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Abstract—Workflow management systems (WMS) provide a
robust solution for automating and ensuring the reproducibility
of scientific and engineering experiments. However, reproducing
machine learning (ML) experiments requires replicating every
aspect of the process, including code implementation, workflow
execution, data, and the execution environment. Traditionally,
tracking these components is done manually, if at all, before
execution. In this work, we propose an approach for on-demand
and dynamic tracking of ML workflows. Our approach extends
the ML workflow automatically and introduces steps for tracking,
organizing, and versioning all elements, such as code, data, the
main workflow steps and the execution environment for each
job. This tracking approach includes two modes: a custom mode,
where user-tagged elements will be tracked by the WMS, and
an automatic mode, where the WMS automatically tracks and
organizes all necessary elements. We implemented this solution
by extending the Pegasus-WMS system and tested it on two types
of workflows: traditional scientific ML pipelines and Federated
Learning (FL) applications. Our findings demonstrate that this
tracking approach does not interfere with the normal execution of
user-designed workflows and the execution time. Additionally, we
show how this approach can integrate a WMS with versioned
data in remote storage (such as S3 or Google Drive) and ML
lifecycle solutions like MLflow, ensuring reproducibility and
transparency of the computational experiments.

Index Terms—Workflow Management System, Tracking, Ver-
sionning, MLops, Machine learning

I. INTRODUCTION

As ML continues to emerge as a driver of innovation,
automating ML computations using WMS becomes crucial.
Automation provides the opportunity to accelerate and opti-
mize every step of the process, reduce errors, and alleviate
practitioners having to perform repetitive manual tasks.

An ML workflow is a sequence of organized and inter-
connected steps that include data preparation, model selection
and training, performance evaluation, and model deployment.
All these require continuous maintenance in a production
environment. These workflows are applied in various industrial
applications, as well as in research, to execute and automate
training and evaluation tasks, fine-tuning, and promising the
reproducibility of experiments.

However, the models, which are the main artifacts of
the ML workflows, can be affected by factors such as the

input data being used, the hardware and the version of the
software (environment), and the training parameters. As a
result, to guarantee reproducible outcomes, a WMS needs
to monitor and track closely the ML workflows. Apart from
monitoring and ensuring the correct execution of the workflow
steps, a WMS needs to collect information about the input
and output data of the tasks, collect information about the
execution environment, and correlate this information with the
resulting models and their training parameters, generating a
fully reproducible workflow signature for each ML model.

Most workflow management solutions [1] [2] do not meet
the needs of ML workflows, which poses a significant chal-
lenge for data scientists. Even MLOps, which seeks to bridge
this gap by integrating DevOps principles into the ML lifecycle
[3], is not sufficient. Additionally, even with existing solutions
in this area, we observe limitations in the interface, such
as the case of DVC [4]. The most commonly used tool in
data versioning, lacks sufficient programmability because of
incomplete APIs and configurations required for data tracking.

Integrating MLOps into scientific ML workflows, enhances
the capabilities of WMS, enabling comprehensive tracking of
various experiments beyond ML workflows. This adaptation
also organizes and structures the outputs of workflow experi-
ments, facilitating result interpretation. Controlling versioning
becomes paramount, enabling the collection of comprehensive
versioning information and enhancing the human exploitation
of these insights.

Therefore, in this paper, we present our vision for integrat-
ing MLOps into a WMS. The paper makes the following con-
tributions: (i) creation of a distributed and automated approach
to data versioning tailored for WMS based on tags; (ii) integra-
tion of the MLflow ML model lifecycle management solutions
with a WMS; and (iii) the management of experiments through
the ability to create strong links between workflow instances,
the utilized data, and the experiment results while ensuring
transparent reproducibility based on metadata.

The paper is organized into several sections. It begins by
discussing the current state-of-the-art in ML workflows and
MLOps. Following this, the paper delves into the description



of our approach, starting with tracking in ML workflows and
progressing toward experiment tracking. Subsequent sections
detail experiments aimed at assessing the efficiency of our
approach with two types of ML: traditional ML and federated
ML applications. The paper concludes with a summary of the
findings and highlights potential avenues for future research.

II. RELATED WORK

A WMS is crucial for managing and optimizing complex
ML workflows. It automates tasks, reduces human and execu-
tion errors, ensures efficient resource use, and provides real-
time monitoring, all of which are essential for effective ML
model development and deployment.

In the ML domain, WMSs have become essential for
automating ML pipelines. Krawczuk et al. [5] explored how
different data management configurations impact scientific ML
workflows using Pegasus-WMS, showcasing its effectiveness
across diverse datasets. Meanwhile, Krawczuk et al. [6] uti-
lized Pegasus-WMS to implement deep learning algorithms
for extracting disaster-related information from social media
posts, enhancing situational awareness for first responders
through their CrisisFlow workflow. Additionally, Nguyen et
al. [7] proposed integrating ML modules into the Kepler tool
to simplify ML workflow manipulation, advocating for broader
integration to enhance usability.

