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Abstract
Semi-autonomous telerobotic systems allow both humans and robots to exploit their strengths while enabling personalized
execution of a remote task. For soft robots with kinematic structures dissimilar to those of human operators, it is unknown how
the allocation of control between the human and the robot changes the performance. This work presents a set of interaction
paradigms between a human and a remote soft-growing robot manipulator, with demonstrations in both real and simulated
scenarios. The soft robot can grow and retract by eversion and inversion of its tubular body, a property we exploit in the
interaction paradigms. We implemented and tested six different human-robot interaction paradigms, with full teleoperation
at one extreme and gradually adding autonomy to various aspects of the task execution. All paradigms are demonstrated
by two experts and two naive operators. Results show that humans and the soft robot manipulator can effectively split their
control along different degrees of freedom while acting simultaneously to accomplish a task. In the simple pick-and-place
task studied in this work, performance improves as the control is gradually given to the robot’s autonomy, especially when
the robot can correct certain human errors. However, human engagement is maximized when the control over a task is at least
partially shared. Finally, when the human operator is assisted by haptic guidance, which is computed based on soft robot tip
position errors, we observed that the improvement in performance is dependent on the expertise of the human operator.

Keywords Shared control · Teleoperation · Human-machine interaction · Haptics · Soft robotics

1 Introduction

Robots in domestic environments, especially soft robots,
have the potential to both autonomously assist humans and
enable safe physical presence for remote operators [1]. The
spectrum of potential operation modalities in between full
autonomy and direct human operation can provide robotic
systemswith a rich anduseful set of perception andmanipula-
tion capabilities; however, its concrete realization also creates
challenges for system designs and the development of their
intuitive human-in-the-loop control [2–5]. This is especially
true given the challenges inherent with soft robots, where
humans may have advantages in understanding and control-
ling the underactuated robot state. Shared control denotes
operation modalities of a robotic system that serve to bal-
ance inaccuracies of both human and artificial-intelligent
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agents, such that they can benefit from each one’s abil-
ities [6, 7]. Employing shared control becomes essential
when humans are needed to address difficult-to-automate
sub-tasks, yet some autonomy is needed to improve speed
and/or performance and to reduce the physical/cognitive bur-
den on human operators. For instance, most previous studies
on shared-control telerobotics rely on human intelligence
to solve low-level perceptual sub-tasks that are difficult for
autonomous robots, allocating the sub-task control either to
the human or to the robot control system, or partially to
both [8–11].

In this work, we present the design and the demonstra-
tion of six shared-control paradigms that can be used by
human operators to remotely interact with a robotic manip-
ulator during a pick-and-place task. As a pilot investigation
of novel shared-control paradigms, we deployed them in a
straightforward scenario to understand the contributions of
human and artificial agents. We were interested in scenar-
ios in which the human perspective is distorted such that the
robot could provide assistance. During remote teleoperation,
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humans operate a device that does not alignwith the represen-
tation of their body, differently from a scenariowithwearable
exoskeletons where the human perspective is unchanged.
This reveals the extent to which autonomous features change
the operator’s experience and impact performance.We estab-
lish how humans can effectively interact with soft-growing
robotic manipulators and which interaction paradigms (and
specific aspects of those paradigms) are subjectively pre-
ferred. These developments can be extended to work in more
complex scenarios in which the presence of the human is a
requirement and the robot can either assist or be assisted by
the human (e.g., exploration of cluttered or dangerous envi-
ronments in which artificial perception is limited).

Besides sub-task allocation, the proposed shared-control
paradigms feature different assistance levels (in the form
of autonomy and/or haptic guidance) to help the operator
throughout the task execution. We consider assistance in the
form of (i) guidance force rendered on a haptic device, oppor-
tunely tuned based on the abilities of the operator, and (ii) a
division of the robot’s degrees of freedom (DoFs) between
human and artificial/autonomous control. These forms of
assistance are purposely designed to be suited when applied
to a pick-and-place task and are independent of the employed
robotic manipulator. We chose to demonstrate how these
methods performusing a soft-growing robotic system (Fig. 1)
with the aim of showing how they can be applied to this novel
form robotic manipulator.

The use of shared-control teleoperation on a soft-growing
robot manipulator has not been investigated yet to the best
of our knowledge. Two of our proposed shared-control
paradigms are novel and specifically designed for soft-
growing manipulators, as they explicitly account for the
shared actuation of unique DoFs. Unlike conventional rigid-
body robots, the unique kinematics and compliance of
soft-growing robots have the potential to combine computa-
tional and embodied intelligence to facilitate manipulation in

complex, unknown environments; and they also offer a safer
and effective solution in environments with humans [12, 13].
They imitate plant-like growth to change length and navigate
environments, being able to growand shrink through eversion
of thin-walled material at the tip [14–17]. Their high porta-
bility makes them great candidates for applications where
rigid robots cannot be employed due to the soft-growing
robot properties of low inertia, low weight, and the ability
to be fully stowed in small containers when retracted. They
have been employed to explore an archaeological site [13],
deploy reconfigurable structures [18], navigate through coral
reefs [19], deliver tools [14], and burrow through granular
media [20]. However, their dynamic properties and non-
anthropomorphic motion capabilities demand novel remote
control paradigms for such scenarios [5, 21].

