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We consider pairs of anti-commuting 2p-by-2p Hermitian matrices that are chosen randomly 
with respect to a Gaussian measure. Generically such a pair decomposes into the direct sum of 
2-by-2 blocks on which the �irst matrix has eigenvalues ±xj and the second has eigenvalues ±yj. 
We call {(xj,yj)} the skew spectrum of the pair. We derive a formula for the probability density of 
the skew spectrum, and show that the elements are repelling. 

Keywords: Random matrix tuples; anti-commuting matrices. 

1. Introduction 

The study of random matrices goes back at least to the 1920’s, but it came to 
prominence in physics with the work of of Wigner [13–15] and Dyson [5–7], who used 
results from random matrices to predict the eigenvalues of complicated Hamiltonians. 
See e.g. [10] for an account. What happens if we choose multiple Hamiltonians whose 
interaction forces them to satisfy certain algebraic relations? In [9], this question was 
studied when the Hamiltonians commute (see Sec. 2). The purpose of this note is to 
study the eigenvalue distribution of random pairs of anti-commuting Hermitian 
matrices. 

First, let us de�ine what we mean by a random d-tuple of matrices satisfying given 
algebraic relations. Let Mn denote the algebra of n-by-n complex matrices, and let Σn 
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denote the Hermitian matrices in Mn. Let V  be an algebraic set, by which we 
mean there are non-commutative polynomials p1,...,pN in the 2d variables 
{x1,(x1)∗,...,xd,(xd)∗} so that 

 V . (1.1) 

The set Vn can be thought of as a subset of Cdn2 = R2dn2, and as such there is a natural 
measure on it, consisting of Hausdorff measure of the real dimension of Vn. We will 
write this measure as dX. To convert this in�inite measure to a probability measure, 
we multiply by something like a Gaussian weight. 

For  de�ine its Frobenius (or Hilbert–Schmidt) norm by 

. 
Let w be a continuous non-negative function on [0,∞), which has enough moments 

that   is a �inite measure on Vn. We will assume w is normalized so 
is a probability measure. 

De�inition 1.1. A random d-tuple in Vn is a random variable with values in Vn and 
with distribution . 

In particular, in this note we will study the set 

An := {(X,Y ) ∈ Σ2n : XY + Y X = 0}. 

We shall assume that n = 2p is 
even. In Sec. 3, we will see that 
An has dimension 

 , and that generically elements of An are 
unitarily equivalent to a pair of the form 

⎜⎜⎜⎜⎜⎜⎜⎝ 0X = 

 ⎟⎟⎟⎟⎠ ⎜⎜⎜⎜⎝ ⎟⎟⎠⎟⎟⎟⎟⎟,

 (1.2) − 

 ... ... 

where each xj and yj is positive. We shall call the pairs {(xj,yj) : 1 ≤ j ≤ p} the skew 

spectrum of (X,Y ). 

0 ⎞ x1 0 
0 −x1  

x2 0 

0 x2 
 ,  

0 y2 

y2 0 

⎛ 



Random anti-commuting Hermitian matrices 

2450019-3 

Here is our main result. 

Theorem 1.2. Let Z = (X,Y ) be chosen randomly in An with distribution 
. Then the probability distribution of the skew spectrum of is 

given by 

 
If xi,xj,yi,yj are bounded and bounded away from zero, the last factor in (1.3) is 

bounded above and below by 

[(xi − xj)2 + (yi − yj)2] 

(see Lemma 4.2). This quadratic vanishing is of the same order as in the Ginibre 
formula for commuting Hermitian pairs, showing that the repulsion between the 
elements of the skew spectrum is similar to, though more complicated than, the 
repulsion between the joint eigenvalues for a commuting Hermitian pair. 