With the objective of automating various stages of ML,
Nvidia introduced the NVIDIA FLARE framework, which
specialized in FL but requires complex manual configuration
[8]. Carreira et al. proposed “Cirrus,” a serverless framework
streamlining end-to-end management of data center resources
for ML workflows [9]. Despite positive aspects, WMSs face
limitations in fine-tuning model parameters, handling multiple
rounds, managing models at each step, and ensuring repro-
ducibility. The MLOps approach has evolved to address these
challenges, focusing on deploying, managing, and sustaining
ML models in real-world production settings [3].

Dominik Kreuzberger et al.’s paper [3] defines MLOps as a
paradigm focusing on best practices for end-to-end ML prod-
uct lifecycle management. It outlines roles, interactions, and
technical aspects bridging development and operations, em-
phasizing CI/CD automation, versioning, collaboration, con-
tinuous training and evaluation, metadata tracking, monitoring,
and feedback loops. Tools such as MLflow [10], Kubeflow
[11], DVC [4], Airflow [2], SageMaker [12], and AzureML
[13] are highlighted. Upon analyzing the end-to-end MLOps
architecture and workflow presented in various papers, it
becomes apparent that for scientific ML workflows utilizing a
WMS to ensure seamless execution, that system needs to have
the capacity for model tracking and registry, ML metadata,
data, and workflow versioning. These components collectively
contribute to covering all aspects of the ML pipeline, from
execution to reproducibility, and results structuring.

In the realm of model tracking and versioning, various
solutions have been developed to streamline model and data
management. Vartak et al. propose ModelDB [14], while

Zaharia et al. introduce MLflow [10]; both frameworks fa-
cilitate automatic tracking and unified storage of models in
popular ML environments. MLflow is comprehensive, sup-
porting experiment tracking, project packaging, and model
deployment, whereas ModelDB focuses on model versioning
and management. Additionally, Schelter et al. present a system
for automating metadata and provenance tracking in ML ex-
periments [15], integrated with popular frameworks to manage
metadata and lineage effectively. In data versioning, the term
”data” broadly includes all files, transformations, and inputs
throughout the workflow lifecycle. Solutions like Woodman
et al’s integration of provenance with service and workflow
versioning [16] and Miao et al’s unified provenance and
metadata management system [17] address these challenges.
Data Version Control (DVC) stands out for enabling repro-
ducibility and managing ML experiment complexities [4],
offering features like command-line tools, dataset versioning,
Git integration, and remote storage. However, integrating DVC
with WMS is problematic due to its command-line-centric
configuration and lack of APIs, highlighting the need for
better compatibility and interoperability to streamline ML
workflow management. Despite the availability of numerous
MLOps solutions, there is a significant gap in integrating
these tools for data scientists, hindering the creation of a
unified and flexible machine-learning workflow. The absence
of well-established connections between these solutions makes
workflow construction intricate and less customizable. This
integration challenge is exacerbated by the crucial need for
smooth integration between experiments, models, metrics, and
data stored in different repositories, impacting the efficiency of
data scientists and the overall effectiveness of the ML process.
In this paper, we propose an approach based on tagging
workflow elements to indicate information needed to be cap-
tured to ensure reproducibility of ML workflows. We leverage
the Pegasus-WMS tool as our WMS, integrating its interface
with MLflow for model and experiment management. Addi-
tionally, we develop a distributed data versioning approach
tailored to the WMS, facilitating on-demand creation of ver-
sions for various data and files. This is crucial for accurately
reproducing experiments and organizing data and models.

IIT. FROM SCIENTIFIC ML WORKFLOWS TO TRACKED
SCIENTIFIC ML WORKFLOWS

A. ML Pipeline

Before describing our approach, it is important to define
the 5 steps of a typical ML pipeline (Fig. 1). (1) Data
Acquisition: Gathering relevant data from diverse sources
while ensuring integrity, compliance, and permissions; (2)
Data Processing: Preprocessing raw data through cleaning,
integration, and feature engineering to prepare it for analy-
sis; (3) Model Building and Training: Selecting, training,
and validating ML models based on the prepared data to
optimize performance; (4) Evaluation and Interpretation:
Assessing model performance using metrics and interpreting
predictions to gain insights into underlying data relation-
ships; (5) Model Packaging and Deployment: Integrating



and deploying trained models into real-world applications to
support decision-making or discovery, ensuring usability and

scalability.
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Fig. 1: The five stages of a typical ML pipeline.

The data pipeline undergoes several transformations, start-
ing from collection, through processing, to feature extraction.
Fine hyperparameter tuning adds complexity by increasing
file transformations, trained models, model parameters, and
metrics. Although using a WMS streamlines execution, man-
aging and organizing the outputs remains a concern. As the
pipeline becomes more complex with additional parameter
combinations, understanding, and managing the outputs and
assessing the produced artifacts becomes more challenging for
users.

