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Abstract. Traditional training algorithms for Gumbel Softmax

Variational Autoencoders (GS-VAEs) typically rely on an anneal-

ing scheme that gradually reduces the Softmax temperature τ ac-

cording to a given function. This approach can lead to suboptimal

results. To improve the performance, we propose a parallel frame-

work for GS-VAEs, which embraces dual latent layers and multi-

ple sub-models with diverse temperature strategies. Instead of rely-

ing on a fixed function for adjusting τ , our training algorithm uses

loss difference as performance feedback to dynamically update each

sub-model’s temperature τ , which is inspired by the need to balance

exploration and exploitation in learning. By combining diversity in

temperature strategies with the performance-based tuning method,

our design helps prevent sub-models from becoming trapped in lo-

cal optima and finds the GS-VAE model that best fits the given

dataset. In experiments using four classic image datasets, our model

significantly surpasses a standard GS-VAE that employs a tempera-

ture annealing scheme across multiple tasks, including data recon-

struction, generalization capabilities, anomaly detection, and adver-

sarial robustness. Our implementation is publicly available at https:

//github.com/wxzg7045/Gumbel-Softmax-VAE-2024/tree/main.

1 Introduction

Variational Autoencoders (VAEs) [25] have recently achieved signif-

icant advancements in deep learning. They learn to transform input

data via an encoder into its latent space, sample latent variables from

this space, and then generate new, similar data via a decoder. This

training is compelling as it does not require any label from input data,

which belongs to self-supervised learning. VAEs have been success-

fully used in many applications [17, 20], including dimensionality

reduction, data generation for virtual reality and artistic creation, im-

age denoising, and anomaly detection in cyber-security.

In a standard VAE, the latent space is continuous (e.g., following

a Gaussian distribution). However, for discrete data such as words in

a sentence or pixels in an image, a discrete latent space is more ap-

propriate, often described by a categorical distribution. The Gumbel-

Softmax (GS) distribution [21] has been introduced to handle dis-

crete latent variables, which is a differentiable approximation of the

categorical distribution. Gumbel Softmax VAEs (GS-VAEs) use the

GS distribution for sampling latent variables, allowing gradients to
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flow through the sampling process, which is crucial for training mod-

els using backpropagation.

Existing theoretical results [30] show that as the Softmax temper-

ature τ of the GS distribution approaches zero, the GS distribution

converges to the true categorical distribution that is learned by the

VAE. In alignment with these, prior work [21, 18] suggests a temper-

ature annealing scheme for training the model, which initiates τ at a

relatively high value and gradually decreases it to a small but non-

zero value. While various strategies have been employed to adjust τ
in existing work [8, 37] and our experiments, we find that GS-VAE

training is extremely sensitive to the temperature strategy and also

highly dependent on datasets. To tackle the difficulty in training and

improve model performance, we propose a new framework for GS-

VAEs. Our key contributions and findings are summarized next.

First, without any prior knowledge about the data, we need a model

that can quickly adapt to any given dataset and various tasks. To

take this challenge, we introduce a multi-model exploration mech-

anism that improves adaptability and optimization. Our design con-

sists of multiple GS-VAE instances in parallel. Individual sub-models

employ a range of diverse temperature strategies and accommodate

model adjustments based on the best sub-model evaluated per train-

ing epoch. At the end of training, the best sub-model is saved and

then used for testing. We find that even with 5 or 8 sub-models for

training, our design significantly improves model performance across

different datasets.

Second, instead of relying on a fixed function for updating τ , our

training algorithm uses loss difference as performance feedback to

dynamically update each sub-model’s temperature. This is inspired

by the need to balance exploration and exploitation in learning. When

a sub-model’s performance is close to the best sub-model’s perfor-

mance, it is beneficial to strengthen its exploitation ability. Con-

versely, the sub-model may take larger temperature change, leading

to more exploration to find better solutions. Our algorithm also uti-

lizes a patience mechanism to ensure that a sub-model makes a big

change only when its patience counter exceeds given threshold, in

order to avoid hasty temperature adjustments due to short-term fluc-

tuations.

Third, experiments show that our model surpasses a standard GS-

VAE that uses a temperature annealing scheme in various important

applications across four well-known image datasets. When evaluat-

ing generalization capabilities, we find that our model can recon-

struct data of unfamiliar categories that never appear in the training
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dataset whereas a standard GS-VAE fails this task (Figure 7-8). In

anomaly detection, our model can identify altered (or anomaly) data

with more than 80% accuracy, whereas a standard GS-VAE achieves

accuracy below 40% under the same circumstances (Figure 9). When

input data is under white-box adversarial attack, even advanced pre-

trained deep learning models deteriorate significantly (e.g., VGG16

has accuracy below 20% for ε ≥ 0.3), whereas

with our model for repairing/sanitizing data, a basic pre-trained

CNN can achieve accuracy more than 87% (Table 2-3).

