®

Check for
updates

Formal Verification of Browser
Fingerprinting and Mitigation
with Inlined Reference Monitors

Nathan Joslin® @, Phu H. Phung®, and Luan Viet Nguyen

Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
{joslinnl,phu,lnguyenl}@udayton.edu

Abstract. Browser fingerprinting is a technique that identifies user
devices by exploiting differences in software and hardware configurations.
This technique is used in both benign applications, such as multi-factor
authentication, and malicious ones, like web tracking and the disclo-
sure of private information. Existing work has proposed various defense
mechanisms against malicious browser fingerprinting and evaluated them
using empirical experiments and analysis. While this approach demon-
strates the effectiveness of mitigation methods, it does not provide proof
of reliability. As browser fingerprinting research continues to advance
and gain popularity across the web, there is an increasing need to ver-
ify the safety of user data and the reliability of protection mechanisms.
In this paper, we develop formal models of both a browser fingerprint-
ing tool and a controller capable of enforcing fingerprinting mitigation
techniques. Specifically, we model an Inlined Reference Monitor for a can-
vas fingerprinter that intercepts JavaScript function calls and provides
runtime policy enforcement. Our framework is highly extensible, allow-
ing it to model a wide range of fingerprinting strategies and defenses.
Using Computation Tree Logic, we formally define safety and liveness
properties, demonstrating that our model successfully enforces key anti-
fingerprinting techniques, such as randomization and API blocking.

Keywords: Formal Verification - Formalization - Browser
Fingerprinting - Privacy - Security - Mitigation Techniques - UPPAAL

1 Introduction

In response to growing concerns over data privacy, many countries have begun
updating legislation to meet the requirements of the digital age, with the Euro-
pean Union’s General Data Protection Regulation (GDPR) and the ePrivacy
directive being particularly influential [6,38]. These regulations require web
pages to be more transparent on how and why they collect user data. The effect
of these regulations is frequently seen in the form of consent pop-up windows for
browser cookies [38]. The combination of increasing transparency and efforts put
forth by regulatory bodies has led many users to decline the usage of browser
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

L. Horn Iwaya et al. (Eds.): NordSec 2024, LNCS 15396, pp. 303-321, 2025.
https://doi.org/10.1007/978-3-031-79007-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-79007-2_16&domain=pdf
http://orcid.org/0009-0004-8630-3682
http://orcid.org/0000-0002-4674-1184
http://orcid.org/0000-0001-5516-2443
https://doi.org/10.1007/978-3-031-79007-2_16

304 N. Joslin et al.

cookies, which has driven cookie-based web trackers to explore alternatives, such
as browser fingerprinting. Recent studies estimated that over 25% of the top
1,000 websites and nearly 10% of the top 100,000 use browser fingerprinting
in some forms [17,35]. Browser fingerprinting presents significant challenges for
web users seeking greater control over their digital footprint [40]. As a stateless
mechanism, unlike cookies, browser fingerprints can be collected by web pages,
allowing for the tracking of user activity without their knowledge or consent
[20]. This method is particularly concerning because it even affects users who
may not be uniquely identifiable, leaving them vulnerable to attacks that exploit
software with known vulnerabilities [9]. Additionally, browser fingerprinting can
lead to the exposure of sensitive information [19], the re-spawning of cookies
after deletion [14], and even the identification of users through the linkage of
fingerprints to social media accounts [20]. When used for involuntary tracking
or unauthorized data collection, such practices clearly violate user privacy and
can be deemed malicious.

However, it is important to recognize that browser fingerprinting also serves
a protective role in certain contexts. For instance, it is increasingly used as an
additional layer in multi-factor authentication schemes, particularly on login
pages, where it helps safeguard users from fraud and phishing attacks [9,24,
35]. According to the United States Federal Trade Commission, this particular
application has become increasingly important in recent years as online fraud and
phishing attacks continue to grow, significantly contributing to the overall 14%
increase in fraud between 2022 and 2023 [12]. Fingerprinting’s utility in these
scenarios is evident, as it is commonly employed on login and sign-up pages
to enhance security and prevent unauthorized access [35]. Thus, while browser
fingerprinting poses significant risks to user privacy, it also plays a crucial role
in enhancing online security. The challenge lies in balancing these competing
interests—ensuring fingerprinting is used responsibly to protect users without
infringing on their privacy rights.

As a stateless tracking mechanism, it is challenging for average users not only
to protect themselves from malicious actors but also to allow fingerprinting from
trusted sources. Although some tools exist, e.g., fingerprint randomization in the
Brave browser [36], there is still much work needed to increase the transparency,
effectiveness, and, most importantly, reliability of anti-fingerprinting technolo-
gies. The first step to gaining control over browser fingerprinters is detection,
as demonstrated in many studies with different proposed methods [1,11,17,18].
The second step is the design and empirical evaluation of mitigation methods,
many of which have already been proven to be effective [2,7,20,25]. With exten-
sive research conducted on these initial two steps, particularly in recent years,
we are now well-positioned to shift our focus toward the next step: formalizing
browser fingerprinting and its mitigation methods. This step allows researchers
and developers alike to know the exact limitations and effectiveness of both fin-
gerprinters and the defenses against them. A few works have proposed formal
definitions of browser fingerprinting [4,21]. However, no prior work has built

Formal Browser Fingerprinting Mitigation 305

formal models or used formal methods to mathematically prove or verify the
reliability of fingerprinters or the defenses against them.

