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Abstract
The ultrasensitivity of a dose response function can be quantifiably defined using the
generalized Hill coefficient of the function. We examined an upper bound for the Hill
coefficient of the composition of two functions, namely the product of their individual
Hill coefficients. We proved that this upper bound holds for compositions of Hill
functions, and that there are instances of counterexamples that exist for more general
sigmoidal functions. Additionally, we tested computationally other types of sigmoidal
functions, such as the logistic and inverse trigonometric functions, and we provided
computational evidence that in these cases the inequality also holds. We show that in
large generality there is a limit to how ultrasensitive the composition of two functions
can be, which has applications to understanding signaling cascades in biochemical
reactions.

Keywords Ultrasensitivity · Signal transduction · Hill coefficient · Hill function ·
Biochemical reactions

1 Introduction

The human body is a complex system with a large number of cell types working
together to carry out different tasks. In some situations, cells need to be decisive in
the sense of ignoring a low level of stimulus, while leading to a significant response
when given a larger stimulus. For example consider the case of a wound, in which the
skin breaks and bleeds. The surrounding cells immediately send signals to other cells
in the skin, essentially telling them to divide quickly. This signal is sent in the form of
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a molecule called epidermal growth factor (EGF) which floats in the neighborhood of
the wound, and which binds to a membrane bound receptor called epidermal growth
factor receptor or EGFR (Dei Tos and Ellis 2005; Jagodzik 2018). Cells that receive
sufficient EGF binding to their receptors will begin to quickly divide. On the other
hand, unwanted replication can lead to cancer in contexts other than wound healing.
In order to prevent such unwanted cell division, the EGFR dose response is such
that a small amount of EGF leads to no response, while a slightly larger input EGF
concentration leads to a robust response. This behavior is called ultrasensitivity.

In the context of EGFR signaling, the molecules downstream of this receptor
are modified by phosphorylation (Ferrell and Ha 2014), the transfer of phosphate
molecules mediated by an enzyme. Phosphorylation takes place sequentially over a
series of molecules, each molecule phosphorylating (and thereby activating) the next.
This particular cascade is known as the Mitogen-Activated Protein Kinase cascade
(MAPK), and it is a model signaling pathway in the study of cellular communication
(Kholodenko 2000). It is believed that the combination of such multiple steps is in
large measure what allows the larger ultrasensitivity of the overall response.

In this paper, we study how connecting a cascade of multiple small reactions
with moderate ultrasensitivity can result in a single cascade with significantly larger
ultrasensitivity. Specifically, we work to establish an upper bound to the extent of
ultrasensitivity in a cascade, in terms of the ultrasensitivity of the individual cascade
steps. In the context of the MAPK cascade example, each of the three steps constitutes
a smaller set of reactions with its own input–output response, and the overall dose
response of the system can be broadly understood as the composition of each of these
functions. We therefore ask how ultrasensitive can be the composition of moderately
ultrasensitive functions.

In the first instance we use Hill functions to describe the input–output behavior
of each cascade step. This function can also be used to quantitatively measure the
ultrasensitivity of a response through the so-called Hill coefficient, a component of
the function referred to as n in the formula below:

f (x) = cxn

K + xn
. (1)

In this case x is the input concentration of ligand (Ryerson and Enciso 2014), and
c describes the saturation value of the function for large x . The constant K modulates
the function horizontally, such that when xn = K the response is 50% of the maximal
output.

Given a positive, increasing, saturating function f (x), the (generalized) Hill coef-
ficient is a number assigned to the function that quantifies how suddenly it increases
from a lowvalue to a high, saturating value. Functionswith this property are ubiquitous
in signal transduction as they implement a Boolean decision given a continuous input.
In addition, such functions introduce into the system a strong nonlinearity which can
be used to create more complex dynamical behaviors such as limit cycles or switches
(Chan et al. 2012; Enciso 2007, 2014, 2013; Haney et al. 2010; Koshland 1987; Leg-
ewie et al. 2005; Thattai and Van Oudenaarden 2002; Zhang et al. 2013). To define
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this quantity for a given function f (x), we consider the numbers

EC10 = f −1(0.1 fmax ), EC90 = f −1(0.9 fmax ),

where fmax is the saturation value of the function (Hill 1913; Altszyler 2017). They
are the effective concentrations of input that lead to 10% and 90% of the response,
respectively. These values can be used to find the Hill coefficient the use of the formula
derived by Goldbeter and Koshland (1981):

H = ln 81

ln EC90
EC10

(2)

Notice that closer the ratio EC90/EC10 becomes to one, the higher the ultrasen-
sitivity of the system, and also the larger the expression above. While the value of H
can be calculated for any such sigmoidal function, it also holds that H = n in the case
of Hill functions (see Lemma 2 below). This generalized Hill coefficient is therefore
helpful to quantify the ultrasensitivity of dose responses in larger generality.

The main conjecture we explore in this paper is inspired by work proposed by
Ferrell and Ha (2014); Huang and Ferrell (1996). We propose and prove that the Hill
coefficient of the composition of two Hill functions f (x), g(x) satisfies the formula

H f (g(x)) ≤ H f (x)Hg(x). (3)

The value of this hypothesis, which we call the Ferrell inequality, is that it provides
an upper limit for how ultrasensitive a two-step cascade can be, as a function of the
individual steps. We establish here the inequality for two arbitrary Hill functions.
We explore computationally the generalization of the inequality to three-step Hill
function cascades, as well as for two other families of sigmoidal functions, namely
inverse trigonometric functions and logistic functions.We study underwhat conditions
this inequality approaches an equality, and we show that the inequality is not true for
any two arbitrary sigmoidal functions, by producing a simple counterexample.