Finally, while theoretical results show that as temperature τ → 0,

the GS distribution converges to the categorical distribution, the opti-

mal temperature τ discovered by our model is much bigger than zero

for all datasets studied (Figure 5), which is in alignment with sug-

gestions in [16]. This important finding demonstrates that instead of

monotonically decreasing τ over iterations, GS-VAE training should

strike a balance between discretization and continuity of latent vari-

ables, as continuous samples let gradients pass through the sampling

process, which is crucial for the model to capture core hidden fea-

tures of input data and hence generate output with smaller error.

We next discuss relation work in Section 2 and the basis of GS-

VAEs in Section 3. We present our model and training algorithms in

Section 4 and experiments in Section 5. Section 6 evaluates model

robustness when data is compromised by various attacks and Section

7 concludes our work.

2 Related work

The Gumbel-Softmax distribution [21, 30] sheds light on learning

categorical datasets and has led to significant improvements in VAEs.

Recent research can be divided into two main categories: one that

improved the performance tied to optimizing the Softmax tempera-

ture and the other that applied VAEs to various tasks and protection

against adversarial attacks.

Early works in [3, 8, 11, 18, 37, 38, 42] have investigated either

a constant Softmax temperature or a dynamic, model-specific tuning

process. These studies led to a deeper understanding of how the Soft-

max temperature affects model training and performance. Similarly,

[16] introduced the Opti-Softmax method, which aims to find an opti-

mal temperature that minimizes information loss during model train-

ing. This method represents a significant advancement in understand-

ing the trade-offs in temperature settings, suggesting that tempera-

tures that are neither too high nor too low are beneficial for model

accuracy and generalization.

A considerable amount of research has been devoted to refining the

latent space architecture of VAEs. Recent studies in [1, 9, 12, 36, 43]

have focused on improving the performance of VAEs in image re-

construction tasks. These studies have shown success in reconstruct-

ing clean data, but they also demonstrated a decline in performance

when the datasets include data from previously unseen categories.

Additionally, [19, 28] explored the use of VAEs to reconstruct im-

ages subjected to adversarial attacks. However, the application of

VAEs against more challenging attacks, such as the Fast Gradient

Sign Method (FGSM) [6, 24, 31, 40], remains unexplored.

Current academic literature lacks dedicated research that addresses

temperature adjustment in GS-VAEs. Existing research often strug-

gles to accurately capture data features, particularly in complex sce-

narios such as reconstructing novel, unseen data. Moreover, adver-

sarial attacks, including the FGSM and Projected Gradient Descent

(PGD) attacks, pose significant challenges to many existing models.

Traditional methods, such as adversarial training [24], require sig-

nificant time and computational resources and may overspecialize a

model against certain known attacks. Another aspect involves detect-
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Figure 1. The structure of a standard Gumbel-Softmax VAE.

ing minuscule patch attacks where tiny, often imperceptible patches

are added to image datasets. These slight modifications, which can

deceive models more easily, are less explored than larger adversarial

patch attacks in current literature.

Our work aims to overcome the challenges and gaps discussed

above.

3 Background: GS-VAEs

Given a dataset, let x be one of data points in the collection. As in

Figure 1, a VAE consists of an encoder with parameters θ and a de-

coder with parameters φ, where encoder takes input x and transform

it into a data point z in latent space in a different dimension. The

decoder reconstructs x′ from z, where x′ is the output in the same

dimension as x and more importantly, has the same distribution as

x. We refer readers to [21, 25, 30] for derivations but focus on the

loss function and the sampling process for creating latent data z in a

GS-VAE.

The objective of training a VAE is to maximize the log-likelihood

of data x, which can be reduced to minimizing the negative of ELBO

(Evidence Lower Bound) [25]:

−ELBO := RL+DKL, where (1)

RL := Ez∼qθ(z|x)[− log p(x|z)], (2)

DKL := DKL[qθ(z|x)||p(z)], (3)

RL (Reconstruction Loss) is expected negative log-likelihood of re-

constructed data and DKL is the Kullback-Leibler (KL) divergence

measuring the difference between posterior distribution qθ(z|x)
learned by encoder and prior distribution p(z) of latent space [26].

