
Efficient SMT-Based Model Checking for

HyperTWTL

Ernest Bonnah1, Luan Viet Nguyen2, and Khaza Anuarul Hoque3

1 Department of Computer Engineering, Baylor University, Waco TX, USA
ernest_bonnah@baylor.edu,

2 Department of Computer Science, University of Dayton, Dayton OH, USA
lnguyen1@udayton.edu,

3 Department of Computer Science, University of Missouri, Columbia MO, USA
hoquek@missouri.edu

Abstract. Hyperproperties extend trace properties to express proper-
ties of sets of traces, and thus, they are increasingly popular in specifying
various security and performance-related properties in domains such as
autonomous, cyber-physical, and robotic systems. Specifically, Hyper-
properties for time window temporal logic (HyperTWTL) are known
for their compactness in specifying robotic systems’ safety and security
requirements. However, the existing model checking approach for Hy-
perTWTL verification relies on automata-based model checking, which
is computationally expensive and suffers from the state-space explosion
problem. This paper introduces a bounded model checking approach for
verifying HyperTWTL specifications using SMT solvers. Specifically, our
proposed verification method reduces the HyperTWTL model checking
problem to a first-order logic satisfiability problem and then uses state-of-
the-art SMT solvers, i.e., Z3 and CVC4, for verification. The feasibility of
the proposed HyperTWTL verification methods is demonstrated through
a Technical Surveillance Squadron (TESS), a Robotic Industrial Inspec-
tion case study, and also a scalability analysis. Our results show that the
proposed method can offer up to 19× speed up and 2× memory efficiency
compared to the traditional automata-based model checking approach.
We also show that the proposed HyperTWTL verification technique can
verify large systems, whereas the traditional HyperTWTL verification
method suffers from state-space explosion problem.

Keywords: Hyperproperties · Bounded Model Checking · Time Window Tem-
poral Logic and Robotics, SMT solver.

1 Introduction

Hyperproperties [13] extend the notion of trace properties [1] from a set of traces
to a set of sets of traces. This allows specifying a wide range of properties related
to information-flow security [20, 32], consistency models in concurrent comput-
ing [7, 18], robustness models in cyber-physical systems [6,19], and also service
level agreements (SLA) [13]. Several types of hyperproperties and their model



checking algorithms have been proposed in the recent past, including Hyper-
LTL [12, 14, 17, 23], HyperSTL [25], HyperMTL [8, 21], and HyperTWTL [9].
These formalisms has been successfully used to specify and verify important re-
quirements in different domains including cyber-physical systems, robotics and
machine learning. Specifically, for time-bounded and sequential tasks, Hyper-
TWTL offers a rich expresiveness and compactness. For instance, consider a
hyperproperty that requires that “for any pair of traces Ã and Ã′, A should hold

for 5 time steps in trace Ã within the time bound [0, 10] and B should also hold

for 3 time steps in trace Ã′ within the same time bound ”. This requirement can
be expressed using HyperTWTL formalism as φ = ∀Ã∀Ã′ ·[H5 AÃ'H

3 BÃ′ ][0,10].
The same requirement can be expressed as a HyperSTL formula as φ = ∀Ã∀Ã′ ·
(F[0,10−5]G[0,5]AÃ)'(F[0,10−3]G[0,3]BÃ′). In HyperMTL this requirement can be

expressed as φ = ∀Ã∀Ã′ ·
∨10−5

i=0 G[i,i+5]AÃ '
∨10−3

i=0 G[i,i+3]BÃ′ .

HyperTWTL extends the classical Time Window Temporal Logic (TWTL) [30]
by allowing explicit and simultaneous quantification over multiple execution
traces. The classical approach for verifying HyperTWTL in [9] relies on an
automata-based model checking. Traditionally, automata-based model check-
ing is known for its high computation time, memory overhead, and may lead
to a state-space explosion. Hence, we propose a more efficient and scalable ap-
proach in this paper. Specifically, we propose an SMT-based approach to verify
HyperTWTL properties by converting the model checking problem to a first-
order logic satisfiability problem. For example, given a HyperTWTL formula
φ = ∀Ã1.∀Ã2 · [H15AÃ1

' H
10BÃ2

][0,20] and a collection of Time Kripke struc-
tures (TKS) M = ïM1,M2ð, where Mi is an identical copy of the given Kripke
structure mapped to the trace variable Ãi, the process to convert both the φ
and M to a first-order logic involves three main steps. First, we compute the
unrolling bound ||φ|| based on the structure of the formula. Secondly, we encode
the path quantifications, initial conditions, the transition relations of each TKS
Mi, and the negation of HyperTWTL formula φ as first-order logic formula rep-
resented by the encoding JMiK||φ|| and J¬φK||ϕ|| respectively. The combination

of two encoded formulae is of the form JM ¬φK||φ|| = [∃1Ã1] · [∃2Ã2] · JM1K||φ|| '

JM2K||φ|| ' J¬ϕK0,||φ||. Lastly, the combined first-order logic formula unrolled to

a depth of ||φ|| is then solved using an off-the-shelf SMT solver. If the approach
returns an affirmative answer, then the SMT solver generates a counterexample.
Though the proposed approach is inspired by SMT-based bounded model check-
ing (BMC), as earlier stated, the unrolling bound is calculated using a given
HyperTWTL formula. This contrasts with the traditional BMC approach for
verifying temporal logic, where an arbitrary unrolling bound is given.

To demonstrate the effectiveness of our approach, we formalize some inter-
esting requirements of two case studies using HyperTWTL. The first case study
we consider is a Technical Surveillance Squadron (TESS) [28], known for provid-
ing collaborative surveillance of designated regions to detect, identify, and locate
potential nuclear explosions. In the second case study, we consider a robotic solu-
tion that automates industrial equipment inspections [2], where robots provide
plant operators the information to maximize equipment uptime and improve

2



safety and efficiency. We use two SMT solvers, CVC4 and Z3, both known for
their industrial application [4, 29], to compare their performance for verifying
the HyperTWTL requirements. Finally, we compare our proposed SMT-based
HyperTWTL verification performance with automata-based HyperTWTL ver-
ification. We observe that our proposed SMT-based approach offers up to 19×
speed up in terms of execution speed and consumes up to 2× less memory when
compared to the automata-based HyperTWTL verification approach. We also
perform experiments to demonstrate the scalability of our approach and show
that we can verify large robotic systems, whereas the automata-based Hyper-
TWTL verification leads to the state-space explosion.

2 Preliminaries

Let AP be a finite set of atomic propositions and Σ = 2AP be the alphabet. We
call each member of Σ an event. We define a timed trace t as a finite sequence
of events from Σ∗, i.e., t = (Äi, ei), (Äi+1, ei+1), · · · (Än, en) ∈ (Zg0 × Σ)∗ where
ÄiÄi+1 · · · Än ∈ Zg0 is a sequence of non-negative integers denoting time-stamps

and the indices i, n ∈ Zg0 denote time-points. We require Äi = 0, Äi f Äi+1, and
for all i, 0 f i f n. For each timed trace t, by t[i].e, we mean ei and by t[i].Ä we
mean Äi. We now define an indexed timed trace as a pair (t, p) where p ∈ Zg0 is
called a pointer. Indexed timed traces allow traversing a given trace by moving
the pointer. Given an indexed timed trace (t, p) and m ∈ Zg0, let (t, p) + m

denote the resulting trace (t, p+m).

2.1 Kripke Structure

We consider timed systems modeled as timed Kripke structures with the as-
signed time elapse on the transitions.

Definition 1. A timed Kripke structure (TKS) is a tupleM = (S, Sinit, ¶, AP, L)
where

start

{a, b} {a}

{a, b}

{a}

{a, b}

S0

S1 S2

S3

S4

S5

1

2

3

1 3

1

2 1 1

1

1

Fig. 1: Timed Kripke structure

– S is a finite set of states;
– Sinit ¦ S is the set of initial states;
– ¶ ¦ S × Zg0 × S is a set of transitions;
– AP is a finite set of atomic propositions;

and
– L : S → Σ is a labelling function on the

states of M.