In the work (Huang and Ferrell 1996), Huang and Ferrell show a similar result
in terms of the sensitivity of a dose response, rather than the Hill coefficient. The
sensitivity of a function f (x) is defined as S(x) = f ′(x)x/ f (x). One can consider
sensitivity as the percent change in the output based on a percent change in the input
x . For example, a sensitivity of 3 means that an increase in the parameter x of 1%
will result in an increase of the output by 3%. Huang and Ferrell described a result
for compositions of multiple functions, namely that R = r1r2r3, where R is the
sensitivity of the cascade, and r1, r2, and r3 are the sensitivities of each level of the
cascade. The proof of this result follows immediately from using the chain rule in the
definition of the composition. The sensitivity of a function is also used as a measure of
ultrasensitivity, but it has some caveats. For instance, the sensitivity of a Hill function
has the somewhat unintuitive property that it is highest at x = 0. The Hill coefficient,
especially for Hill functions, is a widely followed measure of ultrasensitivity, and it
is a natural question to explore the inequality in that context. See also the work by
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A0 A1 Am...
αE αE αE

β β β

B0 B1 Bn...
γA
β β β
m γAm γAm

Fig. 1 Sample biochemical reaction cascade with two steps, input E , and output Bn

Altszyler (2017), which addresses considerations for the generalized Hill coefficient,
but without an inequality estimation such as ours.

2 Background

2.1 Reaction Cascades

As an example of a reaction cascade, consider the simple system described in Fig. 1. A
substrate A is first sequentially modified by an enzyme E . The fully modified substrate
Am is the output of the first step in the cascade, and it acts as the input of the second
step of the cascade, by sequentially modifying the substrate B. The fully modified
protein Bn is the output of the second step of the cascade, and also the output of the
full reaction system. This is a fairly typical form of reaction cascade, for instance the
well known MAP kinase cascade consists of a sequence of proteins, each of which is
modified twice before it becomes active.

Regarding the mathematical analysis of the system, we can think of the input and
output of each reaction as follows.Aswe assign dynamical equations to each chemical,
we can calculate

A′
0 = −αA0E + βA1.

At steady state this means that A1 = (α/β)E A0. For the next protein we calculate

A′
1 = αA0E − βA1 − αA1E + βA2.

At steady state we use the previous result 0 = −αA0E + βA1, and conclude
0 = −αA1E + βA2, that is, A2 = (α/β)E A1. We can write at steady state
Ak = [(α/β)E]k A0, for k = 1 · · ·m.

At the same time we have the mass conservation relation At = A0+ A1+· · ·+ Am ,
where At is the total amount of protein A. Setting x = (α/β)E to be the (rescaled)
enzyme input, we calculate at steady state

At = A0(1 + x + · · · + xm),
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and

A0 = At

1 + x + · · · + xm
, Am = At

xm

1 + x + · · · + xm
=: g(x).

In this way the output Am of the cascade is a function of the input enzyme E . We
think of the function Am = g(x) = g((α/β)E) as the dose response function of the
cascade step.

One can similarly calculate the dose response function for the second cascade step,
by setting y = (γ /δ)Am . In this case

Bm = Bt
yn

1 + y + · · · + yn
=: f (y).

Importantly, the overall dose response of the cascade can be seen as a composition of
the two dose response functions:

Bm = f (y) = f
(γ

δ
Am

)
= f

(γ

δ
g(x)

)
,

Bm = f

(
γ

δ
g

(
α

β
E

))
.

The shape of the individual dose responses will generally be affected by the details
in each cascade, for instance in Gunawardena (2005) the reactions are more detailed
and include Michaelis–Menten components, but the overall dose response functions
are identical when properly annotated.

In what follows below we use instead of the above functions the function f (x) =
cxn/(K + xn). This simplified function is for instance the dose response function for
the system in the classic work by Hill,

nO2 + H � C,

where nmolecules of oxygenO2 bind to amolecule of hemoglobin H , to form a bound
complex C ( Hill (1913), see also Enciso (2013)). Here oxygen acts as input, and
bound hemoglobin as output. Hill suggested this system decades before hemoglobin
was proved to have multiple oxygen binding sites, and this function is known as Hill
function in honor of this example. Of course, this is now one of the most important
functions in mathematical biology, and it is in wide use in many other contexts.

The above approach can be carried out in large generality with other reaction cas-
cades. Perhaps the most important assumption here is that the system doesn’t have
significant retroactivity, that is, the output of the first step is not significantly used up
or tied up in the reactions of the second step. See for instance (Gyorgy andDel Vecchio
2012; Shah and Del Vecchio 2017) for a more complete discussion of retroactivity
in chemical reaction cascades. Another way to think about this is in terms of seques-
tration, that an output protein from one tier should not be significantly sequestered
by molecules in lower tiers. We can thus make a general assumption here that such
sequestration effect is minimal or negligible in the cascades that we consider.
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2.2 Logarithmic Sampling

In order to ensure that the trials produced by our algorithm were properly randomized,
we utilized logarithmic sampling. Suppose a lower bound and an upper bound are
given for a parameter p, 0 < a ≤ p ≤ b. Since b could be orders of magnitude larger
than a, we want to ensure that the samples are selected from each order of magnitude
with similar likelihood. To do this we choose a number x between log10 a and log10 b
using a uniform distribution. The output of the logarithmic sampling algorithm is
p = 10x , which must lie between a and b.