For a d-dimensional Bernoulli data point x = [x1, . . . , xd] where

d > 1 and xi is either 0 or 1 (e.g., black or white pixel in an image),

RL (2) can be transformed into:

RL = −

d
∑

j=1

[xj log x
′
j + (1− xj) log(1− x′

j)], (4)

which is a special case of the general cross-entropy loss, where xj is

the true value (0 or 1) and x′
j is the predicted probability of the class

label being 1 from decoder.

The calculation of DKL in (3) depends on the choice of latent

space. For discrete data (e.g., pixels in image datasets), categorical

latent space is more appropriate than Gaussian latent space (for con-

tinuous data). As shown in Figure 1, the parameters of the distribu-

tion of a categorical variable can be directly learned by encoder; i.e.,

log π = [log π1, . . . , log πk] is output from encoder, where

πj := P (C = j), for j = 1, . . . , k, (5)

is the probability of categorical variable C taking class j among k
distinct classes and

∑k

j=1 πj = 1.

For the decoder to produce x′ that is similar to x, it needs to

take a random sample following (5) as its input. To this end, the
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Figure 2. The structure of a GS-VAE incorporating dual latent layers

z1 and z2 and dual decoders.

Gumbel-max trick [21] generates k Gumbel (0,1) random variables,

G1, . . . , Gk, and then combines πj to create a k-dimensional one-

hot vector (i.e., a vector of length k with exactly one element set to 1
and all others set to 0):

Z := one-hot
[

argmax
j∈{1,...,k}

(log πj +Gj)
]

, (6)

where the position of the 1 indicates the class that the data belongs to.

Because the argmax in (6) is not differentiable, the Softmax func-

tion with temperature τ serves as a differentiable approximation for

(6). The input to decoder thus becomes Z := [Z1, . . . , Zk], where

each Zj ∈ [0, 1] given by:

Zj :=
exp((log πj +Gj)/τ)

∑k

m=1 exp((log πm +Gm)/τ)
, j = 1, . . . , k, (7)

and temperature parameter τ > 0. This allows the gradients to be

computed and back-propagated through the neural network. The Zj

follows the Gumbel-Softmax distribution [21].

We follow (7) to generate samples as inputs to the decoder (Fig-

ure 1). Temperature τ controls differentiability of GS samples. At

high temperatures τ > 1 the samples generated are more continuous,

whereas at low temperatures they become more discrete. As τ → 0,

the distribution of (7) converges to the categorical distribution [30]:

P
(

lim
τ→0

Zj = 1
)

= πj , P
(

lim
τ→0

Zj = 0
)

= 1− πj , (8)

for j = 1, 2, . . . , k. Prior work [21, 10] suggests that one can start

training from a higher temperature to benefit from the smoother gra-

dient and slowly lower τ to make the distribution more discrete, thus

more closely approximating the true categorical latent space.

Finally, assuming that p(z) is a uniform distribution across k cat-

egories (a common practice), the KL-divergence (3) yields:

DKL[qθ(z|x)||p(z)] =
k

∑

j=1

πj log

(

πj

1/k

)

, (9)

where πj as in (5) is learned by encoder.

To summarize, the loss that will be minimized by a GS-VAE is:

Loss := −EBLO = RL+DKL. (10)

with RL in (4) and DKL in (9), where RL ensures that the model

learns to generate outputs x′ that are close to the original inputs x,

preserving the essential characteristics of the data, and DKL ensures

that the latent space distribution learned by the model approaches

its true value but does not deviate too much from the prior uniform

distribution p(z).
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rameter adjustment per training epoch.

4 Parallel Model and Training Algorithms

Our model consists of n sub-models, {M1,M2, . . . ,Mn}, where n
is a small number (e.g., n = 5 or 8) and each sub-model Mi is a

GS-VAE with dual latent layers and dual decoders. We start from

introducing Mi.

4.1 Sub-model with Dual Latent Layers

We add dual latent layers with their own decoders upon a standard

GS-VAE as in Figure 2. Similar architectures of multi-level latent

variable models have been applied in recent text generation appli-

cations [41]. Different from these work, our design aims to better

extract hidden features of original data.

In sub-model Mi, input data is encoded through a series of con-

volutional layers into high-dimensional feature representations, here

indicated by the blue x layers post-convolution. These represent the

feature maps that capture essential data characteristics for further

processing. The extracted feature maps are then passed into two sep-

arate fully connected layers, generating two sets of latent representa-

tions corresponding to two distinct latent spaces, denoted as z1 and

z2 in Figure 2, where the first layer z1 captures higher-level features

and the second layer z1 focuses on finer details. Dual layers allow the

model to disentangle different factors of variation more effectively,

leveraging the layered information for more precise output.

