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We consider pairs of anti-commuting 2p-by-2p Hermitian matrices that are chosen randomly
with respect to a Gaussian measure. Generically such a pair decomposes into the direct sum of
2-by-2 blocks on which the first matrix has eigenvalues #x;and the second has eigenvalues +y;.
We call {(x;y;)} the skew spectrum of the pair. We derive a formula for the probability density of

the skew spectrum, and show that the elements are repelling.
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1. Introduction

The study of random matrices goes back at least to the 1920’s, but it came to
prominence in physics with the work of of Wigner [13-15] and Dyson [5-7], who used
results from random matrices to predict the eigenvalues of complicated Hamiltonians.
See e.g. [10] for an account. What happens if we choose multiple Hamiltonians whose
interaction forces them to satisfy certain algebraic relations? In [9], this question was
studied when the Hamiltonians commute (see Sec. 2). The purpose of this note is to
study the eigenvalue distribution of random pairs of anti-commuting Hermitian
matrices.

First, let us define what we mean by a random d-tuple of matrices satisfying given
algebraic relations. Let M denote the algebra of n-by-n complex matrices, and let Z»
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s . . d . .
denote the Hermitian matrices in My. Let Vo € M be an algebraic set, by which we

mean there are non-commutative polynomials ps,...pyv in the 2d variables
{xL,(x1)%,...x4,(x7)*} so that

yn = {XeM;:p(X)=0V1<j< N}, (1.1)

The set Vi can be thought of as a subset of Cdz= R2dn2, and as such there is a natural
measure on it, consisting of Hausdorff measure of the real dimension of V.. We will
write this measure as dX. To convert this infinite measure to a probability measure,
we multiply by something like a Gaussian weight.

ForX = (X',..., X?) in Ml define its Frobenius (or Hilbert-Schmidt) norm by

d n
XI5 =" > X2

r=11i,j=1

Let w be a continuous non-negative function on [0,00), which has enough moments
that w(|| X || r)dX is a finite measure on V. We will assume w is normalized so
w([|[ X F)dXis probability measure.

Definition 1.1. A random d-tuple in Vnis a random variable with values in Vnand
with distribution W([| X[/ r)dX

In particular, in this note we will study the set
IX ={(XY)€eXz: XY +YX=0}
' 0 X1 0

0y \
0 ( 0 that n = 2p is
X y1 0 will see that

We shall assume
even. In Sec. 3, we
Anhas dimension

elements of A, are

n? + 3, and that genericallyx 0
2
pair of the form

o . | 0 y2
unitarily equivalent to a , = 0

)20
X= |||||||\O

|II|/ I|II\ II/IIIII,

(1.2) -

where each xjand y;is positive. We shall call the pairs {(x;);) : 1 <j < p} the skew

spectrum of (XY ).
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Here is our main result.

Theorem 1.2. Let Z = (XY ) be chosen randomly in A, with distribution
2
(| Z||F). Then the probability distribution of the skew spectrum of(X7 Y) on R
given by
f)n(mh Yty ooy Tp, yp)

=Cow(|Z[7) [T esmmfoi+od TI [ —20)* + (0 —v5)°]
1<k<p 1<1<J<])
x (@i +25)% + (v — y3)?)(2i — 25)° + (i + 7))@ +25)° + (vi +95)%).
(1.3)
If xiX;y;,y; are bounded and bounded away from zero, the last factor in (1.3) is
bounded above and below by

[(xi= %)%+ (vi-yi)?]

(see Lemma 4.2). This quadratic vanishing is of the same order as in the Ginibre
formula for commuting Hermitian pairs, showing that the repulsion between the
elements of the skew spectrum is similar to, though more complicated than, the
repulsion between the joint eigenvalues for a commuting Hermitian pair.

2. Random Commuting Matrices

In this section, we give some results about random commuting Hermitian matrices.
We shall not use these explicitly in the following sections, but they serve as a guide to
what we would like to achieve in the anti-commuting case. When d = 1, Ginibre [8]
proved that for the Gaussian Hermitian ensemble, the eigenvalues of a random
Hermitian matrix in X, have the distribution
_lyn )2
p()\l’”.’A,”) :Cne 221':1)‘1 H |)\17/\I|2

1<i<j<n (2.1)

on R”. We use C, to denote a constant that depends on n, and may vary from one

occurrence to another. An analogous formula to (2.1) turns out to hold not just in the
Gaussian case, but if the matrices are chosen with respect to any weight that depends

only onllXlF— see e.g. [12] for an account. Wigner proved in [15], subject to all
moments having bounds independent of n, that if X, is chosen in X, with distribution

A
w(X) that depends only onllX ||F, then the density of eigenvalues of v~ Xn converges
almost surely to the semi-circular distribution

1
—\/4 — 22dx
2
on [-2,2].

