average, exhibited water temperatures

generally within around 2°C of historical conditions
(Figure 6). BARC and SUGG exhibited a smaller range of
water temperatures that fell within 2°C of historical condi-
tions for all months except March (Figure 6).

DISCUSSION

Among the 29 models that forecasted water quality vari-
ables across seven lakes, 10 models outperformed the
baseline model for T,, and 6 for DO (Figure 2). Of
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FIGURE 5 (a) Relative skill of water temperature forecasts compared with the baseline (day-of-year) for each site compared among

model classes: Empirical, machine learning (ML), multimodel ensemble (MME), and process-based. Negative values indicate the submitted

model performed better, on average, than the baseline and positive values indicate that the baseline performed better. The n value indicates

the number of models represented in each model class. (b) Mean relative skill for the top 10 performing models among sites across the

forecast horizon.

the 10 best performing T, models, there were 4 PB
models that included multiple exogenous weather
covariates, 3 ML models, 2 multimodel ensembles, and
1 empirical model, demonstrating that multiple differ-
ent model classes can yield skillful forecasts for lake
water temperature. Our uncertainty analysis showed
that poorly performing T,, models were generally more
overconfident, likely due to insufficient representation
of uncertainty in the forecasts. Finally, model skill was
inconsistent across sites for the best performing lake
temperature forecast models, which may be related to
site-to-site differences in weather. Below, we discuss
how our findings addressed our research questions, with
a focus on the T,, models.

How do model class and model covariates
affect forecast performance?

No individual model submitted to the challenge was the best
performing model for both variables, although four models
outperformed the baselines for both T, and DO. These four
models—the ML models XGBoost, Random Forest, and
Lasso and the empirical model Prophet—show that a range
of model types were useful for a range of variable forecasts.
High-performing models for DO were in both empirical and
ML categories, although no PB or MME models were sub-
mitted for DO, necessitating further investigation of both
model types to potentially improve forecast performance
(Hagedorn et al., 2005; Olsson, Moore, et al., 2024).
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FIGURE 6 Difference in median monthly surface water temperature (depths < 1 m) between 2023 and historical observations

(2015-2022) at the seven lake sites. Shaded regions show delta values that exceed 1°C from median historical conditions. Not all lakes have

historical observations for the full 8-year historical period or observations during all months.

In contrast, models outperforming the baseline for T, came
from four model classes (ML, PB, empirical, and MMESs).

In an analysis of T,, models specifically (because of
the higher diversity of model classes that were submitted
for this variable), we found that PB models that included
air temperature as a covariate performed best across all
sites (Figure 2a). Air temperature is likely a key covariate
for high-performing surface water temperature forecasts
because T, dynamics are primarily driven by, and tightly
related to, processes at the air—water interface of lakes
(Piccolroaz et al., 2024; Schmid & Read, 2022). Air tem-
perature is a causal forcing variable and is highly corre-
lated with other key meteorological drivers (Livingstone
& Padisak, 2007). PB models that used additional meteo-
rological parameters (e.g., incoming short-wave radia-
tion, relative humidity, wind speed) to calculate heat
fluxes to mechanistically derive water temperatures had
even higher performing forecasts (Figure 2), although at
some horizons the PB models were outperformed by ML
models, which did not include physical processes
(Figure 3a). One exception was a simple-physics PB
model that included fewer sources of uncertainty and
was not able to outperform the baseline model
(Appendix S1: Text S1). Altogether, our results strongly
support that including the dominant drivers of water
temperature (namely, air temperature) unsurprisingly

improved the performance of lake water temperature
forecasts.

In contrast to the T,, PB models, the domain-agnostic
models (i.e., models that do not include any mechanistic
information about lake functioning; ML and empirical
models) showed less degradation across the forecast hori-
zon, which may be potentially due to the nondynamic
nature of the methods (Appendix S1: Table S1). In com-
parison, the PB models were more skillful at short hori-
zons, suggesting that forecasters might choose different
T,, models based on the horizon needed. XGBoost, Lasso,
and Random Forest ML models and the empirical
Prophet model were less skillful than the PB models and
PB-MMEs in the first 10 days, but become more skillful
than the PB models at horizons >10 days due to their low
rates of degradation. XGBoost was the only model that
outperformed the baseline across the full forecast horizon
(on average for all forecasts and sites), highlighting a
robust method for forecasting T;, at any site in our study.
Our results are similar to other ecological forecasting stud-
ies: for example, domain-agnostic models outperformed
PB models in a penguin population forecasting competi-
tion in which annual populations were forecasted up to
3 years ahead (Humphries et al., 2018). Similarly, simple
time-series models have shown promise in other ecological
population forecasts (Ward et al.,, 2014). In the NEON
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Challenge, the same ML and empirical models that
performed well for T,, also performed well for DO fore-
casts, on average outperforming the DOY baseline, and
thereby representing robust methods across multiple
variables.