Subsequently, z1 and z2 are fed into their decoders, respectively.

Each decoder is a mirrored encoder, and reconstructs outputs that

match the dimension of input data. The notations f , h, and d respec-

tively represent the fully connected, hidden, and decoded layers, re-

spectively. The hidden layers h capture intricate data patterns, while

the decoded layers d are used to reconstruct data from the latent

space representations. Through these two channels, decoders learn

to reconstruct data from different perspectives of latent spaces. Ulti-

mately, the outputs from both decoders are averaged to generate the

final reconstruction x′.

4.2 Parallel Model with Adaptive Temperature
Tuning

Our parallel model {M1,M2, . . . ,Mn} is illustrated in Figure 3,

where sub-models Mi have their own strategies for adjusting the

Softmax temperature τ . At the end of each training epoch, the best

sub-model is discovered based on measurement of the performance

and shares its model parameters with the other n− 1 models, getting

ready for the next training epoch. The overall algorithm is shown in

Algorithm 1, which we elaborate on in the following.

F. Zhou et al. / A Parallel Gumbel-Softmax VAE Framework with Performance-Based Tuning1786



Algorithm 1 Overall Training Algorithm

Require: Number of Models n, Training Data

1: Initialize n GS-VAE models {M1,M2, . . . ,Mn} and indepen-

dent optimizers

2: Assign temperature strategies to {M1,M2, . . . ,Mn} according

to Algorithm 2

3: for each training epoch do

4: Train {M1,M2, . . . ,Mn} in parallel on given data

5: Evaluate the performance of each model

6: for i = 1 to n do

7: Compute loss Li

8: end for

9: Find the best model Mbest with the minimum loss Lbest

10: for i = 1 to n do

11: if Mi is not Mbest then

12: Adjust temperature τ for Mi by Algorithm 3

13: end if

14: end for

15: Assign the encoder and decoders of Mbest to all other models,

but keep the temperature strategy the same for individual Mi’s

16: end for

17: Save Mbest with its temperature strategy for various tasks

• Initialization Phase: First, we create multiple instances of the GS-

VAE model with dual latent layers, each equipped with an inde-

pendent optimizer (e.g., the Adam optimizer). Initial temperature

strategies are assigned to models according to Algorithm 2, in-

cluding five different schemes, i.e., fixed value, linear increase,

linear decrease, exponential increase, and lastly exponential de-

crease. For n > 5, the repeated strategies start from linear in-

crease. This ensures greater diversity in temperature strategy de-

sign and expands the scope for exploring parameters, so that our

model can quickly adapt to underlying datasets.

• Training and Performance Evaluation: During this phase, we train

all sub-models in parallel. The training process focuses not only

on the loss of each model but also evaluates performance on spe-

cific tasks by calculating metrics such as log-likelihood, recon-

struction error, or classification accuracy. These evaluation results

provide a crucial base for subsequent model adjustments.

• Dynamic Adjustment and Parameter Sharing: At the end of each

training epoch, we compare sub-models’ performance and select

the model with the minimum loss given by (10). The parameters of

this model are then shared with other models to synchronize the

optimal network learning state. Meanwhile, we keep the tempera-

ture strategy the same for each sub-model, but dynamically adjust

its temperature value according to Algorithm 3.

• Iterative Optimization: In subsequent training epochs, this pro-

cess continues, including parallel training, performance evalua-

tion, selection of the best model, and dynamic temperature adjust-

ment. This iterative process continually optimizes the model per-

formance and progressively refines and adjusts the temperatures

based on the real-time performance.

• Final Model Selection and Application: Finally, at the end of the

training, we select the overall best model and its corresponding

temperature strategy, applying it to different tasks such as image

reconstruction, anomaly detection, and so on.