In this paper, we develop formal models for a fingerprinting system and a
corresponding defense mechanism using the formal modeling and verification
framework UPPAAL [27]. Our approach involves defining three components: a
fingerprinter, a server, and a controller, which together form a network of timed
automata operating in parallel during the verification process [3]. The controller
adopts the Inlined Reference Monitor (IRM) approach [10], which models the
interception of functions executed by the fingerprinter at runtime. The IRM
approach is particularly versatile, supporting the enforcement of several well-
established fingerprinting mitigation strategies, including randomization, which
introduces variability to fingerprinting data; normalization, which standardizes
outputs to reduce uniqueness; and API blocking, which prevents unauthorized
access to critical browser functions. We have designed our models to be exten-
sible, providing a foundational framework that can be easily adapted to model
more sophisticated fingerprinting techniques or advanced defense mechanisms.
This extensibility is crucial, as it allows for the integration of future develop-
ments in both fingerprinting tactics and corresponding countermeasures.

We evaluate our model’s effectiveness in enforcing these mitigation techniques
by abstracting them into formally defined safety and liveness properties using
Computation Tree Logic (CTL) [34]. Finally, through our formal evaluation using
tools like UPPAAL, we aim to demonstrate the practical viability of our app-
roach. Our results suggest that it is indeed possible to selectively allow or deny
fingerprinting by domain as well as through more fine-grained policy enforce-
ment depended on runtime factors; such as the methods used to fingerprint or
how often the fingerprint is collected. This capability is particularly significant
because it addresses an often overlooked aspect of existing anti-fingerprinting
research: the need to balance security with usability. By enabling fine-grained
control over which domains can perform fingerprinting, our model offers a more
nuanced and practical solution to the challenges of browser fingerprinting in real-
world applications. This work lays the groundwork for future research, which
could explore more sophisticated fingerprinting techniques, further enhance the
adaptability of the framework, and bridge the gap between theoretical mod-
els and practical implementation in web security. The models are available on
Github!.

2 Background and Related Work

2.1 Browser Fingerprinting

Modern web browsers provide significant information to the web pages they
render, such as their configurations or the software running them. Individually,
these pieces of information are often referred to as attributes and provide great
value to the web pages that use them. Attributes as simple as a device’s screen

! https://github.com /nathan-joslin/BrowserFingerprintingFormalization.

https://github.com/nathan-joslin/BrowserFingerprintingFormalization

306 N. Joslin et al.

size allow web pages to properly format themselves to provide the best user
experience for as many devices as possible. This aggregation of browser data
is known as browser fingerprinting and has been proven to be able to uniquely
identify browsers [9,20,24] and even track activity across the web [28,32,39,40].

Browser fingerprinters target attributes based on their potential entropy, or
information gain, in an effort to yield a collision-resistant identifier. A fingerprint
of one browser will differ from another as a result of variations in software and
hardware configuration, such as installed fonts or the user agent [9,24]. More
complex fingerprinters will introduce data-generating fingerprinting methods.
Instead of simply collecting attributes, these methods generate unique data by
running scripts? that exploit particular browser APIs. One of the most stud-
ied data-generating methods is canvas fingerprinting. Due to its prevalence in
research, proven effectiveness [24,29], active use in both public and commercial
libraries [37], and increased complexity compared to other methods, we choose
to model a canvas fingerprinter to evaluate the effectiveness of mitigation meth-
ods. An example of a canvas fingerprint and the results of a simple mitigation
method can be seen in Fig. 1.

omiqze i 4oz

Cwm fjordbank gly z, @ CwRMBibank olvpl z, @ e 7
y ety SR T et imcza7 s
Bmeges?

(a) Original (b) Poisoned

Fig.1. An example of a canvas fingerprint generated with amiunique.org [23]. The
second image was subject to a simple implementation of a mitigation method known
as canvas poisoning, which draws hashes of the current date and time randomly on the
element.

2.2 Browser Fingerprinting Mitigation Approaches

Related work has demonstrated a variety of anti-fingerprinting mechanisms,
which can be organized into three basic groups: normalization, randomization,
and blocking [7]. First, the normalization technique takes a “hide in the crowd”
approach. Also known as attribute standardizing, this method aims to reduce the
entropy of fingerprints by setting attributes to a value shared among a sufficiently
sized user base [7]. It is important to note that even minor deviations from the
normalized user base can make users stand out more than they typically would
without the technique. Not only has this method been shown to be effective
[2,7], but it is also actively used by the Tor Browser [7,15]. The second well-
known mitigation method is randomization. Also known as attribute varying,
this method aims to create a “moving target” [7]. This technique will regularly
change browser attributes or introduce noise to those that are generated in order

2 Data generating fingerprinting scripts are often referred to as challenges.

Formal Browser Fingerprinting Mitigation 307

to change the collected fingerprint. Random alterations to the data each time
a fingerprint is collected make it increasingly difficult to track a user over time
or across the web. Related works have shown that randomization is one of the
most effective methods [24,26]. Finally, we have blocking techniques. Also known
as interaction blocking, these methods block the execution of a particular API
or interactions with particular third-party domains [7]. While some techniques
block entire APIs, such as Tor blocking the canvas API [15], other techniques
use partial or temporal API blocking [17]. This technique can be particularly
aggressive, leading to frequent major and minor website breakage [17].