For instance, suppose that a = 1 and b = 1000 describe a plausible range for the
parameter value of a given biochemical constant. If a number is sampled uniformly
from1 to 1000,most of the numbers sampledwill be larger than 100.Using logarithmic
sampling, one would choose a number x from 0 to 3, and the sampled number would
be 10x . In this way, the sample has the same likelihood of being on the intervals [1,10],
[10,100], and [100,1000].

3 Results

3.1 Hill Function Database

We begin with a computational analysis of the Ferrell inequality for Hill functions

f (x) = cxn

K + xn
.

Weconsider twoHill functions, f (x) and g(x), and randomize each of their parameters
using logarithmic sampling. The parameters are defined with n from 1 to 10, and each
of c and K from 0.1 to 100.

The program randomized the parameters within the defined ranges and tested to
see if the Ferrell inequality holds. For each simulation run, in case that either EC10
or EC90 is not a positive number, then the parameters were discarded and a new
simulation was started.

The Hill coefficient for f (x) and g(x) is given by the parameter n as proven
by Goldbeter and Koshland. For the composition, the generalized Hill coefficient is
calculated by inverting the function, calculating the EC10 and EC90 algebraically,
and applying formula (2). A total of 5000 simulations were performed under the
described procedure. The results of this simulation are illustrated in Table 1.

Every case that arose from the 5000 randomized trails in our databasewas consistent
with the Ferrell inequality (3), providing computational evidence that an analytical
proof can be pursued in the case of Hill functions.

3.2 Proving the Ferrell Inequality for Hill Functions

In this section we provide a rigorous mathematical proof for the Ferrell inequality in
the case of two Hill functions. We start this proof by establishing the notation for the
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Table 1 Sample runs of a
computational analysis for
randomly chosen Hill function
cascade steps

Trial f (x) g(x) H f Hg H f (g) H f · Hg

1 11.7x1.9

33.0+x1.9
6.2x2.5

4.1+x2.5
1.9 2.5 3.2 4.7

2 0.1x6.6

4.5+x6.6
23.6x1.2

0.1+x1.2
6.6 1.2 7.2 7.9

3 39.2x1.4

0.1+x1.4
1.1x4.1

0.6+x4.1
1.4 4.1 5.1 5.7

4 6.0x3.5

2.9+x3.5
1.2x9.1

1.9+x9.1
3.5 9.1 12.4 32

5 14.1x1.5

5.2+x1.5
5.4x2.0

1.8+x2.0
1.5 2.0 2.5 3.0

6 0.3x1.1

1.0+x1.1
0.2x3.7

0.3+x3.7
1.1 3.7 3.8 4.1

three functions f (x), g(x), and h(x) = f (g(x)),

f (x) = c1xn

K1 + xn
, g(x) = c2xm

K2 + xm
, h(x) = f (g(x)) = c1(

c2xm

K2+xm )n

K1 + ( c2xm
K2+xm )n

. (4)

Recall that we want to prove the Ferrell inequality

H f (g(x)) ≤ H f Hg. (5)

We start by proving some preliminary results.

Lemma 1 For a Hill function y = cxn/(K + xn), the corresponding inverse function

has the formula y−1(x) =
(

Kx
c−x

) 1
n
.

Proof Beginning with the formula for the function, we can take the following steps to
solve for x :

(K + xn)y = cxn

K y + xn y = cxn

K y = xn(c − y)
Ky

(c − y)
= xn

x =
(

Ky

c − y

) 1
n

.

��
Lemma 2 For a Hill function y = cxn/(K + xn), the corresponding Hill coefficient
is H = n.
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Proof We calculate using the previous lemma:

v = EC90 = y−1(0.9c) =
(
K0.9c

0.1c

)1/n

= (9K )1/n .

Similarly u = EC10 = y−1(0.1c) = (K/9)1/n . Then

H = ln 81

ln(v/u)
= ln 81

1/n ln 81
= n.

��
Lemma 3 Suppose that the Ferrell inequality (5) holds in the special case c1 = c2 = 1.
Then it must also hold in the general case of arbitrary positive c1, c2.

Proof Notice first that c1 only re-scales f (x) and h(x) vertically. It does not affect
the Hill coefficients involved, since rescaling a function vertically does not change its
Hill coefficient.

We now consider the case where both c1 and c2 are arbitrary positive numbers. We
calculate the composition

h(x) = f (g(x)) = c1g(x)n

K1 + g(x)n
= c1(

c2xm

K2+xm )n

K1 + ( c2xm
K2+xm )n

= c1(
xm

K2+xm )n

K1
cn2

+ ( xm
K2+xm )n

.

Notice that the composition function h(x) is identical to that of the case c2 = 1, in
which the coefficient K1 has been replaced by K1/cn2 . Since by assumption the Ferrell
inequality holds for c2 = 1, we have Hh ≤ mn using Lemma 2. This implies that the
inequality Hh ≤ mn is also satisfied for the original arbitrary parameters. ��

In the rest of this section,wewill useLemma3 and assumewithout loss of generality
that c1 = c2 = 1.

In order to prove the inequality, we will compute an explicit formula for the ultra-
sensitivity Hh of the composition function. We will first find the saturation value of
the composition function, then use the inverse of the composition function to solve for
the EC10 and EC90 values. We find the ratio of the EC90 to EC10 values, and then
insert that ratio into equation 2.