2 Background on Shared Control

The term shared control generally refers to a scenario in
which both human and robotic agents work (sometimes
remotely) together to accomplish a common task. Broadly
it is the spectrum of possible interactions between humans
and robots, from robots having full autonomy to none at
all [22]. The development of shared-control techniques must
account for several aspects such as the type of interaction, the
type of task being accomplished, the forms of user feedback,
etc. This results in the definition of semi-autonomous con-
trol strategies with different and possibly varying levels of
autonomy and user feedback [23]. Full autonomy still poses
a problem for robotic systemswhen dealingwith unknown or
complex tasks in unstructured and uncertain scenarios [24];
on the other hand, shared control has been demonstrated to
improve the task performance without placing the entire bur-
den on the human operator [25]. Several works about shared
control focus on the extent of human intervention in the

Fig. 1 The soft-growing robot
manipulator can extend from a
base container by growing its
body and steering it towards
items in the workspace to
perform pick-and-place tasks by
means of a soft-magnetic
gripper mounted at its tip
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control of artificial systems, conceding a certain amount of
responsibility to each agent in the scene so as to split the
control burden among all the participants [26]. The extent
of human intervention, and thus robot autonomy, has been
usually classified into discrete levels [9, 11, 27], with fewer
studies considering a continuous domain [28, 29]. Com-
monly, shared-control techniques aim to fully or partially
replace a function, like identifying objects in cluttered envi-
ronments [8], while others start from an autonomous robot
autonomously and give control to the user only in difficult
situations [9–11].

In a manipulation scenario, shared control has been used
to decrease the cognitive and physical workload of the human
operator, with the robot autonomously carrying out a set of
secondary tasks [30]. Some works suggest that the robot can
autonomously perform grasp when close to the goal [31],
hold it over long time periods [32], or switch the control at
some trigger [31, 33–35]. Sharing the control can also be
seen as a means of collaborative interaction [3]. It can be
interpreted as assistance, not only from the human to the
robot but also vice versa. The latter is advantageous when
the teleoperation is hindered by the inadequacies of the input
control commands or by poor perception (e.g., remote tele-
operation in which the point of view of the operator is not
directly over the workspace). The robot may assist the user
in accomplishing the desired task, making the teleoperation
easier [36]. Therefore, the task of the robot becomes modu-
lating the output rather than simply executing the operator’s
input. Some studies assist the operator by predicting their
intent while selecting among different targets [36, 37], while
others exploit haptic feedback/guidance techniques while
moving toward a specific target [38–42]. These types of hap-
tic assistance enforce constraints on theoperator’s positionby
applying controlled forces that are a function of the evolving
behavior of the task or system [43]. Alternatively, paradigms
such as assist-as-needed constrain the operators only when
their behavior is in conflict with a known task [44–46].

3 SystemDescription

This section describes the compliant robotic system used to
study the proposed soft robot shared-control teleoperation
paradigms for a pick-and-place manipulation task. The main
components of the system are the soft-growing manipulator,
both in real (Fig. 2(a)) and simulated scenarios (Fig. 2(b)), a
kinesthetic haptic device, used to collect inputs and display
haptic guidance to the operator, and two tracking systems
based on motion capture and computer vision, that retrieve
the robotic tip position and the items/targets of the pick-and-
place task (inCartesian pose), respectively. Figure 2(c) shows
a block scheme of the system highlighting the interconnec-
tions among its modules.

The pick-and-place task consists of reaching, grasping,
and placing two foam cubes in the corresponding target loca-
tions of the workspace. In the following, we will refer to the
main components of the task as:

• item: the generic foam cube to be grasped and relocated;
• target: the place where the foam cube should be relo-
cated; and

• goal: the current objective, which refers to a specific item
when the gripper does not hold any, or to a target when
the gripper is already holding an item.

3.1 Soft-GrowingManipulator

The robotic manipulation system consists of a soft-growing
manipulator that can grow, retract, and steer in three dimen-
sions (see Fig. 1) [13]. We used the same manipulator for
our previous works on teleoperation [21]. Figure 2(a) shows
a close-up of the manipulator alongside its reference frame:
markers are placed on the end-effector to retrieve its Carte-
sian position.

The manipulator can carry a payload thanks to the soft-
magnetic gripper attached to the end effector. The gripper
canmagnetically attract objects without requiring the precise
positioning of the end-effector. We placed cylindrical mag-
nets inside the gripper’s silicone cover and inside the target
items (with opposite polarity) so that the gripper can attract
them when sufficiently close. To release items, we inflate the
soft gripper such that the silicone rubber pushes the grasped
item away from the magnet, increasing the distance between
the two magnets until the attraction force is low enough to
drop the item (Fig. 3).

3.2 Haptic Device(s)

We used a Phantom Omni (now marketed as Geomagic
Touch) to teleoperate the robot’s end-effector and perform
the task in the real scenario (as shown in Fig. 2(a)), and a
Novint Falcon (Novint Technologies, Inc.) in the simulated
one. These kinesthetic haptic devices provide force rendering
up to 7 N along their linear directions. Linear displacements
are used to command the manipulator’s tip position in the
real scenario and its tip velocity in simulation such that
the haptic device’s workspace is scaled to the position or
velocity workspace. The haptic device is equipped with two
buttons, which are used to inflate/deflate the gripper. The
haptic devices are also used to render haptic forces to the
user (see Section 4).

