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The high heritability of amyotrophic lateral sclerosis (ALS) contrasts with its low molecular diagnosis rate post-genetic testing, pointing
to potential undiscovered genetic factors. To aid the exploration of these factors, we introduced EpiOut, an algorithm to identify chro-
matin accessibility outliers that are regions exhibiting divergent accessibility from the population baseline in a single or few samples.
Annotation of accessible regions with histone chromatin immunoprecipitation sequencing and Hi-C indicates that outliers are concen-
trated in functional loci, especially among promoters interacting with active enhancers. Across different omics levels, outliers are
robustly replicated, and chromatin accessibility outliers are reliable predictors of gene expression outliers and aberrant protein levels.
When promoter accessibility does not align with gene expression, our results indicate that molecular aberrations are more likely to
be linked to post-transcriptional regulation rather than transcriptional regulation. Our findings demonstrate that the outlier detection

paradigm can uncover dysregulated regions in rare diseases. EpiOut is available at github.com/uci-cbcl/EpiOut.

Introduction

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular
degenerative disease affecting 0.6 to 3.8 per 100,000 peo-
ple with a poor survival prognosis without a cure.* ALS
is a complex disease where a single gene or pathway
cannot explain the disease phenotype due to the heteroge-
neity of genetic causes and over 30 genes associated with
ALS."” Meta-analysis and twin studies estimate the herita-
bility of ALS disease at 61 (with 38 -78 confidence in-
tervals) in sporadic cases (SALS), i.e., patients without a his-
tory of the disease in the family.® Despite the high
heritability of ALS, only 11 to 25 of patients®’ receive
a diagnosis after genetic testing. The gap between high her-
itability and low diagnostic rate implies the existence of
many undiscovered ALS-related genes.

There are large-scale sequencing efforts to discover the ge-
netic bases of ALS.*” These studies utilized genome-wide as-
sociation studies (GWASs), quantitative trait locus (QTL),
and differential expression analysis from a large cohort of
samples to detect aberrations in ALS patients compared
with control samples.>'%'? These statistical approaches
successfully detected the most common factors (variants,
genes, and pathways) associated with disease phenotype,
yet detecting rare genetic factors remains challenging due
to low statistical power. Outlier detection is a complemen-

tary statistical approach that uncovers aberrations specific
to one or a few patients. Applying the outlier detection para-
digm to transcriptomics data has revealed the dysregulation
of many novel splicing and gene expression outliers."* '’
This approach offers a promising direction for enhancing
molecular diagnostic rates of rare disorders, as it effectively
captures their heterogeneous genetic architecture.

The outlier detection approach has recently been app-
lied to proteomics”””' and methylation,”’ and robust
replication of aberrations across multiple omics data dem-
onstrates the reliability of the outliers for disease diagnos-
tics. Expanding the outlier detection approach to chro-
matin accessibility could provide further insight into the
dysregulation of functional regions and their impact on
gene expression in disease. Because transcription factors
typically bind to open chromatin regions, defining the ac-
tivity of promoters and enhancers, which in turn regulate
transcription.?” Thus, aberrations in chromatin accessi-
bility correlate with the dysregulation of gene expression
potentially linked to diseases.”* > Despite the widespread
use of assays such as assay for transposase-accessible chro-
matin with sequencing (ATAC-seq) and DNase-seq ena-
bling genome-wide investigation of the chromatin accessi-
bility landscape,®® the outlier detection approach has not
been applied to chromatin accessibility data to the best
of our knowledge.
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Figure 1. EpiOut offers a framework for
the identification of dysregulated regions
using chromatin accessibility data
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Here, we present EpiOut, a software developed for chro-
matin accessibility outlier detection (Figure 1). Our pro-
posed method takes read alignment files and accessible
regions as input, performs ultra-fast read counting per
accessible region, detects outliers using a linear autoen-
coder (LR-AE) with a negative binomial objective function,
and annotates outlier regions using chromatin immuno-
precipitation sequencing (ChIP-seq) and Hi-C. Optimiza-
tion of the decoder layer and dispersion parameters re-
quires solving a large number of independent convex
problems. We significantly accelerated the LR-AE using
TensorFlow?’ by utilizing a vectorized variation of back-
tracking line search for the dispersion parameters and
L-BFGS for the decoder layer. We utilized EpiOut to identify
chromatin accessibility aberrations in motor neuron cells
from 253 samples in the AnswerALS cohort,” which com-
prises multiple omics data from ALS patients and clinically
healthy controls. EpiOut pinpoints a small number of sam-
ple-specific loci as outliers. Comparison of chromatin
accessibility outliers with gene expression outliers and pro-
tein aberrations reveals consistent replication across multi-
ple omics levels. This analysis can offer valuable insights
into whether aberrations in molecular phenotype are influ-
enced by transcriptional or post-transcriptional regulation.
The outlier detection approach identifies known ALS genes
and potentially novel disease gene candidates.

Results

In this study, we explored aberrant
chromatin accessibility in ALS using
ATAC-seq experiments from the
AnswerALS dataset (methods). This
dataset comprises paired genomics,
transcriptomics, chromatin accessibi-
lity, and proteomics experiments
from 253 individuals. With our novel
method, EpiOut, we pinpointed re-
gions with abnormal chromatin acces-
sibility and investigated the molecular
impact of these outliers by comparing paired experiments
across different omics levels. Our results highlight the bio-
logical relevance and robustness of the identified accessi-
bility outliers.

Detection of accessible regions

Detection of aberrant accessibility requires read counts for
a set of accessible regions consistent across the individuals.
First, we merged ATAC-seq reads of all samples into one
meta-sample, then performed joint peak calling with
MACS2?® using the meta-sample to obtain a consistent
set of accessible regions. Joint peak calling results in nar-
rower regions compared with sample-specific peak calling,
and there is a substantial overlap (~ 88 for under-accessi-
bility and ~ 63  for over-accessibility) in outliers identi-
fied by the two methods (Figures S1A and S1D). We de-
tected a total of 858,268 peaks before any filtering. Next,
we counted the number of ATAC-seq reads overlapping
with each accessible region. Counting reads from a large
sample cohort is computationally intensive.'> Thus, we
developed EpiCount, an efficient read counter designed
for accessibility data. EpiCount is twice as fast as the
state-of-the-art generic counting tool?’ (methods), using
~ 50 times less memory (Figures S2A and S2B) and 15
times faster than the reported runtime of commonly
used counting methods.'> The runtime of EpiCount is
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comparable with the bedtools™ implementation of the
chrom-sweep algorithm.*' The tidy memory footprint of
EpiCount enables the independent parallelization of
counting across a large number of samples. Last, we filtered
accessible regions based on the read counts because many
accessible regions often do not replicate across samples. We
imposed a replication filter to these peaks, ensuring that
the accessible regions were observed in at least S0  of
the samples with a minimum of two reads and exhibited
high accessibility (100 reads) in at least one sample
(Figure S3A). Applying these filters yielded 114, 428 acces-
sible regions replicated across samples.