Lemma 4 The composition function h(x) has the saturation value hmax = 1/(K1+1).

Proof For the composition of two Hill functions, the exterior function evaluated at the
saturation point of the interior function will produce the maximum h value:

hmax = lim
x→∞ h(x) = lim

x→∞ f (g(x)) = f ( lim
x→∞ g(x)) = f (gmax ) = f (c2).

Recall we assumed c2 = 1 without loss of generality. Evaluating f (c2) results in

hmax = f (1) = 1

K1 + 1
.
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��
Now that we have the saturation value of the composition function h(x), we can

solve for the EC10 and EC90 values.

Lemma 5 The composition function h(x) has EC10 and EC90 values

EC10h =
(

K2α

1 − α

)1/m

, EC90h =
(

K2β

1 − β

)1/m

,

where

α =
(

K1

10K1 + 9

) 1
n

, β =
(

9K1

10K1 + 1

) 1
n

.

Proof Starting with the EC90 value, we need to solve for x in the equation

f (g(x)) = 0.9hmax .

Evaluating the inverse functions on both sides we get

g(x) = f −1(0.9hmax )

EC90 = x = g−1( f −1(0.9hmax )).

Using the inverse of a Hill function from Lemma 1, we can apply it to the formula
above. This yields

EC90 =
(

K2 f −1(0.9hmax )

1 − f −1(0.9hmax )

) 1
m

. (6)

We can follow the same process as above to solve for the EC10 value derived from
the equation EC10 = g−1( f −1(0.1ymax )), which results in

EC10 =
(

K2 f −1(0.1hmax )

1 − f −1(0.1hmax )

) 1
m

. (7)

In order to further simplify the EC90 and EC10 expressions, we can write
f −1(0.1ymax ) and f −1(0.9ymax ) in terms of K1 and n, and relabel them as α and
β, respectively:

f −1(0.1hmax ) = α =
( 0.1K1

K1+1

1 − 0.1
K1+1

) 1
n

f −1(0.9hmax ) = β =
( 0.9K1

K1+1

1 − 0.9
K1+1

) 1
n

.
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We can further simplify α and β:

α =
( 0.1K1

K1+1

1 − 0.1
K1+1

) 1
n

=
( 0.1K1

K1+1
K1+1
K1+1 − 0.1

K1+1

) 1
n

=
( 0.1K1

K1+1
K1+0.9
K1+1

) 1
n

.

Cancelling fractions and further simplifying we get

α =
(

0.1K1

K1 + 0.9

) 1
n =

(
K1

10K1 + 9

) 1
n

.

Following the same process we did for α will allow us to reduce β to

β =
(

9K1

10K1 + 1

) 1
n

.

��
Notice that 0 < α < β < 1, which will be important below. Now that we have

calculated both the EC10 and EC90 values in equations (6), (7) and simplified them
in terms of α and β, we can form the EC90 to EC10 ratio,

EC90

EC10
=

((
K2β

K2α

)(
1 − α

1 − β

)) 1
m =

((
β

α

) (
1 − α

1 − β

)) 1
m

.

This gives us an explicit formula for the Hill coefficient of the composition using
the above expressions for α and β:

H f (g(x)) = ln 81

ln
((

β
α

) (
1−α
1−β

)) 1
m

.

Now that we have determined the ultrasensitivity for all three functions, f (x), g(x),
and f (g(x)), we can insert them into our hypothesis, the Ferrell inequality:

ln 81

ln
((

β
α

) (
1−α
1−β

)) 1
m

≤ mn.

In order to simplify this inequality, we can multiply both sides by the natural
logarithm expression and apply the properties of logarithms to cancel out m,

n ln

((
β

α

)(
1 − α

1 − β

))
≥ ln 81

↔
((

β

α

) (
1 − α

1 − β

))n

≥ 81
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↔
(

β

α

)n (
1 − α

1 − β

)n

≥ 81. (8)

Once again notice that this inequality holds if and only if the Ferrell inequality holds
for the given parameter values. In the inequalities above we used the fact that β/α > 1
and (1−α)/(1−β) > 1 so that the logarithm in the numerator is positive. Notice also
that this expression, which is equivalent to the Ferrell inequality for Hill functions,
only depends at this point on the parameters n and K1. Since α > 0 and 1 − β > 0,
this expression is equivalent to

β(1 − α) ≥ 81
1
n α(1 − β)

↔ β − βα ≥ 81
1
n α − 81

1
n αβ

↔ β − 81
1
n α ≥ (1 − 81

1
n )αβ

↔ 1

α
− 81

1
n

β
≥ 1 − 81

1
n . (9)

In order to prove this expression, we first consider the case for n = 2:

√
10K1 + 9

K1
− √

81

√
10K1 + 1

9K1
≥ 1 − 9

√
10 + 9

K1
−

√
90 + 9

K1
≥ 1 − 9

We multiply by the conjugate

(√
10 + 9

K1
+

√
90 + 9

K1

)(√
10 + 9

K1
−

√
90 + 9

K1

)
≥

(√
10 + 9

K1
+

√
90 + 9

K1

)
(1 − 9)

10 − 90 ≥
(√

10 + 9

K1
+

√
90 + 9

K1

)
(−8)

80 ≤ 8

(√
10 + 9

K1
+

√
90 + 9

K1

)
.