Many works have demonstrated the effectiveness of normalization, random-
ization, and blocking methods through empirical evaluation. While the contri-
butions of these works are extremely valuable, they are limited in their ability
to evaluate the reliability of these mitigation methods. As far as we know, few
works have used formal methods in the domain of browser fingerprinting. In
particular, two works have proposed formal definitions for browser fingerprint-
ers with respect to their properties, such as uniqueness, robustness, or stability
[4,21]. However, no work has used formal modeling and verification techniques
to mathematically validate that defenses against fingerprinters behave as their
empirical analyses show in all possible scenarios. The purpose of this work is to
complement the aforementioned related works that perform empirical analyses
by applying formal methods to the same mitigation techniques they propose.

2.3 Inlined Reference Monitors

Inlined Reference Monitors (IRMs) are a robust security mechanism that embeds
runtime policy enforcement directly into applications, ensuring that execution
adheres to predefined security policies [10]. By integrating policy checks within
the code, IRMs can effectively regulate and modify behavior during runtime,
making them particularly suitable for controlling JavaScript execution in web
environments [31]. They operate by intercepting targeted JavaScript functions
and enforcing actions as dictated by the specified security policies [16]. The ver-
satility of IRMs extends beyond simple function interception. In more complex
scenarios, it is necessary to monitor not only the initial function call but also
the behavior of objects returned by these functions. This layered monitoring
capability allows IRMs to adapt to dynamic and evolving threats by provid-
ing fine-grained control over both the inputs and outputs of function calls. The
context-aware nature of IRMs—gained through runtime interception enables the
enforcement of nuanced, fine-grained security policies that can account for the
specific parameters and conditions of each function call [13].

These capabilities make IRMs highly effective in implementing well-known
browser fingerprinting mitigation strategies such as normalization, randomiza-
tion, or API blocking. In the cases of normalization or randomization, such a
controller is able to modify the output of the function it intercepts, thereby
standardizing or adding noise to the output value. In cases of API blocking, the
controller is able to return an empty or nil value to prohibit the caller from
further working with the output value, perhaps even throwing an error. Their

308 N. Joslin et al.

ability to enforce all three mitigation methods highlights their suitability as a
core component of our proposed controller model.

3 System Modeling

3.1 UPPAAL and Timed Automata

UPPAAL is a tool for automatically verifying system requirements specified as
temporal logic, such as CTL. It provides a framework for modeling, simulating,
and verifying real-time systems, where the correctness of the system is essential
for ensuring reliability and safety [8,27]. The system in question is represented
as a network of finite-state machines extended with real-valued clocks, a formal-
ism known as timed automata, which allows for the modeling of systems where
timing constraints are critical [5,27]. Each component of a timed automaton
is characterized by a set of locations (representing states), an initial location,
location invariants (conditions that must hold as long as the system remains in
a particular location), a set of clocks (real-valued variables that progress uni-
formly), a set of actions (events that trigger transitions), and edges (transitions)
between locations, each labeled with actions. These elements collectively define
the dynamic behavior of the system, including how the system evolves over time
and how it responds to various events.

In UPPAAL, the model is composed of one or more timed automata running
in parallel, synchronized through channels or shared variables. This parallel com-
position enables the modeling of complex systems, where multiple components
operate concurrently while adhering to strict timing constraints. The global state
of the system is determined by the combined states of all automata and the val-
ues of global variables, with transitions occurring according to the rules defined
by the automata and the constraints imposed by the clocks. In this work, we
leverage UPPAAL as a framework for modeling and verifying a browser fin-
gerprinting system along with its associated safety and liveness requirements,
expressed as CTL formulas. In the following sections, we will provide a detailed
presentation of the proposed formal model using UPPAAL.

3.2 System Overview

In this section, we provide a comprehensive overview of our system, which effec-
tively models a fingerprinting attack and an Inlined Reference Monitor (IRM)
enforcing defense mechanisms. The defined system has three main components: a
Fingerprinter?, a Controller, and a Server. Components communicate with
one another using designated synchronization channels over state transitions.
To model the Controller as an IRM, the Fingerprinter component is instru-
mented with a channel synchronization and corresponding state invariant for
each monitored function while the Controller listens to those same channels in
parallel. These channels are optionally instrumented with corresponding shared

3 System components are emphasized in bold.

Formal Browser Fingerprinting Mitigation 309

Client . Remote
))
< chan!
____________________ N FP_0

Controller

set: invariant

—

Fig.2. Overview of communication between components. Unique synchronization
channels, with corresponding state invariants, are defined for all functions monitored
by the Controller for each Fingerprinter, with additional channels for submitting
data to the Server. As such, for any system configuration, the total number of chan-
nels is defined by f(z,y) = xy + y; where z is the number of functions monitored by
the Controller and y is the number of Fingerprinter components.

variables that represent the context around the function call, such as parame-
ters. With this approach, the total number of active channels is determined by
the abstracted functions the Controller monitors as well as how many Finger-
printer components are in the declared system. By defining a unique set of chan-
nels for each Fingerprinter, the system is able to model an IRM that’s capable
of enforcing policies on a per-component basis. Likewise, we define unique loca-
tion invariants for the Fingerprinter to complement the unique set of channels.
This completes the instrumentation of the Fingerprinter to support the IRM
approach. As such, components may model a specific domain running a script
or actions on a particular JavaScript object. This aspect of the design is crucial
in giving the template the flexibility to support a wide variety of fingerprinting
schemes as well as defense mechanisms. More information on how each compo-
nent behaves during synchronizations on state transitions is described in detail
in subsequent sections. The full implementation of our models is available on
Github?.