B. Tracked scientific ML workflows

ML workflows leveraging a WMS such as Pegasus-
WMS [1], Apache Airflow [2], or Kubeflow [11] employ
Directed Acyclic Graphs (DAGs) to orchestrate tasks. These
DAGs encode the dependencies between stages, enhancing
automation and reproducibility. Reproducibility in ML ensures
consistent results across experiments, achieved by tracking
relevant aspects like input data, training and test data, hyper-
parameters, model architecture, and evaluation metrics. This
transparency fosters trust in research and applications by
enabling repeatability of analyses.

Fig. 2 illustrates a comparison between the current im-
plementation of ML workflows and the desired Tracked ML
workflows. In the existing ML workflow implementation, high-
level jobs for ML steps (III-A) are present, with tracking or
versioning operations embedded within these jobs or manually
added by users, leading to increased complexity. Conversely,
the desired implementation of automatically Tracked ML
workflows, as depicted in the right section of the figure,
dynamically creates new jobs based on user-defined needs
within the WMS. These jobs are dedicated to file/data track-
ing, generating metadata files for each job containing key
information like checksum, storage type, and modification
details. These metadata files are first combined into a single
file, organized by the workflow’s unique identifier (ID). This
file is then added to a central metadata file at the WMS’s
central node, organized first by workflow name and then
by workflow ID, and includes metadata from all previously
tracked workflows submitted from that central node.

The data tracking jobs are executed in parallel with the main
jobs defined by the user in the workflow, aiming to minimize
their impact on the overall workflow execution time.

In the next sections we present how this vision works and
our efforts to implement it and integrate it with the Pegasus
WMS . Additionally we discuss the versioning feature using

Thttps://swarmourr.github.io/pegasus/index.html

a Version Control System (VCS) and how it ties in with the
experiments tracking system.
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Fig. 2: Our approach extends the ML workflow with additional
tracking jobs to ensure reproducibility of results.
C. Pegasus-WMS Python API

Pegasus-WMS is an open-source software framework that
streamlines the execution of scientific workflows across dis-
tributed computing environments by automating computational
tasks, data movement, and resource allocation. Its main con-
cepts include: (1) Transformations: individual computational
tasks specifying executable programs or scripts with their input
and output files; (2) Sites: computing resources where tasks
are executed, such as campus or local machines, each with
specific properties; (3) Replicas: copies of data files used
by tasks, tracked in a catalog to manage data locations and
movement efficiently.

These components ensure portable, scalable and reliable
workflow execution. The Pegasus-WMS API, accessible via
Python, R, or Java, allows developers and scientists to pro-
grammatically define, submit, monitor, and manage workflows,
accelerating scientific discovery.

D. Data Versioning Stage

The Pegasus Python API facilitates close collaboration
between replicas and files. The File object serves as a rep-
resentation of files within the workflow, while the Replica
Catalog keeps tabs on their storage locations. Developers
utilize the File object to find the locations of file, which may
be replicated in the environment. Furthermore, the File object
acts as the foundation for file and ML data tracking. This
operation enables users to tag files for tracking, extending
beyond managing locations, ensuring data availability, staging
data, and ensuring data integrity. By incorporating tags in the
Pegasus workflow generator using the Python API, users can
effortlessly track various file types within workflows. This
approach introduces different types of tags during workflow
implementation, aiding in structuring versioning and facilitat-
ing workflow analysis.
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In this implementation, we define (based on the workflow
structure) three customizable boolean tags for tracking data
within workflows:

« input_track: Assigned to files considered by the user as
input data for the workflow, such as input data before
processing.

« output_track: Used to track files generated by the work-
flow, whether intermediate or final results. For instance,
in ML, this could include the trained model or metrics
files.

o wf_track: This tag is employed for versioning the exe-
cuted instance of the workflow.

These tags can be used together or independently to ver-
sion the desired products. By combining the three tags, the
WMS provides complete versioning of the workflow, which
guarantees the reproducbility of the ML workflow artifacts.

These tags extend the definitions of workflows, files, and
jobs in the Pegasus Python API, providing a comprehensive
mechanism for tracking various files used by these components
of Pegasus. These tags dynamically introduce new jobs for
versioning files without altering the original job order defined
by the user in the abstract workflow. Each versioning job
generates a metadata file capturing details described in Table
I. This metadata file is structured to represent each instance,
identified by a unique ID, within the workflow experimenta-
tion.

TABLE I: Workflow and file information.

Field
Workflow Name

Description

Name of the workflow Experimentation

Unique identifier for a run in the workflow experi-

Workflow ID mentation workflow

File Name

Bucket Storage URL

Name of the file versioned by the job
Storage URL in a bucket system

Google  Drive  Remote Remote storage URL for Google Drive

URL

Last Modification Timestamp indicating last modification time

Path File path in the local filesystem

Size Size of the file in bytes

Timestamp Timestamp when the file was last modified

Type Type of the file (e.g., Inputs, Outputs, wf)

Version Version identifier associated with the file

env Information about the execution environment
mlflow_url Direct url to the MLflow run associated with the job

Upon workflow completion, a job aggregates all metadata
files, consolidating them in the central node of the workflow
submission system. This central metadata file can be managed
using versioning tools like Git or GitHub for traceability and
reproducibility.