We require that for each s ∈ S, there
exists a successor that can be reached
in a finite number of transitions. Hence,
all nodes without any outgoing transitions are equipped with self-
loops such that (s, 1, s) ∈ ¶. An exemplary TKS is shown in Fig-
ure 1 where S = {S0, S1, S2, S3, S4, S5}, Sinit = {S0}, ¶ =

3



{(S0, 1, S1), (S0, 2, S3), (S1, 3, S2), (S1, 1, S3), (S2, 1, S4), (S2, 1, S5), (S3, 2, S2),
(S3, 3, S4), (S4, 1, S4), (S4, 1, S5), (S5, 1, S5)}, L(S0) = {}, L(S1) = {a, b},
L(S2) = {a}, L(S3) = {a, b}, L(S4) = {a}, L(S5) = {a, b} and AP = {a, b, c, d}.
A path over a TKS is an finite sequence of states S0S1S2 . . . Sn ∈ Σ∗, where
S0 ∈ Sinit and (Si, di, Si+1) ∈ ¶, for each 0 f i < n. A trace over TKS is
of the form: t = (Ä0, e0)(Ä1, e1)(Ä2, e2) . . . (Än, en), such that there exists a path
S0S1S2 · · · ∈ S∗. Recall an event is of the form (Äi, ei) where Äi ∈ Zg0 and
ei = L(Si).

2.2 HyperTWTL

HyperTWTL [9] is a hyper-temporal logic to specify hyperproperties for Time
Window Temporal Logic (TWTL) [30] by extending TWTL with quantification
over multiple and concurrent execution traces. Below we present the syntax of
HyperTWTL.

Syntax of HyperTWTL: The syntax of HyperTWTL [9] is inductively defined
by the grammar:

φ := ∃Ã · φ | ∀Ã · φ | ϕ

ϕ := H
daÃ | Hd¬aÃ | ϕ1 ' ϕ2 | ¬ϕ | ϕ1 » ϕ2 | [ϕ]I | EÄ · È | AÄ · È

È := H
daÃ,Ä | Hd¬aÃ,Ä | È1 ' È2 | ¬È | È1 » È2 | [È]I,J

where a ∈ AP , Ã is a trace variable from a set of trace variables V and Ä is a
trajectory variable from the set P. Thus, given aÃ,Ä, the proposition a ∈ AP

holds in trace Ã and trajectory Ä (explained in Appendix) at a given time point.
Trace quantifiers ∃Ã, and ∀Ã are interpreted as “there exists some trace Ã” and
“for all the traces Ã”, respectively. Similarly, trajectory quantifiers EÄ and AÄ

allow reasoning simultaneously about different trajectories. The quantifier EÄ

means there exists at least one trajectory Ä that evaluates the relative passage
of time between the traces for which the given inner temporal formula is satisfied.
In contrast, AÄ is interpreted as all trajectories Ä satisfy the inner TWTL formula
regardless of the time passage across traces. The operators H

d, », and [ ]I (as
well as [ ]I,J) represent the hold operator with d ∈ Zg0, concatenation operator,
and within operator respectively, while both I and J are discrete-time constant
intervals of form [Ä, Ä ′], where Ä, Ä ′ ∈ Zg0 and Ä ′ g Ä , respectively and ' and
¬ are the conjunction and negation operators respectively. Trace quantifiers ∃Ã
and ∀Ã, allow for the simultaneous reasoning about different traces. Given a
HyperTWTL formula φ, we denote Vφ (respectively Pφ) as the set of trace
variables (respectively, trajectory variables) quantified in φ. Thus, we say a given
formula φ is closed if for aÃ,Ä in φ, Ã and Ä are quantified in φ (Ã ∈ Vφ and
Ä ∈ Pφ) and no Ã and Ä is quantified twice in φ. The disjunction operator
(() can be derived from the negation and conjunction operators. Likewise, the
implication operator (→) can also be derived from the negation and disjunction
operators.

4



Table 1: Synchronous semantics of HyperTWTL
(T, Π) |= ∃π.ϕ iff ∃t ∈ T · (T, Π[π → (t, 0)]) |= ϕ
(T, Π) |= ∀π.ϕ iff ∀t ∈ T · (T, Π[π → (t, 0)]) |= ϕ

(T, Π) |= H
daπ iff a ∈ t[i].e for (t, p) = Π(π), ∀p ∈ {i, ..., i+ d} ' (t[i+ n].τ−

t[i].τ) g d, for some n > 0 and i g 0

(T, Π) |= H
d¬aπ iff a /∈ t[i].e for (t, p) = Π(π), ∀p ∈ {i, ..., i+ d} ' (t[i+ n].τ−

t[n].τ) g d, for some n > 0 and i g 0
(T, Π) |= φ1 ' φ2 iff ((T, Π) |= φ1) ' ((T, Π) |= φ2)
(T, Π) |= ¬φ iff ¬((T, Π) |= φ)
(T, Π) |= φ1 » φ2 iff ∃i, j, k s.t. i f k f j and k = min k′ | i f k′ f j, (T[i,k], Π) |= φ1 '

((T[k+1,j], Π) |= φ2) for some i, j g 0

(T, Π) |= [φ][x,y] iff ∃i, j, k and k g i+ x, s.t. (T[k,i+y], Π) |= φ ' ((Π)j− (Π)now) g y
for some i, j g 0

Semantics of HyperTWTL: The semantics of HyperTWTL [9] can be divided
into synchronous and asynchronous based on the timestamps in all quantified
traces that match at each point in time or proceed at different speeds, respec-
tively. We denote the set of trace variables used in a given HyperTWTL formula
φ as Vφ. We define a collection of copies of TKS as M = ïMiðÃi∈Vϕ

, where each
Mi is an identical copy of a given TKS used to represent path Ãi. We therefore
denote a set of traces over M as T. Thus, for any given HyperTWTL formula φ,
we interpret T = ïTÃi

ðÃi∈Vϕ
as the tuple of sets of traces with a set TÃi

assigned
to Ãi ∈ Vφ. Thus, for a given collection of TKS M, we define TÃi

as the set
of traces over the trace variable Ãi coming from Mi. For any given set of sets
of traces denoted as T[i,j], we say the evaluation of all the traces in T against
a formula starts from the time-point i g 0 up to and including the time-point
j g i. Both semantics of HyperTWTL are presented below.

Synchronous Semantics of HyperTWTL: We define an assignment Π :
V → (Zg0 × Σ)∗ × Zg0 as a partial function mapping trace variables to time-
stamped traces. Let Π(Ã) = (t, p) denote the time-stamped event from trace t at
position p currently employed in considering trace Ã. We then denote the explicit
mapping of the trace variable Ã to a trace t ∈ T at position p as Π[Ã → (t, p)].
Thus, by Π(Ã) = (t, p), we mean the event from the timed trace t at the position
p is currently used in the analysis of trace Ã. Given the mapping Π, we use
(Π) + k as the kth successor of Π, i.e., the kth timed event of a mapped trace
reached after moving k steps across Π. The hold operator H

daÃ states that the
proposition a will be repeated for d time units in trace Ã. Similarly H

d¬aÃ,
requires that for d time units the proposition a should not occur in trace Ã. The
trace set T satisfies both sub-formulae in ϕ = ϕ1 ' ϕ2 while in ¬ϕ, T does not
satisfy the given formula. A given formula with a concatenation operator in the
form ϕ = ϕ1 » ϕ2 specifies that every t ∈ T should satisfy ϕ1 first and then
immediately ϕ2 must also be satisfied with one-time unit difference between
the end of execution of ϕ1 and the start of execution of ϕ2. The trace set T

must satisfy ϕ between the time window within the time window [Ä, Ä ′] given
ϕ = [ϕ][Ä,Ä

′]. Given Π, we define the the current instant denoted as (Π)now and

5



the jth instant denoted as (Π)j as follows [8]:

(Π)now = max
Ã∈dom(Π)

{t[p].Ä | for Π(Ã) = (t, p)}

(Π)j = min
Ã∈dom(Π)

{t[p+ j].Ä | for Π(Ã) = (t, p)}

We say a collection of traces T generated over a collection of TKS M sat-
isfies a synchronous HyperTWTL formula φ if (T, Π) |=s φ. We present the
synchronous semantics of HyperTWTL in Table 1.