In Algorithm 3, we choose the best sub-model Mbest based on

the minimum loss among n sub-models. We then use loss difference

between individual Mi and Mbest as performance feedback, Δτ , to

adjust temperature τi (see lines 6 − 7). Patience used in this algo-

Algorithm 2 Assign Temperature Strategies to Sub-models

Require: Number of Models n, Initial Temperature τinitial, Maxi-

mum Temperature τmax, Minimum Temperature τmin, Rate of In-

crease linc, rinc, Rate of Decrease ldec, rdec

1: Initialize each τi using τinitial at epoch t = 0
2: for i = 1 to n do

3: if i == 1 then

4: Fixed: τ t+1
i = τ t

i

5: else if i mod 4 == 2 then

6: Linear increase: τ t+1
i = τ t

i + (i− 1) · linc

7: else if i mod 4 == 3 then

8: Linear decrease: τ t+1
i = τ t

i − (i− 1) · ldec

9: else if i mod 4 == 0 then

10: Exponential increase: τ t+1
i = τ t

i · ((i− 1) · rinc)
11: else

12: Exponential decrease: τ t+1
i = τ t

i /((i− 1) · rdec)
13: end if

14: τi = max(τmin,min(τi, τmax))
15: end for

Algorithm 3 Temperature Adjustment Per Training Epoch

Require: Loss Li of Model Mi for i = 1, . . . , n, Loss Lbest of

Model Mbest, Learning Rate lr, Maximum Temperature τmax,

Minimum Temperature τmin, Patience Threshold pthresh

1: At epoch t = 0, initialize patience counter pcounteri for each Mi

2: for i = 1 to n do

3: if Li > Lbest then

4: Increment patience counter: pt+1
counteri

= ptcounteri
+ 1

5: if pt+1
counteri

≥ pthresh then

6: Adjust temperature: Δτi = lr · (Li − Lbest)
7: Update τi for Mi: τ

t+1
i = τ t

i +Δτi
8: end if

9: else

10: Reset patience counter: pt+1
counteri

= 0
11: end if

12: Ensure within bounds: τ t+1
i = max(τmin,min(τ t+1

i , τmax))
13: end for

rithm keeps track of the number of training epochs that the training

process continues without improvement. To achieve this, we adopt a

patience counter that is increased when the current best model does

not have a smaller loss than the loss from the previous best model,

or reset otherwise. Line 12 ensures that temperature τi for each sub-

model is kept within a defined range [τmin, τmax]. Utilizing the pa-

tience mechanism that aims to prevent hasty parameter changes due

to short-term fluctuations, we consider two scenarios:

• If sub-model Mi’s patience counter is within the patience thresh-

old, set feedback Δτ = 0 and its temperature is updated according

to its own strategy as in Algorithm 2.

• Otherwise, feedback Δτ is given by loss difference between Mi’s

own loss and the best model’s loss, scaled by the learning rate

lr. The Δτ is then incorporated as in line 7 to update the tem-

perature of this sub-model besides following its own strategy in

Algorithm 2. This leads to a more significant temperature change,

if the model lags far behind the best model. Note that model Mi

makes this big change only when its patience counter exceeds the

patience threshold.

Algorithm 3 is inspired by the need for balancing exploration and

exploitation in machine learning [35]. When sub-model Mi’s per-
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Table 1. MSEs on data reconstruction under different VAEs. Values
in bold are the best results and Standard GS-VAE is the baseline.

VAEs MNIST Fashion-MNIST CIFAR-10 CelebA-HD

VAE 0.0081 0.0192 0.0763 0.0478
β-TCVAE [9] 0.0021 0.0081 0.0412 0.0412
Soft-Intro-VAE [12] 0.0194 0.0257 0.0211 0.0247
Standard GS-VAE 0.0154 0.0354 0.0591 0.0474
Our model 0.0002 0.0036 0.0012 0.0032

formance is very close to the best sub-model’s performance (i.e.,

(Li − Lbest) is small), it is beneficial to make a small temperature

change and hence strengthen the model’s exploitation ability. Con-

versely, the model may take significant temperature changes, leading

to more exploration to find better solutions. In addition, adjusting the

temperature parameter dynamically also helps Mi escape from local

optima that may be caused by a fixed strategy given in Algorithm 2.

5 Experiments

5.1 Experimental Environment and Datasets

Experiments are conducted in the Google Colab environment in

Python 3 using Nvidia K80/T4 GPUs, with 16 GB memory and a

memory clock speed of 0.82GHz/1.59GHz.

Four classic image datasets are utilized in experiments. The

MNIST (Modified National Institute of Standards and Technology)

dataset [7] is a collection of hand-written digit images, including dig-

its from 0 to 9. Fashion-MNIST [45] represents images of fashion

items. It comprises 10 distinct categories, such as t-shirts, trousers,

shoes, and more. CIFAR-10 [27] consists of 32× 32 pixel color im-

ages, distributed across ten classes, including airplanes, cars, dogs,

cats, and more. The CelebA-HD dataset [29] contains 1024 × 1024
pixel images of celebrities’ faces, with multiple images for each

celebrity.