2. Random Commuting Matrices 

In this section, we give some results about random commuting Hermitian matrices. 
We shall not use these explicitly in the following sections, but they serve as a guide to 
what we would like to achieve in the anti-commuting case. When d = 1, Ginibre [8] 
proved that for the Gaussian Hermitian ensemble, the eigenvalues of a random 
Hermitian matrix in Σn have the distribution 

  (2.1) 

on Rn. We use Cn to denote a constant that depends on n, and may vary from one 
occurrence to another. An analogous formula to (2.1) turns out to hold not just in the 
Gaussian case, but if the matrices are chosen with respect to any weight that depends 
only on  — see e.g. [12] for an account. Wigner proved in [15], subject to all 
moments having bounds independent of n, that if Xn is chosen in Σn with distribution 

w(X) that depends only on , then the density of eigenvalues of  converges 
almost surely to the semi-circular distribution 

 
on [−2,2]. 

Now let d > 1, and let Cdn denote the set of commuting d-tuples in Σdn. Let w(X) be 
a weight on Cdn that depends only on  and is normalized to have 
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. An eigenvalue of X is now a d-tuple in Rd (since the matrices com- 
mute, they have common eigenvectors). If (λ1,...,λn) are the eigenvalues of X, then 

, 

where  is the Euclidean norm in Rd. Therefore, there is a function 
w˜ : (Rd)n → R so that 

w(X) = w˜(λ). 

In [9] it was shown that the Ginibre formula still holds. 
Theorem 2.1. For X in Cdn with distribution w as above, the eigenvalues of X have 
density 

 . (2.2) 

Any is unitarily equivalent to a d-tuple of diagonal matrices. The unitary 

implementing this is generically unique up to multiplication by a diagonal unitary. Let 

U(n) denote the unitary group in Mn, and let Tn be the subgroup of diagonal unitaries. 

Let ν be volume measure on the homogeneous space U(n)/Tn. Then (2.2) asserts that 

the measure w(X)dX decomposes as 

 

Let us now restrict to the Gaussian case . The equilibrium 
measure with respect to the logarithmic potential is the probability measure μd that 
minimizes the logarithmic energy 

 . (2.3) 
The equilibrium measure exists, is unique, and is compactly supported [1, Theorem 

4.4.14]. The eigenvalue density, scaled by , converges to the equilibrium measure. 
We shall let En denote expectation at the nth level of the process. 

Theorem 2.2 ([9]). Let Xn be chosen in Cdn with distribution . Let φ be 
a continuous bounded function on Rd. Then 

. 

In this Gaussian case, the equilibrium measures have been calculated explicitly by 

Chafai, Saff and Womersley [2, 3]. We let  denote normalized surface area on the 
sphere of radius Rd in Rd, and use 1A to denote the indicator function of a set A. 
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Theorem 2.3 (Chafai, Saff, Womersley). The equilibrium measure that minimizes 
(2.3) is supported on the ball of radius Rd, and is given by 

= 1; 

 = 2; 

= 3; 

. 
3. Generic Elements in An 

MLet Bn denote {(X,Y ) ∈ M2n : XY + Y X = 0}. The set of commuting pairs in n is an 

irreducible variety [11], but Bn is not. In [4, Proposition 4.10] Chen and 

Wang showed that for each triple (q,m,r) of non-negative integers that satisfy 

2q + m + r = n 

there is an irreducible variety Zq,m,r so that 

B . 
2q+m+r=n 

These varieties can be described as follows. Let Uq,m,r be the set of pairs (X,Y ) in Bn 

that are jointly similar to a block-diagonal pair of the form 

 ⎛⎞ ⎛⎞ 

 ⎜⎜⎜⎜⎟⎟ ⎜⎜ 

x 1 0 

0 − x 1 
. . . 

x q 0 

0 − x q 
A m 

0 r 

0 y 1 
z 1 0 

. . . 

0 y q 
z q 0 

0 m 
B r 
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 X = ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎠⎟⎟⎟, Y = 
⎜⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟, 

where Am and Br are arbitrary diagonal matrices, of size m-by-m and r-by-r, 
respectively, X has rank 2q + m, Y has rank 2q + r, all the non-zero eigenvalues of X are 
distinct, and all the non-zero eigenvalues of Y are distinct. Then Chen and Wang 
showed that Zq,m,r equals the Zariski closure of Uq,m,r, and has complex dimension n2 + 
q [4, Propositions 3.2 and 3.4]. 