4 https://github.com/nathan-joslin/BrowserFingerprintingFormalization.

https://github.com/nathan-joslin/BrowserFingerprintingFormalization

310 N. Joslin et al.

3.3 Modeling the Fingerprinter

The Fingerprinter component is an abstraction of a fingerprinting technique
created through static analysis of multiple scripts to identify similarities in
API usage. Due to the vast scope of browser fingerprinting, we focus on one
of the more complex techniques - dynamic data generation. In particular, we
abstract a well-known method that exploits the widely available canvas API
[20,22,29]. Although we only provide a model of a canvas fingerprinter, anal-
ogous approaches may be used for other data-generating methods, such as
AudioContext fingerprinting [33], or even more trivial methods that simply
aggregate data rather than generate it [9,20,40]. By modeling one of the more
complex methods while considering extensibility, our goal is to design a system
that can serve as a template for modeling entire fingerprinting schemes with
the ability to evaluate a broad range of fingerprinting defenses. At a minimum,
the system has a single Fingerprinter component; however, it easily scales to
handle multiple ones.

We analyzed two implementations of canvas fingerprinters to base our model
on, one from a real-world application and the other from related research. The
first is from the widely used and open-sourced browser fingerprinting library
fingerprintjs2 [37], which provides a wide variety of fingerprinting functions
allowing developers to easily integrate browser fingerprinting methods into the
functionality of their websites. The second is from related work done by Laper-
drix et al. [22,24], who push the limits of what canvas fingerprinting is capable
of through rigorous analysis and experimentation.

The Fingerprinter component, depicted in Fig. 3b, models the main steps
taken by canvas fingerprinting algorithms. The steps include creating a canvas
element, getting the canvas context, drawing on the context, collecting the fin-
gerprint value, and finally sending the value to a database. Within our model,
these main steps are represented by the following locations respectively: Create®,
Context, FillText, Collect, and Send. As the automata is an abstraction of a run-
ning script, it follows the edges leading into each state model function execution,
with the states themselves modeling the successful completion of the function
call. Most of the modeled functions are only executed once, with the exception of
drawing on the canvas context, which is the expected behavior of a well-written
script. The remaining locations and transitions are added instrumentation to
allow a wider variety of simulations that may require singular or repetitive fin-
gerprinting. This particular mechanism is useful for evaluating the behavior of
fingerprinting defenses over time; such as mitigation through randomization,
which aims to ensure the fingerprint value is different each run. As mentioned
previously, the channel synchronizations on state transitions are added instru-
mentation to model the Controller as an IRM; which is discussed further in
the next section. Finally, the majority of locations of the Fingerprinter include
timing constraints to support the verification of liveness properties.

5 Locations of system components are emphasized in italics.

Formal Browser Fingerprinting Mitigation 311

elements[id].create)(ﬁ createElem[id]!
----------------- —>

elements[id].conteﬁ getCtx[id]!
elements[id]fill | Fingerprinter fillText[id]!
""""""""" > (id)
elements[id].collec; toDataURL][id]!
_________________ —)
postDatalid]!
—

(a) Fingerprinter Component

createElem[id]!
elemType[id] = canvasElem
Start_FP
p lelements[id].create
8& (t[id] < 1)

Periodic createElem[id]!
:s[z§z']cElene1(1d), getCtx[id] elemType[id] = canvasElem
id] =

Send

Done !Periodic
O= () (t[id] < (6+fRepeats))

‘QD Create
elements[id].create

8& !elements[id].context
8& (t[id] < 2)
postDatal[id]!

fillText[id] getCtx[id]!

Context

:) elements[id].context
8& lelements[id].fill
8& (t[id] < 3)

Collect
elements[id].collect

8& (t[id] < (5+fRepeats))

fCount < fRepeats
FillText[id]! fillText[id]!

£Count++ fCount = 1
FillText
-

fCount > fRepeats elements[id].fill
toDataURL[id]! 8& !elements[id].collect
8& (t[id] < (4+fRepeats))

(b) Fingerprinter Automata

Fig. 3. The Fingerprinter models a running canvas fingerprinting script. The main
transitions, see right and bottom, synchronize with the Controller via designated
channels for each function. The invariants on transition destination states are man-
aged by the Controller, which allows or denies particular actions based on the policy
configuration. The remaining transitions, see left and top, post the data to the server
and either terminate or reset the component.

312 N. Joslin et al.

createElemid]? elementsfid].create
getCix{idl? elements{id].context
fillText[id]? Controller elements{id] ill

toDataURL{id]? elements{id].collect

(a) Controller Component

createElem[id]?
f_createElem(id, elemTypel[id])

Run_Controller

getCtx[id]?

1 ?
toDataURL[id]? f_getCtx(id)

f_toDataURL(id)

fillText[id]?
f_fillText(id)

(b) Controller Automata

Fig. 4. The Controller models a running Inlined Reference Monitor actively inter-
cepting the function calls it observes. Each transition is synchronized with a sending
Fingerprinter, with the update functions performing the policy evaluation. Internally,
the policy evaluation will set the appropriate sending Fingerprinter state invariant.

3.4 Modeling the Controller

The Controller abstracts an IRM running in a client’s browser. The system
always has a single Controller as we aim to model the fingerprinting of one
client. We find this to be sufficient as the purpose of this work is to formally

Formal Browser Fingerprinting Mitigation 313

verify the defense mechanisms themselves, discussed in Sect. 2.2, not the effects
they have on an entire fingerprinting scheme. Such an endeavor may require
modeling hundreds of thousands, if not millions, of clients at the same time;
which current formal verification tools are not equipped to handle. We refer
readers to empirical analyses in related work for more information [7,25,26].
Furthermore, it follows that the behavior and capabilities of the same controller
on different clients would be identical.