Remote storage mirrors the metadata file structure, simpli-
fying experiment reproduction. Each experiment is represented
by a folder containing subfolders for individual runs, including
workflow, input data, and output data. A new command in
Pegasus enables users to copy all files from remote storage,
including the workflow, facilitating consistent results and
reproducibility. This approach ensures that experiments can

be rerun with the same data and identified by the same run
ID, mitigating risks of version mismatch or data modification.

E. Model tracking Version

To complete the tracking of the ML workflow we need
to introduce a solution for managing the lifecycle of ML
projects. The data versioning approach outlined in section
III-D provides extensive information regarding the data uti-
lized in experimentation, which essentially represents the
execution of a workflow. Additionally, these experiments yield
a plethora of metrics, figures, and parameters. Therefore, to
ensure seamless connectivity between experimental data and
results, it is imperative to log not only these metrics but also
the path of data on remote storage that was generated by data
tracking jobs.

To ensure seamless integration between data versioning
tasks and ML lifecycle management, a direct link is essential.
This link necessitates a shared unique identifier among all
involved parties, alongside an efficient WMS. In this scenario,
the WMS identifies workflows through two key elements,
accessible to all actors: the workflow’s name and its execution
ID (Experiments) of the workflow instance. Consequently, in
experiments management, we arrange experiments based on
workflows at the primary level and their respective IDs at
the secondary level. MLFlow [10] can help us organize these
data in easy-to-manage, user-friendly dashboards. Making the
WMS MLAflow-aware will enable the complete tracking of ML
workflows. In alignment with the previous discussion on data
tracking, users must designate the jobs that will utilize the
tracking solution. Users can assign two distinct tags:

— job_auto: In this scenario, the parameters for identifying
experiments will be automatically extracted from the
workflow generator, predominantly relying on job names
for identification purposes. For that, Pegasus-WMS, as
described in Fig. 3, creates an experiment based on the
name of the workflow. Once created, each time this
workflow is executed, a parent run is created in MLflow.
The name of this parent run is a concatenation of the date
and time, plus the name of the workflow. This parent run
contains all the child runs corresponding to the tracked
jobs by MLflow.

— job_custom: Conversely, users have the flexibility to
define custom names for each job run and experiment,
facilitating later extraction of results.

Within the workflow, each job’s output is configured by the
user to be logged in the experimentation tracking solution. To
ensure a comprehensive overview of the experiments within
the tracking solution, default parameters will be automatically
included to extract relevant data if tracking is enabled. For each
run, the workflow ID and the paths for all utilized files, along
with the metadata file generated by the tracking jobs, will be
appended as metadata and artifacts in the ML project man-
agement solution. This workflow ID establishes connections
between experiments, data, and workflows, enhancing project
organization and traceability. It can also be used to query and



TABLE II: ML workflow tracking capabilities as implemented using Pegasus-WMS.

Tracking Type Dynamic

Custom

Elements & Tags Basic Tracking  Full Tracking

Input Tracking

Output Tracking WF Tracking

Workflow description
Workflow instance/version
Logical file names
Physical Input files
Physical Output files
Physical Intermediate files
Logical Transformations
Physical Transformations
Codes

X X X NSNS X X
AN N NN N NN
X X X AX NN QX

X X X NAX NN X
X X X X X XSS

ANAX X X X X X

Declaration location Workflow Declaration

File Declaration Workflow Declaration

locate the workflow in the MLflow interface, providing access
to all metadata about the execution, the metrics logged by the
user, and direct links to the data.

% Expirement : workflow name ‘

’ Parent Run 1 : workflow instance 1 ‘

Child Run 1 : Tracked Job 1

e0o e
Child Run N : Tracked Job N

*ﬂ Parent Run N : workflow instance N ‘

Fig. 3: Pegasus-WMS MLflow structure for ML experimenta-
tion

F. Code Versioning

To ensure comprehensive tracking of workflow instances
and maximize the reproducibility of ML experiments, tracking
the code used in each experiment is a crucial element in the
tracking process. For this purpose, and following the same
approach as data and workflows, we have introduced a new
tag for tracking transformations. This tag, named Track_trans,
facilitates automatically pushing the codes in the workflow
to the Git server and building metadata descriptions about
the scripts. This metadata primarily includes the commit ID,
the direct link to the committed file, the local path, and the
checksum for verification. The generated metadata is then
concatenated with information about the tracked data in the
workflow instance and stored in a central metadata file.