Asynchronous Semantics of HyperTWTL: To define the Asynchronous
semantics of HyperTWTL, we adopt the concept of trajectory as used in [23].
For a given HyperTWTL formula, a trajectory v = vivi+1vi+2 · · · is a sequence
of subsets of Pφ, i.e. vi ¢ Pφ, ∀i g 0. We call a trajectory a fair trajectory
if, for a trace variable Ã ∈ Pφ, there are infinitely many positions i such that
Ã ∈ vi. We denote RP as the set of all fair trajectories for indices from the set of
trajectories P. We now define the trajectory mapping Γ : Pφ → Rdom(Γ ), where
dom(Γ ) ¢ Pφ for which Γ is defined. We then denote the explicit mapping of
the trajectory variable Ä to a trajectory v as Γ [Ä → v]. Given (Π,Γ ) where Π
and Γ are the trace mapping as used in the definition of Synchronous semantics
of HyperTWTL and trajectory mapping respectively, we use (Π,Γ ) + k as the
kth successor of (Π,Γ ), i.e. the kth reached can be reached after k steps from
(Π,Γ ). In defining the semantics of Asynchronous HyperTWTL, we employ the
asynchronous assignment Π : Vφ×Pφ → T×Zg0 which maps each pair of trace
variable and trajectory variable, (Ã, Ä), into an indexed trace. Given a trace map-
ping Π, a trace variable Ã, a trajectory variable Ä, a trace t, and a pointer n,
we denote the assignment that coincides with Π for every pair except for (Ã, Ä)
which is mapped to (t, n) as Π[(Ã, Ä) → (t, n)]. By Π(Ã, Ä) = (t, p), we mean the
event from the timed trace t at the position p is currently used in the analysis
of trace and trajectory, Ã and Ä, respectively.

Let us recall that the hold operator H
daÃ,Ä states that the proposition a is

to be repeated for d time units in trace Ã and trajectory Ä. Similarly H
d¬aÃ,Ä,

requires that for d time units the proposition a should not be repeated in trace
Ã and trajectory Ä. The trace set T satisfies both sub-formulae in ϕ = È1 ' È2

while in ¬È, T, does not satisfy the given formula. A given formula with a con-
catenation operator in the form È1 »È2 specifies that every t ∈ T should satisfy
ϕ1 first and then immediately ϕ2 must also be satisfied with one-time unit dif-
ference between the end of execution of ϕ1 and the start of execution of ϕ2. The
intended meaning of [ϕ]I,J where I = [Ä, Ä ′] and J = [x, y] is the trace set T

must satisfy ϕ within the time window [Ä, Ä ′] while the difference in time elapse
between any pair of traces in the set T must be between [x, y].

For any given HyperTWTL formula φ we denote ∆ as a map from Vφ → Zg0

returns the time duration for each Ã in dom(∆). We say ∆ ∈ [Ä, Ä ′] whenever
for all Ã ∈ dom(∆), ∆(Ã) ∈ [Ä, Ä ′]. Similarly, we say ∆ ∈ [x, y] whenever for
all distinct Ã, Ã′ ∈ dom(∆), |∆(Ã′) − ∆(Ã)| ∈ [x, y]. Given two indexed trace
assignments Π and Π ′ defined within the same domain dom(Π) = dom(Π ′), we

6



Table 2: Asynchronous semantics of HyperTWTL
(T, Π, Γ ) |=a ∃π.ϕ iff ∃t ∈ T · (T, Π[(π, ρ) → (t, 0)], Γ ) |=a ϕ for all ρ
(T, Π, Γ ) |=a ∀π.ϕ iff ∀t ∈ T · (T, Π[(π, ρ) → (t, 0)], Γ ) |=a ϕ for all ρ
(T, Π, Γ ) |=a Eρ.ϕ iff ∃v ∈ Rrange(Γ ) : (T, Π, Γ [ρ→ v]) |=a ϕ
(T, Π, Γ ) |=a Aρ.ϕ iff ∀v ∈ Rrange(Γ ) : (T, Π, Γ [ρ→ v]) |=a ϕ

(T, Π, Γ ) |=a H
daπ,ρ iff a ∈ t[i].e for (t, p) = Π(π, ρ), ∀p ∈ {i, ..., i+ d} '

(t[i+ n].τ − t[i].τ) g d, for some n > 0 and i < d

(T, Π, Γ ) |=a H
d¬aπ,ρ iff a /∈ t[i].e for (t, p) = Π(π, ρ), ∀p ∈ {i, ..., i+ d} '

(t[i+ n].τ − t[i].τ) g d, for some n > 0 and i < d
(T, Π, Γ ) |=a ψ1 ' ψ2 iff ((T, Π, Γ ) |=a ψ1) ' ((T, Π, Γ ) |=a ψ2)
(T, Π, Γ ) |=a ¬ψ iff ¬((T, Π, Γ ) |=a ψ)

(T, Π, Γ ) |=a ψ1 » ψ2 iff
∃i, j, k s.t. i f k f j and k = min k′ | i f k′ f j,
((T[i,k], Π, Γ ) |=a ψ1), ' ((T[k+1,j], Π, Γ ) |=a ψ2)
for some i, j g 0

(T, Π, Γ ) |=a [ψ][τ,τ
′],[x,y] iff ∃i, j, k s.t. k g i+ τ , (T[k,i+τ ′], Π, Γ ) |=a ψ '

|∆((Π + j)−Π)| ∈ [τ, τ ′] ' |∆j((Π,Γ ), (Π ′, Γ ′))| ∈ [x, y],
for some i, j > 0

denote ∆(Π,Π ′)(Ã) as the map from Vφ → Zg0 that returns the time duration
for each trace assignment as ∆(Π,Π ′)(Ã) = (Π ′(Ã)).Ä − (Π(Ã)).Ä . Likewise,
given two distinct indexed trace and trajectory assignments (Π,Γ ) and (Π ′, Γ ′)
of the same domain, we denote ∆j((Π,Γ ), (Π ′, Γ )) as the duration of time that
elapses from the current evaluation instant to the evaluation instance obtained
after j steps. This is defined formally as ∆j((Π,Γ ), (Π ′, Γ ′)) = ∆(Π,Π ′)(Ã),
where (Π ′, Γ ′) = (Π,Γ )j . Now, we denote the satisfaction of asynchronous se-
mantics of HyperTWTL formula φ over trace mapping Π, trajectory mapping
Γ , and a set of traces T as (T, Π, Γ ) |=a φ. The asynchronous semantics of
HyperTWTL is presented in Table 2.

3 SMT-based Model Checking for HyperTWTL

Given a collection of TKS M, a HyperTWTL formula φ, and an unrolling bound
||φ|| (discussed in the next section), the model checking problem is to determine
whether M |= φ. We assume that the input formula φ has been converted into
a negation-normal form (NNF) denoted as ¬φ. The model checking approach
takes as an input NNF of the HyperTWTL formula ¬φ and TKS M. Let us
recall from Section 2 that φ can be either a synchronous or an asynchronous
HyperTWTL formula. In the latter case, we need to translate the asynchronous
HyperTWTL formula to an equivalent synchronous HyperTWTL formula. To
achieve this, we first generate a set of invariant traces inv(T) from a trace set
T generated over the TKS M. We then construct an equivalent synchronous
formula φs from the asynchronous formula φs such that T |=a φa if and only if
inv(T) |=s φs. For more details on this approach of converting an asynchronous
HyperTWTL formula to an equivalent synchronous HyperTWTL formula, we
refer the readers to the Appendix. Next, the TKS M and NNF of the Hyper-
TWTL formula ¬φ are fed into an SMT encoder to generate a first-order logic

7



formula of the form JM,¬φK||φ|| by encoding the initial condition, the transi-

tion relations, and unrolling M and ¬φ to a depth of ||φ||. Finally, we utilize
off-the-shelf SMT solvers to solve the first order logic formula JM,¬φK||φ|| and

determine if M |= ¬φ. If the SMT returns true, then a counterexample has been
identified, otherwise, M |= φ holds.