Now let d > 1, and let C9, denote the set of commuting d-tuples in Z4,. Let w(X) be
a weight on C?, that depends only on | X1/ 7 and is normalized to have
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f¢i w(X)dX. An eigenvalue of X is now a d-tuple in R?(since the matrices com-
mute, they have common eigenvectors). If (A1,..,An) are the eigenvalues of X, then

>l =l1X1%
j=1 ,

A=/, e - R - -
where r is the Euclidean norm in R4. Therefore, there is a function
w™: (R9)"— R so that

w(X) =w(A).

In [9] it was shown that the Ginibre formula still holds.
Theorem 2.1. For X in Cé,with distribution w as above, the eigenvalues of X have

density

fin()‘la ceey )‘n) =Chy II]()\) H |)" - )‘j|2
1<i<j<n ) (2.2)

AnyX in €ig unitarily equivalent to a d-tuple of diagonal matrices. The unitary
implementing this is generically unique up to multiplication by a diagonal unitary. Let
U(n) denote the unitary group in My, and let T"be the subgroup of diagonal unitaries.
Let v be volume measure on the homogeneous space U(n)/T". Then (2.2) asserts that
the measure w(X)dX decomposes as

w(X)dX =Cpw(\) ] 1= N* drdv.

1<i<j<n

. . — —7IIX1I% .
Let us now restrict to the Gaussian case®(X) = Cre /IX ik he equilibrium
measure with respect to the logarithmic potential is the probability measure pqthat
minimizes the logarithmic energy

_ 1 2
1) = [, [ tor rrdute)du(u) + [ slefPautz) 23

The equilibrium measure exists, is unique, and is compactly supported [1, Theorem
1

4.4.14]. The eigenvalue density, scaled by, converges to the equilibrium measure.
We shall let E» denote expectation at the nth level of the process.

Theorem 2.2 ([9]). Let X be chosen in Cwith distribution Cne_ﬂIXHQFdX. Let ¢ be
a continuous bounded function on R% Then

Tim E, Htr (¢ <%Xﬂ)>} = /Rd cb(m)dud(a:).

In this Gaussian case, the equilibrium measures have been calculated explicitly by

d—1
Chafai, Saff and Womersley [2, 3]. We let” k. denote normalized surface area on the
sphere of radius Rsin R4, and use 14to denote the indicator function of a set A.
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Theorem 2.3 (Chafai, Saff, Womersley). The equilibrium measure that minimizes
(2.3) is supported on the ball of radius Rq4, and is given by

2 2
—1/(R? —22),d Ry:=4/—, d
ﬂ.R% ( 1 T )"r T, 1 \/;a -1
e rydatda? Ry:= -, d
WR% |z|<R2 y 2 .= \/’—y7 - 2

1 1 2

ligl<pydrdo?, Rs:=,/—, d
PR e T Ty g
1
d—1 —
O'Rd y Rd = ﬁ’ d Z 4

3. Generic Elements in A,

MLet Bn denote {(X,Y ) € M2,: XY + Y X = 0}. The set of commuting pairs in , is an
irreducible variety [11], but Bsis not. In [4, Proposition 4.10] Chen and

Wang showed that for each triple (g, m,r) of non-negative integers that satisfy
2q+m+r=n

there is an irreducible variety Zgmrso that

B — U 3q.m,7"

2q+m+r=n

These varieties can be described as follows. Let Ugmrbe the set of pairs (XY ) in Bn
that are jointly similar to a block-diagonal pair of the form

x1 0 0y1
0 -x1 z1 0
x, 0 0y.
0 -x z_0
A, 0.
/\I 0- /\l B,
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where Am and Br are arbitrary diagonal matrices, of size m-by-m and r-by-r,
respectively, X has rank 2q + m, Y has rank 2q + r, all the non-zero eigenvalues of X are
distinct, and all the non-zero eigenvalues of Y are distinct. Then Chen and Wang
showed that Zymrequals the Zariski closure of Ugm,, and has complex dimension nz +
q [4, Propositions 3.2 and 3.4].