G. Dynamic Tracking

For automatic tracking of workflow where the user needs
effortless tracking, we introduced two tracking options:

— full_track: Like the name indicates, this tag ensures
that the WMS tracks all files (input and output) used in
each job, as well as the transformations and workflows
used. This tag also creates the experiments on MLflow
and organizes them as described in Fig. 3. This tag
is equivalent to combining all the previous tags, which
means ensuring the reproducibility of experimentation if
needed.

basic_track: In this tag, reproducibility is of minor
importance because it only provides the possibility to

track and version the input and output files, meaning only
versioning the data.

At this stage, we present our vision for tracking ML work-
flows. In this approach, the WMS serves as the cornerstone for
tracking, facilitating various components such as data tracking,
code tracking, and model tracking. This tracking is ensured by
the tags or metadata added directly to workflows generated.
Table II summarizes the ML workflow tracking capabilities as
implemented using the API and the functionality offered by
Pegasus-WMS. This approach enables users to easily correlate
between these elements. Furthermore, thanks to this tracking
approach, Pegasus-WMS can offer the capability to reproduce
workflows by retrieving all elements based on the workflow
instance ID and the central metadata file. This allows for the
retrieval of all necessary components from remote storage and
the rerunning of the same workflow with the same data and
code as initially tracked.

H. Implementation

After discussing the data tracking approach presented in
this work in Section III-D and the ML experimentation
management in Section III-E, this section delves into the
implementation of an approach aimed at bridging the gap
between WMS, exemplified by the Pegasus-WMS, data ver-
sioning represented by our approach, and ML experimentation
management facilitated by the MLflow open-source solution,
with which the WMS will interface.

In this implementation, we extend the Python API of
Pegasus-WMS by introducing a new component that incor-
porates the ML workflow tracking outlined in the previous
sections of this work. Fig.4 illustrates the three main phases
of the Pegasus-WMS to execute a workflow. (1) Create: the
user uses the Pegasus API to generate an abstract workflow
description, outlining tasks, input/output files, and dependen-
cies, without specific file formats; (2) Plan: Pegasus converts
the abstract description into a concrete one, adding specific
execution details and generating a formatted workflow DAG;
(3) Run: Pegasus delegates the DAG to HTCondor for job
queue management and execution supervision.

In this implementation, as shown in Fig. 4, the Pegasus-
data component integrates into the Pegasus API during
the creation phase to add tracking jobs based on the
user’s abstract workflows. When generating the workflow,
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Transformations Declaration
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Fig. 4: System design.

it analyzes the tracking and experiment tags defined by
the user, leading to the creation of MLflow experiments
and runs with unique run IDs. These IDs are passed
to the execution environment as environment variables
(e.g., MLFLOW_RUN_ID, MLFLOW_EXPERIMENT _NAME,
MLFLOW_TRACKING _URI, MLFLOW_CREDENTIALS), en-
abling users to authenticate and log information to MLflow
by inserting the metrics tracking code into the transformation
using the MLflow Python APIL.

Simultaneously, the Pegasus-data component adds data
tracking jobs with similar input or output data and with the
same execution environment parameters as the original tracked
job to the abstract workflow. These jobs run concurrently with
the main jobs, collecting data information and transmitting it
to remote storage (buckets or Google Drive). If MLflow is
enabled by the user, these jobs log workflow information to
ML flow, including the workflow execution ID, remote storage
URL, and metadata files, ensuring the relationship between
workflow execution, data versioning, and experiment outputs
is maintained.

All connection information and configurations are stored
in a central local configuration file and the main Pegasus
database, located in the central node of Pegasus-WMS, and
passed as environment variables as needed.

IV. EXPERIMENTS

In this paper, we analyze metadata tracking based on two
perspectives of ML workflows:

o Traditional ML: We will compare the performance
of Pegasus-WMS with and without tracking for three
application workflows. In this paper, we utilize the ”Lung
Segmentation Workflow” and “Galaxy classification” im-
plemented described in the paper [5].

« Federated Learning (FL) Representing distributed ML,
this implementation allows us to evaluate tracking within
a distributed edge computing paradigm, providing in-
sights into its effectiveness across diverse ML method-
ologies.

In these workflows, dynamic tracking is enabled during gen-

eration using the tracking component. Specifically, we utilize

the “full” tracking type, which dynamically tracks the entire
workflow without any other tracking types. This includes
versioning the generated workflows, tracking the files/data
used on Google Drive, automatically pushing transformations
to a branch on GitHub under the workflow’s name, and
preparing the experiments required in the MLflow platform.
Alongside ensuring accurate workflow execution, these exper-
iments provide insights into parameters such as execution time
and analysis of generated jobs.

A. Description of Workflows

Lung Segmentation Workflow

Context: Lung segmentation is a crucial component of the
broader field of medical image analysis, playing a pivotal
role in the diagnosis and treatment of pulmonary diseases.
Accurate and precise delineation of lung structures from
radiological images, such as X-rays, CT scans, or MRI scans,
is paramount for a multitude of clinical applications. In recent
years, the integration of deep learning techniques into the
realm of medical image analysis has revolutionized the way
we approach lung segmentation tasks.