3.1 Calculating Unrolling Bound from HyperTWTL

The satisfaction of a HyperTWTL formula can be decided within a fixed time
bound. Let ||φ|| denote the maximum time needed to satisfy the HyperTWTL
formula φ and it can be computed as follows:

||ϕ|| =































||ϕ|| if ϕ ∈ {∃π · ϕ, ∀π · ϕ}

d if ϕ ∈ {Hdaπ,H
d¬aπ}

max(||φ1||, ||φ2||) if ϕ ∈ {φ1 ' φ2, φ1 ( φ2}
||φ|| if ϕ = ¬φ

||φ1||+ ||φ2||+ 1 if ϕ = φ1 » φ2

τ ′ if ϕ ∈ {[φ1]
[τ,τ ′]}

(1)

We use the computed deadline ||φ|| as the unrolling bound to determine the
satisfiability of a HyperTWTL formula. Note, this contrasts the traditional BMC
techniques which uses a given arbitrary unrolling bound.

Example 1. Let us consider a HyperTWTL formula φ as follows.

φ1 = ∀Ã1∃Ã2 · [H
2aÃ1

'H
2aÃ2

][0,2] » [H2aÃ1
(H

2bÃ2
][3,7] (2)

Using Equation (1), we can calculate ||φ1|| = 10 time units.

3.2 Encoding the TKS

{a}start {b}

S0 S1
1

1

1

Fig. 2: TKS M

The encoding of a collection of TKS M upto bound
||φ|| into a first-order logic formula is inspired by the
BMC encoding of LTL [3]. Intuitively, the states of
the M are represented by a set of variables S. Let Si

be new copies of S, where i ∈ [0, ||φ||] which captures
the evolution of states over time. Consider the Hyper-
TWTL formula φ1 in Equation (2) above, we use two identical copies of a given
TKS to represent different paths Ã1 and Ã2 on the TKS, denoted as M1 and
M2, i.e. M = ïM1,M2ð. Therefore, for each copy Mi, we unroll the transition
relation JMiK||φ1||

as follows.

JMiK||φ1||
= I(S0) '

||φ1||−1
∧

i=0

R(Si, Si+1) (3)

In Equation (3), I(S0) is the characteristic function that encodes the initial
states and R(Si, Si+1) is the function that encodes transition relation for states
in Si and their successor states in Si+1 between time steps i and i+ 1.

8



Table 3: Encoding the inner TWTL formula
JHd aπK

i,||ϕ|| := JHdaπK
i
∀i f ||ϕ||

JHd ¬aπK
i,||ϕ|| := JHd¬aπK

i
∀i f ||ϕ||

Jφ1 ' φ2Ki,||ϕ|| := Jφ1Ki,||ϕ|| ' Jφ2Ki,||ϕ||, ∀i f ||ϕ||

J¬φK
i,||ϕ|| := ¬JφK

i,||ϕ||, ∀i f ||ϕ||

Jφ1 » φ2Ki,||ϕ|| := ∃k = argminifkf||ϕ|| Jφ1Ki,k'

Jφ2Kk+1,||ϕ|| ∀i f ||ϕ||

J[φ][τ,τ
′]K

i,||ϕ|| := ∃k g i+ τ, s.t.JφK
k,i+τ

' (||ϕ|| − i g τ ′),

∀i f ||ϕ||

Example 2. Consider the Kripke structure in Figure 2 and a HyperTWTL
formula

φ2 = ∀Ã1∀Ã2 · [H
3aÃ1

'H
3bÃ2

][0,3] (4)

For a bound ||φ2|| = 3, we unroll the transition relation for copy M1 as follows.

JM1K||3|| = I(S0) 'R(S0, S1) 'R(S1, S2) 'R(S2, S3) (5)

3.3 Encoding the inner TWTL Formula

Let φ be a HyperTWTL formula of the form φ = Q1Ã1 . . . QnÃn · ϕ where each
Qj ∈ {∀, ∃} (j ∈ [1, n]) and ϕ is the inner TWTL formula. For each j ∈ [1, n],
the path quantification QjÃj is represented by

[QjÃj ] = QjS0QjS1 · · ·QjS||φ||−1 (6)

Given the negated formula ¬φ, we unroll the TWTL formula on a path Ã, with
bound ||φ|| resulting in a first-order logic formula which can be inductively de-
fined in Table 3.

Example 3. Consider the HyperTWTL formula φ2 in Equation (4) above. The
negation of Equation (4) (refer Theorem 1) can be expressed as follows.

¬φ2 = ∃Ã1∃Ã2 · [H
3¬aÃ1

(H
3¬bÃ2

][0,3]
︸ ︷︷ ︸

¬ϕ

(7)

From the structure of Equation (7), the inner TWTL formula ¬ϕ is given as
¬ϕ = [H3¬aÃ1

(H
3¬bÃ2

][0,3]. Based on Table 3, unrolling ¬ϕ with a computed
bound ||¬φ2|| = 3 can be expressed as follows.

J¬ϕK0,[3] = [H3¬aÃ1
(H

3¬bÃ2
]
[0,3]
0 ' [H3¬aÃ1

(H
3¬bÃ2

]
[0,3]
1

' [H3¬aÃ1
(H

3¬bÃ2
]
[0,3]
2 ' [H3¬aÃ1

(H
3¬bÃ2

]
[0,3]
3

(8)

9



3.4 Combining the Encodings

Given a HyperTWTL formula of the form φ = Q1Ã1 . . . QnÃn ·ϕ and a collection
of TKS M = ïM1, · · · ,Mnð, the verification problem of HyperTWTL specifica-
tions can be formulated by constructing the first-order logic formula JM,¬φK||φ||

as follows.

JM,¬ϕK||ϕ|| = [Q1π1] . . . [Qnπn] · JM1K||ϕ|| □1 . . . JMnK||ϕ|| □n J¬φK0,||ϕ|| (9)

where [QjÃj ] for j ∈ [1, n] is defined in (6), JMjK||φ|| for j ∈ [1, n] is defined in

(3), □i = ' if Qi = ∃, and □i = → if Qi = ∀, for i ∈ Vφ and ¬ϕ is the negated
inner TWTL formula ϕ of the HyperTWTL formula φ.

Example 4. Let us consider the Kripke structure in Fig. 1 and the HyperTWTL
formula φ = ∀Ã1∀Ã2 · [H3aÃ1

' H
3bÃ2

][0,3] with ||φ|| = 3. Let M = ïM1,M2ð
denote identical collection of the Kripke structure representing paths Ã1 and
Ã2 respectively. The resulting combined first-order logic formula to be solved is
given as follows.

JM,¬ϕK3 = [∃1π1] · [∃2π2] · JM1K3 ' JM2K3 ' J¬φK0,3 (10)

Theorem 1. Given a collection TKS M, a HyperTWTL formula φ with an
unrolling bound of ||φ|| and sets of traces T over M, if JM,¬φK||φ|| is satisfiable,

i.e. (T, Π) ̸|=s φ, then M ̸|=s φ.

4 Experimental Results

To demonstrate the effectiveness of our approach, we consider two case studies
and compare their performance with the automata-based HyperTWTL model
checking approach [9]. We present the details of these case studies and the ob-
tained results in the following sections.