3.3 TrackingModules

Weused two different systems to track themanipulator’s end-
effector (see Section 3.3.1) and the items to be manipulated
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Fig. 2 (a) Picture of the real soft-growing robotic manipulation sys-
tem. A coordinate system is attached to the robot base: the z axis is
oriented along the gravity direction, while the x and y define the axes
around which the robot steers at the base. As such, the soft-growing
manipulator has 3 degrees of freedom, one associated with growth and
two associated with steering. The items and targets associated with the
pick-and-place task are laying on the table at the bottom. (b) Picture
of the simulated soft-growing manipulator as well as items and targets.
The robot and its reference system are oriented as in the real system (a).
The blue vector represents the assistive force displayed to the user dur-

ing assisted shared-control operations. (c) Block scheme of the overall
system. The Shared Control and the Computer Vision modules run on a
personal computer (PC), while Low-Level Control runs on a microcon-
troller connected to the manipulator. A Motion Capture system tracks
the position of the manipulator while a set of RGB-D Cameras tracks
the items in the environment. The human operator interfaces with the
manipulator via the Haptic Device. Each connection between compo-
nents indicates the type of communication (e.g., through an Ethernet
cable) and whether it is one-way or two-way (single-ended or double-
ended arrows, respectively)

(see Section 3.3.2), based on motion capture and computer
vision, respectively. Both tracking modules are transformed
and expressed in the reference system depicted in Fig. 2(a)
to align with the kinematics and control of the robot.

In our study, we used a controlled environment to focus on
the human-machine interaction; however, the implemented

motion capture system would not be available in all real-
world scenarios. Methods are being developed to localize
soft robots’ tip position in the environment, such as using
cameras placed in an eye-in-hand configuration [14, 47, 48]
or shape sensors along the length [49].
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Fig. 3 Sequence of pictures showing the soft-magnetic gripper inflat-
ing and releasing an item. The gripper and the item both have a magnet
inside, with opposite polarities. When the gripper is inflated, the dis-

tance between the two magnets increases until the attraction force is
lower than the item’s gravity and the item is dropped

3.3.1 Robot Tracking

We used the PhaseSpace Impulse X2E to track the manip-
ulator’s end-effector. This motion capture system allows
real-time tracking at 270 Hz. The cameras aremanaged by an
external server, which communicates with the main personal
computer (PC) via ethernet connection (Fig. 2(c)). As shown
in Fig. 2(a), eight markers are placed around the circumfer-
ence of the gripper mount at the manipulator’s end-effector
and tracked by six cameras located on the ceiling (cameras
are not shown in the picture). The position of the end-effector
is given by the markers’ centroid.

3.3.2 Item Tracking

Four RGB-D cameras (RealSense D415) surround the
workspace and are used for item tracking. The data captured
by the cameras (2D image and depth map for 3D reconstruc-
tion) is processed by a Computer Vision Module installed on
themain PC (Fig. 2(c)). This module aligns the data retrieved
by different cameras through automatic calibration of their
extrinsic parameters (camera resectioning), such that each
camera shares the same reference system. The calibration is
independent of the cameras’ locations, as they face the same
reference system – a physical chessboard placed in the center
of the workspace as shown in Fig. 2(a). Different items are
identified by their color.

Although this method could potentially run in real time,
we simplified the system by measuring the positions of the
items only once before a trial and storing them as fixed values
(when the manipulator approaches an item, it occludes the
scene and the items cannot be tracked; this hinders the oppor-
tunity to identify whether the gripper is currently holding an
item for full automation purposes.) Similarly, the static tar-
gets are identified only once, by positioning an item on it and
storing that position as a target. Future works could expand
this system to integrate state-of-the-art tracking and handle
moving targets; for the purpose of our shared-control studies,
we implemented the basic functionality required for evalu-

ating the spectrum of teleoperation and quasi-autonomous
operations.

3.4 Simulated Scenario

Asoft-growing robot simulatorwasset up inCoppeliaSim [50]
to develop andpreliminary test our shared-control paradigms.
The virtual environment is a digital twin of the real robotic
system with items and targets placed in the same relative
positions with respect to the manipulator (see Fig. 2(b)). The
manipulator was digitally modeled as a cylindrical body that
can scale its length along its main axis to simulate eversion.
When assistive paradigms are used, the haptic force rendered
through the haptic devices is visually displayed to the user
as a blue line segment at the robot tip as shown in Fig. 2(b).

The purpose of the simulation was to systematically tune
the control parameters for the shared control paradigms fea-
turing haptic assistance and demonstrate their performance
in ideal conditions (see Section 5.3). Besides the unconven-
tional kinematics of soft-growing robots, theirmotionfluidity
is affected by several mechanical factors (actuation dynam-
ics, friction, and external disturbances), which may have an
influence on the effectiveness of shared control paradigms.
Thus, we conducted a parameter-tuning simulation to estab-
lish themain effects and the interactions of the shared-control
paradigm parameters in ideal simulated conditions. Then, we
compared the simulated and the real system to demonstrate
how these mechanical factors affect the effectiveness of our
shared-control paradigms.

4 Shared-control Teleoperation Paradigms

In this section, we describe the six proposed shared-control
teleoperation paradigms used to investigate the level of
autonomy needed for a human to accomplish a pick-
and-place task with a soft-growing robot manipulator. We
included the case in which the control is not shared as a base-
line for the comparison (i.e., direct teleoperation, in which
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the human is in full control of the system, and then built from
there by gradually adding autonomy until the operator only
has control over the gripper operation. The order in which
the paradigms are presented follows increments in auton-
omy, as the control of more DoFs shifts from the human to
the robot. Note that most of these paradigms are generic and
can be applied to any kind of robotic manipulator that can be
commanded in Cartesian space; however, two of them (see
Sections 4.4 and 4.5) are specific for soft robots in that they
explicitly exploit eversion.