Workflow Overview: The Lung Segmentation Workflow
(Fig. 5) uses the Chest X-ray Masks and Labels dataset (800
high-resolution X-ray images and masks, 5.4 GB) available on
Kaggle. The dataset is split into training, validation, and test
sets before the workflow starts. Each set consists of original
lung images (3000x2933 pixels each, 6.3 MB in size) and
their associated masks (same resolution, 30 KB in size). The
Pre-process and Augment Images job resizes images (lungs
and masks) to 256x256 pixels and normalizes lung X-rays.
Additionally, for each pair of lung images and masks in
the training dataset, two new pairs are generated through
image augmentation (e.g., rotations, flips). Next, the train
and validation data are passed to the UNet HPO job, where
Optuna [18] explores different learning rates. The Train UNet
job fine-tunes the UNet model with the recommended learning
rate on the concatenated train and validation set, and saves
the weights into a file. The Inference on Unet job uses the
trained model to generate masks for the test X-ray images.
The final step of the workflow, the Evaluation job generates a
PDF file with the scores for relevant performance metrics and
prints examples of lung segmentation images produced by the
model.

m Lung Images H‘U Mask Images ‘

Split Images
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Pre-process and Augment Images
o =

UNet HPO
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Train UNet
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[ Inference on UNet >
[ —— —
[ ) Evaluation ) >

Workflow jobs

€ P;e-workﬂow joEs D (

Fig. 5: Lung segmentation workflow.



Galaxy Classification Workflow

Context: Automated galaxy morphology classification is a
critical step in understanding the formation and evolution of
galaxies. It allows astronomers to systematically categorize
and analyze galaxies on an unprecedented scale, enabling the
identification of trends and patterns in the galaxy population.
The Sloan Digital Sky Survey (SDSS) [19] has gathered over
600 terabytes of image and spectral data over its mission
lifetime and it has become an important resource in studying
the sky. This staggering volume of data highlights the need
for automated classification techniques like deep learning to
efficiently process and categorize galaxies.

Workflow Overview: The Galaxy Workflow (Fig. 6) utilizes
the Galaxy Zoo 2 dataset’ that consists of 61,578 RGB
images, each of size 424x424x3 pixels (1.9 GB of compressed
data). The first stage of the workflow (Dataset Generation
and Split) filters out galaxies based on their feature scores.
This reduced dataset of 28,790 images is split into train-
ing, validation, and test sets. These datasets are passed to
Pre-process Images jobs where several data transformations
(e.g., crop, downscale, whitening) are applied. To address the
problem of class imbalance in the dataset Augment Images
jobs generate additional instances of underrepresented galaxy
types. Next, VGG16 HPO job utilizes the Optuna [18] to find
a good set of hyperparameters (e.g., learning rate, numbers
of transferred layers). Using the chosen hyperparameters and
the training images, the Train VGGI6 job trains the model.
The weights of the trained model are saved to a checkpoint
file. Finally, the Inference and Evaluation job runs predictions
on the test set, generates statistics and plots that provide
insights into the quality of the trained model. The implemen-
tation of this workflow is based on a recent publication [20].

FL Workflow

Galaxy Images

17 Dataset Generation and Split
v 1

Pre-process Train Images
Processed Train imgs

Pre-process Val Images
Processeni Val imgs

Pre-process Test Images
Processed Test imgs

Augment Imgs
Processed ;l'rain imgs

VGG16 HPO
Best hypir-params

Train VGG16
Best VGF model

Inference and E
Results and perfs

job Output file Pre-workflow jobs

Context: Higdérafedl dxyachingi f(TUtonmiediled. by Google
in 2017 [21], addresses privacy concerns by enabling local
training on individual devices or servers. Each device or server
computes model updates using its local data, which are then
aggregated centrally to update the global model. This iterative
process enhances edge computing capabilities while ensuring
data privacy and security.

Workflow jobs
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Workflow Overview: This paper explores an implementation
of FL to address the complexity of managing distributed
rounds and numerous participants during training or evalua-
tions.Fig. 7 shows a single round of FL, from model initializa-
tion to global performance evaluation. Initially, an init_model
job creates the initial model. Three clients are selected for local
training using this model and their data, facilitated by the local
training client * job. These local models are aggregated into
a global model via the Global model Aggregation job. The
global model is then evaluated by randomly selected clients.
The Model evaluation client * job produces local evaluation
files, which are used by Perf _evaluation jobs to generate a
global evaluation based on averaged metrics.

Two implementations are proposed: a unified workflow for
all rounds in one workflow, and dynamic round generation
using Pegasus-WMS’s sub-workflow feature. For a three-round
FL setup, the MNIST dataset is split among 10 clients, with
5 chosen for training. Each client uses a neural network with
two hidden layers (100 neurons each, ReLU activation) and a
softmax-activated output layer for classification.

init_model Training data label data

global_mode_round_init.hS

Local training
Client generation and selection
I
T —1 |

v o v

Local training client ) (Local training client 2> (Local training client 3

local model client 1 local model client 2
1 T
A

Global model Aggregation

local model client 3
]

global model
I
) ! v
Model evaluation client 2 Model evaluation client 3

performance client 1 performance client 2 performance client 3
[ [ I
v

Perf_evaluation
global_Model_perf

Model evaluation client 1

‘Workflow jobs parameters Job Output files ‘Workflow input file

workflow job

Fig. 7: A workflow for one round of federated learning.