4.1 Case Study I: Autonomous Security Robots

Our Case Study-1 resembles a security patrol within a community with multi-
ple autonomous security robots [24]. In this case study, the autonomous security
robots are augmented with intelligent video surveillance systems that move along
patrol routes to different areas while identifying potential intruders, incidents,
crimes, etc., and relaying information to an operator in a remote base station for
data processing. Let us consider an environment to be patrolled in Figure 3 which
is composed of 2 initial positions I1 and I2, 2 charging stations C1 and C2, 12 al-
lowable states P1, . . . , P12 and 4 regions of interest to be patroled R1 to R4. Each
patrol starts from any of the initial states (grey) and subsequently proceeds along
the patrol routes through the allowable states (white). On each patrol, it is re-
quired each security robot surveils all regions of interest (blue) before proceeding
to any of the charging stations (yellow). We abstract the patrol environment into

10



Table 4: Requirements expressed in HyperTWTL in Case Study I
No. Description HyperTWTL Specification

1
Mutation
Testing

ϕ1 = ∃π1∀π2 · [Hd tmπ1
' H

d t¬m
π2

][0,T9] ' [H1 Iπ1
= H

1 Iπ2
][0,T1]»

[H1 R1π1
' H

1 R1π2
][T2,T3]» [H1 R2π1

' H
1 R2π1

][T4,T5]»

[H1 R3π2
' H

1 R3π2
][T6,T7] » [H1 R4π1

' H
1 R4π2

][T8,T9] »

[H1 Cπ1
̸= H

1 Cπ2
][T10,T11], where d = T9

2 Opacity

ϕ2 = ∃π1∃π2 · [H1 Iπ1
' H

1 Iπ2
][0,T1] » [H1 R1π1

' H
1 R1π2

][T2,T3]

» [H1 R2π1
' H

1 R2π1
][T4,T5]» [H1 R3π2

' H
1 R3π2

][T6,T7]

» [H1 R4π1
' H

1 R4π2
][T8,T9]) » [H1 Cπ1

' H
1 Cπ2

][T10,T11]

3
Side-Channel

Timing
Attacks

ϕ3 = ∀π1∀π2 ·AρEρ
′ · [H1 Iπ1,ρ ' H

1 Iπ2,ρ
′ ][0,T1] → [H1 R1π1,ρ '

H
1 R1π2,ρ

′ ][T2,T3] » [H1 R2π1,ρ ' H
1 R2π1,ρ]

[T4,T5] »[H1 R3π2,ρ
′ '

H
1 R3π2,ρ

′ ][T6,T7] » [H1 R4π1,ρ ' H
1 R4π2,ρ

′ ][T8,T9] » [H1 Cπ1,ρ '

H
1 Cπ2,ρ

′ ][T10,T11]

4
Non-

Interference

ϕ4 = ∀π1∃π2 ·Aρ · [H1 Iπ1,ρ ̸= H
1 Iπ2,ρ]

[0,T1] → [H1 R1π1,ρ '

H
1 R1π2,ρ]

[T2,T3] » [H1 R2π1,ρ ' H
1 R2π1,ρ]

[T4,T5]» [H1 R3π2,ρ '

H
1 R3π2,ρ]

[T6,T7] » [H1 R4π1,ρ ' H
1 R4π2,ρ]

[T8,T9] » [H1 Cπ1,ρ =

H
1 Cπ2,ρ]

[T10,T11]

P1

I1start

I2start

P3

P2

P4

R1

P5

R2

P6

R3

P7

P8

R4

P9

P10

P11

P12

C1

C2

S0

S1

S2

S3

S4

S5

S7

S9

S11

S13

S15

S16

S17

S6

S8

S10

S12

S14

S18

S19

1

1

1

1

11

2

2

11

2

2

1

1

11

1

1

1

1

2 2

1

1

1

1

11

2

2

22

1

1

1

1

2 2

1

1

11

2

2

22

22

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 3: The Patrol environment

a weighted graph where the nodes represent the initial states, charging stations,
allowable states, and regions of interest, while the edges represent transitions
between the nodes, and the assigned weights represent travel times associated
with the transitions. We further abstract the motion of each security robot into
a transition system derived from the patrol environment by splitting all transi-
tions to have an edge weight of 1 time unit. Based on this case study, we consider
4 different scenarios with 4 different HyperTWTL specifications, including mu-
tation testing, opacity, side-channel attacks and non-interference. We formalize
these requirements in HyperTWTL as follows. Note, in φ2 and all subsequent
formulae, “=” is not an arithmetic operator but a notation of simplification such
that [H1 IÃ1

= H
1 IÃ2

] stands for
∧

i∈I([H
1 iÃ1

'H
1 iÃ2

]).

Requirement 1 (Mutation testing): An interesting application of hyperprop-
erty is the efficient generation of test cases for mutation testing. Let us assume
that traces from all robots within the surveillance system are labeled as either

11



Table 5: Verification results of HyperTWTL properties for Case Study I
HyperTWTL

Req.
Description Verdict

Z3 CVC4 AMC
Time

(Seconds)
Memory
(MB)

Time
(Seconds)

Memory
(MB)

Time
(Seconds)

Memory
(MB)

ϕ1
Mutation
Testing

SAT 1.450 8.604 0.844 10.554 16.103 16.893

ϕ2 Opacity UNSAT 1.453 8.691 0.892 10.564 15.952 17.110

ϕ3
Side-Channel

Timing Attacks
SAT 1.427 8.613 0.839 10.415 16.186 16.950

ϕ4 Non-Interference SAT 1.421 8.611 0.885 10.425 16.225 16.832

Table 6: Verification time for HyperTWTL properties for Case Study I

HyperTWTL
properties

Z3
(Seconds)

CVC4
(Seconds)

AMC
(Seconds)

Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||)
51 75 100 125 51 75 100 125 51 75 100 125

ϕ1 1.450 2.588 3.629 4.741 0.844 1.775 2.772 3.682 16.103 17.165 18.386 19.507

ϕ2 1.453 2.541 3.652 4.782 0.892 1.744 2.628 3.671 15.952 16.285 17.733 18.895

ϕ3 1.427 2.573 3.681 4.794 0.839 1.710 2.631 3.766 16.189 17.085 18.386 19.297

ϕ4 1.421 2.595 3.648 4.766 0.885 1.725 2.711 3.729 16.225 17.198 18.738 19.098

mutated (tm) or non-mutated (t¬m). We map tm to Ã1 and all other non-mutated
traces t¬m to Ã2. This requirement guarantees that even if Ã2 starts from the
same initial state (I1 or I2) as Ã1, they eventually proceed to different charging
states (C1 or C2). This can be formalized as a synchronous HyperTWTL formula
φ1 as shown in Table 4.

Requirement 2 (Opacity): Information-flow security policies define what
users can learn about a system while (partially) observing the system. A system
is said to be opaque if it meets two requirements: (i) there exist at least two
executions of the system mapped to Ã1 and Ã2 with the same observations but
bearing a distinct secret, and (ii) the secret of each path cannot be accurately
determined only by observing the system. For example, let the surveillance route
be secret, and the initial state I1 or I2 be the only information a system user
can observe. This can be formalized as a synchronous HyperTWTL formula φ2

as shown in Table 4.

Requirement 3 (Side-channel timing attacks): A side-channel timing at-
tack is a security threat that attempts to acquire sensitive information from the
surveillance mission by exploiting the execution time of the mission. Let us as-
sume two security robots start from any initial states I1 or I2 simultaneously,
and their executions are mapped to Ã1 and Ã2, respectively. To design a coun-
termeasure against this attack, it is required that for any pair of executions, if
both robots start from any initial states simultaneously, they should reach the
charging state C1 or C2 within close enough time after finishing their surveil-
lance tasks. This can be formalized as an asynchronous HyperTWTL formula
φ3 as shown in Table 4.

12



Table 7: Memory consumption for HyperTWTL verification for Case Study I

HyperTWTL
properties

Z3
(MB)

CVC4
(MB)

AMC
(MB)

Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||)
51 75 100 125 51 75 100 125 51 75 100 125

ϕ1 8.604 13.965 20.091 24.214 10.554 16.117 23.343 27.868 17.933 19.573 26.304 32.830

ϕ2 8.691 13.883 20.082 24.253 10.564 16.065 22.957 27.748 16.057 18.463 25.457 31.487

ϕ3 8.613 13.834 20.051 24.269 10.415 16.219 23.117 27.445 17.578 19.931 26.647 31.608

ϕ4 8.611 13.840 20.067 24.283 10.425 16.269 23.002 27.678 17.711 19.156 26.483 31.372

Requirement 4 (Non-interference): Non-interference is a security policy
that seeks to restrict the flow of information within a system. This policy re-
quires that low-security variables be independent of high-security variables, i.e.,
one should not be able to infer information about a high-security variable by ob-
serving low-security variables. For a set of traces, let us assume that the initial
state I1 or I2 is a high variable (high security) and paths from initial states to
charging states C1 or C2 through R1, . . . , R6 denote low variable (low security).
The surveillance system satisfies non-interference if, for all executions, there ex-
ists another execution that starts from a different high variable (i.e., the initial
states are different), and at the end of the mission, they are in the same low vari-
able states (i.e., charging states C1 or C2 are the same). This can be formalized
as an asynchronous HyperTWTL formula φ4 as shown in Table 4.