Outlier detection and benchmark

Using an outlier detection approach, we aim to spotlight
the rare aberrations unique to a few or single samples.
This was achieved by eliminating major covariation in
chromatin accessibility data and examining the remaining
variance between samples. We investigated the relation-
ship between the principal components of accessibility
data and the disease status of the samples. Figure 2A illus-
trates the lack of clustering between samples by disease
phenotype along the site of the top two principal compo-
nents of chromatin regions with highly variable accessi-
bility (counts are normalized with variance stabilizing
transformation [VST]*%). The top 25 principal components
account for approximately 79 of the chromatin accessi-
bility variation between samples (Figure S4A). However,
none of these top principal components significantly sepa-
rate ALS samples from controls in this cohort (Figure S4B).
Similarly, top principal components of transcriptomics
data do not clearly separate cases from the control samples
(Figures SSA and SSE). The observations align with the
biology of ALS, given that the most prevalent cause, a hex-
anucleotide (GGGGCC) repeat expansion in the C9orf72,
is present in only about 7 of patients, and other known
factors account for merely 1 -2  of cases.” Thus, focusing
on the rare aberrations might reveal dysregulation associ-
ated with ALS.

To evaluate the performance of the outlier detection
methods, we employed an artificial outlier injection pro-
cedure previously proposed for detecting aberrant gene
expression.”” To create ground truth, we injected large ab-
errations, called artificial outliers, to read counts of ALS
samples and then benchmarked the performance of tools
to classify those artificial outliers on the area under the pre-
cision-recall curve (methods) (Figure 2C). In naive negative
binomial, we estimated the mean of the negative binomial
test as a sample mean of read count per ATAC-seq peaks
(methods) and estimated dispersion with maximum likeli-
hood estimation (MLE), then ranked predictions by p value
based on the negative binomial test. The naive negative
binomial model performs poorly with area under the preci-
sion-recall curve (auPRC) of 18 1 because the ex-
pected read counts of the naive negative binomial model
are not sample specific. As an alternative outlier detection
method, expected read counts per peak and sample can

be estimated by principal-components analysis (PCA)
(methods), and ranking predicted outliers by Z score based
on the expected and observed read counts of the PCA
model have the performance of auPRC97 09 . Our
proposed method estimates expected read counts using
an LR-AE (Figure 2B). Expected read counts are incorpo-
rated into a negative binomial test as the mean parameter,
and the dispersion is estimated based on the expected and
observed counts (methods). In our implementation of the
LR-AE, the weights of the encoder and decoder layers are
initialized with the rotation matrix of PCA. Then, the
dispersion parameter is initially estimated using expected
counts based on initial weights, and weights of the decoder
layer are updated to maximize negative binomial likeli-
hood using initial dispersion estimation. After the decoder
layer optimization, we recalculate the dispersion estima-
tion and apply the negative binomial test to estimate
outliers. Also, it is critical to account for read coverage dif-
ferences between samples (Figure S3B); thus, read counts
are normalized for size factors®? (methods). We chose the
optimal bottleneck size of LR-AE with hyperparameter tun-
ing on the validation set (Figure S6). This approach out-
performs the previous two methods by achieving an
auPRC of 503 02 An alternative LR-AE-based
method, OUTRIDER, outperforms PCA and performs simi-
larly with EpiOut (auPRC of 48 02 ). Both methods
employ an LR-AE with a negative binomial, a more proper
distribution to fit counts data than PCA (methods). Those
results show that the estimation of dispersion and gene/
sample-specific accessibility expectation followed by the
negative binomial test is critical for outlier detection.
Chromatin accessibility is higher dimensional than gene
expression because accessibility data may contain hun-
dreds of thousands of accessible genomic regions. In con-
trast, gene expression data only contain around 10,000
to 15,000 expressed protein-coding genes. Thus, the scal-
ability of the outlier detection approach is essential to
apply the method to high-dimensional chromatin acce-
ssibility data. Although OUTRIDER and EpiOut have
similar auPRC scores, the autoencoder implementation of
OUTRIDER is significantly slower than our proposed
method (Figure 2D). For example, outlier detection with
EpiOut (745 49 seconds) is 60 times faster than
OUTRIDER (44,874 200 seconds). Our implementation
is faster due to a couple of reasons. First, we do not opti-
mize the encoder layer of the autoencoder because we
observed that the initial estimation of encoder weights
with PCA is close to optimal, so further training of the
encoder is unnecessary. Also, EpiOut only performs one
alternating optimization step to fit the decoder layer and
estimate dispersion. In contrast, OUTRIDER performs mul-
tiple alternative optimization steps to estimate dispersion
and train the encoder and decoder layers. Last, the optimi-
zation of the decoder layer and the estimation of disper-
sion parameters necessitate solving a multitude of inde-
pendent convex optimization problems. We efficiently
approach these using a vectorized L-BFGS for the decoder
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Figure 2. Proposed outlier detection methodology and its benchmark

(A) Samples do not form distinct clusters based on their disease phenotype according to the top two principal components of chromatin
regions with highly variable accessibility (read counts are normalized for VST).

(B) The architecture of the proposed methodology for outlier detection (EpiOut). The approach employs the negative binomial test. The
mean parameter of the negative binomial distribution is predicted with an LR-AE, which uses latent confounders obtained from data in
addition to reported known confounding as features to predict sample-specific expected accessibility. The dispersion parameter is fitted
with MLE using the observed and expected counts.

(C) A precision-recall curve shows the performance of alternative outlier detection methods. Methods were benchmarked based on
the classification accuracy of the injected artificial outlier. Specific cutoffs of models are indicated with cross marks (an absolute Z score
of 2 for PCA, a p value of 0 05 for naive negative binomial, OUTRIDER, and EpiOut).

(D) Runtime benchmark of outlier detection methods.

(E) Contribution of each component (such as latent and known confounding factors) of the model to reduce the number of outliers per
sample (errors indicate standard deviation).

(F) A cluster heatmap displaying the cross-correlation of samples based on the read counts of regions with highly variable accessibility
(normalized for VST) before controlling for cofounders and (G) cross-correlation of samples after correction of counts.

(H) Distribution of cross-correlation between sample pairs before and after correction of accessibility reads (x * *  p < 10~%).
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layer and a vectorized and bounded backtracking line
search for dispersion estimation, all implemented in
TensorFlow (methods).

We further integrated known confounding factors such
as batch ID, sex, reported race, and ethnicity into outlier
detection (methods). The contribution of each feature for
outlier detection is summarized in Figure 2E. The naive
negative binomial test estimates 76 5 614 outlier regions
per sample, and the inclusion of latent confounding
factors for expected read count estimation significantly re-
duces the number of outliers to 18 3 24. Known con-
founding factors such as batch ID, sex, race, and ethnicity
further reduce the number of an outlier to 142 13 6 out
of 114,428 accessible regions per sample. Thus, our
method pinpoints only a handful of aberrant regions per
sample.