Reduction in the skill of T,, forecasts over the forecast
horizon may be linked to a reduction in skill of the air
temperature forecasts being used as model driver data.
The Prophet model, which was the only model that
outperformed the baseline that did not include air tem-
perature as a covariate (or any covariates at all), showed
less degradation in forecast performance than the overall
better performing PB models, although this represents
only a single model. The PB models, generally, benefit
from high weather forecast skill at shorter horizons
(Petchey et al., 2015; Zhou et al., 2022) but degrade in
performance along with the performance of their
covariates. Beyond 10 days ahead, when the weather
forecasts are less skillful (Zhou et al., 2022), the PB
models’ performance also degraded, suggesting that eco-
logical forecasting models requiring weather drivers
may be restricted by the skill of weather forecasts.
Future analyses that quantify the contribution of the
weather driver accuracy and uncertainty to ecological
forecast skill could determine whether this decline in
skill is due to degradation in weather forecast skill or
the accumulation of uncertainty from other sources.

The differences in the forecast horizons at which each
T,, model was most skillful may present opportunities for
generating MMEs or hybrid models (e.g., combining
domain-agnostic models with PB models) to exploit the
strengths of multiple model types across the forecast
horizon. Hybrid model approaches have shown high per-
formance in other forecasting challenges and competi-
tions (Clark et al., 2022; Makridakis et al., 2020), and
MMEs are most successful when the individual model
structures are more diverse (Dormann et al., 2018;
Olsson, Moore, et al., 2024; Petropoulos et al., 2022). The
performance of the MMEs in this NEON Challenge syn-
thesis was not consistent with previous studies and other
forecasting challenges, in which MMEs showed the best
performance (Clark et al., 2022; Makridakis et al., 2020).
For example, in forecasts of tick disease incidence, the
simple model average of four individual models was bet-
ter than any individual model (Clark et al., 2022), and
the winner of the M4 forecasting competition (a wide-
ranging time series forecasting challenge) was a combina-
tion of statistical and empirical models (Makridakis
et al., 2020). Similarly, in a recent single-site lake study,
forecasts generated by an MME composed of three PB
and two baseline models outperformed the individual
models across 2 years (Olsson, Moore, et al., 2024). Con-
versely, in this analysis, the same MME had lower

relative skill, higher bias, and higher uncertainty than
some of the individual models from which it was derived
(Figure 2). This discrepancy in MME performance could
be caused by poor calibration in the individual models at
some of the lake sites. The individual models included in
this study were almost all underconfident (Figure 4),
which resulted in very large uncertainty in the MMEs
and likely contributed to their poor performance, as
MME forecasts have been shown to be most successful when
the individual constituent models are slightly overconfident
(Hagedorn et al., 2005; Wang et al., 2023). Methods such as
trimming, where distributions are narrowed, could help con-
strain MME uncertainty, increasing the overall skill of these
forecasts (Howerton et al., 2023).

Finally, the differences among forecasting models,
especially within model classes, can be interpreted in
the context of model relatedness. For example, six of
the seven PB models were 1-D hydrodynamic models
that share meteorological drivers (Olsson, Moore,
et al., 2024). These six PB models included three unique
1-D hydrodynamic models (GLM, GOTM, and Simstrat,
see Appendix S1) with and without an ensemble Kalman
filter data assimilation method. As a result of the PB
models using similar equations for modeling some compo-
nents of lake ecosystems (e.g., well-established surface
energy balance equations) and the shared data assimila-
tion approaches, the PB models are not entirely inde-
pendent representations. Similarly, many of the empirical
models were based on the same structures with differing
drivers. Here, we focused on analyzing the results for
broad classes of models (PB, empirical, and ML) rather
than within-model classes to reduce the impact of any of
model relatedness on the analysis. Future work can build
on lessons learned in the climate modeling community to
interpret multimodel analyses in the context of quantify-
ing model independence and similarity (Pathak et al.,
2023; Pennell & Reichler, 2011).

To what extent is relative forecast skill
affected by the inclusion of different
sources of uncertainty?