What does this tell us about An? As An=BnN X2, we have

A" = U 3q,’m,r N Z%

2q+m+r=n

Similar arguments to the ones given in [4] show that the real dimension of? 2
ZqmNX2,is n +q, so only the largest component, Zy,00 NX, will have positive measure
with respect to w(|| X rp)dX, Moreover, since X is self-adjoint, we can always choose
x> 0 by swapping coordinates if necessary. Since Y is self-adjoint, we have “z;= y;, and
we can choose yjto be positive by conjugating the jth block by an appropriate diagonal
unitary. So we can restrict our attention to what we will call the generic elements in
An, namely the set of full measure consisting of pairs that are jointly unitarily
equivalent to some (X,Y) as in (1.2) with {x4,..,xp} and {ys,...y»} both consisting of p
distinct positive numbers. The skew spectrum of such a pair will be the p points
{(zj,95)} in Ri, where R+ denotes the positive reals.

The pair (X2Y) will be in C2,, the set of commuting pairs of Hermitian matrices.
Its spectrum will consist of the joint eigenvalues {(x;+y;) : 1 <j < p} C R+ x R.
4. Distribution of the Skew Spectrum
Let n = 2p. Let (Ri)gen be the set of p-tuples{(xj: yj):1<j<p}in R%r such that all
the x/’s are distinct, and all the y;’s are distinct. Let Angen denote the generic elements

2 \p
Un) x (R )Een 1o Angen that sends

P T 0 P 0 .
@ ( J ) U*7 U @ ( yj) U*
=\ T =1 \¥i O
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will not be injective, as any unitary U that is the direct sum of 2-by-2’s of the form

]

eiej 0 )
( 0 will leave the block-diagonal matrices invariant. To rectify this, we shall
consider

G :U(n)/T? x (R3 )P

gen

— 2,
Q[”'gen

P x; 0 4 0 j
{@u)h) = (U GB(O‘ _) Ur,U @(y yo) v

j=1
U, (4.1)

Then G is a bijection, and it follows from the proof of Theorem 4.1 that it is a
diffeomorphism as the Jacobian does not vanish. Let v be volume measure on the
homogeneous space U(n)/T.

To reduce the use of superscripts, we shall let Z be an element of A, and write its
two components as

Z=(2v22)=(XY).
If x = {x1,..,xp} € CP, let

P f(x; 0 P 0
. ’ B = ( ./>
T DL, o)

J
Theorem 4.1. Let Z = (X,Y') be chosen randomly in Anwith distribution

2p
w(||Z|| 7). Then the probability distribution of the skew spectrum of(X7 Y) on RYj
given by

Pl @1, Y15 - Tpy Yp)

=Cow(|Zllr) T zrvsr/ai+v2 [ (@i — )+ (vi — v5)*)

1<k<p 1<i<j<p
X [(3% + a?j)Q + (yi — yJ)Q][(fz - Ij)Q + (yi + yj)Q]
X [(@i + 2)% + (i +y5)*]- (4.2)

Proof. Fix some point Z = (X,Y ) € Angen. Without loss of generality, we can choose a

basis so that Uin (4.1) is the identity, and (X,Y) has the form (1.2) with skew spectrum

. 2p - .
in (R+)gen. The derivative of G is a map between the tangent spaces.

dG : (T U(n)/Tp) x R2p = Txy)An.

If we view dG as a real linear map, then the Jacobian will bej = /det(dG*dG).
So we will have
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w((|Z]lp)dZ = w([|Z]| )T dvdzidyy . . . dypdyy, (4.3)

Integrating with respect to v, we get that p» equals the Jacobian timesw(HZ”F); we
must prove that this has the form (4.2).
The tangent space at the identity of U(n) is the space of skew-symmetric matrices.

The tangent space of U(n)/Tpat [ITP] is the skew-symmetric matrices whose diagonals
are of the form (+6;). (We shall write ¢ for v/— 1 to distinguish from i used as an

index). We have

dG| ) (S,a,b) = o d (etsAx+tae-ts,etsBy+me-ts) dt

= (SAx— AsS + A0, SBy— ByS + By). (4.4)

We want to pick a basis for the tangent space that facilitates computation.
For anyk» ¢ € {l,....n} let Ek; denote the elementary matrix with 1 in the
(k, 5) place and 0 elsewhere. We shall let i,j range between 1 and p, and « and f range
over Zz (where 1 + 1 = 0). Define a basis as follows. For each 1 < k < p, we have 3
matrices:

1 L
Ric= sL[E2k-1,2k = E2k2k-1], Sk= ¥2[E2k-1,2k + E2k2k-1], 2

t
Tk = M2[E2k-1,2k-1 - E2k2k].

