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ARTICLE INFO ABSTRACT

Keywords: Image registration is an essential step in many medical image analysis tasks. Traditional methods for image

Optimization registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity

Neural ﬁelds' o between two images. Recent learning-based methods, trained to directly predict transformations between two

Eeforrlnglglz image registration images, run much faster, but suffer from performance deficiencies due to domain shift. Here we present a
eura. S

new neural network based image registration framework, called NIR (Neural Image Registration), which is
based on optimization but utilizes deep neural networks to model deformations between image pairs. NIR
represents the transformation between two images with a continuous function implemented via neural fields,
receiving a 3D coordinate as input and outputting the corresponding deformation vector. NIR provides two
ways of generating deformation field: directly output a displacement vector field for general deformable
registration, or output a velocity vector field and integrate the velocity field to derive the deformation field
for diffeomorphic image registration. The optimal registration is discovered by updating the parameters of
the neural field via stochastic mini-batch gradient descent. We describe several design choices that facilitate
model optimization, including coordinate encoding, sinusoidal activation, coordinate sampling, and intensity
sampling. NIR is evaluated on two 3D MR brain scan datasets, demonstrating highly competitive performance
in terms of both registration accuracy and regularity. Compared to traditional optimization-based methods, our
approach achieves better results in shorter computation times. In addition, our methods exhibit performance
on a cross-dataset registration task, compared to the pre-trained learning-based methods.

Hybrid Coordinate samplers

1. Introduction the optimal coordinate transformations that maximize the similarity
between the transformed source image and the target image. These
methods usually require hard modeling assumptions on the types of

permissible deformations to ensure registration regularity. For instance,

3D image registration has a pivotal role in many medical applica-
tions (Incoronato et al., 2017; Risholm et al., 2011), such as merg-

ing images from different modalities, motion correction, tracking dis-
ease progression, and atlas-based image segmentation. Image registra-
tion can be categorized into two groups: rigid and non-rigid. Non-
rigid registration (also known as deformable registration), considering
non-affine coordinate transformations between two images, is more
widely used. Diffeomorphic image registration, imposing additional
transformation constraints, such as smoothness, invertibility and topol-
ogy preservation, is often preferred in certain applications. In this pa-
per, we present a new image registration framework that supports both
general deformable and specific diffeomorphic image registrations.
Traditional image registration methods (Bajcsy and Kovacic, 1989;
Shen and Davatzikos, 2002; Modat et al., 2010; Beg et al., 2005; Avants
et al.,, 2008) approach the problem as an optimization task: finding

* Corresponding author.

NiftyReg (Modat et al., 2010) models deformation fields using B-splines
with a set of control points. Flow-based methods model the transfor-
mations via a series of time-dependent velocity fields (Beg et al., 2005;
Zhang et al., 2017) or stationary velocity fields (Avants et al., 2008),
and impose strong assumptions on the space of permissible velocity
vector fields. The strong modeling assumptions produce well-behaved
transformations, but sometimes also lead to detrimental registration
outcomes. To address this, a more flexible framework for modeling
permissible transformations is required to improve optimization-based
registration. Additionally, these methods can be time-consuming.
Recent advances in deep learning have inspired the development of
learning-based image registration methods (Balakrishnan et al., 2019;
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Dalca et al., 2018; Mok and Chung, 2020a,b, 2022). The learning-based
registration methods are trained to directly output transformations
between two images. Although training may take time, predictions are
usually generated through a feed-forward model and therefore are very
fast. However, in terms of registration accuracy, learning-based meth-
ods often lag behind the optimization-based ones under unsupervised
settings, even with very complex and large-scale network structures
utilized in recent works (Chen et al., 2021a; Mok and Chung, 2022;
Shi et al., 2022). Part of the reason is due to the discrepancy between
the prediction performances on training data vs. test data. Benefiting
from high representational capacity of deep neural networks, learning-
based methods can generate high quality transformations between
training image pairs, but often generalize poorly on unseen image pairs.
Inadequacies in size and diversity of medical datasets accentuate the
generalizability issue. To address this issue, recent works (Hering et al.,
2021; Siebert et al., 2021; Hager et al., 2020; Zhu et al., 2021) propose
a two-step approach. This approach involves using learning models to
derive an initial registration, which is then refined using traditional
optimization methods.

It is natural to question whether optimization-based registration
can also take advantage of the expressive power of deep neural net-
works. To address this, we propose a framework called NIR (Neural
Image Registration), which utilizes neural fields to solve medical image
registration. Neural fields are a type of neural network, also known
as coordinate-based neural multilayer perceptrons (MLPs) or implicit
neural representation (INR), that map a point in space and time to
a continuous quantity. In a previous study, we demonstrated the ef-
fectiveness of neural fields in modeling diffeomorphic transformations
for anatomic shape analysis (Sun et al., 2022). This inspired us to use
neural fields to model deformable and diffeomorphic registrations be-
tween images. NIR provides two ways of modeling image deformations,
either directly modeling the displacement vector field or modeling the
velocity vector field. In both cases, the neural field within NIR takes
as input a 3D coordinate of the source image and outputs a 3D vector
(either displacement or velocity) at the location. In the second case,
the velocity vector field is further integrated through a Neural Ordinary
Differential Equation (ODE) Solver (Chen et al., 2018) to produce the
final deformation field, thereby ensuring that the resulting deformation
is diffeomorphic.