What does this tell us about An? As An = Bn ∩ Σ2n, we have 

A . 
2q+m+r=n 

Similar arguments to the ones given in [4] show that the real dimension of2 2 

Zq,m,r∩Σ2n is n +q, so only the largest component, Zp,0,0 ∩Σn will have positive measure 
with respect to . Moreover, since X is self-adjoint, we can always choose 
xj > 0 by swapping coordinates if necessary. Since Y is self-adjoint, we have ¯zj = yj, and 
we can choose yj to be positive by conjugating the jth block by an appropriate diagonal 
unitary. So we can restrict our attention to what we will call the generic elements in 
An, namely the set of full measure consisting of pairs that are jointly unitarily 
equivalent to some (X,Y ) as in (1.2) with {x1,...,xp} and {y1,...,yp} both consisting of p 
distinct positive numbers. The skew spectrum of such a pair will be the p points

, where R+ denotes the positive reals. 
The pair (X2,Y ) will be in C2n, the set of commuting pairs of Hermitian matrices. 

Its spectrum will consist of the joint eigenvalues {(xj,±yj) : 1 ≤ j ≤ p} ⊂ R+ × R. 

4. Distribution of the Skew Spectrum 

Let n = 2p. Let (  be the set of p-tuples  such that all 
the xj’s are distinct, and all the yj’s are distinct. Let An,gen denote the generic elements 
of An, as described in Sec. 3. The map from   to An,gen that sends 
(U,{(xj,yj)}) to 
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will not be injective, as any unitary U that is the direct sum of 2-by-2’s of the form 

 will leave the block-diagonal matrices invariant. To rectify this, we shall 
consider 

gen 

U,  

Then G is a bijection, and it follows from the proof of Theorem 4.1 that it is a 
diffeomorphism as the Jacobian does not vanish. Let ν be volume measure on the 
homogeneous space U(n)/Tp. 

To reduce the use of superscripts, we shall let Z be an element of An, and write its 
two components as 

Z = (Z1,Z2) = (X,Y ). 

If x = {x1,...,xp} ∈ Cp, let 

. 
Theorem 4.1. Let Z = (X,Y ) be chosen randomly in An with distribution 

. Then the probability distribution of the skew spectrum of is 
given by 

(4.2) 

Proof. Fix some point Z = (X,Y ) ∈ An,gen. Without loss of generality, we can choose a 

basis so that U in (4.1) is the identity, and (X,Y ) has the form (1.2) with skew spectrum 

in ( . The derivative of G is a map between the tangent spaces. 

dG : (T[ITp]U(n)/Tp) × R2p → T(X,Y )An. 

If we view dG as a real linear map, then the Jacobian will be  
So we will have 
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 . (4.3) 

Integrating with respect to ν, we get that ρn equals the Jacobian times ); we 
must prove that this has the form (4.2). 

The tangent space at the identity of U(n) is the space of skew-symmetric matrices. 

The tangent space of U(n)/Tp at [ITp] is the skew-symmetric matrices whose diagonals 

are of the form (±ιθj). (We shall write  1 to distinguish from i used as an 

index). We have 

dG|(ITp,x,y)(S,a,b) = d (etSAx+tae−tS,etSBy+tbe−tS) dt 

 = (SAx − AxS + Aa,SBy − ByS + Bb). (4.4) 

We want to pick a basis for the tangent space that facilitates computation. 
For any  denote the elementary matrix with 1 in the 

) place and 0 elsewhere. We shall let i,j range between 1 and p, and α and β range 
over Z2 (where 1 + 1 = 0). De�ine a basis as follows. For each 1 ≤ k ≤ p, we have 3 
matrices: 

 1 ι 

Rk = √ [E2k−1,2k − E2k,2k−1], Sk = √2[E2k−1,2k + E2k,2k−1], 2 
ι 

Tk = √2[E2k−1,2k−1 − E2k,2k]. 

For each pair (i,j) in {1,...,p} with i < j and each α,β ∈ Z2, we have two matrices 

. 

Finally, for a basis of R2p, thought of as the tangent space to ( , we let {e1k : 1 
≤ k ≤ p} be the standard basis for the �irst slot, and {e2k : 1 ≤ k ≤ p} be 
the standard basis in the second slot. 