As another benchmark, we compared cross-correlation
between samples. Samples are highly cross-correlated
based on the read counts of regions with highly variable
accessibility (normalized for VST) before controlling for co-
founders (Figure 2F). In our detection approach, we aim to
eliminate the correlation between samples to detect rare
aberrations by controlling for latent cofounders. Correct-
ing for latent and known confounding factors and normal-
ization of read counts decorrelate samples and eliminate
clusters due to potential batch effects (Figure 2G). Samples
have an average cross-correlation of 909 based on the
read counts before correction. In comparison, there is a
0 average cross-correlation after the proposed correction
method (p < 0001 based on the paired Wilcoxon test,
Figure 2H).

Functional annotation of accessible regions and outliers

To aid the functional interpretation of chromatin accessi-
bility outliers, we developed EpiAnnot, which annotates
accessible regions for histone marks and 3D chromatin in-
teractions based on ChIP-seq and Hi-C experiments.
EpiAnnot integrates publicly available ChIP-seq and Hi-C
for cell lines/tissues available in Roadmap Epigenomics®*
and ENCODE’® or from custom data sources. We anno-
tated the previously identified accessible regions and out-
liers using the H3K4me3, H3K27ac, and H3K4mel histone
marks observed in motor neurons. These neurons were
derived from the iPSCs of clinically healthy individuals
and ALS samples.’® Based on histone marks, accessible re-
gions were further classified as a promoter if the region
has a histone mark of H3K4me3 and is within 1,000 base
pair (bp) vicinity of the annotated transcript start site or
overlaps with 5 UTR, an active enhancer if the region
has both H3K27ac and H3K4mel mark, and a poised
enhancer if only H3K4mel signal is present while
H3K27ac mark is lacking (Figure 3A).*” The two largest cat-
egories of accessible regions were active enhancers (n =
39, 559), which have both H3K27ac and H3K4mel, fol-
lowed by poised enhancer (n = 18, 817) regions, which
have only the H3K4me1 mark (Figure 3B); 14 3  accessible
regions (n = 16,446) have all three H3K4me3, H3K27ac,

and H3K4me1 histone marks. Chromatin accessibility out-
liers are enriched for histone marks, for example 28 of
outlier overlap with all three histone marks (Figure 3C).
Consequently, both over-accessibility and under-accessi-
bility outliers are more likely to occur in promoter regions
(Figure 3D, p < 0 001 for both based on Fisher’s exact test).
Active enhancers are the largest category of outliers,
contain 39 of over-accessibility and 38 of under-acces-
sibility outliers, and not significantly enriched or depleted
for outliers (p = 0 26 for under-accessibility and p = 0 22
for over-accessibility based on Fisher’s exact test). Further-
more, both poised enhancer and unannotated regions
strongly depleted for under-accessibility outliers as ex-
pected (p < 0001 for both based on Fisher’s exact test).
Significant enrichment of outliers in functional regions in-
dicates the potential utility of accessibility outliers in delin-
eating molecular basis of ALS.

Another interesting observation is that outliers tended
to occur in the vicinity of each other (Figure 3E). Specif-
ically, 8 of outliers have a second outlier in the 10 kilo-
bp vicinity with an odds ratio of 688 (p < 0001 based
on the Fisher’s exact test), and 34 of outliers have a sec-
ond outlier in 1 million bp with the odds ratio of 33
(p < 0001 based on the Fisher’s exact test). We repeated
enrichment analysis between promoter outliers and active
or poised enhancer outliers and again observed significant
enrichment. Thirteen percent of promoter outliers have at
least one active enhancer outlier in 100 kilo-bp vicinity
(odds ratio = 375,p < 0001 based on the Fisher’s exact
test),and 24 of promoter outliers have an active enhancer
outlier in 1 million bp vicinity (odds ratio = 70,p < 0001
based on the Fisher’s exact test). The co-occurrence of the
outliers indicates the potential interaction between them.
Hi-C experiments from motor neurons provide further evi-
dence for the potential interaction between outliers. For
example, the relatively high Hi-C contact score between
the outlier promoter of the ZFP41 gene and a distal
enhancer outlier located ~ 110 kilo-bp upstream of the
gene suggests a potential interaction between outliers
(Figure 3F). We calculated the Hi-C contact score between
pairs of accessible regions and categorized regions by outlier
status. We observed that outlier pairs (p < 0 001 based on
the Mann-Whitney U test), including promoter-active
enhancer pairs (p < 0 001 based on the Mann-Whitney U
test), have higher interaction scores compared with a base-
line where at least one of the regions in the pair is not an
outlier (Figure 3G). Hi-C contact scores are distance-depen-
dent and decay according to power law with increasing
genomic distance. Thus, a higher interaction score could
possibly be confounded by the co-occurrence of outliers
in the vicinity of each other. To avoid this potential bias,
we fit power regression on Hi-C contact scores using the
outlier status as a feature and distance as a control variable
(methods). Outlier pairs have higher interaction scores
(p < 0001 based on the t test) even after controlling
for distance with power regression (Figure S7A). Moreover,
even when we restricted our analysis to region pairs at
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Figure 3. Functional annotation of chromatin accessibility outliers

(A) Accessible regions were annotated using ChIP-seq marks and gene annotation as promoters, active or poised, and proximal or distal
enhancers.

(B) Overlap between H3K4me3, H3K27ac, and H3K4me1 histone marks and accessible regions (C) and outliers (D) Breakdown of pro-
moters, active enhancers, poised enhancers, and unannotated regions within the categories of under-accessibility, over-accessibility out-
liers, and non-outliers. Errors bars indicate standard error, p values calculated with Fisher’s exact test and corrected for multiple testing
with the Benjamini/Hochberg method (ns 005, x%p < 1073 xxxxp < 107%).

(E) Cumulative odds of observing the second outlier in a region given that there is an outlier in the region (top) and the cumulative per-
centage of outliers with a second outlier in the vicinity (bottom) based on the distance between regions and the annotation.

(F) The interaction between the outlier promoter of ZFP41 and ~ 100 kilo-bp apart outlier distal enhancer is highlighted by the Hi-C
track containing contact score between 5 kilo-bp long genomic bins. Coverage tracks for H3K4me3, H3K27ac, and H3K4mel histone
marks are colored green. Red boxes indicate the outlier status of the accessible regions.

(G) The Hi-C contact scores distribution of non-outlier, outlier, and promoter-enhancer pairs. p values were calculated with the Mann-
Whitney U test and corrected with the Bonferroni correction for multiple testing.

least 100,000 bp apart, the Hi-C contact scores of outlier
pairs still surpassed the baseline of non-outlier pairs
(Figure S7B). Overall, the co-occurrence of outliers in the vi-
cinity of each other and higher Hi-C contact scores between
outlier pairs indicate a potential interaction between
outliers.