Modeling deformation fields as coordinate-based MLPs, supple-
mented with additional features such as Fourier position encoding (Tan-
cik et al.,, 2020) and periodic activation functions (Sitzmann et al.,
2020) in NIR, offers several advantages. First, the neural deformation
model is simple and flexible, and yet still has great expressive power.
It can use a relatively small number of coefficients to encode signals
with an exponentially large frequency support (Yiice et al., 2022).
Deformations with high frequencies can be captured by scaling up the
number of hidden layers and neurons. Second, neural network can act
as “deep prior” (Ulyanov et al., 2018; Gandelsman et al., 2019; Quan
et al., 2020; Ren et al., 2020; Williams et al., 2019) in the optimization
process. In our neural fields, the weights are shared across the entire
space, promoting self-repetition and local similarity in the generated
deformations. The “deep prior” of a neural network sometimes is more
effective than the explicit smoothness regularization. Fig. 1 demon-
strates the advantages of utilizing the “deep prior” of neural networks
in deformation representation via a contour registration toy example.
Third, different from other neural nets defined on discrete grid coor-
dinates like convolutional neural networks (CNNs), coordinate-based
MLPs are defined on the continuous coordinate space. Neural fields can
be optimized to model fine deformations with sampled data points and
does not require dense input. Consequently, optimizing neural fields is
memory-efficient.

The main contributions of our work are summarized as follows:

We introduce NIR, a novel optimization-based deformable image
registration framework that models the displacement field or
velocity field via lightweight coordinate-based MLPs with Fourier
position encoding and sinusoidal activation functions.
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Fig. 1. Contour Registration Toy Example. In this example, the objective of optimiza-
tion is to deform the circular source contour to align with the target polygonal contour
as closely as possible. The results obtained by directly optimizing deformation vectors,
with and without regularization, are displayed in (c) and (d), respectively. Conversely,
the results shown in (d) and (e) are obtained by representing the (continuous) deforma-
tions field through a neural field with and without regularization. The optimization loss
is based on the chamfer distance along with normal cosine similarity, and edge length
and normal consistency of sampled points can be optionally added as regularization
terms. Without a contour topology constraint, optimizing deformation vector fields
directly on the source contour can result in a very chaotic deformed contour. However,
using neural fields can produce locally smoothed deformation without requiring any
regularization. If an explicit contour topology constraint is applied, directly optimized
deformation results can be good, but they may also be over-smooth or self-intersected
in some regions. In contrast, neural deformation fields can generate nearly perfect
contour registration results with high accuracy and regularity if the topology constraint
is imposed. This contour registration example demonstrates that neural fields possess a
self-prior that enables them to effectively represent deformation maps that exhibit both
local smoothness and large deformations, which is the case of brain image registration.

We further propose a hybrid coordinate sampling scheme, by
which two stacked neural fields are separately optimized with
two different coordinate samplers to achieve high registration
accuracy and regularity.

NIR is evaluated on two brain MRI datasets and shows com-
petitive registration results in multiple metrics, including inten-
sity similarity between target and transformed moving images,
regularity of the transformation.

Moreover, our framework operates significantly faster than tra-
ditional optimization-based methods, while still demonstrating
better performance than the pre-trained learning-based methods
on a cross-dataset registration experiment.

2. Related works
2.1. Optimization-based registration methods

Several studies solve the task of image registration as an optimiza-
tion problem in the space of displacement vector fields. They optimize
the deformable model iteratively with the constraint from a smoothness
regularizer which is typically a Gaussian smooth filtering. These include
elastic-type models (Bajcsy and Kovacic, 1989), free-form deformation
with B-splines (Modat et al., 2010), statistic parametric mapping (Ash-
burner and Friston, 2000), local affine models (Hellier et al., 2001)
and Demons (Thirion, 1998). Diffeomorphic image registration with the
attributes of topology preserving and transformation invertibility also
achieve remarkable progress in various anatomical studies. Some of the
popular methods include Large Diffeomorphic Distance Metric Mapping
(LDDMM) (Beg et al., 2005), DARTEL (Ashburner, 2007) and standard
symmetric normalization (SyN) (Avants et al., 2008). In this field, the
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deformation is modeled by integrating its velocity over time according
to the Lagrange transport equation (Christensen et al., 1996; Dupuis
et al.,, 1998) to achieve a global one-to-one smooth and continuous