As previously mentioned, the Fingerprinter is instrumented with channel
synchronizations and state invariants for each monitored function. This allows
us to accurately model the behavior of an active IRM. The Controller listens
to this set of channels, and upon receiving a channel synchronization, it eval-
uates some arbitrary set of policies that determine if the monitored function
is allowed to be called. During this evaluation time, the Controller can take
a variety of actions to support more fine-gained approaches other than simply
allowing or blocking, such as calling the original function and then modifying
the data returned by it before returning to the Fingerprinter. Ultimately, the
Controller appropriately sets the Fingerprinter’s corresponding state invari-
ant, either allowing it to continue to the next state or preventing it. We note that
based on the purpose of the Controller to immediately react to actions taken by
the Fingerprinters, as reflected by the synchronization channels and invariant
controls, it follows that we do not instrument it with timing constraints. Finally,
Table 1 displays the Controller Transition Update Functions. These functions are
invoked when channel synchronizations are initiated by the Fingerprinter and
received by the Controller. The update functions evaluate the relevant policies
and set the appropriate invariants for the sending Fingerprinter.

Table 1. Controller Transition Update Functions. Update functions are called
when the channel synchronizations are sent by a Fingerprinter and received by the
Controller. The related policies are evaluated by the update functions, which ulti-
mately set the invariants for the sending Fingerprinter appropriately.

Function Meaning Policies Invariant
f_createElem |Create a DOM element p-createElement create
f_getCtx Get canvas’ drawing context p-getCtx context
f_fillText Generate data by drawing on canvas context|p_fillText fill
f_toDataURL|Collect fingerprint value p-poison p_toDataURL|collect

314 N. Joslin et al.

postData[id]?

(a) Server Component

postData[id]?

Run_Server enqueuve(id, elements[id].value)

(b) Server Automata

Fig. 5. The Server models a remote server receiving fingerprint values. Upon receiving
a channel synchronization from a Fingerprinter, the Server will read and store the
fingerprint data from a shared variable.

3.5 Modeling the Server

The Server abstracts a remote server and database as a singular component.
Although separate server and database components would be a more accurate
representation of a real-world system, we choose to combine the two as an eval-
uation of the remote subsystems is not within the scope of this paper. Similarly,
we do not include support for Server responses to the Fingerprinter. In doing
so, we still fulfill the purpose of this component, instrumenting our model to
enable the evaluation of fingerprint attributes’ values over time while reducing
the state space of our model.

The Server component, depicted in Fig. 5, models the storing of fingerprint
data in a remote location. The Server blocks until it receives a channel synchro-
nization from any Fingerprinter, subsequently storing the Fingerprinter’s
attribute value in an underlying database. To further reduce state space, the
underlying database is equipped with a configurable capacity. Upon submission
of fingerprint data when at capacity the Server will remove the oldest value
before storing the new one.

4 Verification Regarding Unsafe Regions

In this section, we discuss and evaluate several requirements that a client may
have when looking to defend against browser fingerprinting attacks. We will first
discuss these requirements informally, then translate them into formal safety
properties, and finally utilize UPPAAL’s simulation and verification tools to
evaluate our model. It is important to note that we have chosen the following
system setup and configuration to illustrate the capabilities of our model; how-
ever, it can easily be extended to handle more components or more complex
requirements.

Formal Browser Fingerprinting Mitigation 315

Table 2. Informal System Requirements. The evaluated system’s policy configu-
ration expressed as a set of informal requirements.

Component|Requirement Mitigation Method
FP.0 Allow fingerprints to be freely collected, without intervention.None

FP_1 Allow fingerprints to be collected, but poison its data. Randomization
FP_2 Do not allow fingerprints to be collected whatsoever. API Blocking

4.1 Informal Requirements and Policy Configuration

The following requirements, shown in Table2, aim to evaluate the capability
of our model to enforce well-known browser fingerprinting mitigation methods,
in particular randomization and API blocking. Note that although we do not
model the normalization technique, the enforcement mechanism itself remains
the same as randomization; however, instead of adding noise to the attribute
value, it would simply be set to a standard one. It follows that an evaluation
of our model’s capability to enforce the randomization method transfers over to
normalization. Note that we do not evaluate the necessary amount of noise to add
when randomizing values or the proper value to spoof when normalizing. Such
an endeavor is not possible with current formal verification tools due to the state
space expansion that results from modeling a sufficiently sized user base. We refer
the reader to empirical analyses from related works for more information [9,24,
29,40]. Furthermore, we evaluate our models ability to simultaneously mitigate
attacks from some components while allowing it from others.

In Table2, the first requirement does not mitigate at all, instead allowing
the fingerprinting to occur as if the Controller was not there. This serves
to demonstrate the system’s ability to permit fingerprinters from one domain
while simultaneously preventing it from others. The second requirement uses
a randomization mitigation approach, which takes the form of adding noise to
the fingerprint attribute data each time it is collected. As such the fingerprint
attribute values between two different collection attempts should never be the
same; or at minimum distinct enough to thwart a tracking system. The final
requirement uses a blocking approach, which completely prevents the data col-
lection from happening. The formal safety and liveness properties that verify
these requirements are defined in Table 4, which will be introduced later.