We will use the following terms to denote quantities mea-
sured with respect to the robot’s base frame:

• ee = 〈x, y, z〉 ∈ R3 is the current position of themanipu-
lator’s end-effector, coincident with the tip of the gripper;

• d = 〈x, y, z〉 ∈ R3 is the desired position of the
manipulator’s end-effector (i.e., where the manipulator
is commanded to go), coincident with the tip of the grip-
per;

• c = 〈x, y, z〉 ∈ R3 is the command given by the haptic
device that is to be mapped to d; and

• g = 〈x, y, z〉 ∈ R3 is the position of the current goal.

The termd, that is the desired position of themanipulator’s
end-effector, is set to either c or g, or a combination of them,
based on the type of shared control modality. We indicate
with m = ‖g − ee‖ ∈ R≥0 the Euclidean distance between
the goal and the end-effector at a current time and with ṁ ∈

R its time derivative, which is used to evaluate the motion
performed by the robot.

Inverse kinematics is used to compute growth and steering;
whereas low-level control is used to bring ee towards d.

During the executionof a task, g changes basedonwhether
the current goal is the position of an item or a target. To handle
this procedure, we developed aGoal Selection algorithm per-
forming the following steps: (i) select the item to be grasped
(grasping phase); (ii) select the target where the current item
will be placed (placing phase); and (iii) repeat until all the
items are correctly placed in their respective target position
(the order in which the items are selected is beyond the pur-
pose of the algorithm.) The algorithm is implemented as a
state machine, graphically represented in Fig. 4. Besides pro-
viding a set of locations that themanipulator is asked to reach,
this algorithm allows the system to monitor the progress of
the task. A further behavior enabled by the algorithm occurs
when a goal is reached, and thus the position of the end-
effector is supposedly near the ground: in such a case, it is
desirable to lift the robot before moving towards the next
goal, preventing problems such as dragging the tip over the
ground, or hitting other items on the way. To handle this,
the state machine introduces an intermediate goal: a proxy
set above the current end-effector position away from the
ground, resulting in the robot being lifted before switching to
the next goal (lifting phase). Note that this intermediate goal
is generated only if the growth DoF is automated (as will be
described in Sections 4.5 and 4.6), because this is a location
in the space that the human operator would not visualize in a

Fig. 4 State machine for the
Goal Selection algorithm, used
to monitor the evolution of the
pick-and-place task and select
the appropriate goal. The
current goal can be either an
object to grasp (item) or a
desired position of placing
(target), depending on whether
the robot is currently grasping
an item with the gripper.
Additionally, if the eversion is
automatically performed, the
system will slightly lift the robot
before moving on to the next
goal, preventing the gripper to
be dragged onto the ground
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real environment. The features of the six shared-control tele-
operation paradigms are preliminary summarized in Table 1.

Due to the grasping system described in Section 3.1, we
used the following assumption: once an item is grasped, it
will only be released on a target. If the item is erroneously
dropped anywhere else, the trial is discarded; although due
to the nature of the soft-magnetic gripper, this never occurred
during our trials. This assumption overcomes a practical lim-
itation of our system: we have no means to track whether an
item is being currently grasped. Firstly, item tracking is not
performed in real time, but only at the beginning of each trial,
therefore the positions of items and targets do not change
over time. Secondly, since the soft-magnetic gripper may
require variable time to release an item, we cannot exactly
estimate when this happens without having a sensor in the
gripper - which we did not include. Thanks to the aforemen-
tioned assumption,we decided that in our implementation the
human is always in charge of controlling the grasping oper-
ation (whether the gripper should be ‘opened’ or ‘closed’)
and of performing grasp detection (whether the gripper is
currently holding an item or not). The operator can trigger
the opening/closing of the gripper by pressing a button on
the haptic device and indicates to the system that the item
has been grasped/released by pressing a second button on
the haptic device.

4.1 Full Teleoperation

In this paradigm, the human operator has full control over the
manipulator, in the sense that all the Cartesian displacements
of the end-effector are commanded through the haptic device
commands c. Thus, this paradigm is realized by setting:

d = c (1)

This paradigm is considered a baseline on which the other
paradigms are built, but some could also consider it as shared
control in that closed-loop control is the contribution of the
robotic system.

4.2 Assist-as-Needed (AAN)

In this paradigm, the human operator still has full control
over the manipulator while occasionally being assisted by a
force rendered by the haptic device. The Assist-as-Needed
paradigm is implemented such that the system monitors
the movements of the operator, provides assistance accord-
ing to this: if the operator is correctly moving toward the
goal, then no assistance is needed, and any force previously
generated is gradually reduced. Alternatively, if the opera-
tor is performing poorly (e.g., not moving or going in the
opposite target direction), then the algorithm generates a
force that increases over time while the performance is not
improving. With this mechanism, sufficient force to over-
come physical or perceptual impairment is provided to the
operator.

For this paradigm, we define 'f ∈ R3 as the haptic guid-
ance force pushing towards the goal, expressed in N, whose
value cannot exceed fM AX .