mapping.
2.2. Learning-based registration methods

VoxelMorph (Balakrishnan et al., 2018) utilizes the UNet-like (Ron-
neberger et al., 2015) structure to directly regress the deformation
fields by minimizing the dissimilarity between input and target images.
Voxelmorph-diff (Dalca et al., 2019) introduces the diffeomorphic reg-
istration and proposes a probabilistic framework. SYM_Net (Mok and
Chung, 2020a) provides a symmetric registration method which esti-
mates the forward and backward deformation simultaneously within
the space of the diffeomorphic maps. LapIRN (Mok and Chung, 2020b)
avoids the local minima of registration in a coarse-to-fine fashion.
A recursive cascaded network (Zhao et al.,, 2019) was proposed to
iteratively apply the registration network to the warped moving image
and fixed image. DTN (Zhang et al.,, 2021) deploys a transformer
over the CNN backbone to capture the semantic contextual relevance
and enhance the extracted feature from backbone. MS-ODENet (Xu
et al,, 2021) chooses to learn a registration optimizer via a multi-
scale neural ODE model and proposes the cross-model similarity met-
ric to alleviate the appearance difference in different contrast levels.
Transmorph (Chen et al., 2022) presents a novel image registration
by utilizing swin transformer block in the registration framework to
identify more precise spatial correspondence. XMorpher (Shi et al.,
2022) leverages multi-level semantic correspondence to extract features
gradually and enhances the cross attention transformer to facilitate
automatic correspondence detection and efficient feature fusion.

2.3. Neural fields for visual computing

2.3.1. Deformation representation

Neural Fields can be used to represent continuous transformation
with flexibility. As target geometry and appearance are often modeled
with neural fields, it is natural to use neural field to represent the
transformation. Niemeyer et al. (2019) performs 4D reconstruction via
learned temporal and spatially continuous vector field. Neural Mesh
Flow (Gupta, 2020) focuses on generating manifold mesh from images
or point clouds via conditional continuous diffeomorphic flow. Point-
Flow (Yang et al., 2019) incorporates continuous normalizing flows
with a principle probabilistic framework to reconstruct 3d point clouds.
DiT (Zheng et al., 2021) builds up the dense correspondence across
shapes in one category by decomposing DeepSDF (Park et al., 2019)
into a deformation network and a single shape representation network.

2.3.2. Medical imaging application

Neural fields have been applied in some medical image analysis
tasks, such as 3D image reconstruction or representation. Sun et al.
(2021) tries to augment the quantities measured in the sensor domain
and reconstructs images with less measurement noise. Shen et al.
(2021) predicts the density value at a 3D spatial coordinate, and
is supervised by mapping its value back to the sensor domain. Wu
et al. (2021) views the 2D slice as the samples from 3D continu-
ous function and reconstructs 3D images from the observed tissue
anatomy. NDF (Sun et al., 2022) follows the paradigm of DiT and pro-
poses to model the topology preserving transformation between each
organ shape instance and the learned shape template via neural dif-
feomorphic flow. NeSVoR (Xu et al., 2023) reconstructs a 3D isotropic
high-resolution volume from a set of motion-corrupted low-resolution
slices with neural fields regressing bias field, volume intensity, and
noise variance. Two recent independent works, IDIR (Wolterink et al.,
2021) and NODEO (Wu et al., 2022) also proposed optimization-based
pair-wise image registration methods utilizing coordinate-based neural
networks.
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IDIR extends SIREN (Sitzmann et al., 2020) model to optimize the
displacement fields of image pairs, thus it is very similar to our simplest
displacement-based registration method named NIR-D (refer to Ta-
ble 1). The primary distinction between IDIR and our NIR-D lies in their
coordinate sampling strategy. Specifically, IDIR utilizes random point
sampling, but we believe that this approach is not suitable for image
registration because it will result in inaccurate image similarity mea-
surements and additional footprint in computing regularization terms,
which we will explain in Section 3.4.3 In contrast, we have examined
three alternative coordinate sampling methods in our study: downsized
sampling, mini-patch sampling, and hybrid sampling. These samplers
are specifically designed to accurately measure image similarity and
streamline regularization term computation.

NODEO, like our diffeomorphic registration variants, utilizes Neu-
ral ODE (Chen et al.,, 2018) to integrate velocity fields and obtain
deformation fields. However, NODEO uses a completely different net-
work architecture. Their neural velocity field is based on a Unet-like
3D CNN model with fully connected bottleneck layers, whereas ours
is a simple MLP with coordinate encoding and sinusoidal activation
functions. We believe that an MLP-like network is a more appropriate
approach to represent complex continuous velocity fields. Firstly, CNN-
based networks are primarily designed to capture local features in
the input signal, which is a downsampled regular coordinate grid in
their case, where neighboring coordinates can be perfectly induced
from the center coordinate. Therefore, a CNN-based network cannot
provide more than a simple MLP, but with many more parameters to be
optimized. Secondly, several theoretical works (Sitzmann et al., 2020;
Tancik et al., 2020; Jacot et al., 2018; Yiice et al., 2022) have suggested
that using a random Fourier position mapping and a periodic activation
function, which we have implemented in our proposed method, can be
more effective for modeling neural fields. More importantly, it is crucial
to note that continuous velocity fields, which differ from discretized
stationary velocity fields (SVFs), cannot be accurately represented by
CNN-based models since the diffeomorphic transformation is governed
by an ODE that is dependent only on the position and time of the
velocity, whereas the output of a CNN is influenced by both its position
and its neighbors. As a result, CNN-based networks are not suitable as
dynamic functions of Neural ODE for image registration scenarios. We
attempted to replicate their results multiple times, but the optimization
loss did not converge.