4.2 Verifying Formal Safety and Liveness Properties

To formally evaluate all three requirements at once, we first directly translate
the requirements into a well-defined policy configuration, which is set up to
control each Fingerprinter in a separate fashion. The policy configuration is
comprised of a set of lists, with individual lists configured as an allowlist or
blocklist. We chose this approach to support extensions to our model that aim
to evaluate more complex requirements. The resulting configuration, depicted in
Table 3, instructs the controller to allow fingerprinting from FP_0, randomize
the fingerprint of FP_1, and completely block the collection of data by FP_2. In

316 N. Joslin et al.

Table 3. Policy Configuration. The system’s policy configuration adheres to the
requirements in Table 2. Policies are implemented as allowlists or blocklists, and are
evaluated by the Controller during function call interception. Table 1 outlines which
policies are evaluated by which function calls.

Policy Type |[FPOFP_1|FP_2

p-createElem |blocklist|false |false |false

p-getCtx blocklist false [false |false
p-fillText blocklist|false |false [false
p-toDataURL blocklist false |false |true

p-poison allowlist |true |false |false

this configuration, all policies are allowed by default except for p_poison, which
is blocked by default, reflecting the outlined requirements.

Now that the system is setup to enforce our defined requirements, we may
begin our formal evaluation. We will perform our verification through the use of
safety and liveness properties expressed using Computation Tree Logic (CTL),
which are depicted in in Table4. The first requirement states that component
FP_0 should be allowed to fingerprint the client. We construct safety property
A that ensures the fingerprint attribute value of FP_0 is never poisoned and
is able to be collected. The second requirement states that component FP_1
should be allowed to fingerprint the client but the fingerprint attribute value
should be poisoned. We construct safety property B that ensures the fingerprint
attribute value of FP_1 is always poisoned and is able to be collected. Finally,
the third requirement states that component FP_2 should not be allowed to
collect the client’s fingerprint data. We construct safety properties C' and D that
ensure component FP_2 is never able to collect the fingerprint attribute value;
two methods of expressing the same property. By using UPPAAL’s verifier, we
confirm that our model satisfies all four of the aforementioned safety properties.

We then extend our safety evaluation with a set of reachability and liveness
properties. Properties F, G, and H further verify the three requirements respec-
tively by ensuring the components are able to reach the locations their intended
to. It follows that property F' complements A, G complements B, while property
H complements properties C' and D. As expected, property H is not satisfied
since FP_2 is blocked from collecting the fingerprint value, i.e. it cannot reach
the Collect location. Finally, the liveness properties I and J ensure random-
ization is correctly applied. As expected, property J is not satisfied due to the
enforcement of randomization.

Note that as we utilize UPPAAL to verify a network of timed automata, our
approach inherits the verification complexity of UPPAAL when checking the sys-
tem against Computation Tree Logic (CTL) requirements. The time complexity
of UPPAAL’s verification algorithm is exponential in the number of clocks and
variables within the timed automata network, as it relies on symbolic model
checking techniques [8,27].

Formal Browser Fingerprinting Mitigation 317

Table 4. Safety properties (A-F) and liveness properties (F-J) that reflect the require-
ments outlined in Table 2. These properties are used to evaluate our system’s ability to
reliably enforce well-known fingerprinting mitigation methods, namely randomization
and API blocking. The Sat. column indicates whether or not a property is satisfied.
By design, some properties should not be satisfied to validate the expected effects of
mitigation methods.

Prop.|Sat. Format |Value
A true|CTL |A[] FP.0.Collect imply (elements[0].value > 0)

Meaning|For all reachable states, component FP_0 being in the location Collect
implies that its attribute value is not poisoned.

B true|CTL |A[] FP_1.Collect imply (elements[1].value < 0)

Meaning|For all reachable states, component FP_1 being in the location Collect
implies that its attribute value is poisoned.

C true/CTL A[] FP_2.Collect imply evalPolicy(p_toDataURL, 2)

Meaning|For all reachable states, component FP_2 being in the location Collect
implies the policy configuration allows it, i.e. the attribute data is
allowed to be collected.

D true|CTL |A[] !FP_2.Collect
MeaningFor all reachable states, component FP_2 is never in the Collect
location.
E |true CTL A[] Server.db[2].len ==
Meaning|For all reachable states, the server does not store any values for FP_2.
F true CTL E<> FP_0.Collect
Meaning|/The Collect location is reachable in the FP_0 component.
G |true|CTL E<> FP_1.Collect
Meaning|/The Collect location is reachable in the FP_1 component.
H false|CTL E<> FP_2.Collect
Meaning/The Collect location is not reachable in the FP_2 component.
1 true|CTL A<> ((Sever.db[0].len > 0)
&& (Server.db[0] .entries[0]
== Server.db[0] .entries[1]) && (Server.db[0].entries[1] ==
Server.db[0] .entries([2]))
Meaning|Eventually all database entries for FP_0 are the same.
J false CTL A<> ((Server.db[1].len > 0)
&& (Server.db[1] .entries[0]
== Server.db[1] .entries[1]) && (Server.db[1].entries[1] ==
Server.db[1] .entries[2]))
Meaning Eventually all database entries for FP_1 are the same.

5 Conclusion and Future Work

In this paper, we modeled a canvas-based browser fingerprinter and an Inlined
Reference Monitor (IRM) using timed automata. To evaluate our models, we
first defined a set of requirements reflecting well-known fingerprinting mitiga-

318 N. Joslin et al.

tion methods. We then used Computation Tree Logic (CTL) to formally express
these requirements as well-defined liveness and safety properties. Using the for-
mal verification tool UPPAAL, we assessed our model’s behavior against these
properties. Our evaluation confirmed that the model effectively enforces sev-
eral widely recognized mitigation strategies for browser fingerprinting, includ-
ing randomization, normalization, and API blocking. This result demonstrates
that policy enforcement through an IRM is a robust and reliable method for
defending against browser fingerprinting attacks. Furthermore, we showed that
fine-grained policies can selectively allow fingerprinting from trusted domains
while preventing it from malicious ones.