For each pair (ij) in {1,..,p} with i <j and each a,f € Z2, we have two matrices

1 L
Rijop = —=[E2i—a2j-8 — E2j_g2i—al, Sijag = —=[E2i—a,2j-p — E2j—p2i—al
i) \/5 i—a, J—B,2i—a iJ, \/Q i— a2, A

Finally, for a basis of R??, thought of as the tangent space to (Ri)gen, we let {elx: 1
< k < p} be the standard basis for the first slot, and {e%: 1 < k < p} be
the standard basis in the second slot.

Straightforward calculations show

[RkAx] = 21xkSk, [Rk,By] = =21y« Tk,
[SkAx] = =2ixkRk,  [Sk,By] =0,
[TkAx] =0, [TwBy] = 2tykRxk

and

[RijapAx] = ((=1)pxj = (~1)axi)Sijap,

2450019-8
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[Rijag, By] = (yiSiia+1,8= YiSijap+1),
[Siiap,Ax] = ((-1)axi = (~1)8X)) Riics,

[Siiap,By] = t(VjRijap+1 = yiRija+1p).

The matrix for dG has a block form. It maps the 5 (real) dimensional space spanned

by {Rk Sk Tkelke?c} into the six-dimensional space that is spanned by {R,Sk Tk} in both

the first and second slots, and it maps the eight-dimensional space spanned by

{RijapSijep: a,fB € Z2} into two copies of the same space. Because of the block structure,

the Jacobian of the whole map will be the product of the Jacobians for each block.

The first set of blocks look like this.

Rk Sk Tk elk e2k

Rk / Ok -2Xk 0 0 0 \

rrse || 2x00 000 200y V002 000  x.

Tkkk\|||_2yk0 O oo|||||||/
sl o 0 0 0 2

The second set looks like

Rijoo Rij10 Rijo1 Rij11 Sijoo Sij10 Sijo1
Rijoo 0 0 0 0 Xi —Xj 0 0
Rijlo/ 0 0 0 0 0 —xi—x; 0
R 0 0 0 0 0 0 0-x+x
S x-x 0 0 0 0 0 0

2450019-9
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S 0 X+X 0 0 0 0 0 0
S 0 0-x-x 0 0 0 0 0
S 0 0 00 -x+x 00 0 0 0 X L

T AT AR TR AT
R 0 0 0 —y y 0
R 0 0 0 0 -y 0 0 Vi
R 0 0 0 0 y 0 0 i

R 0 0 0 0 0 y —y 0

s 0y —y 0 0 0 0 0
s y 0 0 —y 0 0 0 0
s y 0 0 y 0 0 0 0
s 0 -y y 0 0 0 0 0

(4.6)
When (4.5) is premultiplied by its adjoint, one gets a diagonal matrix whose
determinant is

44(x2k + yk2)X2kVk2.

When (4.6) is premultiplied by its adjoint, the resulting matrix has determinant

2450019-10
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[((xj— xi)2 + yj2 + yiz)2 — 4yjeyiz]2[ (% + xi)2 + yj2 + yi2)2 — 4yj2yi2] 2, which equals
the square of
[(xi = x)2+ i = y)?1[(xi+ %)%+ (i = )2 [(xi = %)%+ (vi+ y3)?]

x[(xi+x7)2+ (yi+ yj)?]-

Multiplying all these together, we get that the Jacobian timesw(HZ”F), when
integrated with respect to v, is (4.2). |

Lemma 4.2.

Sixpyiyi) = [(xi- %)%+ i— y)2 ][ (i + %)%+ (vi- yi)?]
x[(xi= x)2+ (vi+ y)?2][(xi+ %)) + (vi+ yj)?]- (4.7)

Let d? = (xi— xj)2 + (yi— yj)2 Let €, M be positive constants, and assume that x1,x2,y1 and
yz2are all between € and M. Then we have

12852 < f{xix,y1y)) < 200M6d2, (4.8)

Proof. The first factor of f is d2. The other three factors are bounded below by
(2€)2(2€)?(8¢2) and bounded above by (5M2)(5M?2)(8M?).O

It follows from Lemma 4.2, that in compact subsets of (0,00)2 the repulsion
between elements of the skew spectrum, as given by (4.2), is of the order of the square

of their Euclidean distance.

5. Fekete Points and the Limiting Distribution

In this section, we shall just consider the Gaussian caseW(Z) = efguznzpl For any
fixed n = 2p, the skew spectrum is most likely to occur where the density p,from (4.2)
is highest. Using gradient descent, we numerically calculated what distribution of
points maximized (p»). See Fig. 1. They seem to be approximately equally spaced
within the quarter-disk of radius 2vn.