3. Method
3.1. Background

3.1.1. Pairwise image registration

Let T € PXHXW and e D*XHXW denote the target and moving
volumetric images, respectively. Let ¢ : 2 ¢ 3 — Q be the defor-
mation field between T and . The unsupervised image registration is
commonly formulated as an optimization problem:

¢ =arg min £ T ) )
where the cost function
LT D) =Lgn T 0P+ Arg Lyeg $) 2

includes two terms: (a) L,;,, measuring image similarity between the
target and warped moving volumes, and (b) £,,,, a regularization term
on the deformation field. o¢ denotes  warped by the deformation
field ¢. 4,,, is a hyperparameter controlling the relative weight of the
regularization term .

Registration field ¢ is represented either directly via a displacement
field u with ¢ = d+u, where d is the identity map (Bajcsy and Kovacic,
1989; Balakrishnan et al., 2019), or indirectly via a velocity vector field
v, the integration of which leads to ¢. The second approach is preferred
if we require the registration field to be diffeomorphic, i.e., invertible
and topology preserving (Beg et al., 2005; Mok and Chung, 2020a).
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3.1.2. Neural fields

Both displacement fields and vector fields are modeled by a
coordinate-based neural net, referred to as neural field 7, : 3 3,
which provides a continuous mapping from 3D coordinate p to the
displacement or velocity vector at that position. & denotes the param-
eters of the neural net. Neural fields provide a flexible framework for
modeling registration field, powerful enough to model highly complex
deformations, while maintaining analytic differentiability and allowing
us to leverage powerful optimization tools in existing deep learning
toolboxes (Frankle and Carbin, 2018).

The neural fields used in this work all consist of a coordinate
encoding layer y, followed by a multilayer perceptron (MLP) whose
weights, bias and activation function at the Zth layer are denoted as
W9, b? and p?, respectively. The activities of neurons at each layer
are computed sequentially as follows,

—

z¥=yp)
z0=pO (W27 V4bp?) £=1 .. L-1
Fop)=W Pzl D4ph 3)

where p is the input coordinate and 7, p) denotes the output displace-
ment vector or velocity vector at p.

3.2. Overview of NIR

NIR uses neural fields to represent the transformation between two
medical images, thus the image registration problem can be solved by
optimizing a neural displacement field or neural velocity field. The
optimization is solved via stochastic mini-batch gradient descent by
finding a stochastic approximation of the objective function Eq. (2)
through sampling. This approach contrasts with batch gradient de-
scent, which requires a complete calculation of Eq. (2) and is more
memory-demanding.

NIR consists of three main components — Coordinate Sampler ( S),
Neural Field (NF), and Intensity Sampler (IS) (Fig. 2). CS samples
coordinates from the 3D grid points of T, randomly at each step of the
optimization. The sampled points are sent to NF, which maps position
p € 3 in the coordinate space of T to position p € 3 in the
coordinate space of M. IS returns image intensities at query locations
of source and target images. Let lpT denote the intensity of p on T and
IM denote the intensity of p’ on M. The sampled image intensities are
then used to calculate the similarity loss L, (e.g., local normalized
cross-correlation loss) between IpT and I lj‘,’ , as well as the smooth term
‘CJ det*

The inference mode of NIR is much simpler: the pre-trained neural
field takes the whole grid coordinates as input and outputs the deforma-
tions at all input coordinates. The warped volume W is then obtained
by sampling intensities from the moving volume M given the deformed
coordinates.

In Section 3.3, we describe the network design of NF. In Sec-
tion 3.4, we go over several optimization components, including CS,
IS, and the objective functions. In Section 3.5, we present hybrid
coordinate sampling scheme that strikes a balance between registration
accuracy and regularity and maintain the optimization efficiency.

3.3. Network design

As illustrated in Fig. 2, NF takes as input a 3D coordinate p € 3
in T and outputs the corresponding coordinate p’ € 3 in M. The
transformation from p to p’ can be parameterized in two options: (1)
use a neural field to directly predict the displacement vector (Fig. 3(a)),
or (2) use a neural field to predict the velocity vector, the integral
of which leads to the deformation vector (Fig. 3(b)). Both neural
displacement field and neural velocity field can be formulated as the
Eq. (3) and next we will look into the design of each component in our
neural fields.
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p—».—vp’—»ﬁreq

Coordinate Sampler

T Neural Field
Intensity Sampler
M
Ij = tan <Ly
(a) Optimization

Grid Deformed Grid

(b) Inference

Fig. 2. Overview of NIR, which is a optimization-based pairwise medical image
registration framework via neural fields. Plot (b) only presents the transformation of
moving volumes via NIR, but the structures associated with the moving volumes can
also be transformed in the same way.

3.3.1. Coordinate encoding

Coordinate encoding module maps three-dimensional input coor-
dinates to a higher-dimensional embedding (Mildenhall et al., 2020;
Tancik et al.,, 2020). The mapping can be realized by a family of
functionals ¢; : 3 — 2, written as:

e, p) Q)

We follow the suggestion from Tancik et al. (2020), encoding coor-
dinates via Fourier mapping, such that

yp=lerp)erp) ...

e; p) = [cos (2z@] p) sin (ZHwTP)]T ®

where @; € 3 is randomly sampled from a Gaussian distribution with
standard deviation ¢. The higher the o, the more likely the model will
bias towards the high-frequency signal.