Chromatin accessibility outliers influence gene
expression and protein levels

Aberration in accessibility can impact downstream molec-
ular phenotypes such as gene expression and protein
levels. As an example, we found that the ALS case with
an under-accessibility outlier in the promoter of LCMT1
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Figure 4. Prediction of gene expression outliers and aberrant protein levels from chromatin accessibility
(A) The outlier promoter of the LCMT1 gene (in red) has a much lower ATAC-seq read coverage than promoters of non-outlier samples.
(B) Expected and observed accessibility in the promoter of LCMT1 gene across samples. The outlier sample is indicated with a red dot in

the figure panels.

(C) Z score distribution of promoter accessibility, (D) gene expression, (E) and protein levels of LCMT1 across samples.

(F) Correlation between the absolute log fold change of accessibility and expression outliers.

(G) The precision-recall curve compares the performance of a range of predictors to estimate gene expression outliers. Those predictors
are the absolute log fold change of promoter outliers (orange), the absolute log fold change of proximal enhancers (green), the maximum
absolute fold-change of any outlier in 100 kilo-bp vicinity (blue), the absolute log fold change of distal enhancers weighted by ABC score
(red), explainable boosting machine (EBM) trained with promoter, proximal-enhancer, and distal-enhancer features (purple).

(H) Z score distribution of proteins categorized by the outlier status of the promoter that transcripts them (s x  x p < 10™4).

(Figures 4A-4C) also showed decreased mRNA (Figure 4D)
and protein levels (Figure 4E).

To investigate the global relationship between accessi-
bility outliers and gene expression, we compared the vari-
ations in promoter accessibility with variations in gene
expression across all samples (Figure 4F). We observed a sig-
nificant correlation between the fold changes (log,(FC)) in
accessibility at genes’ promoters and the respective expres-
sion levels of these genes (Spearman’s correlation
coefficient = 71 , p < 0001). The high correlation indi-
cates that aberrations in promoter accessibility potentially
influence the aberrations in gene expression.

Moreover, we demonstrated that gene expression out-
liers can be systematically predicted from the promoters,
proximal, and distal enhancer accessibility (Figure 4G).
Ranking promoter outliers by their absolute log fold
change (]log2(FC)|) to predict gene expression outliers
achieve an auPRC of 11 4 . If the promoter is an outlier,
there is a 43 6 chance (precision) that its gene is an
expression outlier, and 23 6  of gene expression outliers
have an outlier promoter (recall). Similarly, outliers in
proximity are highly predictive of gene expression outliers.
Specifically, 26 8 (the recall at 21 1 precision) of gene
expression outliers have at least one proximal outlier.

Ranking genes based on the absolute log fold change of
their proximal outlier achieves the performance of auPRC
of 59 . We also ranked genes based on the maximum ab-
solute fold-change of accessibility outliers in 100 kilo-bp
vicinity regardless of annotation of outliers and achieved
29 auPRC. We weighted the absolute log fold change
of distal outliers by ABC score’” and obtained a score for
each gene (methods). The score calculated from distal out-
liers is also a reliable predictor of gene expression outliers
and achieves 57 auPRC. We trained an explainable
boosting machine®” to predict gene expression outliers
by combining features from transcript start site, proximal,
and distal outliers (methods). The machine learning model
achieved 211 auPRC. Further benchmarking of alt-
ernative models*’ incorporating ChIP-seq annotations
shows performance comparable to the model solely using
GENCODE annotation (Figures S8A and S8B). Addition-
ally, Hi-C measurements necessary for the ABC score can
be approximated through power-law regression when un-
available (Figure S8C). Altogether, these results show that
chromatin accessibility outliers are predictive for gene
expression outliers, and chromatin accessibility aberra-
tions in transcript start site, proximal, or distal regions
often translate into gene expression aberrations.
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We focused on gene expression outliers with outlier pro-
moters and investigated aberrations in their protein levels
(Figure 4H). We observed that the gene expression outliers
with overly accessible promoters have higher protein levels
(average Zscore = 22,p < 0001 based on the Mann-
Whitney U test, n = 29), and genes with under-accessible
promoters have lower protein levels (average Z score =
22,p < 0001 based on the Mann-Whitney U test, n =
79). Overall, we present the biological significance of
accessibility outliers on molecular phenotype by repli-
cating outliers from multiple omics levels.

A comparison of chromatin accessibility and gene
expression reveals whether aberrations in molecular
phenotype are linked to transcriptional or post-
transcriptional regulation

The interplay between transcription and degradation rates
determines RNA levels (Figure 5A). Aberrant promoter or
enhancer activity can lead to up- or down-regulation of
gene expression by altering transcription. Alternatively,

Splicing Disturbing (AbSplice)

To demonstrate this point, we inves-
tigated the enrichment of rare and
potentially NMD-triggering variants
in different outlier categories. Figure 5B presents the fre-
quency of potentially NMD-triggering rare variants, such
as splice acceptor, donor, nonsense, and frameshift vari-
ants, based on their SnpEff*! consequences by the outlier
type of the affected gene. These variants were observed
rarely and appeared in fewer than 0.1 of non-outlier
genes. Compared with expression outliers with outlier pro-
moter, these variants are significantly more prevalent in
gene expression outliers if their promoters are not accessi-
bility outliers. The enrichment holds for splicing acceptor
(n = 13,p = 00026 based on the hypergeometric test)
and splicing donor (n = 16, p = 00007), nonsense
(n = 46, p < 0001), and frameshift variants (n = 59,
p < 0001). Remarkably, only one of the gene expression
outliers with aberrant promoter activity contains poten-
tially NMD-triggering rare variants, indicating a significant
depletion pattern (Figure S9A). Based on a subsequent
analysis focusing on genes intolerant to loss-of-function
(LoF) mutations*” (with an LoF observed/expected upper
bound fraction [LOEUF] of less than 35 ), we observed a
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similar pattern of depletion of potentially NMD-triggering
variants among expression outliers with aberrant promoter
accessibility (n = 13,p = 00026, Figure S9B).

Further investigation of both missense and potentially
NMD-triggering rare variants in genes with aberrant pro-
moter accessibility and protein levels presents a similar
trend of depletion (Figure 5C); 19 8 of expression outlier
genes (n = 163,p < 0001 based on the hypergeometric
test) with aberrant protein levels (|Z score| > 1) contain
at least one of such variants. When genes with promoter
outliers were excluded, the enrichment of variants rose
to241 (n = 131,p = 027). The remaining expression
outlier genes (n = 32) have promoters with aberrant
accessibility, and only one of these genes contains genetic
variants with mentioned consequences. The substantial
depletion of these variants in these genes (p = 0 0052) in-
dicates that their aberrant protein levels are potentially
linked to aberrant promoter accessibility rather than cod-
ing variants (Figure S9C).

Aberrant splicing is another mechanism that can affect
gene expression by resulting in aberrant RNA isoforms sub-
ject to NMD.** Thus, we further explored the impact of
exonic or intronic splicing-disrupting variants prioritized
by AbSplice.** We detected 48 gene expression outliers
containing at least one splicing-disrupting variant priori-
tized by AbSplice and none of these genes has an outlier
promoter (Figure 5D). In contrast, subsetting gene expres-
sion outliers without aberrant promoters increases the
prevalence of splicing disturbing variants for the subset
(Figure S9D).