By way of comparison, we plot the joint eigenvalues that maximize the density k»
from (2.2) for a pair of commuting self-adjoint matrices, with the same Gaussian
weight. In this case, they are approximately equally spaced within the disk of radius

V2n, See Fig. 2.
Write z = (x,y) for a point inRi.
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10 20 30 40 50 60

o4

Fig. 1. Numerical simulation of points that maximize p» for a pair of anti-commuting self-adjoint

matrices, with sizes n = 20,200,800. Circle has radius 2vn.

— 2
Definition 5.1. Let n = 2p. We shall say a setS =121, 2} SR o 4 maximal
likelihood set if pn attains its maximum on S.

It is not immediately obvious that maximal likelihood sets exist, since the domain
is not bounded, but we shall prove that they do. It is more convenient to work with t

2p
:= -logpn, a function fromRy to (=00, ©°] which we want to minimize. Let fbe as in
Lemma 4.2. Then

T(21,...,2p) =

| =

P

1
E |22 — log |k yrzi| — 3 E log f (2, 2e)
k=1 ) )

Lemma 5.2. For each n 2 1, there exists a set S so that t(S) < n2.
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30

7.5+
20 A
5.0 1

10 4

2.5+

0.0 1 0+

-10

—5.0

—7.5

-75 -50 -25 00 25 50 75 -30 -20 -10 0 10 20 30
Fig. 2. Numerical simulation of points that maximize x for a pair of commuting self-adjoint matrices, with

sizes n = 40,400. Circle has radiusV 2n.

Proof. Case: p = g2 for q € N. Let Sq = {1,2,..,q}*{1,2,..,q}. By Lemma 4.2, for anyk #

we have f(2k,2¢) 21. S0

1 < .
7(Sq) < 5 Z (i + %)
i,j=1
_ g+ 1)(2g+1)
6
< q4 _ 411”2

General case: choose g so that (q -1)2< p < g% Let S be any p elements of S;. Then

7(8) < q*

<4((q-1)2+1)2<4p2=n2 |

Lemma 5.3. Let n = 2p be a positive even integer. Choose K 2 3p so that

1o 2 »’ 2
2K (3p + 4p°) log(K) 5 log(400) — 4p” > 0' 5.1)

LetS = {71,..., %} € (Ri)p be a set so that (S) < 4p2 Then the maximum length

of an element of S is at most K.

Proof. Let M = max{|zx| : 1 < k < p}. By Lemma 4.2, fork # fwe have

f (21, 2¢) < 400M®

2450019-13
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So
ap* > 7(S)
1< 5 1
=3 Z(|2k| — log |zkyk2k|) — 3 Zlog f (2K, 2e)
k=1 k£L
> %MQ _ plog M — 7@ log(400M%)
Lo 2 P
> 51\1 —(Bp+4p°)log M — 5 log 400.
The last inequality

2

2 log400 (5.2)
fails at M = K (by choice of K). Moreover, the right-hand side of (4.2) is increasing for
M =z3p,sowemusthave M <K. O

4 > M7~ (3p -+ 49?) log M —

Theorem 5.4. Maximal likelihood sets exist.

Proof. Let K be as in Lemma 5.3. Consider 7 : [0,K]? = (-o0,c0]. This is a continuous
function on a compact set, so attains its infimum. By Lemmas 5.2 and 5.3 this is a

2p
global infimum for” 1! RY o

Definition 5.5. A set © < (R?i-)p is a Fekete set of size p if the set \/pS isa maxz;nal
likelihood set of pn.

1
A measure is a Fekete measure of size p if it consists of p atoms of weight p at each
point of a Fekete set of size p.

Based on the numerical simulations shown in Fig. 1 and analogy with the
commuting case, we are led to ask the following questions.

Question 5.6. Let upbe a sequence of Fekete measures of size p.

(1) Isthere a compact set that contains the support of every up?

(2) Does the sequence up converge weakly (when integrated against bounded
continuous functions) to a unique compactly supported measure u?

(3) Define a random probability measure v, by choosing random anti-commuting
—1|z|?
self-adjoint pairs of size 2p-by-2p with the Gaussian measureCp¢™ > W1 dZ, ang
1

letting v, have mass? at each point of the skew spectrum of Z. Let E, denote
expectation with respect to this process. Is there a measure u so that

lim E, ¢ (2)dv, (2 /¢ )du(z) Vo € Cy(R2
p—0o0
)?

2450019-14
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(4) If the answer to Questions 2 and 3 is yes, is u equal to normalized area measure
on the quarter disk in the first quadrant of radius v8?
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