Since the right hand side is decreasing as a function of K1, it is sufficient to evaluate
this inequality as K1 approaches ∞,

10 ≤ √
10 + √

90 ≈ 12.6.
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This inequality is satisfied, thus proving the Ferrell inequality for the case n = 2.
We now consider the case where n is an arbitrary positive integer. We start by

applying the following algebraic identity:

(An−1 + An−2B + · · · + ABn−2 + Bn−1)(A − B) = An − Bn .

We define � as the generalized conjugate expression from the case n = 2,

� =
n−1∑
i=0

(
1

α

)n−1−i
(
81

1
n

β

)i

By multiplying the inequality (9) on both sides by � we get

(
1

α

)n

−
(
81

1
n

β

)n

≥ �(1 − 81
1
n )

↔ 10K1 + 9

K1
− 81

10K1 + 1

9K1
≥ �(1 − 81

1
n )

↔ 10 + 9

K1
− 90 − 9

K1
≥ �(1 − 81

1
n )

We can now cancel out 9
K1

from the left hand side and multiply the equation by
−1, to get the equivalent inequality

80 ≤ �(81
1
n − 1) (10)

Recalling the expression �, we calculate

� =
n−1∑
i=0

(
10 + 9

K1

) n−1−i
n

(
10K1 + 1

9K1

) i
n

81
i
n =

n−1∑
i=0

(
10 + 9

K1

) n−1−i
n

(
90 + 9

K1

) i
n

Since � is a decreasing function of K1, to prove inequality 10, it is sufficient to
show it in the case where K1 approaches ∞:

80 ≤ (81
1
n − 1)

n−1∑
i=0

10
n−1−i

n 90
i
n

↔ 80 ≤ (81
1
n − 1)

n−1∑
i=0

10
n−1
n 9

i
n .

In order to evaluate the series recall that

A + AB + AB2 + · · · + ABn−1 = A
Bn − 1

B − 1
.
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b)a) c)

Fig. 2 a Hill function graphs, each with a different value of n to illustrate how the Hill coefficient affects
the properties of each function. All functions on the graph were evaluated at c = 6 and K = 7. b The graph
of an inverse tangent function evaluated at c = 3, r = 2, and K = 9. c The graph of a logistic function
evaluated at c = 4, K = 3, and L = 2 (color figure online)

If we evaluate the last inequality by applying the above identity, where A = 10
n−1
n

and B = 9
1
n , we get that it is equivalent to

80 ≤ (81
1
n − 1)10

n−1
n

9
n
n − 1

9
1
n − 1

↔ 10 ≤ (9
2
n − 1)10

n−1
n

1

9
1
n − 1

↔ 10 ≤ 10
n−1
n (9

1
n + 1)

↔ 10
1
n ≤ 9

1
n + 1

↔ 1 ≤ n

√
9

10
+ n

√
1

10
. (11)

Now, notice that

9

10
≤ n

√
9

10
,

1

10
≤ n

√
1

10
.

Inequality (11) is shown by adding both of these inequalities,

9

10
+ 1

10
≤ n

√
9

10
+ n

√
1

10
.

Since the truth value of inequality (11) is equivalent to that of the Ferrell inequality,
we have proved the following result.

Theorem 1 For any positive real values of c1, c2, K1, K2, and any positive integer val-
ues of n,m, it holds for the general Hill functions f (x), g(x) and for their composition
h(x) = f (g(x)) that Hh ≤ H f · Hg.
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3.3 Sharp Behavior of the Inequality

One question regarding the Ferrell inequality for Hill functions is when the inequality
approaches an equality, i.e. whether this inequality is conservative orwhether in certain
limiting cases it becomes an equality

H f (g(x)) = H f Hg.

We show in this short section that this inequality becomes equality in two cases: for
the special case n = 1, and as K1 approaches zero.

First, consider the case n = 1. In this case α = K1/(10K1+9), β = 9K1/(10K1+
1), and a simple calculation shows that

1 − α = 9
K1 + 1

10K1 + 9
, 1 − β = K1 + 1

10K1 + 1
.

Then the left expression in (8) becomes

β

α

1 − α

1 − β
= 9K1

10K1 + 1
· 10K1 + 9

K1
· 9 K1 + 1

10K1 + 9
· 10K1 + 1

K1 + 1
= 81.

In particular (8) becomes an equality, which means that the Ferrell inequality itself is
also an equality.

Next, consider the case as K1 → 0 for arbitrary n. In that case, α → 0, β → 0,
and

β

α
=

[
9K1

10K1 + 1
· 10K1 + 9

K1

]1/n
=

[
9
10K1 + 9

10K1 + 1

]1/n
→ 811/n .

Once again the left hand side in (8) can be calculated as

(
β

α

)n (
1 − α

1 − β

)n

→ 81 · 1
1

= 81,

and the Ferrell inequality holds as an equality.
One can also ask the question of whether there is a lower bound to the inequality,

such as in the case where the two functions have a high Hill coefficient. It is easy to see
that if the two functions don’t match in their ultrasensitive regions, the corresponding
composition doesn’t need to be ultrasensitive, or even sigmoidal. For this reason, no
such lower bound may exist.