Straightforward calculations show 
 

[Rk,Ax] = 2ιxkSk, [Rk,By] = −2ιykTk, 

[Sk,Ax] = −2ιxkRk, [Sk,By] = 0, 

[Tk,Ax] = 0, [Tk,By] = 2ιykRk 
and 

[Rij,αβ,Ax] = ι((−1)βxj − (−1)αxi)Sij,αβ, 
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[Rij,αβ,By] = ι(yiSij,α+1,β − yjSij,α,β+1), 

[Sij,αβ,Ax] = ι((−1)αxi − (−1)βxj)Rij,αβ, 

[Sij,αβ,By] = ι(yjRij,α,β+1 − yiRij,α+1,β). 

The matrix for dG has a block form. It maps the 5 (real) dimensional space spanned 
by {Rk,Sk,Tk,e1k,e2k} into the six-dimensional space that is spanned by {Rk,Sk,Tk} in both 
the �irst and second slots, and it maps the eight-dimensional space spanned by 
{Rij,αβ,Sij,αβ : α,β ∈ Z2} into two copies of the same space. Because of the block structure, 

the Jacobian of the whole map will be the product of the Jacobians for each block. 
The �irst set of blocks look like this. 

 Rk Sk Tk e1k e2k 

 Rkk ⎛ 0k −2xk 0 0 0 ⎞ 

 RTSk ⎜⎜⎜ 2x00 000 200y −√00 2 000 × ι. (4.5) 

 Tkkk ⎝⎜⎜⎜−2yk 0 0k 0 0 ⎟⎟⎟⎟⎟⎟⎟⎠ 

 S ⎜ 0 0 0 0 −√2 

The second set looks like 

 Rij00 Rij10 Rij01 Rij11 Sij00 Sij10 Sij01 Sij11 
Rij00 0 0 0 0 xi −xj 0 0 0 

Rij10⎛ 0 0 0 0 0 −xi −xj 0 0 ⎞ 

R 0 0 0 0 0 0 0 −x + xj 

S x −x 0 0 0 0 0 0 0 
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S 0 x + x 0 0 0 0 0 0 
S 0 0 −x −x 0 0 0 0 0 

S 0 0 00 −x + x 00 0 0 0 × ι. 

Rijijijijijijijijijijijijijij1011110110010000010010111101⎜⎜⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜ j 0ij i j 0ij i j0ij i j0ij i 0ji 0ji xi +jixj i0

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ 

R 0 0 0 −y y 0 

R 0 0 0 0 −y 0 0 yj 

R 0 0 0 0 y 0 0 −yi 

R 0 0 0 0 0 y −y 0 

S 0 y −y 0 0 0 0 0 

S y 0 0 −y 0 0 0 0 

S −y 0 0 y 0 0 0 0 

S 0 −y y 0 0 0 0 0 

(4.6) 
When (4.5) is premultiplied by its adjoint, one gets a diagonal matrix whose 
determinant is 

44(x2k + yk2)x2kyk2. 

When (4.6) is premultiplied by its adjoint, the resulting matrix has determinant 
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[((xj − xi)2 + yj2 + yi2)2 − 4yj2yi2]2[((xj + xi)2 + yj2 + yi2)2 − 4yj2yi2]2, which equals 

the square of 

[(xi − xj)2 + (yi − yj)2][(xi + xj)2 + (yi − yj)2][(xi − xj)2 + (yi + yj)2] 

×[(xi + xj)2 + (yi + yj)2]. 

Multiplying all these together, we get that the Jacobian times  ), when 
integrated with respect to ν, is (4.2).  

Lemma 4.2. 

f(xi,xj,yi,yj) = [(xi − xj)2 + (yi − yj)2][(xi + xj)2 + (yi − yj)2] 

 ×[(xi − xj)2 + (yi + yj)2][(xi + xj)2 + (yi + yj)2]. (4.7) 

Let d2 = (xi − xj)2 + (yi − yj)2. Let ε,M be positive constants, and assume that x1,x2,y1 and 

y2 are all between ε and M. Then we have 

 128ε6d2 ≤ f(xi,xj,yi,yj) ≤ 200M6d2. (4.8) 

Proof. The �irst factor of f is d2. The other three factors are bounded below by 
(2ε)2(2ε)2(8ε2) and bounded above by (5M2)(5M2)(8M2).  