4.2 Case Study 1: Experimental Results

The conversion from the TKS and the HyperTWTL specifications to first-order
logic expressions (resembling Equation (9)) is implemented in Python 3.7. The
obtained first-order logic formula is then fed to Z3 and CVC4 SMT solvers for
verification on a Windows 10 system with 64 GB RAM and Intel Core(TM)
i9-10900 CPU (3.70 GHz). Z3 and CVC4 are widely known for their industrial
applications [4,29]. The following time bounds are considered for the verification
of all the HyperTWTL properties in Table 4: T1 = 1, T2 = 2, T3 = 3, T4 =
4, T5 = 7, T6 = 8, T7 = 9, T8 = 10, T9 = 12, T10 = 13 and T13 = 15. Since the
time bounds are the same for HyperTWTL formulae from φ1–φ4, their unrolling
bound is also the same, i.e., ||φ|| = 51.

In the first set of experiments, we verify the HyperTWTL specifications us-
ing the Z3 and CVC4 SMT solvers and compare them with the automata-based
model checking (AMC) approach in [9]. The obtained results are shown in Ta-
ble 5. Note, since φ3 and φ4 are asynchronous HyperTWTL specifications, we
convert them to equivalent synchronous HyperTWTL specifications following
the method described in [9] before running these experiments. We observe that
specifications φ1, φ3 and φ4 were satisfied using both Z3 and CVC4 as well as
the AMC approach, whereas φ2 was unsatisfied. We also observe that the veri-
fication time of the HyperTWTL formulae never exceeded 1.453 seconds in Z3
and 0.892 seconds in CVC4. In contrast, it took up to 16.225 seconds in the
AMC approach to verify these properties. This shows a 11× and 19× speed up
for Z3 and CVC4, respectively, regarding execution time. Regarding the memory

13



Table 8: Requirements expressed in HyperTWTL in Case Study II
No. Description HyperTWTL Specification

5
Shortest

Path

ϕ5 = ∃π1∀π2. [H
1 Sπ1

' H
1 Sπ2

][0,T1] » [H1 E1π1
'

H
1 E1π2

][T2,T3] » [H1 E2π1
' H

1 E2π2
][T4,T5] » [H1 E3π1

'

H
1 E3π2

][T6,T7] » [H1 E4π1
' H

1 E4π2
][T8,T9] » [H1 E5π1

'

H
1 E5π2

][T10,T11] » [H1 E6π1
' H

1 E6π2
][T12,T13] »

([H1 Lπ2
][T14,T15] ' [H1 Lπ1

] → [H1 Lπ2
][T14,T15])

6 Symmetry

ϕ6 = ∃π1∀π2 · [H1 Sπ1
' H

1 Sπ2
][0,T1] » [H1 E1π1

'

H
1 E1π2

][T2,T3] » [H1 E2π1
' H

1 E3π1
][T4,T7] »

[H1 E4π1
' H

1 E5π2
][T6,T11] » [H1 E6π1

' H
1 E6π2

][T12,T13]»

[H1 Lπ1
' H

1 Lπ2
][T14,T15]

7
Lineariz-
ability

ϕ7 = ∀π1∃π2 · [H1 Sπ1
= H

1 Sπ2
][0,T1] » [H1 E1π1

'

H
1 E1π2

][T2,T3] » [H1 E2π1
' H

1 E2π2
][T4,T5] » [H1 E3π1

'

H
1 E3π2

][T6,T7] » [H1 E4π1
' H

1 E4π2
][T8,T9] » [H1 E5π1

'

H
1 E5π2

][T10,T11] » [H1 E6π1
' H

1 E6π2
][T12,T13] » [H1 Lπ1

=

H
1 Lπ2

][T14,T15]

consumption, verifying these specifications using Z3 and CVC4 never exceeded
8.691 MB and 10.564 MB, respectively. In contrast, AMC consumed up to 17.110
MB of memory. This shows that our SMT-based verification approach is 2× and
1.6× more memory-efficient while using Z3 and CVC4, respectively.

In the second set of experiments, we evaluate the performance of Z3 and
CVC4 solvers for verifying HyperTWTL properties against different unrolling
bounds, i.e., analyze the impact of ||φ|| on the verification performance. For this,
we vary the ||φ|| in the range of 51 to 125 for φ1–φ4 and record their respective
verification time and memory as shown in Tables 6 and 7. Table 6 shows that
CVC4 is faster than Z3 and the AMC approach regarding verification time. For
instance, while verifying φ1 for ||φ|| = 125, Z3 and AMC approach take 4.741
seconds and 19.507 seconds respectively. In contrast, verifying the same property
for ||φ|| = 125 using CVC4 takes only 3.682 seconds. This shows that CVC4
is faster than both the Z3 and AMC approaches. Similar pattern is observed
while verifying φ4 for ||φ|| = 75. Z3 and AMC approaches take 2.595 seconds
and 18.738 seconds, respectively, whereas CVC4 takes only 1.724 seconds. A
similar trend is also observed for the rest of the HyperTWTL properties. We
also observe that execution time increases linearly for verifying HyperTWTL
properties against increasing unrolling bounds, irrespective of the techniques
used for verification.

Consequently, as shown in Table 7, we observe that Z3 consumes less mem-
ory than CVC4 and the AMC for verifying the HyperTWTL properties. For
instance, while verifying φ2 for ||φ|| = 100, CVC4 and AMC consume 22.957
MB and 25.457 MB in memory, respectively. In contrast, verifying the same
property for ||φ|| = 100 using Z3 takes 20.082 MB. This shows that Z3 is more
memory efficient than CVC4 and, of course, AMC. Similarly, while verifying
φ4 for ||φ|| = 51, CVC4 and the AMC consume 10.425 MB and 17.711 MB in
memory, respectively, whereas Z3 consumes only 8.611 MB. A similar trend of
memory consumption is observed for the rest of the HyperTWTL specifications.
Indeed, we also observe a linear trend in memory consumption with increasing
HyperTWTL unrolling bound irrespective of the verification method used.

14



4.3 Case Study II: Industrial Inspection Robots

A1S1start

E1

A3

E2

A2S2start

A4

A5

E3

A6

E4

A7

E5

A8

A9

E6

A10

L1

L2

S1

S2

S3

S5

S7

S8

S9

S11

S13

S15

S16

S18

S4

S6

S10

S12

S14

S17

S19

S20

1

1

2

2

11

2

2

1

1

11

1

1

2

2

11

1

1

2

2

11

1

1

11

1

1

11

2

2

22

1

1

11

1

1

1

1

22

1

1

11 1

1

1

22

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4: The Inspection environment

To further demonstrate
the efficiency of the pro-
posed verification algo-
rithm, we consider case
study II which resem-
bles a real-world end-to-
end robotic solution that
automates industrial in-
spections [2]. In this case
study, robots are used to
monitor complex installa-
tions of energy and in-
dustrial processing plants
to provide up-to-date and
reliable data on plant ma-
chinery to enhance indus-
trial operations. Plant op-
erators use the collected data to maximize equipment uptime, enhance opera-
tions, and improve safety while reducing operations costs. Consider the floor of
the plant to be routinely inspected in Figure 4 which is composed of 2 initial
positions S1 and S2, 6 equipment to be routinely inspected E1, · · · , E6, 2 land-
ing stations L1 and L2, and 10 allowable states A1, · · · , A10. On each inspection
routine, the robot starts from any of the initial states (green), proceeds to collect
data from installed equipment (yellow) on the plant floor, and then finally to the
landing states (blue). We abstract the inspection environment into a weighted
graph where the nodes represent the initial states, landing stations, allowable
states, and installed equipment, while the edges represent transitions between
the nodes, and the assigned weights represent travel times associated with the
transitions. Based on this case study, we consider 3 different scenarios with 3
different HyperTWTL specifications that include optimality, symmetry, and lin-
earizability.