5.2 Model Architectures and Reconstruction
Evaluation

We implement our parallel model following Algorithms 1-3. Each

sub-model Mi consists of an encoder, dual latent layers, and dual

decoders. As an example, for CIFAR-10 dataset, the encoder com-

prises four convolutional layers with 32, 64, 128, and 256 neurons,

respectively. Similar architectures are adopted in [39]. These con-

volutional layers transform an input image onto two latent variable

layers, where the first latent layer (z1 in Figure 2) has 256 neurons,

dealing with lower-level features, and the second latent layer (z2 in

Figure 2) has 128 neurons for capturing higher-level features. These

two latent layers are then connected with their decoders that are mir-

rored encoders.

We use MSE (Mean Squared Error) as evaluation metrics for the

data reconstruction task [17]. MSE quantifies the pixel-level dif-

ferences between reconstructed and original images. Smaller MSE

means higher quality reconstructed data. As in Table 1, our model

(with n = 8) produces the smallest MSE among closely related

work, and greatly outperforms the baseline, i.e., a standard GS-VAE

using a temperature annealing scheme, across these four datasets.

5.3 Impact of the Number of Models

Figure 4 shows the MSE (blue lines) and training times (red lines) as

the number of models n changes. When n = 1, our model reduces

to a single GS-VAE and the corresponding MSE is the worst. Once

Figure 4. The impact of the number of models n on MSE values

(blue lines) and training times (red lines) for four datasets.

Figure 5. Impact of temperature τ on data generation. For CIFAR-10

(left), we compare results in a range of temperatures [0.5, 0.9, 10, 30,

60, 98.901, 120, 160, 200, 300], where 98.901 is the optimal tem-

perature discovered by our model leading to quality reconstruction

with the smallest MSE. For CelebA-HD (right), temperatures [0.5,

0.9, 0.95, 5, 10, 30, 51.35, 90, 200, 300] are tested, where 51.35 is

the optimal temperature.

n increases, our model improves reconstruction with smaller MSE.

Notably, complex datasets like CIFAR-10 and CelebA-HD benefit

more from our parallel structure, as their MSE decrease more signif-

icantly when n rises from 4 to 8, demonstrating that our model can

capture intricate latent space for complex images.

However, there’s a trade-off between MSE and model training

time. As in Figure 4, the time (in red lines) required for training the

model may increase linearly in n. The model improvement peaks at a

moderate number of models, beyond which the additional computa-

tional cost may outweigh the marginal gains in reconstruction accu-

racy. The best choice seems to be around n = 8, where the balance

between accuracy and training time is most favorable.

For the rest of the results, we use our model with n = 8.

5.4 Impact of Temperature

Recall that the Softmax temperature τ plays a crucial role in training

GS-VAEs, in that high τ increases continuity (benefiting gradient-

based training), whereas low τ leads to more discrete latent variables

(better approximating categorical latent space). However, discretiza-

tion of latent variables deteriorates the decoder’s ability to recon-

struct data from the latent space. As displayed in Figure 5 with tem-

perature τ configured at different values, there is a large variation

among the images generated by our trained model. Neither very low

nor very high temperatures lead to quality images. Figure 5 shows

that the optimal temperature discovered by our model produces the

best images with the smallest MSE. This demonstrates that striking
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Figure 6. Impact of dual latent layers. The first row shows original

CIFAR-10 images, the second displays reconstructions from the first

latent space (z1 in Figure 2), the third from the second latent space

(z2 in Figure 2), and the last merges outputs from both latent layers.

Figure 7. Data reconstruction of unfamiliar categories, where the model

is trained excluding digits 2s and 3s from the MNIST training dataset.

The top row shows original digits 2s and 3s from the MNIST testing

dataset, the second showcases images generated by our model, and the

third shows results using a standard GS-VAE.

a balance between discretization and continuity of latent variables is

critical in training GS-VAEs, allowing our model to better capture the

core features of input data and generate outputs with smaller MSE.

5.5 Impact of Dual Latent Layers

Figure 6 showcases the distinct features extracted by dual latent

spaces z1 and z2 of our model on CIFAR-10. The last row shows

images highlighting the model’s ability to integrate distinct features

into a cohesive whole. Figure 6 demonstrates that the details captured

by each latent layer are indeed different. This layered approach to re-

construction allows our model to capture a richer representation of

the data by utilizing the unique perspectives from dual latent layers.

5.6 Data Reconstruction of Unfamiliar Categories

This experiment evaluates the generalization capability of VAEs. We

train our model upon the MNIST dataset and CIFAR-10, deliberately

excluding digits 2 and 3 from the MNIST training set, and removing

images Automobiles from CIFAR-10 training set. After training, we

aim to find whether the model is able to reconstruct these unfamiliar

images as they do not appear during training.