The direction (unit vector) of the assisting force f̂ ∈ R3

goes from the end-effector position to the goal. Its magni-
tude | f | depends on k, a (variable) parameter denoting the
stiffness modulating the force using Hooke’s Law, whose
value cannot exceed kMAX (both force and stiffness are con-
strained). The parameter k is expressed in N/m, but it is
ultimately dependent on the base unit selected for ee and g.
The following equations are involved in the calculation of
the haptic guidance force 'f :

| f | =
{
k · m if < fM AX

fMAX otherwise

f̂ = g − ee
m

'f = | f | · f̂

(2)

The procedure to modulate the stiffness parameter k
according to the task performance is implemented as a state
machine (see Fig. 5). Besides the starting state, there are four

Table 1 Feature summary of the shared-control teleoperation paradigms

Steering Eversion Grasping operation Grasping detection Haptic
(Gripper open/close) (Item grasped yes/no) Guidance

Full Teleoperation manual manual manual manual no

AAN manual manual manual manual yes

Fixed Assistance manual manual manual manual yes

MSAE manual automatic manual manual no

ASME automatic manual manual manual no

Mostly Autonomy automatic automatic manual manual no
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Fig. 5 State machine used to
evaluate the stiffness k in the
Assist-as-Needed shared-control
teleoperation paradigm. The
evaluation is based on the time
elapsed in each state, monitored
by the counter τ . Each transition
between states will either
increment or reset τ , and the
value of k will change only
when τ is greater than the limit
ξ - e. g. after a certain amount of
time spent in a certain state. The
parameter ξ may have a single
value or a different value for
each state

possible states in which the robot can be: (i) the operator has
reached the goal (m = 0); (ii) the operator is steady (ṁ = 0);
(iii) the operator is moving away from the goal (ṁ > 0); and
(iv) the operator is getting closer to the goal (ṁ < 0). This
strategy increases the value of k if the operator is steady or
moving away from the goal, meaning that the robot should
push in the direction of the goal as the operator is poorly tele-
operating. On the contrary, the value of k will decrease if the
operator is getting closer to the goal, as the robot is already
moving in the right direction. In any case, between two con-
secutive iterations, k will change of at most an amount #, a
fixed positive value expressed in N/m, which will be added
or subtracted to k based on the state.

Sincewewant the operator to be in charge of the teleopera-
tion, the logic is to wait for the operator to perform an action.
This is implemented by the parameters ξ , a reaction time
before the algorithm modifies the output, and τ , a counter
to watch the reaction time, initialized whenever the state
changes, and incremented by one at each iteration as long
as the system remains the same state. Both the parameters
are expressed in a number of iterations, which can be trans-
formed to a time base unit whenmultiplied by the algorithm’s
sample rate. The reaction time could be a single parameter,
or we could use a different value for each state. This is useful
when we want to manage various situations differently: e.g.,
the algorithmwill wait for a certain amount of time ξS before
beginning to modify k when the end-effector is not moving,
and a different amount of time ξC when the robot is moving
towards the goal, etc.

The equation below shows the paradigm formulation and
how the derivative of k changes based on the slope between
two consecutive distances from the goal:

d = c (3)

k̇ =






−# if m = 0 ∧ k > 0

# if ṁ ≥ 0 ∧ k < kMAX ∧ τ < ξ

−# if ṁ < 0 ∧ k > 0 ∧ τ < ξ

0 otherwise

(4)

4.3 Fixed Assistance

In this paradigm, the human operator still controls the whole
manipulatorDoFs through the haptic devicewhile being con-
stantly assisted by 'f ∈ R3, a force pushing towards the goal,
expressed in N, whose value cannot exceed fM AX . This is
in contrast to the Assist-as-Needed paradigm, which only
occasionally assists the human operator. The direction of the
assisting force f̂ goes from the position of the end-effector
towards the goal; whereas its magnitude | f | is given by
Hooke’s Law as shown in (5), in which: k is a fixed stiffness
expressed in N/m, but it is ultimately dependent on the base
unit selected for ee and g; and b is a fixed damper expressed
in N·s/m, multiplied to the velocity of the end-effector ėe
(this velocity can refer to either the haptic device or the robot
end-effector).

| f | =
{
k · m + b · ėe if < fM AX

fMAX otherwise

f̂ = g − ee
m

'f = | f | · f̂

(5)

The paradigm formulation is thus

d = c

k̇ = 0

ḃ = 0

(6)
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To avoid sudden changes in the assisting force, a moving
average filter is applied to | f | over 50 samples at 100 Hz.

4.4 Manual Steering, Autonomous Eversion (MSAE)

In this paradigm, the operator only controls the steeringDoFs
(x and y coordinates of the reference frame), while the robot
is in charge of everting towards the goal (z coordinate of the
reference frame). The paradigm formulation is:

d =
〈
cx , cy, gz

〉
(7)

4.5 Autonomous Steering, Manual Eversion (ASME)

In this paradigm, the operator only controls the eversion DoF
(z coordinate of the reference frame), while the robot is in
charge of steering towards the goal (x and y coordinates of
the reference frame). The paradigm formulation is:

d =
〈
gx , gy, cz

〉
(8)

We consider ASME as a paradigm that contains more
autonomy thanMSAE because eversion presents fewer DoF
than steering.