Requirement 5 (Shortest path): Optimality requirements are important hy-
perproperties in robotic applications. One such requirement is finding the short-
est path over the human-robot collaboration environment. Let us consider a sce-
nario where a robot starts the inspection from any of the initial states S1 or S2,
followed by an inspection and gathering data from equipment E1, E2, E3, E4, E5,
and E6. After gathering data from all installed equipment, the robot finally pro-
ceeds to any of the landing states L1 and L2. Given a set of executions, there
exists an execution mapped to Ã2 that reaches a landing state from the initial
states before any other execution mapped to Ã1. This can be formalized as a
synchronous HyperTWTL formula φ5 as shown in Table 8.

15



Table 9: Verification results of HyperTWTL properties for Case Study II
HyperTWTL

Req.
Description Verdict

Z3 CVC4 AMC
Time

(Seconds)
Memory
(MB)

Time
(Seconds)

Memory
(MB)

Time
(Seconds)

Memory
(MB)

ϕ5
Shortest

Path
SAT 5.112 10.423 4.587 12.401 18.143 19.860

ϕ6 Symmetry SAT 5.985 10.258 4.937 12.537 18.353 20.315

ϕ7 Linearizability UNSAT 5.674 10.695 4.185 12.118 19.058 21.865

Requirement 6 (Symmetry): Let us assume that two robots are available
to inspect and gather data from equipment E1, · · ·E6. In this case, one robot
must inspect and gather data from equipment E1, E2, E4, and E6, while the
other robot should inspect and gather data from equipment E1, E3, E5, and E6.
We assume E2 and E4 are mapped to Ã1 if and only if E3 and E5 are already
mapped to Ã2 and vice-versa. This can be formalized as a synchronous Hyper-
TWTL formula φ6 as shown in Table 8.

Requirement 7 (Linearizability): The principle underlying linearizability is
that the whole system operates as if executions from all human-robot collabora-
tions are from one collaboration. Thus, linearizability is a correctness condition
that guarantees consistency across concurrent executions of a given system. Any
pair of traces must occupy the same states within the given mission time for
the surveillance mission. At the same time, it is also essential to ensure that the
mission’s primary goal to inspect and gather data from installed equipment is
completed before proceeding to the landing states L1 or L2 is not violated. This
can be formalized as a synchronous HyperTWTL formula φ7 as in Table 8.

4.4 Case Study II: Experimental Results

All experiments are performed in the same computing environment and follow
the same procedure as case study I. The following time bounds are considered
for the verification of all the HyperTWTL properties in Table 8: T1 = 1, T2 =
2, T3 = 4, T4 = 5, T5 = 8, T6 = 9, T7 = 13, T8 = 14, T9 = 19, T10 =
20 , T11 = 23 , T12 = 24 , T13 = 26 , T14 = 27, and T15 = 29. Since the time
bounds are the same for HyperTWTL formulae from φ5–φ7, their unrolling
bound is also the same, i.e., ||φ|| = 129. Similar to case study 1, we verify the
HyperTWTL specification using Z3 and CVC4 SMT solvers and compare them
with the automata-based model checking (AMC) approach in [9]. The obtained
results for case study II are shown in Table 9. From Table 9, we observe that
φ5 and φ6 were satisfied using Z3, CVC4 and AMC whereas φ7 was unsatisfied.
Once again, we observe that the verification time never exceeded 5.985 seconds
in Z3, 4.937 seconds in CVC4, and 19.058 seconds in AMC. This shows a 3.55×

and 3.96× speed up for Z3 and CVC4, respectively, regarding execution time. We
also observe that while verifying the above specifications, the memory consumed
never exceeded 10.695MB in Z3, 12.537 MB in CVC4, and 21.865 MB in AMC.

16



Table 10: Scalability Analysis for SMT-based Model Checking for HyperTWTL
TKS
size

Unrolling
bound
||ϕ||

Z3 CVC4 AMC
Time
(s)

Memory
(MB)

Time
(s)

Memory
(MB)

Time
(s)

Memory
(MB)

202 51 1.45 8.60 0.84 10.33 16.10 17.93

204 100 115.46 25.81 73.35 42.10 692.20 151.62

206 150 1128.04 105.83 619.07 219.76 2145.82 802.73

208 200 4500.88 296.32 2721.56 532.91 - -

2010 250 11978.13 1074.41 8859.02 1933.84 - -

Once again, this shows that our SMT-based verification approach is 2× and 1.8×

more memory-efficient while using Z3 and CVC4, respectively.

5 Scalability Analysis

In our last set of experiments, we evaluate the scalability of our proposed ver-
ification approach by varying the size of TKS T and verifying them using our
approach vs. the AMC approach. The size of the T ranges from 202 to 2010

with randomly generated transitions. For this experiment, we consider φ2 as the
specification and vary the unrolling bound ||ϕ|| in the range of 50–250. All exper-
iments are performed in the same computing environment as case studies I and
II. The obtained results for the scalability analysis are presented in Table 10.
Table 10 shows that for φ2, the verification time increases with the increasing
size of the TKS. However, the results shown in Table 10 also suggest that our
proposed verification approach using SMT solvers, i.e., Z3 and CVC4, are more
scalable than the previously proposed AMC approach. For instance, for the TKS
with 202 states and ||ϕ|| = 50, it takes only 1.45 and 0.84 seconds for Z3 and
CVC4, respectively for verification. However, verifying the same φ2 using AMC
takes 16.10. This shows approximately 11× and 19× speedup for our approach
compared to the AMC. Similarly, for a TKS with 206 states and ||ϕ|| = 150,
Z3 and CVC4 takes 1128.04 seconds and 619.07 seconds, respectively to verify
φ2. Verifying the same requirement using the AMC approach requires 2145.82
seconds. This shows approximately 2× and 3.5× speedup for our approach com-
pared to the AMC. The comparison of memory consumption for verification also
follows the same trend. Interestingly, while verifying the TKSs with 208 and 2010

states for ||ϕ|| = 200 and ||ϕ|| = 250, the AMC approach experienced a state-
space explosion. In contrast, our proposed SMT approach successfully verified
the property using Z3 and CVC4 in 4500.88 and 2721.56 seconds, respectively.

Bounded model checking with SMT has been successfully used in developing
safety-critical industrial systems for decades [4, 29]. We believe that engineers
can use our proposed HyperTWTL model checking approach to verify a wide
range of safety and security properties of large-scale, complex, and safety-critical
robotic missions.

17



6 Related Works

Model checking [11] has extensively been used to verify hyperproperties of mod-
els abstracted as transition systems by examining their related state transi-
tion graphs [10]. In [15], the first model checking algorithms for HyperLTL
and HyperCTL∗ employing alternating automata were proposed, which was also
adopted in [8, 21] to verify HyperMTL properties. An extensive study on the
complexity of verifying hyperproperties with model checking is presented in [5].
The bounded model checking approach has recently become popular in the ver-
ification of HyperLTL specifications [16, 22, 23, 27]. Specifically, the work in [31]
is most relevant to ours, where the authors use HyperLTL and an SMT solver
for robotic mission planning. The work in [31] was indeed the first attempt to
use hyperproperties for robotic mission planning. However, HyperLTL cannot
express tasks with explicit time constraints, which motivates our contribution
in this paper. Very recently, the authors in [9] proposed the HyperTWTL for-
malism and an automata-based model checking approach for verifying them.
In contrast to [9], this paper presents a bounded model checking approach for
verifying HyperTWTL specification using SMT solvers for enhanced verification
performance regarding verification time and memory.