Furthermore, our investigation of genetic variants in
chromatin accessibility outliers, which could disrupt tran-
scription by altering cis-regulatory elements, showed slight
enrichment of single-nucleotide variants (SNVs) or inser-
tion-deletion mutations (indels) (Figure S10A, n =
163,p < 0001 based on hypergeometric test). Structural
variants are more frequently observed in the vicinity of
chromatin accessibility outliers than in non-outliers; how-
ever, nearby structural variants are only identified in
~ 13 of these outliers (Figure S10B).

The results underscore that comparing accessibility out-
liers against gene expression outliers and aberrant protein
levels can identify whether aberration in the molecular
phenotype is tied to transcriptional or post-transcriptional
regulation. The observed enrichment of small and struc-
tural variants in chromatin accessibility outliers might
indicate that disrupting regulatory sequences within these
accessible regions could lead to transcriptional aberrations.

Identifying known and suspected ALS genes using multi-
omics outliers

We reviewed the literature to understand the biological sig-
nificance of outliers observed across multiple omics levels
in ALS samples. The proposed method operates in an unsu-
pervised manner; consequently, not all detected aberra-
tions are necessarily associated with ALS. For example,
we observed a similar number of outliers in ALS cases

and clinically healthy controls (Figures S11A and S11B).
Furthermore, loci prioritized through outlier analysis are
orthogonal to those identified by GWASs, as the proposed
methodology captures rarer effects that may not be de-
tected by GWASs (Figures S12A and S12E). Therefore, the
integration of additional evidence from the literature is
crucial to prioritize genes potentially linked to ALS patho-
genesis. Among the outlier genes that exhibited aberra-
tions in both promoter accessibility and gene expression
(Table S1), 12 have previously been associated with ALS:
CDKLS5, HIF1A, ABCA2, VPS4B, NOVA1l, NRG1, NIPA1,
BCL2, ALYREF, UBQLN2, IRAK4, and DDX3X 7114551
In some cases, variants have been associated with ALS or
pathways involving these genes are dysregulated. While
several proteomics measurements were missing due to
the limitations of mass spectrometry,”” three genes from
these outliers (VPS4B, ALYREF, DDX3X) also displayed
aberrant protein levels. For instance, we observed elevated
expression and protein levels of ALYREF, in accordance
with prior research (Figure S13) and knocking down an or-
thologue of ALYREF in an animal model reduces TDP-43
induced toxicity.>® Similarly, the CDKLS gene exhibits
over-expression with an over-accessible promoter region
(protein levels are unavailable). Suppressing CDKLS
expression using a small molecule probe enhances the sur-
vival of human motor neurons under endoplasmic reticu-
lum stress conditions.®* Another outlier gene we identi-
fied, HIFI1A, contributes to motor neuron degeneration
through hypoxic stress, and prolonged survival observed
in ALS mice suggests up-regulation of HIF1A as a potential
therapeutic target.”” Finally, VPS4B is pathologically
increased in familial and sporadic ALS neuronal nuclei.*®
A closer examination of these identified outlier genes
could reflect potential mechanisms involved in ALS and/
or illuminate pathogenesis in subsets of ALS patients.
While some of the outlier genes are previously unre-
ported as being associated with ALS, they play an impor-
tant role in pathways involved in ALS; thus, they might
be linked to ALS pathogenesis. For example, the promoter
of LCMT1 is less accessible, and both its gene expression
and protein level are down-regulated in our dataset.
Increased tau phosphorylation has been reported in
ALS*” and down-regulation of LCMTI, in conjunction
with the up-regulation of HIF1A, has been linked to tau hy-
perphosphorylation.”® DDX6 is another gene that is down-
regulated across three omics levels (Figure S14) and is an
LoF intolerant gene” (with an LoF observed/expected up-
per bound fraction of LOEUF = 17 ). Although the role
of DDX6 in ALS has not been documented, DDX6 plays a
critical role in RNA metabolism, particularly in the assem-
bly of stress granules, a pathway dysregulated in ALS.”’
Furthermore, DDX6 interacts with the ALS gene ATXNZ,
and a knockout of DDX6 severely disrupts p-body for-
mation.®” In two ALS samples, we observed reduced pro-
moter accessibility, gene expression, and protein levels
of NEDD4L (Figure S15), another LoF intolerant gene
(LOEUF = 20 ). NEDDA4L is a direct substrate of USP7
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that regulates proteotoxicity in ALS.®' Oxidative stress is
implicated in neurodegeneration,®” and up-regulation of
TXNL1 has been shown to reduce oxidative stress in neuro-
logical conditions.®*“* Therefore, the pronounced down-
regulation of promoter accessibility, gene expression, and
protein levels of TXNL1 observed in our study may be asso-
ciated with increased oxidative stress (Figure S16). Vesicle
transport is dysregulated by LoF of ALS-associated genes,
such as VAPB®® or NEK1.°° LMANI, a cargo receptor for
the endoplasmic reticulum-Golgi transport,®’ is also inv-
olved in the trafficking of neuroreceptors.®® The observed
reduction in promoter accessibility, gene expression, and
protein levels of LMANI in two of our samples could be
of relevance to ALS (Figure S17). While the systematic iden-
tification of aberrations across multi-omics data serves as a
foundation for formulating new hypotheses, establishing a
definitive link between these prioritized genes and ALS
pathogenesis requires further experimental validation.

By cross-referencing genes with those associated with
neurodegenerative disorders in OMIM,®’ we obtained six
additional gene expression outliers (GAN, EIF4A2, NARS1,
HSD17B10, ERCC8 SLC25A46) with aberrant promoter
accessibility that are involved in a range of neurodegener-
ative and neurodevelopmental disorders. A notable exa-
mple is ERCCS, involved in DNA damage repair and
when mutated causes Cockayne Syndrome,”” an early-
onset degenerative condition.” ERCC8 has also been
identified as a comorbid factor in shared genetics between
Parkinson disease and ALS.””

Overall, our multi-omics level analysis both detects
known ALS genes and introduces potential novel candi-
dates that might be playing a role in the ALS disease path-
ways. The results demonstrate the utility of the proposed
statistical approach for prioritizing suspected regions and
generating hypotheses about ALS pathogenesis.