Figure 7 shows that our model can successfully reconstruct data

of unlearned categories, whereas a standard GS-VAE generate very

blurry digits and some wrong ones. As all digit images share stan-

dard basic strokes, such as curves and straight lines, our model has

learned these shared stroke features and is able to utilize them to

generate new digits that are not seen during training. This remark-

able learning capability is also observed in Figure 8 for Automobile

images in CIFAR-10, where a standard GS-VAE fails the task.

6 Model Robustness

This section studies model robustness when data faces various at-

tacks. In experiments, we first train our model with clean data and

then utilize our trained model to process data tampered by attacks.

Figure 8. Reconstruction of unfamiliar data, where the model is trained

excluding class Automobile from the CIFAR-10 training dataset. The

top row shows original images of Automobile from the CIFAR-10 test-

ing dataset, the second showcases images generated by our model, and

the third shows results using a standard GS-VAE.

Figure 9. Performance comparison between our model and a stan-

dard GS-VAE in patch attack detection.

6.1 Anomaly Data

We investigate shaped adversarial patches [32], which are noise

added onto images in specific shapes and positions. We leverage

reconstruction errors, i.e., MSE, to detect anomaly data, because

when anomaly data is fed into our trained model, it typically exhibits

higher MSE. By appropriately selecting a threshold on reconstruc-

tion errors, our trained model is able to detect the presence of shaped

patches in input data.

Detection results were visualized in Figure 9, where solid lines

are from our model whereas dotted lines from a standard GS-VAE.

Our model consistently outperforms a standard GS-VAE in detecting

patch attacks across these four datasets, regardless of patch size, from

large to minuscule.

6.2 FGSM Attack

In FGSM (Fast Gradient Sign Method) [14], the gradient of the loss

with respect to the original image is used to create an adversarial

image x∗ in order to fool a classifier, where:

x∗ = x+ ε · sign (∇xJ(θ, x, y)) , (11)

x is the original input data with its label y, ε is defined as a mul-

tiplier used to control the magnitude of perturbations, θ represents

the model’s parameters, and J is the loss function of the model. It

is well-known that convolutional neural networks (CNNs) are highly

susceptible to FGSM attack.

Figure 10 demonstrates the robustness of our trained model, in that

our model is still capable to generate clear handwritten digits given

ε = 0.5, whereas reconstructed images from a standard GS-VAE are

increasingly blurry and unrecognizable.

Next, we feed reconstructed data generated by our model to a basic

pre-trained CNN (consisting of 2 convolutional layers and 3 fully

connected layers) to classify these reconstructed images.
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Figure 10. Reconstruction under FGSM attack on MNIST with ε =
0.5. The top row is adversarial images created according to (11), the

second is reconstructed images generated by our model, and the third

is from a standard GS-VAE.

Table 2. Classification accuracy (in percent) under FGSM attack on
three datasets, where CNN is a basic pre-trained CNN. The values
in bold indicate the best results. Percent symbols are omitted due to
limited space.

MNIST

Model / ε 0.5 0.3 0.09 0.05 0.01 0.0

Our model 87.28 91.41 96.54 98.17 99.02 99.19
CNN + GS-VAE 11.40 25.39 61.32 84.66 94.26 95.82

AT [24] 55.52 97.17 - 98.91 99.16 -
Marina et al. [22] 11.31 17.51 78.67 91.13 99.23 99.54

Mirman et al. [15] - 82.00 96.00 - - -
Ghosh et al. [13] - 87.00 - 92.16 - -

DCNN [40] - 91.11 - 98.00 92.65 -
HDC [6] - - - - 63.00 92.00

Fashion-MNIST

Model / ε 0.5 0.3 0.10 0.05 0.01 0.0

Our model 88.44 88.97 89.59 90.12 90.53 92.07
CNN + GS-VAE 7.51 8.30 60.75 72.02 80.21 89.54
Marina et al. [22] - - - - 54.00 88.00

VGG16 [4] - 9.00 8.00 8.00 14.00 90.00
AlexNet [2] - 0.92 11.28 36.33 - 87.63

ResNet-18 [2] - 2.44 0.93 4.30 - 93.52

Resnet50 [4] 7.16 - 6.63 - - 89.89
CBAM [4] 7.22 - 6.85 - - 92.73

CIFAR-10

Model / ε 0.5 0.3 0.10 0.05 0.01 0.0

Our model 28.12 29.69 60.94 62.50 70.31 79.84
CNN + GS-VAE 18.26 20.55 36.29 44.85 53.97 76.31