B. Results analysis

1) Workflow generation: Before exploring the workflow
execution details, it is essential to evaluate the time taken to
generate the workflow structure with and without tracking.
Table III represent the execution time for generating tracked
and untracked workflows, with and without experimentation
tracking using MLflow, as described in the preceding sec-
tion. The tracking approach modifies the abstract workflow
defined by the user by adding new jobs for tracking various
files/data utilized in the workflow. for the first workflow,
there was no discernible difference between the tracked and
untracked workflows. However, upon generating workflows
for FL, a noticeable and significant difference in generation
time emerged between the two types of workflows. This
disparity becomes particularly pertinent when additional jobs
are added through the inclusion of new FL rounds. To discern
the origin of this difference, we conducted identical experi-
ments without MLflow experimentation tracking. As depicted
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in Table III, workflow generation without MLflow experi-
mentation tracking markedly reduces execution time, nearly
aligning with untracked workflows. As explained in Section
III-E, for each workflow, experimentation with the name of
its parent workflow is created, with parent runs identified
by timestamps and workflow names containing child runs
for individual jobs. In these experiments, managed MLflow
(a hosted and maintained service provided by DagHub for
managing the machine learning lifecycle) is utilized. Due
to the high volume of requests for the MLflow API from
the Pegasus-API, the platform queues requests for a brief
period of time before continuing the creation process, thereby
increasing the workflow generation time and accounting for the
significant difference observed in the represented workflows
in Table III . Although generating workflows that include
tracking jobs takes more time, this additional time is still small
compared to the actual workflow execution time, as we will
describe in section IV-B3

TABLE III: Workflow generation time in seconds .

Workflow Not .Tracked ) Tracked
Tracked with MLflow  without MLflow
Lung Segmentation 0.06 0.06 0.06
FL one wf 1 round 0.01 45.26 0.01
FL one wf 3 rounds 0.01 121.39 0.01
Galaxy Classification 2.46 93.43 4.14

2)  Workflow Jobs analysis: 1In the preceding section
(IV-B1), we established that the quantity of jobs significantly
influences the generation of the workflow. Here, we conduct
an in-depth analysis of the workflow’s jobs. Fig. 8 illus-
trates the total number of jobs per workflow across four
implementations. In the case of the lung segmentation and
Galaxy Classification, as expected, the total number of jobs for
both tracked and untracked models is relatively insignificant
compared to the "FL one wf” and “’Fl sub wf” cases, where
there is a difference in the job count ("FL sub wf” is an FL
workflow structured as a nested or hierarchical workflow). This
variance likely contributes to the generation time taken by
the Pegasus-API to create the workflow. Concerning tracked
workflows, Fig. 9 offers a breakdown of total jobs for each
tracked workflow. In an untracked workflow, there are two
types of jobs: main jobs defined by the user and auxiliary
jobs added by the WMS (for example, data staging and
registration). In tracked workflows, in addition to these, we
have new data-tracking jobs.

Fig. 9 illustrates that the number of tracking jobs increases
with the number of main jobs. Notably, the ’lung segmenta-
tion’ features only 7 main jobs, resulting in the creation of
only 8 runs in MLflow. On the other hand, for FL one wf,
FL sub wf and Galaxy classification the need to create more
than 25 runs at once can lead to blocking during run creation.
Moreover, the number of tracking jobs typically doubles the
number of user abstract workflow jobs, owing to the addition
of data tracking jobs for input and output files, transformations
(code) versioning, combining distributed tracking metadata,
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Fig. 9: Tracked workflow jobs.

and copying metadata to the submit node to maintain version
consistency. Consequently, the greater the number of jobs, the
more data-tracking jobs are generated. Additionally, platforms
that block or queue requests can significantly impact workflow
generation time. Despite having identical FL configurations as
”FL one wf”, the "FL sub wf” exhibits more jobs for tracking
and main workflows. This disparity arises from the fact that
sub-workflows entail additional jobs, particularly for creating
workflows and submitting workflows for the subsequent FL
round. This increased dynamism enhances post-analysis ca-
pabilities, and data jobs and experiment runs are generated
only when necessary, contributing to a more efficient workflow
structure.