Discussion

In this study, we introduced EpiOut, a computational toolbox
for detecting and annotating chromatin accessibility outliers,
which are characterized as large aberrations in a few regions
specific to a single or few samples. We applied our proposed
method to ATAC-seq data from ALS patients and clinically
healthy individuals. Our methodology employs a negative
binomial test for detecting outliers with statistical signifi-
cance. The mean parameter of the negative binomial is fitted
using a linear autoencoder (LR-AE), and the dispersion
parameter is inferred based on observed and expected counts
using MLE. Controlling for both known and latent con-
founding factors is crucial to exclude outliers resulting from
technical artifacts or confounding factors during outlier
detection.'*** The proposed LR-AE is an effective statistical
method for obtaining latent confounders from high-dimen-
sional data. PCA, a specific case of an LR-AE, can also detect
and correct for latent confounders better than alternative sta-
tistical methods.”® However, PCA minimizes the Euclidean

distance between measured and reconstructed counts;
thus, it is suboptimal for discrete read counts of omics
data with high dispersion and uncertainty due to low
coverage.”* Thus, the negative binomial objective in our
methodology is more apt for discrete read counts. Moreover,
our software is more scalable than OUTRIDER and opti-
mized for chromatin accessibility with a dimensionality of
hundreds of thousands of genomic regions. While primarily
designed for ATAC-seq, our toolbox is readily compatible
with other accessibility assays, such as DNase-seq. The scal-
able outlier detection backend also enables the further
expansion of outlier detection into other high-dimensional
omics modalities, such as DNA methylation.

Our toolbox includes EpiAnnot, which annotates acces-
sible regions as promoters and enhancers based on ChIP-
seq marks. It also establishes a link between enhancer and
promoter pairs through the ABC score, which is derived
from either predicted or observed Hi-C scores. Using
EpiAnnot, we found that outliers are enriched in functional
regions, particularly promoters and active enhancers. Inter-
estingly, outlier pairs tend to occur nearby, with many pro-
moter outliers tied to active enhancer outliers within 1
million bp vicinity. This observation is supported by the rela-
tively high Hi-C contact scores for outlier pairs in the vicin-
ity, indicating potential interactions between these outliers.

By examining multiple omics levels, we found consistent
replication of outliers. Accessibility outliers are associated
with downstream biological processes such as gene expres-
sion and protein levels. In particular, a significant proportion
of the gene expression outliers can be predicted from the
aberrant accessibility of the promoter, proximal, and distal
enhancer regions. Similarly, aberrant promoter activity is
correlated with up- and down-regulation of protein levels.

Analyzing the interplay between accessibility and gene
expression outliers yields insight into whether aberration
in gene expression originates from transcriptional regula-
tion, such as increased synthesis rate via higher promoter
activity, or post-transcriptional regulation, such as splicing
or nonsense-mediated decay. We observed substantial
depletion of NMD-triggering rare variants in gene expres-
sion outliers if promoters of these genes are an accessibility
outlier and conversely observed enrichment of these vari-
ants if their promoter is not an outlier.

The outlier detection method presented here is subject
to certain limitations. The methodology is effective at de-
tecting rare aberrations in the molecular phenotype; how-
ever, it does not establish a definitive link between these
aberrations and specific phenotypic traits. Integrating the
outliers with additional evidence, such as known disease
genes, is necessary for the effective prioritization of aberra-
tions that might be linked to a disease. QTL analysis detects
variants affecting molecular traits, yet prioritization of
causal gene-disease links and estimation of disease risk re-
quires the integration of GWASs with QTL in Mendelian
randomization studies.”” Similar integration of GWAS var-
iants with outliers is challenging, given variants associated
with outliers have low allele frequency; thus, they may not
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be prioritized by GWASs. Additional methodological inno-
vations are needed to establish an unbiased link between
outliers and disease traits.

Another future research direction is the investigation of
genetic factors leading to chromatin accessibility outliers.
The enrichment of genetic variants in the chromatin
accessibility outliers indicates that cis-regulatory element dis-
rupting genetic variants might be one source of the aberra-
tions. However, the majority of these variants are non-coding
variants; thus, effective prioritization of specific variants lead-
ing to chromatin outliers requires the development of statis-
tical tools such as sequence-based deep learning models.”®

Our outlier detection methodology offers a novel avenue
for studying rare diseases. We have successfully adapted
the outlier detection approach to ATAC-seq data and
underscored that chromatin accessibility is a beneficial
complementary assay for rare disease diagnostics. Detected
outliers in ALS samples are highly robust and consistently
replicated across multiple omics levels. Many of these out-
liers are either known ALS genes or are involved in path-
ways implicated in ALS. Thus, the continued development
and integration of the outlier detection approach with dis-
ease gene discovery methodologies may ultimately lead to
a more comprehensive understanding of the genetic fac-
tors contributing to ALS. Such advancements could finally
bridge the gap between the disease heritability and the
known catalog of ALS disease genes.

Methods

AnswerALS dataset

The multi-omics dataset, which includes ATAC-seq, RNA-seq, pro-
teomics, and whole-genome sequencing (WGS), for ALS was
downloaded from the Answer ALS portal (dataportal.answerals.
org). The data contain 245 individuals diagnosed with ALS and
45 samples from clinically healthy controls. All samples had corre-
sponding ATAC-seq and RNA-seq experiments. A total of 253 sam-
ples also have WGS data. For the scope of our study, we restricted
our analysis to the 253 samples that had paired data across three
omics levels. Additionally, 204 of these samples have proteomics
data. In the proteomics-related analysis, we subset and only used
these samples with the proteomics data.

Peak calling

We performed joint peak calling on ATAC-seq data to detect acces-
sible regions across all samples using MACS2.?® First, we merged
bam files from every sample into a unified bam file utilizing SAM-
tools,”” and subsequently filtered out reads with a mapping qual-
ity (MAPQ) below 10. Duplicate reads were retained after merging
reads across samples. The default arguments of MACS2 were used,
except for the duplicate read filter. ATAC-seq peaks contained in
the narrow peak bed file generated by MACS2 were used in the
downstream analysis.

Read counting

We implemented an ultra-fast read counting algorithm for ATAC-
seq described in Algorithm S1. The algorithm is a simplified
version of the chrom-sweep algorithm.?' The counting algorithm

is optimized based on two primary assumptions: ATAC-seq peaks
are not overlapping and are separated by at least a gap longer
than a read length; moreover, both peaks and reads are sorted by
the genomic coordinates. We ensure the first assumption by
jointly calling peaks as described above and collapsing any peaks
closer to each other than the minimum gap distance (default
200 bp); thus, an ATAC-seq read never intersects with two peaks
simultaneously. Since the bam file format is pre-sorted by genomic
coordinates, ATAC-seq peaks are sorted to guarantee the second
condition before the counting step. The counting algorithm cre-
ates two stacks of sorted peaks and reads, iterates over reads and
peaks, and tracks the number of overlaps (Algorithm S1). The re-
sulting runtime complexity of the counting step is O(r +p) where
r is the number of reads, and p is the number of peaks. In the pre-
processing step, peaks are sorted, so the overall complexity is
O(p log(p) +r). However, since the number of reads is much larger
than the number of peaks (r > p), the algorithm practically be-
haves in linear runtime in terms of the number of reads. The mem-
ory complexity of counting is linear in terms of the number of
peaks (O(p)) because reads are fetched iteratively per chromosome
by leveraging the indexable file format of BAM.

Filtering peaks by replication rate

We applied two filters to the ATAC-seq peaks detected by MACS2
to ensure consistent peak replication across samples. First, we
eliminated peaks with low coverage, specifically those with fewer
than 100 reads in any samples. This cutoff could be adjusted based
on the coverage of the dataset; however, outliers may not be iden-
tified for these peaks if their read coverage is too shallow. As a sub-
sequent criterion, any peak must be supported by a minimum of
two reads in at least 50  of all samples.