3.3.2. Sinusoidal representation networks SIRENSs)

On top of coordinate encoding layer, the main body of our neu-
ral field is a SIREN network (Sitzmann et al., 2020), in which all
neurons are activated with sinusoidal functions, i.e., p©) = sin. No-
tably, the first layer of SIREN networks can be written as z " =
sin (o (W 929 +59)). Thus, similar to Fourier coordinate mapping,
SIRENs can also regulate the spectral bias of the network by adjusting
the network hyperparameter .

Yiice et al. (2022) reveals that the expressive power of coordinate-
based MLP with sinusoidal encodings is equivalent to that of a struc-
tured signal dictionary, which is restricted to functions that can be
expressed as a linear combination of certain harmonics of the coordi-
nate encoding y p). SIREN can be seen as the nested sinusoids and the
few coefficients of this network are enough to represent signals with an
exponentially large frequency support.

3.3.3. Neural displacement field

Neural displacement field 7, takes as input a 3D location p in T and
outputs a displacement vector ¢, = (o), ‘l’ny ¢pz]T =Fy p). As a result,
the deformed position p’ in M is p + ¢,,.

3.3.4. Neural velocity field

Under this option, our proposed framework can perform diffeomor-
phic image registration. Let ® p f) : Q ¢ *x[0 1]~ Q c 3 define
a continuous, invertible trajectory from the initial position p = @ p 0)
to the final position p’ = @ p 1), satisfying such ordinary differential
equation (ODE) and the initial condition:

WP pi) _
ot

vdpnt) st. &®p0)=p 6)
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(a) Neural Displacement Field

(b) Neural Velocity Field

Fig. 3. Neural Fields for Coordinate Deformations — Blue modules indicate the
parameters to be optimized. (a) illustrates the neural deformation field that directly
transforms the coordinate p in the target volume to the coordinate p’ in the moving
volume. (b) illustrate the neural velocity field which predicts the stationary velocity
vector along the deformation trajectory from p to p'.

where v p 1) : Q%[0 1] — Q indicates the velocity vector of coordinate
p at time t. If v is Lipschitz continuous, a solution to Eq. (6) exists and
is unique in the interval [0 1], which ensures that any two deformation
trajectories do not cross each other (Dupont et al., 2019). In such dis-
crete cases as Dalca et al. (2018, 2019), the initial value problem (IVP)
in Eq. (6) is typically solved with scaling and squaring method (Arsigny
et al., 2006).

In this work, we assume that v is continuous and stationary and
can be modeled via a neural field, written as 7, p) = [vpx vy, vpz]T.
Eq. (6) can be solved with a Differentiable ODE Solver (NODE) (Chen
et al., 2018) whose dynamic function is set to be F,. Considering the
trade-offs between speed and accuracy, we choose the Fourth-order
Runge-Kutta method (rk4) with step size of 0.25 as the ODE solver
for our diffeomorohic registration experiments. In the forward pass, the
deformed position p’ of position p can be estimated by integrating ¥ p)
from ¢t = 0 to r = 1 via NODE, formulated as

1
p/:¢p1)=¢p0)+/ Fy @ p 1)dt 7)
0

For backpropagation, NODE adopts the adjoint sensitivity method (Pon-

tryagin, 1987), which retrieves the gradient by solving the adjoint ODE
backwards in time and allows solving with O(1) memory usage no
matter how many steps the ODE solver takes.

3.4. Optimization

In this section, we will introduce the intensity sampler, objective
functions as well as coordinate sampler used in our NIR.

3.4.1. Intensity sampler

To utilize gradient-based optimization method, a differentiable in-
tensity sampler is required to estimates the intensities of sub-voxel
positions given source images. Same as Jaderberg et al. (2015), Bal-
akrishnan et al. (2019), Mok and Chung (2020a,b), we apply linear
interpolation (other interpolation methods can also be applied) as
intensity sampler, referred as 7S, Given a coordinate ¢ and scans
S, the intensity value at c, referred to as I BS , is obtained based on the
intensities of the eight surrounding voxels.

3.4.2. Objective functions
Local normalized cross-correlation is adopted to measure the in-
tensity similarity. Let IS denote the intensity mean of local region
- IS
centering at position ¢ on volume S. In our experiments, IS = —a
where c¢; iterates over the local region in the size of w3. Then local

normalized cross-correlation can be defined as below:

2
T _ g7\ M _ M
[ i p; I = 1) lp,’. lp’ )]

LNCCT M pp)= ®

T _ [T\ M _ yMy2
1y Ip)][ », ],,; lp’)]
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where p denotes the sampled position in the coordinate of target vol-
ume T, and p’ denotes deformed position in the coordinate of moving
volume M.

As for the regularization term, we follow Mok and Chung (2020a) to
impose the Jacobian determinant penalty on the predicted deformation
field. The Jacobian matrix of the deformation field ¢ at a position p is
notated as J, p), where N is the toal number of sampled locations per
optimization iteration.

If |J, p)l is positive, it is suggested that the deformation field
preserves the local orientation near p. Conversely, if |J, p)| is negative,
the deformation field reverses the local orientation around p. Thus, the
local orientation consistency constraint can be defined as

LOCC p) = max 0 —|J, p)]) ©)

which only penalizes the regions with negative Jacobian determinants.
In our experiment, J, c) is approximated as the differences between
neighboring deformation vectors.