3) Workflow Execution: After analyzing the generation
time and the number of jobs, we explore their impact on the
execution time. Table III displays execution times for four
workflow implementations, comparing tracked and untracked
workflows. For the first two, the execution time remains under
150 seconds (2.5 minutes), but for the third, it exceeds 600
seconds (10 minutes) and for the last one, it exceeds 240 sec-
onds (4 minutes). This discrepancy is due to the sub-workflow
structure, where each round necessitates generating workflows
anew, incurring MLflow delays described in Section IV-BI.
Furthermore, repeated workflow generation and submission
increase job execution time, notably for data tracking for
transformations, workflow, metadata combining, and metadata
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copying. In the case of 3 rounds of FL, these jobs execute once
for ”FL one wf” but at least three times for ”"FL sub wf”, with
three workflows generated. Despite higher job volume, the
parallel approach described in Section III-B demonstrates that
the tracking approach does not significantly impact execution
time, with an acceptable gap between tracked and untracked
workflows compared to the benefits of tracking and versioning
offered by this approach.

C. Results analysis: application level

After analyzing the performance of the workflows from
generation to execution, this section provides an overview
of the organization of version files on different platforms,
including MLflow, Google Drive, and GitHub.

1) MlLflow: Experimets Tracking: 3 As illustrated in Fig.
11, each workflow corresponds to experimentation containing
multiple runs named as date_workflow_name, representing
instances of workflows. Each run contains child runs repre-
senting the jobs, with the same name as the workflow. By
default, each child run includes two elements, as shown in
Fig. 12: the first one, at the tag level, includes a direct link
to the remote storage (such as Buckets or Google Drive),
in addition to the workflow’s ID. This information maps the
experimentations, workflows, and results. To provide a detailed
view of jobs, metadata files describing the used files/data are
logged in the MLflow artifact, offering precise insight into
inputs and outputs for specific jobs.

2) Git: workflow transformations versioning: *

To manage the versioning of code used in workflows and
their metadata, the tracking jobs utilize two branches. Firstly,
an automatic branch is created by the tracking jobs for
each workflow (Fig. 13), containing only the transformations
(code) provided by the user. This tracking is added to the
metadata of the workflow instance, including the commit ID
for reproducibility if needed. If the branch does not exist,
it is created automatically. Secondly, the main branch (Fig.
14) is used to version the metadata file of all workflows.
This metadata can be pulled whenever necessary to track new
workflow instances and copied to the local submit node after
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Fig. 12: Linking MLflow with data versioning for consistency
and reproducibility in ML workflows.
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3) Data storage : data versioning: > To version the data
used in each workflow in these experiments, Google Drive
is utilized, employing a similar organizational structure as
MLflow. Each workflow has its specific folder, as shown in

SRemote Storage Google Drive
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Fig. 14: Main GitHub repository tracking branch.

Fig. 15. Within these directories, subdirectories are organized
by the ID of the workflows, with additional directories for
used files and workflows categorized as input/output/WF. This
organization facilitates easy access and management of data
associated with each workflow instance. This implementation
maintains the link between the data, experiment tracking
results, code used, and the workflows employed, ensuring
seamless connectivity across all elements. It simplifies the re-
production of data experiments by requiring only the workflow
metadata file, which can pull data, code, and workflows from
different distant storage locations. This approach guarantees
consistency by utilizing the same data, code, and workflows
across experiments.

Nom 1 Propriétaire
I federated-learning-example 0 upload-file-drive@dvcpr...
B federated-learning-example_sub 0 upload-file-drive@dvcpr...
B3 Galaxy-Classification-Workflow 0 upload-file-drive@dvcpr...
BB lung-instance-segmentation-wf 0 upload-file-drive@dvcpr...
B tracked_lung-instance-segmentation-wf 0 upload-file-drive@dvcpr...

Fig. 15: Data organisation in Google Drive’

V. CONCLUSION

In this work, we addressed the issue of tracking and
versioning in ML workflows. Despite the use of WMS, re-
producing experiments, especially in ML workflows, remains
challenging without considering the elements used at runtime,
such as code, data, and execution environment, for generating
consistent results.

We presented an approach to dynamically track data, code,
and workflows. We generate dedicated jobs for tracking and
versioning upon request. These jobs run in parallel with
the main job to create human-readable metadata. Workflow
metadata provides insights into the data, code, and executed
workflow during an experiment. Additionally, they are au-
tomatically versioned using Git, stored in Google Drive or
S3, and linked to experiment results via MLflow, identifiable
everywhere with the workflow instance ID.

Our approach demonstrated good results, showing that
workflow execution time is unaffected thanks to parallel job
execution. The workflow generation time depends on MLflow
API access policies, which vary depending on query manage-
ment policies and concurrency limits. Furthermore, the number
of jobs added to the original workflow is approximately twice
the number of jobs in the original workflow, plus three jobs

for code versioning, metadata combination, and copying to the
local submission node for Git-local synchronization.

Future work will focus on refining our tracking approach for
improved implementation efficiency and integrating Pegasus-
WMS with other tracking solutions. Additionally, we plan
to enhance a dedicated command for reproducing tracked
workflows. This work represents the beginning of significant
efforts in workflow management to streamline and automate
tracking, fostering transparency and ensuring reproducibility
in WMS.
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