3.4 Inverse Tangent Function Database

While constructing and analyzing the Hill function database, we recognized that we
could computationally test our hypothesis with additional sigmoidal functions. We
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Table 2 Computational simulations for randomly chosen inverse tangent function cascade steps

f (x) g(x) H f Hg H f (g) H f · Hg

0.4 tan−1 (19.4x − 7.6) + 0.4π
2 0.5 tan−1 (5.7x − 9.5) + 0.5π

2 5.1 6.5 24.8 33.1

1.5 tan−1 (0.4x − 4.4) + 1.5π
2 2.7 tan−1 (28.1x − 18.5) + 2.7π

2 2.5 13.1 15.4 32.8

4.6 tan−1 (6.9x − 10.5) + 4.6π
2 2.5 tan−1 (0.2x − 8.7) + 2.5π

2 7.3 6.1 26.7 44.5

1.9 tan−1 (28.6x − 34.6) + 1.9π
2 0.5 tan−1 (92.7x − 3.4) + 0.5π

2 24.6 1.5 22.7 36.9

tan−1 (14.6x − 12) + π
2 0.1 tan−1 (17.9x − 7.6) + 0.1π

2 8.4 5.1 17.4 42.8

1.3 tan−1 (0.8x − 4.6) + 1.3π
2 2.4 tan−1 (0.9x − 19.1) + 2.4π

2 2.7 13.6 14.9 36.7

2.9 tan−1 (0.5x − 6.9) + 2.9π
2 2.4 tan−1 (0.5x − 4.4) + 2.4π

2 4.6 2.5 5.2 11.5

discuss our results using the inverse tangent function,

f (x) = c arctan(r x − K ) + cπ

2
.

An example of the inverse tangent function can be found in Fig. 1b. The parameters c,
r , and K were randomized for the various trial cases using the logarithmic sampling
method described in Sect. 2.1. We analyzed over 5000 trial cases for our hypothesis
using inverse tangent functions. The parameters used for the inverse tangent database
were from 0.1 to 10 for r and k, while the parameter cwas any real number from 0.1 to
100. A portion of the database created by our algorithm is shown below in Table 2 for
illustrative purposes. The results of the simulation indicate that all 5000 randomized
rows were consistent with the Ferrell inequality.

The general Hill coefficient for the inverse tangent function can be derived using
equation 2. The inverse tangent function saturates at π

2 as x → ∞. After adding π
2 and

multiplying by c, we can see that the function f (x) as defined in this section saturates
towards cπ . In order to find the EC90 value, we set f (x) = 0.9cπ and solve the
equation for x:

0.9cπ = c arctan(r x − K ) + cπ

2

0.9π − π

2
= arctan(r x − K )

tan(0.4π) = r x − K

EC90 = x = K + tan(0.4π)

r

Similarly,

EC10 = K − tan(0.4π)

r
.
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Table 3 Sample simulations of
logistic function cascade steps,
and the ultrasensitivity of their
compositions

f (x) g(x) H f Hg H f (g) H f · Hg

2.8
1+e−1.9(x−2.8)

7.5
1+e−4.1(x−2.2) 5 8.8 26.8 44

0.1
1+e−2.3(x−2.8)

9
1+e−0.7(x−5.8) 6.2 3.6 13.7 22.3

2.2
1+e−6.5(x−0.7)

2.6
1+e−1.1(x−4.5) 4.2 4.6 11.8 19.3

1.7
1+e−6.9(x−0.9)

8.5
1+e−6.5(x−1.7) 5.9 10.9 47.2 64.3

0.2
1+e−1.1(x−4.6)

8.1
1+e−4.4(x−0.6) 4.7 1.8 5.9 8.5

0.7
1+e−(x−3.3)

6.7
1+e−2.3(x−3.2) 2.7 7.1 10.6 19.2

0.3
1+e−2.6(x−2.6)

7.6
1+e−0.3(x−8.1) 6.5 1.5 7.3 9.8

Placing these values into equation (2) yields the Hill coefficient for the inverse
tangent function

H = ln 81

ln
K+tan(0.4π)

r
K−tan(0.4π)

r

= ln 81

ln K+tan(0.4π)
K−tan(0.4π)

.

Notice in particular that the Hill coefficient of a single inverse tangent function is
determined solely by the parameter K . This is of course not the case for compositions,
and a proof of the result evidenced in our simulations is beyond the scope of this work.

3.5 Logistic Function Database

The logistic function is another type of sigmoidal function that we used to computa-
tionally analyze our hypothesis. The logistic function is defined as

f (x) = c

1 + e−K (x−L)
.

An example of the logistic function can be found in Fig. 1c. It could itself be the
result of certain types of signal transduction cascade steps, see for instance (Enciso et al.
2014). The parameters used for the logistic function in our simulation were defined as
K and L from 0.1 to 10, and c from 1 to 1000.We computationally analyzed over 5000
trial cases for our hypothesis using the logistic function, and we found no exceptions
to the Ferrell inequality. A random selection of the database created by our algorithm
can be seen below in Table 3 for illustrative purposes.

The general Hill coefficient of the logistic function can be derived using equation
2. It is easy to see that this function saturates towards c as x → ∞. In order to find
the EC90 value, we set f (x) = 0.9c and solve the equation for x :
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0.9c = c

1 + e−K (x−L)

0.9(1 + e−K (x−L)) = 1

(1 + e−K (x−L)) = 1

0.9

e−K (x−L) = 0.1

0.9

−K (x − L) = ln
1

9

−Kx = ln
1

9
− K L

EC90 = x = K L − ln 1
9

K
.

Similarly,

EC10 = K L − ln 9

K
.

Placing these values into equation (2) yields the Hill coefficient for the logistic
function

H = ln 81

ln
K L+ln 9

K
K L−ln 9

K

= ln 81

ln K L+ln 9
K L−ln 9

.