In real-world applications, browser fingerprints are typically constructed
using multiple attributes; however, our focus was exclusively on a single canvas-
based attribute. Despite the inherent complexity of data-generating fingerprint-
ers, we successfully designed a foundational model that also considers similar,
more straightforward fingerprinting techniques. This allowed us to create and
verify a flexible framework that is readily extensible to model more compre-
hensive fingerprinting methods, a task we have reserved for future work. Fur-
thermore, as part of future work, we plan to develop a comprehensive formal
model of a real-world browser fingerprinter which includes a variety of fingerprint
attributes. Since a comprehensive formal model is beyond the scope of the current
study, we also do not provide an attack model at this stage. Such an endeavor
should address key questions regarding the minimal mitigation steps necessary
to prevent fingerprinting attacks. For instance, it is crucial to determine how
many fingerprint attributes need to be randomized to effectively protect the
user, as well as to ensure that sensitive information does not leak to untrusted
domains through unintended information flows, as explored in [30]. Finally, we
see significant potential in automating the translation of a verified system into
practical applications. Future research could involve developing code-generation
scripts that produce JavaScript for web applications, thereby bridging the gap
between anti-fingerprinting research and its real-world implementation.

Acknowledgements. This work received partial support from the Ohio Department
of Higher Education (ODHE) through the Strategic Ohio Council for Higher Edu-
cation (SOCHE) and Ohio Cyber Range Institute (OCRI) sub-awards and from the
National Science Foundation (NSF) grant NSF-CRII-2245853. We would like to extend
our appreciation to the anonymous reviewers for their valuable feedback.

Disclosure of Interests. The author have no competing interests to declare that are
relevant to the content of this article.

Formal Browser Fingerprinting Mitigation 319

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Giirses, S., Piessens, F., Preneel,
B.: Fpdetective: dusting the web for fingerprinters. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS 2013,
pp. 1129-1140. Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2508859.2516674

Ajay, V.L., Guptha, A.M.: A defense against javascript object-based fingerprint-
ing and passive fingerprinting. In: 2022 International Conference on Computing,
Communication, Security and Intelligent Systems (IC3SIS), pp. 1-6. IEEE (2022)
Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183-235 (1994)

Andriamilanto, N., Allard, T., Le Guelvouit, G., Garel, A.: A large-scale empirical
analysis of browser fingerprints properties for web authentication. ACM Trans.
Web (TWEB) 16(1), 1-62 (2021)

Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. Formal Methods
Des. Real-Time Syst. 200-236 (2004)

Commission, E.: Principles of the gdpr. https://commission.curopa.eu/law/law-
topic/data-protection/reform/rules-business-and-organisations/principles-gdpr
(2024), Accessed 29 Sep 2024

Datta, A., Lu, J., Tschantz, M.C.: Evaluating anti-fingerprinting privacy enhancing
technologies. In: The World Wide Web Conference, pp. 351-362 (2019)

David, A., Du, D., Larsen, K.G., Legay, A., Nyman, U., Poulsen, D.B.: Uppaal
SMC tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397-415 (2015)
Eckersley, P.: How unique is your web browser? In: International Symposium on
Privacy Enhancing Technologies Symposium, pp. 1-18. Springer (2010)
Erlingsson, U.: The inlined reference monitor approach to security policy enforce-
ment. Ph.D. thesis, Cornell University, USA (2004), aAI3114521

Fang, Y., Huang, C., Zeng, M., Zhao, Z., Huang, C.: Jstrong: malicious javascript
detection based on code semantic representation and graph neural network. Com-
put. Secur. 118, 102715 (2022)

Federal trade commission: as nationwide fraud losses top $10 billion in 2023, FTC
steps up efforts to protect the public. https://www.ftc.gov/news-events/news/
press-releases/2024/02 /nationwide- fraud-losses-top-10-billion-2023-ftc-steps-
efforts-protect-public, February 2024, Accessed 29 Sep 2024

Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, pp. 1-12. ACM (2006)

Fouad, I., Santos, C., Legout, A., Bielova, N.: Did I delete my cookies? cookies
respawning with browser fingerprinting. CoRR abs/2105.04381 (2021), https://
arxiv.org/abs/2105.04381

Gk: browser fingerprinting: an introduction and the challenges ahead: Tor project,
September 2019, https://blog.torproject.org/browser-fingerprinting-introduction-
and-challenges-ahead/

Hiremath, P.N., Armentrout, J., Vu, S., Nguyen, T.N., Minh, Q.T., Phung, P.H.:
Mywebguard: toward a user-oriented tool for security and privacy protection on
the web. In: Dang, T.K., Kiing, J., Takizawa, M., Bui, S.H. (eds.) Future Data and
Security Engineering, pp. 506-525. Springer, Cham (2019)