Our synthesis suggests that representation of forecast
uncertainty is important for determining the overall fore-
cast performance of probabilistic T, forecasts. The top
performing T,, models often included multiple sources of
uncertainty (up to n =>5; Table 2), unlike the lower
performing models, which frequently only included driver
uncertainty. Consequently, many poor performing models
were overconfident in their predictions, suggesting there
was insufficient uncertainty included in those forecasts. By
omitting parameter and process uncertainty, the forecasts
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fail to acknowledge the inability of the models to
completely capture the ecological and stochastic processes
being modeled and that even complex process models are
an approximation of reality (Dietze, 2017). These results
suggest that driver uncertainty alone is not a sufficient rep-
resentation of the total uncertainty, especially given that
weather forecasts are themselves often overconfident at
shortest forecast horizons (1-7 days; Zhou et al., 2022).
When these weather forecasts are used as driver data for
overfitted lake models (Zwart et al., 2023), overconfidence
in water quality forecasts is even more likely to occur.
Overconfidence of forecasts was also reported in a forest
phenology forecast synthesis, in which forecasts that
included covariates were overconfident at shorter horizons
(Wheeler et al., 2024). In our analysis, the Lasso and
Random Forest ML models, which only included driver
uncertainty, showed performance improvements from
1 to 8 days ahead (Figure 3), as the uncertainty from
the weather forecasts increased and the water tempera-
ture forecasts became less overconfident (Figure 4).
Furthermore, the ML XGBoost model, which included
process uncertainty in addition to driver uncertainty,
outperformed the other ML models at shorter horizons.
Improving the representation of uncertainty for many
of the models that failed to outperform the baseline
could be achieved by additionally quantifying: (1) the
uncertainty from the chosen model through the inclusion
of parameter and/or process uncertainty; or (2) from the
measurements through the inclusion of initial conditions
or observational uncertainty (see Table 1).

Improving the representation of uncertainty in fore-
casts, as quantified by the reliability of forecast CIs, is
important for management (Crochemore et al., 2021;
Ramos et al., 2013). The use of ecological forecasts by
decision makers is likely to improve if forecast uncer-
tainty is well quantified and CIs are appropriate
(Buizza, 2008; Nadav-Greenberg & Joslyn, 2009; Ramos
et al., 2013). Underconfidence and overconfidence limit
the use of forecasts for management, as underconfident
forecasts provide too wide of a range of potential future
conditions and overconfident forecasts underestimate the
possible range of conditions, with both leading to inappro-
priate management actions (Crochemore et al., 2021).
Consequently, our results suggest that including more
than one source of uncertainty may help increase the
usability of forecasts as decision support tools.

Is model forecast performance consistent
across sites?

T,, forecast performance varied among sites, with the rel-
ative gain in skill likely due to the lower performance of

baseline models at some lakes, especially at PRPO and
PRLA, two lakes in North Dakota. The DOY baseline
model had the lowest performance at PRPO and PRLA,
potentially because 2023 conditions in these two lakes
were substantially different from historical observations,
resulting in a lower performing baseline forecast (Figure 6;
Appendix S1: Figure S6). This is consistent with a previous
single-model forecasting study (FLARE-GLM) that also
showed improved performance above a DOY baseline for
these two sites, especially at shorter horizons (Thomas
et al., 2023). Differences from historical conditions that
exceeded 3°C resulted in poor DOY baseline performance
in that study. Our results suggest that if there is a diver-
gence of water temperature of this magnitude, using a
PB or ML model provides a much stronger forecasting
approach than a baseline model. All model classes except
the empirical model class showed better performance com-
pared with the DOY baseline at PRLA and PRPO as well
as at TOOK, to a lesser extent. As environmental condi-
tions further exceed historical means due to global change,
models that only consider patterns from long-term histori-
cal observations may be less valuable than models that are
able to infer ecological processes or use recently-observed
data in generating forecasts.

Value and refinements for forecasting
challenges

Forecasting challenges provide a compelling opportunity
to learn about ecological predictability over gradients of
time, space, ecological level of organization, and forecasting
methods. The submissions from 30 models (including two
baselines) to the aquatics lake theme of the NEON Chal-
lenge covered a range of model classes and approaches.
However, since the NEON Challenge was open to the com-
munity and we did not specifically guide the types of sub-
missions, the breadth of models was not exhaustive and
therefore some questions remain. Specifically, quantify-
ing the value of different covariates to different models
(e.g., XGBoost, linear models, Random Forest) would be
best done by comparing forecasts with the same model-
ing approach but with differing covariates and quantita-
tively seeing how forecast skill changes with their
addition or removal. It is possible that this “model selec-
tion” was done by teams before forecasts were submitted
and that the final model submitted to the Challenge was
the optimal structure, but we cannot know from the sub-
mitted metadata whether these models represent each
team’s “best” attempt at producing a forecast.