3.6 Counterexample to the Ferrell Inequality

As seen through our results thus far, we have analytically proven that the Ferrell
inequality holds for all Hill functions. There is also significant evidence through our
computational work that the inequality holds for other sigmoidal functions. However,
there are counterexamples showing that the result is not true in general for sigmoidal
functions. Recall our hypothesis,

H f (g(x)) ≤ H f (x)Hg(x).

Define the following functions:

f (x) =
{
ax if x ≤ b

ab if x > b

g(x) =
⎧⎨
⎩
0 if x < c
e(x − c)

d + x − c
if x ≥ c.
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See Fig. 2 for a graph of these two functions. The function f (x) is a diagonal function
that saturates, while the function g(x) is a Hill function with n = 1 that has been
shifted to the right. As before, we define h(x) = f (g(x)).

In order to better understand the composition function, we assume that as x grows,
g(x) eventually becomes larger than b, which is the saturation value for f (x). This is
satisfied only if b < e, which we assume throughout our analysis. For x ≤ c, g(x) = 0
so h(x) = 0. For x > c, the value of h(x) depends on whether g(x) < b:

g(x) < b � x < g−1(b) � x <
bd − bc + ec

e − b

We denote the right hand side of the last inequality by p. It follows that if c ≤ x < p,
then h(x) = ag(x). If x > p, then h(x) = ab. The full composition function is then
defined as

h(x) = f (g(x)) =

⎧⎪⎨
⎪⎩

0 if x < c

ag(x) if c ≤ x < p

ab if p ≤ x .

We can calculate the EC90
EC10 ratio and use it to solve for the Hill coefficient of all

three functions. In the case of f (x) we know that the maximum y-value is ab. By the
definition of f (x),

f (EC90) = 0.9ab

f (EC10) = 0.1ab

With this informationwefind the correspondingEC90 andEC10values of the function,
which are 0.9b and 0.1b. Then, by using equation 2,

H f = ln 81

ln EC90
EC10

= ln 81

ln 0.9b
0.1b

= ln 81

ln 9
= 2. (12)

The Hill coefficient of f (x) is 2 regardless of the values for a and b.
Similarly, we can determine the Hill coefficient of g(x). The maximum value for

g(x) is e as x becomes increasingly large. We calculate the EC90 value as follows,

0.9e = e(x − c)

x + d − c
0.9(x + d − c) = (x − c)

0.9x + 0.9d − 0.9c = x − c

Simplifying and multiplying by 10 on both sides we get

EC90g = x = 9d + c
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Similarly, we can calculate the EC10 value,

EC10g = d + 9c

9

We can plug both of these values into the Goldbeter and Koshland formula

Hg = ln 81

ln 9d+c
d+9c
9

= ln 81

ln 81d+9c
d+9c

.

Notice that when c = 0 the Hill coefficient is one, while H increases arbitrarily as c
grows.

In order to calculate the Hill coefficient of the composition, notice that by construc-
tion the composition consists of truncating the function g(x) at the value ab. Recall
that we assume e > b, in such a way that for large enough x , g(x) > b and the
composition reaches saturation at ab.

h(EC90h) = 0.9ab

h(EC10h) = 0.1ab

We can do a similar calculation as for the function g(x), noticing that at the point
x = EC90h saturation has not yet been reached and therefore h(x) = ag(x):

0.9ab = h(x) = ag(x) = ae(x − c)

x + d − c
0.9b(x + d − c) = e(x − c)

9bx + 9bd − 9bc = 10ex − 10ec

9bx − 10ex = 9bc − 9bd − 10ec

EC90h = x = 9bc − 9bd − 10ec

9b − 10e

We can apply a similar method to find the EC10,

EC10h = bc − bd − 10ec

b − 10e

We use for concreteness use the parameters a = 1, b = 2, c = 3, d = 4 and e = 25.
Then

Hg = ln 81

ln 81d+9c
d+9c

≈ 1.8
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a) b) c)

Fig. 3 Two functions with small Hill coefficients, f (x) and g(x), can produce a composition function,
f (g(x)), with a significantly higherHill coefficient. This example shows that there are instances of sigmoidal
functions where the Ferrell inequality does not hold (color figure online)

The product of H f and Hg for these specific parameters is 3.62. However

EC10h = (2 · 3) − (2 · 4) − 10(25 · 3)
(2) − (10 · 25) = −752

−248
≈ 3.03,

EC90h = 0.9(2 · 3) − 0.9(2 · 4) − (25 · 3)
0.9(1 · 2) − 25

= −76.8

−23.2
≈ 3.31.

We calculate

Hh = ln 81

ln 3.31
3.03

≈ 50.08.

Notice that neither f (x) nor g(x) are particularly ultrasensitive, with Hill coefficients
of 2 and 1.8, respectively. However, the Hill coefficient of the composition is 50.08.
Figure3 illustrates each of the functions and shows the stark difference in the ultra-
sensitivity of the composition.

We include some insights regarding the choice of functions for the counterexample,
specifically the function g(x). Surprisingly, it is in a sense the limit of a function that
appears in our first example of a cascade in Sect. 2.1.

Lemma 6 The following limit holds for the cascade step functions described in
Sect.2.1:

lim
m→∞

xm

1 + x + · · · + xm
=

⎧⎨
⎩
0 if 0 ≤ x < 1,

(x − 1)

1 + (x − 1)
if x > 1.