Igbal, U., Englehardt, S., Shafiq, Z.: Fingerprinting the fingerprinters: learning to
detect browser fingerprinting behaviors. In: 2021 IEEE Symposium on Security
and Privacy (SP), pp. 1143-1161. IEEE (2021)

https://doi.org/10.1145/2508859.2516674
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr
https://www.ftc.gov/news-events/news/press-releases/2024/02/nationwide-fraud-losses-top-10-billion-2023-ftc-steps-efforts-protect-public
https://www.ftc.gov/news-events/news/press-releases/2024/02/nationwide-fraud-losses-top-10-billion-2023-ftc-steps-efforts-protect-public
https://www.ftc.gov/news-events/news/press-releases/2024/02/nationwide-fraud-losses-top-10-billion-2023-ftc-steps-efforts-protect-public
https://arxiv.org/abs/2105.04381
https://arxiv.org/abs/2105.04381
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead/
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead/

320

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

N. Joslin et al.

Igbal, U., Snyder, P., Zhu, S., Livshits, B., Qian, Z., Shafiq, Z.: Adgraph: a graph-
based approach to ad and tracker blocking. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 763-776. IEEE (2020)

Karami, S., Ilia, P., Solomos, K., Polakis, J.: Carnus: exploring the privacy threats
of browser extension fingerprinting. In: Proceedings of the 27th Network and Dis-
tributed System Security Symposium (NDSS) (2020)

Khademi, A.F., Zulkernine, M., Weldemariam, K.: An empirical evaluation of web-
based fingerprinting. IEEE Softw. 32(4), 46-52 (2015)

Lanze, F., Panchenko, A., Engel, T.: A formalization of fingerprinting techniques.
In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 818-825. IEEE (2015)
Laperdrix, P.: Morellian analysis for browsers (2019). https://github.com/
plaperdr/morellian-canvas

Laperdrix, P.: Learn how identifiable you are on the internet (2024). https://
amiunique.org/

Laperdrix, P., Avoine, G., Baudry, B., Nikiforakis, N.: Morellian analysis for
browsers: Making web authentication stronger with canvas fingerprinting. In: Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 43—66. Springer (2019)

Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: a survey.
ACM Trans. Web 14(2) (2020). https://doi.org/10.1145/3386040

Laperdrix, P., Rudametkin, W., Baudry, B.: Mitigating browser fingerprint track-
ing: multi-level reconfiguration and diversification. In: 2015 IEEE/ACM 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pp. 98-108. IEEE (2015)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. In: International Journal
on Software Tools for Technology Transfer, vol. 1, pp. 134-152. Springer (1997)
Li, S., Cao, Y.: Who touched my browser fingerprint? a large-scale measurement
study and classification of fingerprint dynamics. In: Proceedings of the ACM Inter-
net Measurement Conference, pp. 370-385 (2020)

Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in html5. In: Pro-
ceedings of W2SP, vol. 2012 (2012)

Nguyen, L.V., Mohan, G., Weimer, J., Sokolsky, O., Lee, 1., Alur, R.: Detecting
security leaks in hybrid systems with information flow analysis. In: Proceedings of
the 17th ACM-IEEE International Conference on Formal Methods and Models for
System Design, pp. 1-11 (2019)

Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, pp. 47-60 (2009)

Pugliese, G., Riess, C., Gassmann, F., Benenson, Z.: Long-term observation on
browser fingerprinting: users’ trackability and perspective. Proc. Priv. Enhancing
Technol. 2020(2), 558-577 (2020)

Queiroz, J.S., Feitosa, E.L.: A web browser fingerprinting method based on the
web audio API. Comput. J. 62(8), 1106-1120 (2019)

Reynolds, M.: An axiomatization of full computation tree logic. J. Symbol. Logic
66(3), 1011-1057 (2001)

Senol, A., Ukani, A., Cutler, D., Bilogrevic, I.: The double edged sword: identifying
authentication pages and their fingerprinting behavior. In: The Web Conference
(WWW), vol. 2024 (2024)

Team, B.P.: Fingerprint randomization, June 2020. https://brave.com/privacy-
updates/3-fingerprint-randomization/

https://github.com/plaperdr/morellian-canvas
https://github.com/plaperdr/morellian-canvas
https://amiunique.org/
https://amiunique.org/
https://doi.org/10.1145/3386040
https://brave.com/privacy-updates/3-fingerprint-randomization/
https://brave.com/privacy-updates/3-fingerprint-randomization/

37.

38.

39.

40.

Formal Browser Fingerprinting Mitigation 321

Team, F.: Fingerprintjs. https://github.com/fingerprintjs/fingerprintjs (2024).
Accessed 29 Sep 2024

UNION, E.: Directive 2009/136/ec of the European parliament and of the council.
Official J. Eur. Union 337, 11 (2009)

Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: Fp-stalker: tracking
browser fingerprint evolutions. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP), pp. 728-741. IEEE (2018)

Zhang, D., Zhang, J., Bu, Y., Chen, B., Sun, C., Wang, T., et al.: A survey of
browser fingerprint research and application. Wirel. Commun. Mob. Comput. 2022
(2022)

https://github.com/fingerprintjs/fingerprintjs

	Formal Verification of Browser Fingerprinting and Mitigation with Inlined Reference Monitors
	1 Introduction
	2 Background and Related Work
	2.1 Browser Fingerprinting
	2.2 Browser Fingerprinting Mitigation Approaches
	2.3 Inlined Reference Monitors

	3 System Modeling
	3.1 UPPAAL and Timed Automata
	3.2 System Overview
	3.3 Modeling the Fingerprinter
	3.4 Modeling the Controller
	3.5 Modeling the Server

	4 Verification Regarding Unsafe Regions
	4.1 Informal Requirements and Policy Configuration
	4.2 Verifying Formal Safety and Liveness Properties

	5 Conclusion and Future Work
	References