CNN 2.19 5.77 6.92 25.08 55.29 86.51
Madry et al. [31] - - - 45.9 - 87.30

NT [44] - - - 4.68 - 78.74
FGSM-AT [44] - - - 40.51 - 77.10

AlexNet [2] - 0.00 0.00 0.00 - 63.50
ResNet-18 [2] - 3.15 2.43 1.94 - 83.43

As in Table 2, the row marked with bold "Our model" displays

the best results obtained by using the basic pre-trained CNN with

reconstructed images from our model, the next row "CNN + GS-

VAE" is that with a standard GS-VAE, and the remaining rows are

results from pre-trained advanced classifiers without using any VAE

for reconstructed data. This shows that with our model for repairing

data, even a basic CNN can be accurate and resilient to FGSM attack.

6.3 PGD Attack

PGD (Projected Gradient Descent) attack [31] is another white-box

attack, where adversarial data is generated by:

x(0) = x+ random noise within ε-ball,

x(t+1) = Πx+S

(

x(t) + α · sign
(

∇xJ(θ, x
(t), y)

))

, (12)

x(0) is the initial perturbed image, and x(t+1) is the adversarial ex-

ample at iteration t + 1, the operation Πx+S projects the perturbed

image back onto the ε-ball centered around the original image x, α
is the step size for each iteration, and ε is the maximum allowed per-

turbation. Notably, PGD attack is more dangerous than FGSM, be-

cause it utilizes a gradient-descent approach and repeatedly searches

Figure 11. Reconstruction under FGSM attack on CIFAR-10 with

ε = 0.5. The top row is clean data, the second is adversarial images

created as (11), the third is reconstructed images by our model, and

the last is from a standard GS-VAE.

Table 3. Classification accuracy (in percent) under PGD attack on
three datasets, where CNN is a basic pre-trained CNN. The values
in bold indicate the best results. Percent symbols are omitted due to
limited space.

MNIST

Model / ε 0.5 0.4 0.3 0.2 0.1 0.0

Our model 95.31 96.05 96.48 97.02 97.38 99.19
CNN + GS-VAE 30.54 33.79 39.65 41.52 43.78 95.82
Madry et al. [31] - - - 90.40 - 98.80
AEDPL-DL [5] 0.00 0.00 0.00 10.00 75.00 -
FGSM-AT [44] - - - 85.86 - 99.29

Fashion-MNIST

Model / ε 0.5 0.4 0.3 0.2 0.1 0.0

Our model 87.63 88.45 89.34 90.01 90.75 92.07
CNN + GS-VAE 29.69 33.77 36.24 38.55 39.73 89.54

StdCNN [23] - - - 87.00 - 93.00
ResNet18 [33] - - - - 32.30 93.60

NRP [34] - - - - 86.15 90.56

CIFAR-10

Model / ε 0.05 0.04 0.03 0.02 0.01 0.0

Our model 59.38 64.06 67.19 70.31 71.88 79.84
CNN + GS-VAE 12.36 19.39 32.18 47.28 55.11 76.31

CNN 0.00 0.14 0.15 1.36 1.72 87.30
VGG16 [22] 10.00 11.00 15.00 20.00 42.00 87.00

Guesmi et al. [15] 0.01 0.30 3.97 4.17 5.54 99.80

for the optimal adversarial examples over iterations, generating more

challenging adversarial data.

Figure 11 shows that perturbations added into images are imper-

ceptible to human. It also indicates that our model effectively recon-

structs data, whereas a standard GS-VAE fails this task.

We feed reconstructed data generated by our model to a basic pre-

trained CNN to classify these reconstructed images. As in Table 3,

the results from our model are consistently much better than oth-

ers as ε increases. This shows that our model successfully sanitizes

data compromised by PGD attack, thus preserving the performance

of pre-trained classifiers.

7 Conclusion

This work proposed a parallel architecture for GS-VAE, significantly

improving the model’s adaptability to various datasets and tasks.

The novelty lied in dynamically adjusting the Softmax temperature,

coupled with a performance-based tuning algorithm. Our experi-

ments demonstrated that, compared to standard GS-VAE models,

ours showed substantial improvements in a wide range of applica-

tions. Moreover, our findings affirmed that maintaining a degree of

continuity in sampling latent variables during training was crucial for

the model to capture the core hidden features of the data effectively.

This work also opened new avenues for studying anomaly detection

and robustness in deep learning models.
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