It follows from Lemma 4.2, that in compact subsets of (0,∞)2 the repulsion 

between elements of the skew spectrum, as given by (4.2), is of the order of the square 

of their Euclidean distance. 

5. Fekete Points and the Limiting Distribution 

In this section, we shall just consider the Gaussian case  . For any 
�ixed n = 2p, the skew spectrum is most likely to occur where the density ρn from (4.2) 
is highest. Using gradient descent, we numerically calculated what distribution of 
points maximized (ρn). See Fig. 1. They seem to be approximately equally spaced 
within the quarter-disk of radius 2√n. 

By way of comparison, we plot the joint eigenvalues that maximize the density κn 

from (2.2) for a pair of commuting self-adjoint matrices, with the same Gaussian 
weight. In this case, they are approximately equally spaced within the disk of radius 

. See Fig. 2. 
Write z = (x,y) for a point in . 
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Fig. 1. Numerical simulation of points that maximize ρn for a pair of anti-commuting self-adjoint 
 

matrices, with sizes n = 20,200,800. Circle has radius 2√n. 

De�inition 5.1. Let n = 2p. We shall say a set  is a maximal 
likelihood set if ρn attains its maximum on S. 

It is not immediately obvious that maximal likelihood sets exist, since the domain 
is not bounded, but we shall prove that they do. It is more convenient to work with τ 

:= −logρn, a function from ] which we want to minimize. Let f be as in 
Lemma 4.2. Then 

. 

Lemma 5.2. For each n ≥ 1, there exists a set S so that τ(S) ≤ n2. 
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Fig. 2. Numerical simulation of points that maximize κn for a pair of commuting self-adjoint matrices, with 
sizes n = 40,400. Circle has radius . 

Proof. Case: p = q2 for q ∈ N. Let Sq = {1,2,...,q}×{1,2,...,q}. By Lemma 4.2, for any

we have 1. So 

 

General case: choose q so that (q −1)2 < p ≤ q2. Let S be any p elements of Sq. Then 

τ(S) ≤ q4 

≤ 4((q − 1)2 + 1)2 ≤ 4p2 = n2.  

Lemma 5.3. Let n = 2p be a positive even integer. Choose K ≥ 3p so that 

 . (5.1) 
Let  be a set so that τ(S) ≤ 4p2. Then the maximum length 

of an element of S is at most K. 

Proof. Let M = max{|zk| : 1 ≤ k ≤ p}. By Lemma 4.2, for we have 

. 
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So 

 
The last inequality 

 log400 (5.2) 
fails at M = K (by choice of K). Moreover, the right-hand side of (4.2) is increasing for 
M ≥ 3p, so we must have M < K.  

Theorem 5.4. Maximal likelihood sets exist. 

Proof. Let K be as in Lemma 5.3. Consider τ : [0,K]2p → (−∞,∞]. This is a continuous 
function on a compact set, so attains its in�imum. By Lemmas 5.2 and 5.3 this is a 

global in�imum for .  

De�inition 5.5. A set  is a Fekete set of size p if the set √pS is a maximal 
likelihood set of ρn. 

A measure is a Fekete measure of size p if it consists of p atoms of weight  at each 
point of a Fekete set of size p. 

Based on the numerical simulations shown in Fig. 1 and analogy with the 
commuting case, we are led to ask the following questions. 

Question 5.6. Let μp be a sequence of Fekete measures of size p. 

(1) Is there a compact set that contains the support of every μp? 
(2) Does the sequence μp converge weakly (when integrated against bounded 

continuous functions) to a unique compactly supported measure μ? 
(3) De�ine a random probability measure νp by choosing random anti-commuting 

self-adjoint pairs of size 2p-by-2p with the Gaussian measure and 

letting νp have mass   at each point of the skew spectrum of Z. Let Ep denote 
expectation with respect to this process. Is there a measure μ so that 

)? 
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(4) If the answer to Questions 2 and 3 is yes, is μ equal to normalized area measure 

on the quarter disk in the �irst quadrant of radius √8? 
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