Proof Notice first that

xm

1 + x + · · · + xm
= xm(x − 1)

xm+1 − 1
= xm+1 − xm

xm+1 − 1
.
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For 0 < x < 1, this last expression converges to 0/(−1) = 0 as m → ∞. For x > 1,

lim
m→∞

xm+1 − xm

xm+1 − 1
= lim

m→∞
x − 1

x − 1/xm
= x − 1

x
= x − 1

1 + (x − 1)
.

��
This limit was first pointed out by Gunawardena (2005), thus establishing a relation

between simple signal transduction cascades and horizontal translations of Hill func-
tions. It also helps to resolve a related question, namely whether a counterexample
can be built using sigmoidal functions that are not translations. Using a sufficiently
large value of m, the function g(x) can be replaced with a rescaling of the function
xm/(1 + x + · · · + xm), which is not itself a translation, and in this way violate the
Ferrell inequality.

We finish with another question, namely whether compositions from mixed fam-
ilies of functions above could potentially be counterexamples. We carried out 5000
computational simulations where one of the two functions (either f (x) or g(x)) is a
Hill function and the other an inverse trigonometric function, and we always found
that the Ferrell inequality was satisfied. When combining Hill functions and logistic
functions, whilemost of the time the inequality was satisfied, we found some examples
where it was not, such as for

f (x) = 234
x2

8 + x2
, g(x) = 26

973 + e−5x+15
.

In that case H f = 2, Hg = 1.47, H f Hg = 2.94, but H f ◦g = 9.35, violating the
result.

3.7 Three Hill Function Dataset

In order to better understand the reach of our results, we carried out a computational
analysis in the case of cascades of three Hill functions.We use the generalized inequal-
ity

H f (g(q(x))) ≤ H f · Hg · Hq

along with logarithmic sampling with the same parameter ranges as in the case of
two-step cascades of Hill functions. We generated a database of 5000 rows and found
that in all cases the results were consistent with the hypothesis. We display some of the
simulations in Table 4 for illustration purposes. This analysis suggests that the Ferrell
inequality holds in a natural way for cascades of more than two steps.

4 Discussion

An analysis of the Ferrell inequality indicates that it holds for the composition of
any two Hill functions, but not all sigmoidal functions. We have shown that in large
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Table 4 Simulations of Hill function cascades with three steps, including the ultrasensitivity of each step
as well as that of their overall composition

f (x) g(x) q(x) H f Hg Hq H f ◦g◦q H f · Hg · Hq

1.38x4.18

568.01+x4.18
1.03x3.51

271.54+x3.51
63.74x2

29.63+x2
4.2 3.5 2 7.9 29.4

26.632.03

16.51+x2.03
82.13x1.33

453.6+x1.33
86.34x2

4.01+x2
2 1.3 2 4.4 5.2

17.36x1.75

35.05+x1.75
2.41x4.44

416.02+x4.44
16.51x10

12.18+x10
1.8 4.4 10 36.9 79.2

6.58x4.28

21.07+x4.28
2.44x1.1

9.61+x1.1
16.03x8

95.26+x8
4.3 1.1 8 11.3 37.8

4.52x2.69

946.46+x2.69
9.81x3.95

79.37+x3.95
5.2x4

129.04+x4
2.7 4 4 7.9 43.2

93.78x4.87

17.44+x4.87
3.94x1.25

3.6+x1.25
99.76x2

1.81+x2
4.9 1.3 2 6.3 11.8

17.15x5.36

1.45+x5.36
1.71x3.19

21.28+x3.19
23.81x2

1.33+x2
5.4 3.2 2 11.7 34.6

generality there is a limit to how ultrasensitive the composition of two functions can
be. From these results it follows that when using Hill functions to model biochemical
dose responses, two functions with low ultrasensitivity cannot be combined in a clever
way to produce a composition function with high ultrasensitivity. Instead, functions
with lower ultrasensitivity must be combined so that their composition has a higher
degree of switch-like behavior. It is also important to note, however, that sigmoidal
functions other than the Hill function can be used to analyze and represent biological
systems. Since the Ferrell inequality does not hold in all cases, we cannot predict with
certainty the characteristics of ultrasensitivity in these biological systems in the same
way we can for just Hill function-based systems.

The functions proposed in the counterexample can potentially be produced using
standard biochemical reactions. For instance, the function g(x) which is a simple
Michaelis–Menten response that has been shifted to the right, has been described in
work by Gunawardena (2005) as a threshold rather a switch, and calculated as the
result of multisite phosphorylation. The current work shows that this threshold can
be converted into a switch by adding a further downstream layer into that proposed
system.

Other mechanisms for high ultrasensitivity involve the creation of bistability and
hysteretic switches. Such a switch could be arbitrarily ultrasensitive and involves a
feedback loop from a downstream molecule back to an upstream component of the
circuit. It also requires a certain amount of nonlinear behavior, which can be obtained
from mechanisms such as multisite phosphorylation.

Since many reaction cascades in biochemistry involve more than two steps, such as
the MAPK cascade, we provide computational evidence that this result also holds for
such longer cascades, at least in the case of Hill functions. A proof for such a general
case is out of the scope of this manuscript, but it could be attempted in future work.

It remains unclear whether realistic cascades are sufficiently close to their Hill
function approximation that the inequality holds in practice. One possibility is that a
biochemical system could try to ’game the system’ by purposefully building non-Hill
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function responses in such a way that they combine to create high Hill coefficient
compositions.
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