The intensity similarity £;, and the regularization term L,,, is the
mean value of negative local normalized cross-correlation and local
orientation consistency constraint across sampled positions, written as

sim

—_ ] /
Lon= ;—LNCC T M p; p) (10)

1
Lreg = 5 2,LOCC p)) an
J

Here, N is the toal number of sampled locations per optimization
iteration and p; denotes the jth location sampled in one batch.

3.4.3. Coordinate sampler

To optimize the parameters of our neural fields, we apply mini-
batch stochastic gradient descent method. In other words, we sample
a subset of coordinates of the whole image grid to update the model
parameters per iteration in optimization. Next, we will discuss three
different coordinate samplers: random sampler, downsize sampler and
mini-patch sampler.

Random Sampler (Fig. 4(a)) is most commonly used in coordinate-
based neural networks (Sitzmann et al., 2020; Niemeyer et al., 2019;
Chen et al.,, 2021b) because the coordinates sampled via a random
sampler are distributed across the whole grid and the unbiased sam-
pled coordinates allow for the more stable optimization. But random
coordinate sampler is inapplicable in our case. To compute LNCC, we
need to search closest coordinates among all sampled coordinates to
estimate the local intensity mean and correlation, whose consequence is
that the optimization speed can be significantly impeded by the search-
ing time. Moreover, randomly sampling coordinate will bring about
larger memory consumption for calculating LOCC. As we mentioned in
Section 3.4.2, we approximate the Jacobian matrix of the deformation
field by discretizing the image coordinate space, asking for the coordi-
nates to be sampled in a spatial regularity. If the sampled coordinates
are distributed randomly, the Jacobian matrix requires extra memory
for the second-order derivatives of deformation field with respect to
model parameters during optimization. After all, considering the time
and memory deficiency, random coordinate sampler is an impractical
choice for our NIR.

Downsize Sampler samples coordinates with specific step size
in each dimension as shown in Fig. 4(b). Coordinates sampled by
downsize sampler can well cover the entire image coordinate space
but the approximation of Jacobian matrix might be of more flaws
due to downsizing. The consequence is, the neural fields optimized
via downsize coordinate sampler achieve great alignment accuracy but
relatively bad local orientation consistency in deformations.

Mini-Patch Sampler randomly selects multiple high-resolution small
coordinate blocks as shown in Fig. 4(c). Compared to downsize coor-
dinate sampler, it can provide more accurate Jacobian matrix approx-
imation but the drawback lies in the computation of local normalized
cross-correlation. Specifically, the extensive padding operations along
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Fig. 4. Coordinate Samplers and Performance Comparisons. (a), (b) and (c) illustrate sampling 16 coordinates per batch from total 64 2D coordinates with three kinds of
coordinate samplers. (d) ranks (not quantifies) the registration performance of NIR models optimized with two practical coordinate samplers (downsize sampler and mini-patch
sampler) in four aspects. The higher ranking in each dimension indicates better performance in that aspect. As is shown in (d), consuming almost the same GPU memory during
optimization, compared to NIR optimized with the mini-patch sampler, NIR optimized with the downsize sampler can take less time to converge to a more accurate registration
results with more violations in topology preserving. The expected solution, as indicated by the red-dot line, should be of great performance in both registration accuracy and
regularity with no or modestly extra computations. For the numerical results supporting the ranking in plot (d), please refer to Table 4.
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Fig. 5. Overview of NIR with Hybrid Coordinate Sampling Scheme. The opti-
mization is composed of two phases, in which two neural fields (NF, and NF,) are
optimized separately. During inference, NIR with hybrid coordinate sampler requires
grid coordinates to pass through two neural fields in sequence to get the deformed
coordinates.

the patch borders result in the inaccurate local normalized cross-
correlation. Thus, the neural fields optimized via mini-patch coordi-
nate sampler are good at registration regularity but bad at alignment
accuracy.

Fig. 4(d) demonstrates the rank of the registration performance of
two candidate coordinate samplers with the spatial regularity in four
criteria — accuracy, regularity, memory consumption, and converge
speed. It is apparent in Fig. 4(d) that no coordinate sampling strategy
can outperform the others in all criteria. Downsize coordinate sam-
pler is good at criteria in all aspects but the registration regularity,
which happens to be the strength of mini-patch coordinate sampler.
The expected solution should have high registration accuracy, minor
distortions in the deformation field, rapid converge rate as well as little
memory consumption, as indicated by the red-dot region in Fig. 4(d).

3.5. NIR with hybrid coordinate sampler

3.5.1. Overview

We intend to enhance the complementarity of the downsize and
mini-patch coordinate samplers without the substantial increase in
memory and time consumption during optimization. To this end, we
propose a hybrid coordinate sampler which performs two different
coordinate sampling strategies in two phases of optimization. As shown
in Fig. 5, NIR with a hybrid coordinate sampler consists of two concate-
nated neural fields optimized separately. The first neural field (N F;)
takes in charge of the rough alignment between the moving and target
scans and the residual transformation is completed by another neural
field (NF,). In inference, NF, and NF, deform the whole grid in
cascade, which means the output of N F, is taken as the input of NF,
and then N F, outputs the final deformed grid. As for optimization, the
parameters of NF, and NF, are updated with the downsize sampler
C.S, and mini-patch sampler C.S, separately in two phases as depicted
in Fig. 5(a).