Size factor normalization

To account for coverage differences across the ATAC-seq experi-
ments, we performed size factor normalization on the read counts,
a method initially proposed by DESeq2.%” The size factor s; for a
sample i is defined as:

n

1/n
ki = Hkif)
j=1

]

(Equation 1)

ks
s = medlan#

i

(Equation 2)

where kj represents the number of reads mapped to region j in
sample i and k is the geometric mean of the reads across regions
for sample i. The median of kj; to k ratios is defined as the size fac-
tor s; of sample i.

Outlier detection

After normalizing the read counts of peaks with size factor normal-
ization, we log-transformed the normalized counts and centered
them around zero by subtracting the mean normalized counts:

Xjj = My — 1

i+ 1
n;; = log <k”5—+>

]

(Equation 3)

(Equation 4)

Autoencoder is applied on x; to calculate the expectation of
normalized read counts (Xj). f; is the encoder function of the au-
toencoder, which takes observed normalized counts (x;) as input
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and calculates major covariates. Major covariates are concatenated
with known confounders to obtain latent representation (h),
which is decoded back to expected normalized counts (X;;) with
the decoder function f;:

h = [fe (Xi/') ‘Cknown] (Equation 5)

Xj = fa(h) (Equation 6)

We used linear encoder and decoder functions. The encoder
model uses a principal-component analysis (PCA), where the
encoder weights (W,) are the rotation matrix of PCA. The decoder
weights (W) are initialized with linear regression and further
trained with the negative binomial objective:

fe(x) = Wex (Equation 7)

fa(h) = Wgh (Equation 8)

The log-normalized counts (x;) are transformed back to the orig-
inal natural scale:

ki = et — 1 (Equation 9)

The dispersion parameter is optimized with MLE where the like-

lihood function is:
L(r) = HNB(k,-,-|k,»,»,r,») (Equation 10)
1

Fitting the dispersion parameter requires solving an indepen-
dent convex problem for each peak. To solve a large number of in-
dependent convex problems quickly, we implemented a vector-
ized backtracking line search algorithm using TensorFlow. The
dispersion parameter range is set between a lower bound of 0.01
and an upper bound of 1,000 to avoid numerical stability issues
and overfitting.

The p value (Pj) of each peak and sample is calculated with a
two-sided negative binomial test:

k=0

ki R ki~ 1 ~
Pi]' = mln{%ZNB(k,,k”r])J — Z NB(k1]|k1]7II)}
k=0
(Equation 11)

Finally, p values are corrected for multiple testing corrections to
control the false discovery rate with the Benjamini-Yekutieli
method.

In addition to p values, we report the log of fold-change or the
log ratio of observed read counts to expected read counts calcu-
lated by:

ki+1
lj = logy(FC) = log, <A’7> (Equation 12)

kij+1
and Z score based on fold changes defined as:

!
j

I
Z scorej; =

0; (Equation 13)
We consider peaks as outliers if their adjusted p values are smaller
than 5 (P.g < 005), their absolute log fold changes are greater
than 50 (|log,(FC)| > 05) and either their read counts (k;) or
expected read counts (Rv,-) are at least 50.
All the statistics calculated during the outlier detection are
stored in anndata’® file format.

Injection of artificial outliers

In order to benchmark the performance of outlier detection
methods, we conducted a simulation experiment using artificial
outliers. We created an outlier mask Mj; for sample-peak pairs. A
sample-region pair is categorized as either an over-accessibility or
under-accessibility outlier with a probability of 0.01

1, with probability = 0 0005

M; = { — 1, with probability = 0 0005 (Equation 14)

0, with probability = 0 999

Log-normalized counts are updated using an artificial outlier
mask:

inj

i = xj+ae UM

X (Equation 15)

where the deviation in accessibility outlier is simulated by scaling
the standard deviation of the peak (¢;) using a value sampled from
alog-normal distribution parameterized by a mean of 3 and a stan-
dard deviation of 1. Equation 9 transforms log-transformed
normalized injected counts (xif") back to counts in the natural
count scale (k;;'j ).

Outlier detection methods are evaluated by benchmarking their
capability to predict the outlier mask (Mj;) from the injected
counts (xi;"' ). The primary benchmark metric for this evaluation
is the area under the precision-recall curve (auPRC). We generated
10 outlier masks for testing and one additional mask for the vali-
dation set. Hyperparameter tuning was performed on the valida-
tion set to identify the optimal bottleneck size of autoencoder-
based models. The evaluation procedure was executed 10 times
on the test folds, and the average auPRC performance and its stan-
dard deviation are reported.

We evaluated four methods: naive negative binomial test, PCA,
OUTRIDER, and EpiOut. During the precision-recall calculation, pre-
dictions for each method were primarily ranked using p values, except
for PCA, which was ranked by its Z score. The performance of each
method at a specific cutoff (either at the adjusted p values of 0.05 or
the absolute Z score of 2) is indicated on the precision-recall curve.

For the naive negative binomial test, we averaged counts across
samples per peak to obtain the mean parameter of the negative
binomial distribution, NB(kZ” E;”' .17). The dispersion is estimated
with MLE (Equation 10).

To evaluate the PCA model, we used PCA to estimate the ex-
pected read counts, ?;”j . These expected read counts are the recon-
structed read counts of PCA. The number of principal components
retained was determined through hyperparameter tuning on the
validation set. Predictions were subsequently ranked based on
the Z score, as formulated in Equation 13, using the expected
counts from PCA. We did not compute dispersion or perform a
negative binomial test.

We ran OUTRIDER and EpiOut with their default parameters.
The bottleneck size of all autoencoder-based methods was selected
based on the hyperparameter tuning on the validation set.

Cross-correlation between sample

We used Pearson’s correlation to calculate the cross-correlation be-
tween samples. The raw cross-correlations were obtained using
observed counts (k;) without any transformation. The cross-corre-
lation after correction was calculated using corrected counts:
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corrected
K = k,’j — k,‘/'

p (Equation 16)

Runtime benchmark

To measure runtime to call outliers with OUTRIDER and EpiOut,
we subset peaks into groups of 10,000, 25,000, 50,000, and
100,000 and calculated runtime for each input size. Eight CPU
cores are used during the benchmark. The analysis is repeated 10
times. The average runtime and standard deviation of runtime
were reported. We ran each tool with bottleneck sizes of 5, 10,
50, and 100 in each iteration to avoid runtime differences result-
ing from hyperparameter tuning. We reported the total runtime
across different bottleneck sizes.

Functional annotation of accessible regions with ChiP-
seq

We introduced EpiAnnot, a software tool for functional annotation
of accessible genomic regions using ChIP-seq marks. If a specific
ChIP-seq for a cell line or tissue is present in the Roadmap Epige-
nomics** or ENCODE®® databases, EpiAnnot can retrieve ChIP-seq
data from these public data sources. Additionally, users can annotate
their accessible regions using their own custom ChlIP-seq data.