7 Conclusion

This paper introduced a bounded model checking approach for HyperTWTL
using SMT solvers, contrasting the existing automata-based HyperTWTL ver-
ification. Specifically, we reduce the HyperTWTL model checking problem to
a first-order logic satisfiability problem and then use two state-of-the-art SMT
solvers, i.e., Z3 and CVC4, for verification. Using two case studies, Technical
Surveillance Squadron (TESS) and Robotic Industrial Inspection, and a scala-
bility study, we showed that the proposed bounded model checking approach can
efficiently verify HyperTWTL properties compared to the AMC approach while
offering up to 19× speed up in terms of verification time and up to 2× memory
efficiency. Our scalability analysis results also show that our proposed approach
can verify large systems, whereas the previously reported automata-based Hy-
perTWTL verification method suffers from a state-space explosion.

References

1. Alpern, B., et. al: Defining liveness. Information processing letters 21(4), 181–185
(1985)

2. ANYbotics: Automation Digitalization at Scale: ANYmal Makes the
Case at BASF. https://www.anybotics.com/anymal-makes-the-case-at-basf-
chemical-plant/ (2021)

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking (2003)

4. Bjørner, N.: Z3 and smt in industrial r&d. In: FM. pp. 675–678. Springer (2018)

18



5. Bonakdarpour, B., et. al: The complexity of monitoring hyperproperties. In: 2018
IEEE 31st CSF. pp. 162–174. IEEE (2018)

6. Bonakdarpour, B., et. al: Monitoring hyperproperties by combining static analysis
and runtime verification. In: ISoLA. pp. 8–27. Springer (2018)

7. Bonakdarpour, B., et. al: Controller synthesis for hyperproperties. In: 2020 IEEE
33rd CSF. pp. 366–379. IEEE (2020)

8. Bonakdarpour, B., et. al: Model checking timed hyperproperties in discrete-time
systems. In: NASA Formal Methods Symposium. pp. 311–328. Springer (2020)

9. Bonnah, E., et. al: Model checking time window temporal logic for hyperproperties.
In: 21st ACM-IEEE MEMOCODE. pp. 100–110 (2023)

10. Clarke, E., et. al: Bounded model checking using satisfiability solving. "FM" 19(1),
7–34 (2001)

11. Clarke, E.M.: Model checking. In: FSTTCS. pp. 54–56. Springer (1997)
12. Clarkson, M.R., et. al: Temporal logics for hyperproperties. In: POST. pp. 265–284.

Springer (2014)
13. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security

18(6), 1157–1210 (2010)
14. Coenen, N., et. al: Verifying hyperliveness. In: CAV. pp. 121–139. Springer (2019)
15. Finkbeiner, B., et. al: Algorithms for model checking hyperltl and hyperctl. In:

CAV. pp. 30–48. Springer (2015)
16. Finkbeiner, B., et. al: Specifying and verifying secrecy in workflows with arbitrarily

many agents. In: ATVA. pp. 157–173. Springer (2016)
17. Finkbeiner, B., et. al: Model checking quantitative hyperproperties. In: CAV. pp.

144–163. Springer (2018)
18. Finkbeiner, B.e.a.: Eahyper: satisfiability, implication, and equivalence checking of

hyperproperties. In: CAV. pp. 564–570. Springer (2017)
19. Garey, M.R., et. al: Computers and intractability. A Guide to the (1979)
20. Goguen, J.A., et. al: Security policies and security models. In: 1982 IEEE Sympo-

sium on Security and Privacy. pp. 11–11. IEEE (1982)
21. Ho, H.M., et. al: On verifying timed hyperproperties. arXiv preprint

arXiv:1812.10005 (2018)
22. Hsu, T.H., et. al: Hyperqube: A qbf-based bounded model checker for hyperprop-

erties. arXiv preprint arXiv:2109.12989 (2021)
23. Hsu, T.H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-

properties. In: TACAS. pp. 94–112. Springer (2021)
24. Knightscope: Knightscope Deploys New Autonomous Security Robot in South-

ern California. https://www.businesswire.com/news/home/20220316005436/

en/Knightscope-Deploys-New-Autonomous-Security-Robot-in-Southern-

California (2022)
25. Nguyen, L.V., et. al: Hyperproperties of real-valued signals. In: MEMOCODE. pp.

104–113 (2017)
26. Paviot-Adet, E., et. al: Structural reductions and stutter sensitive properties. arXiv

preprint arXiv:2212.04218 (2022)
27. Pommellet, A., et. al: Model-checking hyperltl for pushdown systems. In: SPIN.

pp. 133–152. Springer (2018)
28. Romano, S.A.: Persistent surveillance gives squadron its global purpose,

https://www.af.mil/News/Article-Display/Article/1152329/persistent-

surveillance-gives-squadron-its-global-purpose/

29. Rungta, N.: A billion smt queries a day. In: CAV. pp. 3–18. Springer (2022)
30. Vasile, C.I., et. al: Time window temporal logic. Theoretical Computer Science

691, 27–54 (2017)

19



31. Wang, Y., et. al: Hyperproperties for robotics: Planning via hyperltl. In: 2020 IEEE
ICRA. pp. 8462–8468. IEEE (2020)

32. Zdancewic, S., et. al: Observational determinism for concurrent program security.
In: 16th IEEE CSF. pp. 29–43. IEEE (2003)

Appendix

Asynchronous HyperTWTL to Synchronous HyperTWTL

The process to convert a given asynchronous HyperTWTL formula to a syn-
chronous HyperTWTL formula has two parts. First, we generate invariant set
of traces inv(T) for the corresponding trace set T generated over model T . This
allows for the synchronization of interleaving traces while reconciling the syn-
chronous and asynchronous semantics of HyperTWTL. Secondly, we construct
an equivalent synchronous formula φ̂ from an asynchronous formula φ such that
T |=a φ if and only if inv(T) |=s φ̂. These steps are described as follows.

Invariant Trace Generation To construct an equivalent HyperTWTL synchronous
formula φ̂ from a given asynchronous HyperTWTL formula φ, we require that
HyperTWTL be stutter insensitive [26]. To achieve this, we define the variable
µÄÃ needed for the evaluation of the atomic propositions across traces. Thus, given
a pair of traces Ã1 and Ã2, µ

Ä
Ã ensures that all propositions in both traces exhibit

the identical sequence at all timestamps. However, since timestamps proceed at
different speeds in different traces such as Ã1 and Ã2, a trajectory Ä is used to
determine which trace moves and which trace stutters at any time point. In an
attempt to synchronize traces once non-aligned timestamps are identified by a
trajectory, silent events (ϵ) are introduced between the time stamps of the trace.
For all t ∈ T, we denote inv(T) as the maximal set of traces defined over Aϵ

where Σϵ = Σ ∪ ϵ. Consider a trace t = (3, {b})(6, {a})(8, {b}) · · · . The trace
t′ ∈ inv(T) can be generated as inv(t) = ϵϵϵbϵϵaϵb · · · . We now construct the
synchronous HyperTWTL formula to reason about the trace set inv(T).

Synchronous HyperTWTL Formula Construction We now construct a synchronous
formula φ̂ that is equivalent to the asynchronous HyperTWTL φ. Intuitively, the
asynchronous formula of HyperTWTL φ depends on a finite interval of a timed
trace. Thus, we can replace the asynchronous formula φ with a synchronous for-
mula φ̂ that encapsulates the interval patterns in the asynchronous formula φ.
Given a bounded asynchronous formula φ, we define ´φ as the projected period
required to satisfy the asynchronous formula. Inductively, ´φ can be defined as:
´Hd a = d for the H operator; ´φ1'φ2

= max(´φ1
, ´φ2

) for the ' operator;
´¬φ = ´φ for the ¬ operator; ´φ1»φ2

= ´φ1
+ ´φ2

+ 1 for the » operator;
´[φ]X,Y = up(X) + up(Y ) for the [ ] operator, where up → Zg0 returns the
upper bound of a predefined time bound. We then construct a synchronous for-
mula φ̂ from an asynchronous formula φ by replacing the time required for the
satisfaction of φ with the appropriate Äφ.

20


	Efficient SMT-Based Model Checking for HyperTWTL