3.5.2. Optimization

Hybrid coordinate sampler is motivated by three experimental ob-
servations indicated by Table 4. (1) the downsize sampler can generate
more accurate registration in the price of more distortions in the
deformation field; (2) the mini-patch sampler tends to provide over-
smooth deformation fields and results in much slower convergence
speed; and (3) in the early stage of optimization, the regularity of
the deformation field from NIR optimized with the downsize sampler
is well-preserved while achieving decent registration accuracy. This
could be attributed to the spectral bias of neural fields, which tends to
reconstruct lower-frequency signals at the beginning of optimization.
The hybrid coordinate sampler leverages these observations by initial-
izing the registration field with the downsize sampler and fine-tuning
the results with the mini-patch sampler, achieving a balance between
registration accuracy and regularity.

To be specific, the hybrid sampling method is conducted in two
phases. In the first phase, N F; is optimized with the downsize coor-
dinate sampler CS, for a short time. After the first-phase optimization,
NF, is able to generate the smooth and relatively accurate trans-
formation. Then the goal of the second-phase optimization is to let
NF, complete the transformation left unfinished by N F,. We prefer
a neural registration field that can align the more detailed structures
and does not mess up the underlying topology in the second phase of
optimization. For this reason, the input coordinate p, for the second-
phase optimization are sampled by the mini-patch sampler CS, and the
initial deformed positions p!/ for N'F, are predicted by N F;. Notably,
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taking optimization stability and memory efficiency into account, only
NF, is optimized in the second-phrase optimization while weights of
N F; are frozen.

Similar to NIR, the optimization objective functions of NIR with a
hybrid sampler is given by:
£2 ) 12

reg reg

Lo A L ) vw, L3 +2

L= wy reg reg

where w; = 1 w, = 0 in the first phase of optimization and w, =

0 w, = 1 in the second phase. £!, , £2  r! and £2 follows the
R S g reg

same definition as introduced in Section 3.4.2.

4. Experiments
4.1. Dataset

All our experiments are conducted on two public 3D brain MR
datasets — Mindboggle101 and OASIS.

Mindboggle101 (Klein and Tourville, 2012) is a dataset consisting
of 101 T1-weighted MRI scans of healthy individuals from 5 different
data sources. Among these scans, 45 are designated as testing data, with
5 serving as moving scans and 40 as target scans. The training dataset
comprises 47 scans, while the validation data consists of the remaining
scans. For evaluation purposes, we selected 31 cortical regions as
outlined in Xu and Niethammer (2019).

OASIS dataset (Marcus et al., 2007) consists of 416 T1-weighted MR
images of subjects aged 18 to 96, including individuals with early-stage
Alzheimer’s Disease (AD). Hoopes et al. (2021) annotated 35 anatom-
ical structures in this dataset, and we use 27 of them for performance
evaluation in our experiments. Same as Wu et al. (2022), we select 45
scans, with 40 as target scans and 5 as moving scans for testing. We use
250 of the remaining scans for training the learning-based methods in
our comparisons, and select 30 scans for validation.

All MRI images utilized in our experiments undergo the same pre-
processing procedures, which include skull stripping, resampling to
1 mmx 1 mmx 1 mm spacings, affine alignment to the MNI template of
T1-weighted MRI imaging (Fonov et al., 2009, 2011), and cropping to
a size of 160 x 192 x 144. As all images are already aligned to the MNI
template, our experiments focus on the non-linear deformation between
pairs of images.

4.2. Implementation details

Network Architecture: The neural displacement field in
Section 3.3.3 is composed of four fully connected layers with a hidden
feature size of 256. However, due to the computational inefficiency of
Neural ODE, we adopt shallower SIREN models for the neural velocity
field in Section 3.3.4. This field consists of three fully connected layers
with a hidden feature size of 256. The activation scale w, of the first
layer of the SIREN model for both neural displacement and velocity
field is set to 30 for all experiments. Additionally, regardless of the
chosen neural field and coordinate samplers, the dimension of the
coordinate embedding and the standard deviation ¢ of the Gaussian
distribution are set to 128 and 3, respectively.

Coordinate Sampler: The down-sampling step size for the downsize
coordinate sampler is set to 3 in all dimensions, while the mini-
patch coordinate samplers randomly select 5 patches per optimization
iteration, with each patch having a size of 32 x 32 x 32.

Objective Function: In computing the local normalized cross-
correlation (LNCC) for the coordinates sampled from the down-
size sampler, a local region size of 9 is set, while a local region
size of 27 is used for mini-patches sampling. Throughout the opti-
mization process, the regularization weight 4,,, of 1000 is used for
our displacement-based deformable registration methods, while our
diffeomorphic registration methods use a regularization weight of 100.

Optimization: The network parameters are updated using the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 1e~*. For NIR,
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Table 1
Names of options under NIR framework.