EpiAnnot can also attribute accessible regions to genomic fea-
tures using a gene transfer format (GTF) file. For instance, it anno-
tates accessible regions as 5 UTR, TSS, etc. In scenarios where an
accessible region overlaps with the H3K4me3 histone ChIP-seq
markandTSSorS UTRofa gene, EpiAnnot designates these regions
as promoters. Conversely, regions intersecting with the H3K4mel
histone ChIP-seq mark are labeled as enhancers. When the histone
mark is available, enhancers overlapping with H3K27ac are catego-
rized as active; otherwise, they are poised. EpiAnnot also annotates
enhancers as proximal or distal based on their distance from genes.
Specifically, enhancers within a gene body or located up to
10,000 bp upstream or 2,000 bp downstream of a gene are tagged
as proximal. All others are marked as distal enhancers.

By using EpiAnnot with H3K4me3, H3K27ac, and H3K4mel
histone ChIP-seq marks from in vitro differentiated motor neurons
from ALS and clinically healthy samples,”® we annotated acces-
sible regions from ATAC-seq experiments and used the GTF file
of GENCODE v38. The histone ChIP-seq data were downloaded
from ENCODE.

Enrichment of outlier pairs in the proximity

To investigate the potential interaction between nearby outlier
pairs, we quantified the pairs of accessible regions within prede-
fined distances, irrespective of the outlier status of regions. Then,
we applied Fisher’s exact test to calculate the enrichment of outlier
pairs, using a contingency table structured with the outlier statuses
of accessible regions in the pair. We repeated this analysis for
10,000, 100,000, 500,000, and 1,000,000 bp distances. The odds
ratio was also calculated to highlight the likelihood of the region
being an outlier, given the outlier status of the nearby region.

Annotation of chromatin interactions with Hi-C

To delve deeper into the interactions between outliers, we anno-
tated their interactions based on Hi-C contacts using EpiAnnot.
We downloaded public Hi-C data from motor neurons differenti-
ated from iPSCs*® from ENCODE and computed contact scores
based on the number of Hi-C reads between accessible regions using
EpiAnnot. For the interaction analysis, the genome is partitioned
into bins of 5,000 bp. The interaction between a first source region

(s) and a target second region (f) is determined by the highest Hi-C
contact score between these bins or their immediate neighbors:

hy ¢ = max{HiCycor (bin;, bin;),i {t — 1,t,t+ 1},

jo{s—1ss5+1}} (Equation 17)

We fitted a power regression to estimate Hi-C contact scores
between pairs of accessible regions, using the outlier status of
the pairs while controlling for distance. p values for the regression
coefficients were calculated using a t test.

We utilized EpiAnnot to compute the ABC score, which signifies
potential interactions between regions informed by Hi-C contact
scores. The ABC score is defined as:

hy ¢ xke
Z hs i*k,‘

i vicinity(s)

ABC; ; = (Equation 18)

where the numerator represents the Hi-C contact score between

regions multiplied by the accessibility of the target region (k; =
> ki) and the denominator normalizes this value for all region
i

pairs associated with the source region.

Aberrant gene expression prediction from chromatin
accessibility

Gene expression outliers were called with OUTRIDER using the
DROP pipeline. If genes were deviant by at least an absolute log
fold-change of 30  (|log,(FC)| > 0 3), and their adjusted p values
based on the negative binomial test were smaller than 5
(Pagg < 005), they were considered expression outliers. These
gene expression outliers constituted the ground truth labels in
the benchmark. In order to predict gene expression outliers from
accessibility outliers, we trained an explainable boosting machine
(EBM). The EBM model was trained and tested with 10-fold cross-
validation. The model aggregates features from promoters and
enhancers as input to predict the probability of a gene being cate-
gorized as an expression outlier. For predicting a gene’s outlier
status, the model considers the following features: log fold change,
p value, and outlier status of the transcript start site, maximum ab-
solute log fold change of the outliers in proximity, and the ABC
score weighted absolute log fold change of the distal outliers.
The score for the weighted distal enhancer is computed as follows:

enhancerdisml = § |ABCpmmuter enhancer * IOgZ (FCenhanccr)‘

enhancer g

(Equation 19)

Depletion of rare variants with certain consequences in
genes with promoter outlier

We assessed the depletion of potentially NMD-triggering rare var-
iants in the gene expression outliers where promoters of these
genes are also outliers. Variants are annotated with SnpEff v4.3*'
according to their consequences for genes. Variants with splice
acceptor, donor, nonsense, and frameshift consequences were
considered as potentially NMD-triggering. Only low-frequency
variants with a minor allele frequency ranging from 1 to 0.5
and rare variants with a frequency below 0.5 were included in
the analysis. Variant frequencies are downloaded from the gno-
mAD database.*”> Consequence categories used for depletion
analysis include stop codon, frameshift, acceptor, donor site dinu-
cleotides, and missense variants. AbSplice was used to classify
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splicing-disrupting exonic or intronic variants using thresholds of
0.05, as advised by the authors. We determined the proportion of
genes affected by each variant category based on the outlier status
of the genes and their associated promoters. The statistical signif-
icance was calculated with the hypergeometric test. Moreover, we
analyzed proteomics data to quantify the proportion of proteins
impacted by NMD-triggering or missense variants. Z scores for
the proteomics data were obtained with PROTRIDER.

Enrichment of SNVs indels and structural variants in
chromatin accessibility outliers

To evaluate the enrichment of genetic variants in chromatin acces-
sibility outliers, we measured the frequency of SNVs, indels, and
structural variants present near chromatin accessibility outliers
within a 25 kbp distance. Structural variants from the WGS data
were identified using GRIDSS.” The variants longer than 50 bp
are considered structural variants. The statistical significance was
calculated using a hypergeometric test. Only variants with an
allele frequency < 1 were included in the analysis.

Curation of genes associated with neurodegenerative
diseases

We manually curated a list of ALS genes from the litera-
ture!/!146751,53°95,80°89 and ALSOD." The curated list is available
at 10.5281/zenodo.8331545. Moreover, we queried the OMIM®’
database using “neurodegenerative” and “neurodegeneration”
keywords, filtered the retrieved entries based on neurologic clin-
ical synopsis, and generated a list of genes associated with neuro-
degenerative diseases via the REST APIL. The genes were further
annotated for their LoF intolerance obtained from gnomAD.**
Genes are considered LoF intolerant if their LoF observed/expected
upper bound fraction (LOEUF) is below 35

Data and code availability

All the analyses in the paper are implemented in the repro-
ducible snakemake”” format available at github.com/uci-
cbcl/ALS-accessibility-outliers-paper. EpiOut, the Python
package for outlier detection and annotation, is available
at github.com/uci-cbcl/EpiOut. Data used in the prepara-
tion of this article were obtained from the ANSWER ALS
Data Portal (AALS-01184). For up-to-date information on
the study, visit https://dataportal.answerals.org/.
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