4.6 Mostly Autonomous

In this paradigm, the operator has no control over the
motion, and the manipulator’s behavior is fully autonomous.
However, as previously stated, the grasping operation and
detection are still controlled by the operator. The execution
of the task relies completely on the Goal Selection algorithm
and the paradigm formulation is:

d =
〈
gx , gy, gz

〉
(9)

5 Demonstrations and Results

In this section, we demonstrate the human operator teleop-
eration control of the soft-growing manipulation system and
observe the performance and the human behavior under the
different shared-control teleoperation paradigms introduced
in Section 4, while completing a pick-and-place manipula-
tion task, described in Section 5.1.We let all the paradigms be
tested by an expert and by a naive user for both real and sim-
ulated scenarios, evaluated the metrics given in Section 5.2,
and report the results in Section 5.5 along with their dis-
cussion. Besides being used for evaluation, the simulated
scenario was also used to perform a systematic parameters
tuning procedure (involving a large number of trials) for the
assistive algorithms (AAN and Fixed Assistance). Results of
this study are given in Section 5.3.

5.1 Task Description

During the execution of the task, the manipulator reaches
for two items from above as shown in Fig. 2(c), and the
operational workspace is a planar surface placed 700 mm
below the manipulator’s base. The same task is performed
for each shared-control teleoperation paradigm.

We define the following phases for each item, as shown
in the state machine diagram in Fig. 4:

• grasping phase, in which the manipulator’s objective is
to reach and grasp an item (item is the goal); and

• placing phase, in which the manipulator’s objective is to
reach a target and release the current item on it (target is
the goal).

For the pick-and-place of two items, a trial is thus com-
posed of two repeated grasping and placing phases, as
depicted in Fig. 6. The image shows the exact progression
of a trial, which will be consistent in each scenario tested
during the demonstrations. This means that the order of item
selection is fixed, such that both the human and the robot
have the same reference for execution. We observed that
the layout of the goals does not affect the performance of
the robot, and we defined the layout such that the robot
would have to move in a large area of the operational
workspace.

Fig. 6 Progression of the task as structured in the workspace of the
robot. Each trial starts with the manipulator at the center of the oper-
ational workspace. The grasping and placing phases are executed for
item 1 and then item 2. The task ends when item 2 is placed on tar-
get 2. Arrows are for illustration purposes only and do not represent
real paths or trajectories. The distances between items and targets are
approximately 30 cm, and are not shown to scale in this figure. Each
item is a foam cube with a side length of approximately 3 cm
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5.2 EvaluationMetrics

The following metrics were used to evaluate task perfor-
mance:

• Item placement error: the mean distance between the
manipulator’s end-effector and the target at the time of
item release, projected on the x-y plane of the operational
workspace (mm);

• Execution time: the time required to complete a trial (s);
and

• Average amount of assistance: the average force ren-
dered on the haptic device to assist the operator, only
for theAssist-as-Needed andFixed Assistance paradigms
(N/iterations)

5.3 Parameter Tuning for Haptic Rendering

Assist-as-Needed andFixedAssistance are theonlyparadigms
whose parameters are directly affecting human behavior
through haptic guidance. However, the assistive force ren-
dered on the haptic device depends on several values as
seen in Sections 4.2 and 4.3, respectively. Thus, the effec-
tiveness of these paradigms (both quantitative and qual-
itative)depends on the choice of parameters. For Fixed
Assistance the choice can be straightforward, with only a
few parameters to be set.

On the other hand, Assist-as-Needed features multiple
parameters, whose influence on the task performance may
not be determined a priori, requiring a systematic param-
eter tuning method before demonstrations. The considered
parameters were the maximum amount of force rendered
( fM AX ), the maximum amount of stiffness used to gener-
ate the force (kMAX ), the increment in stiffness for each loop
(#), and the three reaction times to handle the cases of the
operator moving close to the goal (ξC ), away from the goal
(ξA), or neither (ξS). For each parameter, we defined two lev-
els: low and high. Table 2 shows the numeric values for
each parameter. We captured the aspects of the task perfor-
mance with the following four performance metrics:

• T completion time [s]: evaluated as the time from the
start to the end of the trial - coincident with the second
block being placed in the corresponding target zone;

Table 2 Parameters values used for the systematic parameter tuning
procedure performed for the Assist-as-Needed paradigm

Parameter fM AX kMAX # ξS ξC ξA

low 3 N 50 N/m 2 s 1 s 1 s 1 s

high 7 N 100 N/m 5 s 3 s 3 s 3 s

• L trajectory length [m]: evaluated as the integral of the
robot-tip velocity norm over time as in Eq. 10;

L =
∫ T

0
ėe(t) dt (10)

• H amount of assistance [N]: evaluated as the integral of
the haptic guidance force norm over time divided by the
completion time as in Eq. 11; and

H = 1
T

∫ T

0
‖ 'f ‖(t) dt (11)

• P precision [m]: evaluated as the mean of the differences
between the object and the target positions (projected
into the horizontal plane) in the final configuration as in
Eq. 12;

P = 1
2

2∑

i=1

‖t x,y − px,yi ‖ (12)

We evaluated these metrics along a set of trials performed
accounting for all the possible parameters’ combinations.
26 = 64 trials were needed to test all the possible combina-
tions. Each trial was repeated 3 times for a total of 192 trials:
due to this high number, we decided to perform the assess-
ment in the simulated environment presented in Section 3.4.