We also saw uneven representation in the variables
being forecasted, with more submitted forecasts of
T,, than DO. We identified several potential factors that
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contributed to this uneven representation. First, NEON
Challenge training materials were focused on lake tem-
perature forecasting, which may have skewed submis-
sions to this variable because participants in workshops
may have been more likely to modify pre-existing code
for submitting a new model type to T,,, rather than develop
new code for DO submissions. Second, water temperature
may have been an easier, more “introductory” forecast tar-
get variable as there are well-established mechanistic pro-
cesses linked to driver datasets (e.g., meteorology) that were
made readily available for teams to use. Conversely, the
drivers of DO concentrations are much more complex,
drawing from physical, chemical, and biological processes
(Carey, 2023; Hanson et al., 2006; Langman et al., 2010)
that vary by timescale (Hanson et al., 2006; Langman
et al.,, 2010) and are likely to be more or less important
depending on lake mixing (Robbins et al., 2024), trophic sta-
tus (Steinsberger et al., 2020), and lake size (Langman
et al., 2010). To use these additional driver data to forecast
model lake DO processes, forecasts of those drivers must
first be generated before they can be used in a model sub-
mitted to the Challenge.

Overall, our conclusions about the best performing
model are limited to mean surface water temperature
(the target variable chosen by the Challenge organizers),
as forecasts at other depths or temporal aggregations may
lead to different conclusions. For example, in contrast to
our findings about surface temperature, Thomas et al.
(2020) found persistence forecasts of bottom water tem-
perature performed better than a process model because
of the low variability in temperature below the thermo-
cline. Our analyses motivate future work that focuses on
different depths and temporal aggregations, as motivated
by the needs of forecast users. When using forecasting
methods for environmental management, the appropriate-
ness of the forecast target (e.g., surface water temperature
vs. chance of lake mixing), in addition to the chosen
models should be evaluated to ensure that models, and
forecast output are fit for their management purpose
(Bokulich & Parker 2021; Parker, 2020). Applying methods
and approaches from one application in a new situation,
without accessing the fitness-for-purpose, could result in
misplaced confidence or harmful outcomes (Parker, 2020).

Nonetheless, the forecasting approaches shown in
this synthesis could provide a valuable starting point for
developing forecasts for management decision-making or
as inputs into other models and decision-support tools
(e.g., Carey et al., 2022), for example, using a water tem-
perature forecast as an input into an algal bloom risk
model. For the NEON lake sites specifically, although not
actively managed, water temperature forecasts of these
lakes may help to optimize NEON sampling protocols,
for example, by forecasting the lake ice-on dates and

therefore maximizing the deployment of the water qual-
ity buoys that have to be removed during winter ice cover
or to anticipate a water quality impairment event for
higher frequency spatial sampling.

The NEON Challenge also sets the stage for future
forecasting model analyses. For example, future work
could address whether the inclusion of exogenous
covariates in models produces forecasts that are
overconfident at shorter horizons for other ecological var-
iables, which could be corrected using multiple sources
of uncertainty. Similarly, it would be useful to investigate
whether the domain-agnostic models that outperformed
the baseline for DO and T,, perform similarly well when
forecasting other ecological variables. The spatial and
temporal extent of NEON data, as well as the range of
ecological variables on which data are collected, provides
a suite of opportunities to continue to investigate these
questions and as a platform to grow the field of ecological
forecasting.

CONCLUSION

Our synthesis of more than 100,000 submissions to the
NEON PForecasting Challenge demonstrates that several
model classes were able to outperform a DOY baseline
model to forecast water temperature and dissolved oxy-
gen across seven lake sites, providing insight into optimal
forecasting approaches for different contexts. Water tem-
perature models that included air temperature as an
exogenous covariate and those that included multiple
sources of uncertainty generally performed well and came
from PB, empirical, ML, and multimodel ensemble model
classes. The relative skill of these models was shown to be
highest at sites that exhibited conditions outside of histori-
cal observations. These forecasting methods are likely to
become increasingly valuable for guiding decision-making
in a world in which ecosystems are become more variable
and continue to move outside of historically observed con-
ditions. Overall, our results highlight the value of forecast-
ing challenges to advance the development of ecological
forecasts for both theory and management.
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