We ran an n-way ANOVA analysis on the results to
identify significant parameters (p < 0.05 was considered
statistically significant). We report the following findings:

• setting fM AX to high reduces the completion time of
18.184 s (F(1, 2) = 146.078, p < 0.01), reduces the
trajectory length of 0.197 m (F(1, 2) = 69.470, p =
.014), and increases the amount of assistance of 2.483 N
(F(1, 2) = 22.415, p = .042);

• settingboth ξA and ξS tolow reduces the completion time
of 21.58 s (F = 66.595, p = 0.015) and the trajectory
length of 0.251 m (F(1, 2) = 90.909, p = 0.011) and of
0.395 m (F(1, 2) = 279.946, p < 0.01), respectively;

• when ξS is set to high, having kMAX to low increases
the amount of assistance provided to the operator of 9.237
N (F = 34.317, p = 0.028) - stronger and more impul-
sive forces will be rendered to the operator; and

• the two-way interaction between ξC and ξS (F(1, 2) =
44.046, p = .022) shows a higher increase in the amount
of assistance when ξC is set to high and ξS is low -
with these settings, a human operator is generally haptic-
guided for a longer period of time as the assistive force
raises rapidly in a steady state and decreases slowly when
getting close to the target; and
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• the precision is not significantly affected by the choice
of the factors/levels.

We used these findings to tune the parameters accounting
for our design objectives: aiming to reduce both completion
time and trajectory length while having a high amount of
assistance. The analysis suggests to set fM AX = high, ξA =
low, ξS = low, kMAX = low, ξC = high. The parameter #

is free to be picked. The final values we used in our setup are
defined in Table 3.

5.4 Demonstrations

To compare the performance of our shared-control teleoper-
ation paradigms we performedmultiple demonstration trials.
Data shown below were collected from four distinct individ-
uals (who introduced variability in the trials) teleoperating
the system. Two individuals performed the tasks in the sim-
ulated environment and the other two performed the tasks in
the real environment. In each environment, one participant
was a naive user who had no previous experience in remotely
controlling our soft-growing manipulator, and the other par-
ticipant was an expert user – one of the developers of the
system. Each participant performed 5 trials of the two-item
task for each of the 6 interaction paradigms, resulting in a
total of 30 trials for each participant. The order of trials was
randomized to prevent naive users from getting familiar with
the control systemas the demonstrationswere carried out.We
did not observe trends in performance (i.e., learning curves)
during 5 trials, although in pilot testing we found that learn-
ing curves were occasionally evident for naive users after 6
trials. Because we aimed to evaluate interaction paradigms

Table 3 Final choice of the parameters for haptic rendering in assistive
paradigms

Global
refresh 100 Hz
fM AX 7 N

Fixed Assistance

k 10 N/m

b 0.1 Ns/m

f filter 50 samples

Assist-as-Needed

# 20 Ns/m

thD 30 mm

thM 0.01 m/s

ξS 1 s

ξC 3 s

ξA 1 s

kMAX 50 N/m

for naive users before they had substantial experience, we did
not go beyond 5 trials. Due to the substantial experience of
the expert users while developing and tuning the simulated
and real systems, their learning curves were assumed to have
plateaued before the demonstration began.

5.5 Results and Discussion

The results from the demonstration trials are presented for
each metric, showing average, median, interquartile range
with outliers, andmax/min across all trials for each paradigm.
Charts and plots are shown in Figs. 7, 8 and 9.

As in any remotely operated robotic system, the pres-
ence of time delay can affect system stability. We did not
experience any instability during our experiments, but our
paradigms could be combined with control strategies to
address this (e.g., passivity-based control [51]).

5.5.1 Item Placement Error and Execution Time

We compared item-placement error (Fig. 7(a)) and execution
time (Fig. 7(b) against each other (Fig. 8) to emphasize per-
formance distribution. The trend among all the paradigms
is consistent: the best performances are achieved when the
operator’s control is limited. As expected, there is a visible
difference between expert and naive users.

Full Teleoperation andAssist-as-Needed prioritize human
control, where the operator’s lack of perception is visible
from the performance achieved in task execution. This is
noticeable in both the simulated and real scenario: in the first,
3Denvironments are difficult to navigatewithout stereoscopy
or an extensive implementation of lightning and shadows; in
the second, the distance between operator and device can
proportionally affect perception [52].

It is not surprising that Mostly Autonomous achieved the
shortest andmost accurate trials, as the system always knows
where the goal is. This trend is visible in the other semi-
autonomous paradigms to different degrees, allowing for a
shorter time than in Full Teleoperation – thus reducing the
impairment caused by limited human perception. The values
of item placement error obtained in Mostly Autonomous are
non-zero because the human operator still has full control
over when and where to release items: higher values were
obtained when the item was released while the manipulator
was still approaching the target, both in simulated and real
cases. Furthermore, the item-placing precision is dependent
on several factors (e.g., release time, amount of pressure used
to inflate the gripper, how the item is oriented when attracted
to the gripper) such that, even when the system is automated,
it is not entirely repeatable. Thus, the human operator plays
an important role in manually counterbalancing undesired
behaviors, emphasizing the importance of having the human
in the loop.
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Fig. 7 Results of different
metrics for each participant. (a)
Error in item placement. (b)
Time of execution of the task

Interestingly, MSAE and ASME do not show the same
performance, with the latter being better in almost all cases.
This finding might suggest that controlling steering is harder
than controlling eversion: steering presents more challenges
in actuation and control, as it is composed of more DoFs than
eversion.

We hypothesize that the entity (human or robot) control-
ling the steering has more control over the system, and as
such ASME is a more automated paradigm than MSAE.

Fixed Assistance is similar to MSAE, with results in the
same range for expert users, and slightlyworse for naive ones.
This suggests that naive users might be deceived by constant
haptic feedback (Fig. 9), which can be hard to accommo-
date when the operator is not used to it. Indeed, naive users
performed slightly better in Assist-as-Needed than in Fixed
Assistance, especially in the simulated scenario.

Finally, little difference was found between Full Tele-
operation and Assist-as-Needed for experts. As shown in
Fig. 9, the level of haptic assistance for Assist-as-Needed
was barely perceivable because expert users did not need any
assistance – they were highly experienced in teleoperating
the soft-growing manipulator. This finding is also observed
in Fig. 8: data for Full Teleoperation and Assist-as-Needed

performance are similar for expert users (Fig. 8(a) and 8(c)),
but different for naive users, with Assist-as-Needed resulting
in slightly better performance (Fig. 8(b) and 8(d)). The differ-
ence between expert and naive users in the Assist-as-Needed
paradigm shows that themethodworks as intended: the assis-
tance is given and perceived only when the task was not
performed correctly; expert users did not need it, and thus
their results were not different from the Full Teleoperation
case, whereas naive users occasionally required more guid-
ance.

5.5.2 Participant’s Opinions

In addition to the numerical results, we also considered
how the task execution was perceived by the operators in
the different interaction paradigms. Participants were asked
questions to evaluate their role during the tasks.All the partic-
ipants agreed that the task was difficult to accomplish under
Full Teleoperation, especially in phases requiring accuracy
such aswhen approaching targets.Assist-as-Needed was per-
ceived differently, with naive users being correctly relieved
by occasional assistance and experts barely noticing any. The
opposite reaction was reported for Fixed Assistance, where
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Fig. 8 Error in item placement versus execution time for each paradigm, executed by both expert and naive users for both simulated and real
scenarios. Here the time refers to the duration of the execution of grasping and placing phases of a single item

experts found it a useful tool for guidance while naive users
found it too constraining and hard to control. MSAE and
ASME were both rated better than Full Teleoperation and
described as the most collaborative paradigms in terms of
interaction with the robot. ASME was rated easier to control
but somewhat less interactive. Finally, Mostly Autonomous
was rated as the easiest by all participants, enjoyable to
observe but not very compelling in terms of interaction.

5.5.3 Paradigms for Soft-Growing Robots

The differences in performance between the MSAE (with
the user controlling steering) and ASME (with the user

controlling growth) paradigms suggest that the soft-growing
robot’s unique decoupling of DoFs can enable unique com-
binations of manual and autonomous control, expanding the
options for shared control. In our results, ASME performed
generally better than MSAE, allowing users to remain in the
control loop of the robot with the possibility for increased
situational awareness, while still allowing the autonomous
algorithms to handle more challenging components of the
task. These results suggest that sharing the control with semi-
autonomous soft-growing robots increases the performance
of manipulation tasks, not only in terms of the analyzed met-
rics but also in terms of maneuverability perceived by the
operator.

Fig. 9 Average amount of
assistance rendered on the
haptic interface in the assistive
paradigms, executed by both
expert and naive user in the
simulated and the real scenario
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6 Conclusion

In this paper, we introduced, validated, and compared the per-
formance of six shared-control teleoperation paradigms with
different autonomy and assistance levels on a soft-growing
robot manipulator. The proposed paradigms were designed
so as to explore awide spectrumof potential operationmodes
going from full teleoperation to quasi-full autonomy, gradu-
ally reducing the role of the human operator in favor of robot
autonomy. Results show that, by gradually adding autonomy
to basic teleoperation, the performance improves to the detri-
ment of human involvement.We noticed that having constant
haptic guidance is a better paradigm for expert users, whereas
having need-tailored guidance is preferred when users are
new to the task. Having the human in control of partial DoFs
might be the best solution in terms of perceived involvement
and performance, whereas limiting the human control is use-
ful when the task requires extreme precision and the system
is capable of acquiring enough information from the envi-
ronment to perform a correct execution. Wherever achieving
this precision is not possible, the role of the human is to fine-
tune position when close to targets, leaving the navigational
part to the robot.

In the future, additional interaction paradigms can be
developed and tested based on novel features of not only
soft-growing robots but other soft robot manipulators with
novel kinematics. These can be blended together to obtain
a mixture of shared-control paradigms, which would lead to
a continuous rather than a discrete set of control modalities
that could be desirable in some applications. In this way, the
user could select from a continuous range the percentage of
manual versus autonomous control along each DoF of the
system. For instance, considering a linear blending strategy,
a real parameter can be used to weigh the control inputs com-
ing from an autonomous controller and the human or from
two different controllers along the same DoF. Blending and
transitioning among control strategies could result in unex-
pected emergent behaviors of the system that affect usability,
and should be studied carefully in future work.

Additionally,weare interested indevelopingnewparadigms
exploiting the softness of our manipulator, allowing for col-
laborative tasks in which robots are not harmful to humans
or the environment in case of undesired collisions.

Finally, due to the COVID-19 pandemic restricting human
subjects’ work as well as the very large number of conditions
tested in the targeted user studies presented here, we had
selected to demonstrate the systemwith only one experienced
and one naive user in each scenario rather than running a
complete user study. In future work, we will perform a larger
user study to understand the effects of our interaction modes
in scenarios that can be more complex than the one proposed
in this pilotwork (e.g., exploration of cluttered environments)

and with further limitations (e.g., limited perception of the
robot to emphasize the role of the human operator).
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