Name Coordinate Neural field

sampler type
NIR-D(-Diff) Downsize Displacement (Velocity)
NIR-P(-Diff) Mini-patch Displacement (Velocity)
NIR-H(-Diff) Hybrid Displacement (Velocity)

the maximum number of optimization iterations is set to be 900. For
NIRs with a hybrid coordinate sampler (NIR-H and NIR-H-Diff), the first
phase is optimized for 200 iterations, and the second phase is further
optimized for 900 iterations.

Platform: All optimization-based methods are executed on a system
equipped with NVIDIA GTX 2080Ti GPUs and an Intel i7-7700K CPU.
All learning-based methods are running on a system equipped with
NVIDIA A6000 GPUs and an Intel i7-7700K CPU. Across different plat-
forms, we maintained consistency in the versions of software packages,
managed via Anaconda (Anon, 2020).

4.3. Methods in comparisons

In Section 3.1.2, we have introduced two types of neural fields
for the displacement-based deformable registration and diffeomorphic
registration respectively, both of which can be integrated into the
framework of NIR (Section 3.3) and NIR with a hybrid coordinate
sampler (Section 3.5). We provide several options of running NIR and
their names are listed in Table 1. The baseline models encompass both
learning-based approaches, including VoxelMorph (Balakrishnan et al.,
2019), VoxelMorph-diff (Dalca et al., 2019), SYM_Net (Mok and Chung,
2020a), TransMorph (Chen et al., 2022), XMorpher (Shi et al., 2022)
and SynthMorph (Hoffmann et al., 2021), as well as optimization-
based methods like SyN (Avants et al., 2008), NiftyReg (Modat et al.,
2010), IDIR (Wolterink et al., 2021) and NODEO (Wu et al., 2022), and
Grid, which can be regarded as a discretized counterpart to our NIR-
D. Further elaboration on the training and optimization procedures for
these baseline models in our experiments is available in the appendix.

4.4. Experimental setup

In all of our medical image registration experiments, the objective
is to transform a moving volume to match a target volume. If the
moving volume has associated structure labels, we can map these
structures onto the target volume using the transformation obtained
from the registration task. Our evaluation metrics (Section 4.5) for
the registration results include the similarity between the target and
warped volumes/structures, as well as the local orientation consistency
of the deformation fields.

In this paper, we conduct three groups of unsupervised registration
experiments.

Experiment 1): We adhere to the data splitting protocol as de-
scribed in Section 4.1. In particular, we leveraged the pre-trained
models' from the IXI dataset,”> which comprises 576 brain MR scans.
The pre-trained models are available for all learning-based methods,
except XMorpher which lacks a pre-trained model. Therefore, we train
XMorpher from scratch. For other methods that do provide pre-trained
models, we fine-tune them using our target dataset. We proceed to
compare the performance of our proposed NIR framework against
both learning-based and traditional optimization-based methods on
Mindboggle dataset.

1 https://github.com/junyuchen245/TransMorph_Transformer_for_Medical_
Image_Registration/tree/main/IXI/
2 https://brain-development.org/ixi-dataset/
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Table 2
Registration performance comparison on Mindboggle101 dataset and OASIS dataset.
Category Experiment (1) Mindboggle101 GPU
method/metrics DSCV'"’"” ) DSC, ) Jo D) memory (MB)
VoxelMorph 0.7075 (0.021)* 0.4753 (0.019)* 2.41e-02 (2.17e-03)* 4985
VoxelMorph-Diff 0.7057 (0.024)* 0.4692 (0.023)* 1.59e-05 (1.37e-05)* 2923
Learning-based SYM_Net 0.7662 (0.020)* 0.5582 (0.019)* 1.28e—-04 (2.61e—-05)* 3031
(pre-trained) TransMorph 0.7663 (0.020)* 0.5434 (0.022)* 2.20e—02 (2.02e-03)* 8055
TransMorph-Diff 0.6255 (0.021)* 0.4585 (0.021)* 2.14e-05 (1.69e—05)* 4389
SynthMorph 0.7358 (0.023)* 0.5149 (0.024)* 3.46e—03 (5.31e—-04)* 4985
VoxelMorph 0.7473 (0.022)* 0.5464 (0.024)* 2.26e—02 (2.83e-03)* 10129
VoxelMorph-Diff 0.7568 (0.021)* 0.5417 (0.022)* 4.03e-06 (2.16e—05)* 5121
Learning-based SYM_Net 0.7725 (0.021)* 0.5763 (0.021)* 5.78e—05 (1.45e—05)* 10565
(finetuned) TransMorph 0.7868 (0.020)* 0.6002 0.020) 8.11e—04 (8.64e—04)* 17203
TransMorph-Diff 0.6819 (0.023)* 0.5363 (0.022)* 2.95e-06 (5.72e—06)* 9681
X-Morpher 0.7634 (0.022)* 0.5584 (0.021)* 5.83e—4 (5.36e—-4)* 24459
NiftyReg 0.7874 (0.024)* 0.5635 (0.026)* 1.01e-03 (9.21e-04)* -
SyN 0.7822 (0.019)* 0.5514 (0.020)* 4.40e—06 (4.91e—-06)* -
Optimization-based Grid 0.7063 (0.022)* 0.5145 (0.023)* 9.61e—04 (2.73e—04)* 4981
IDIR 0.6986 (0.032)* 0.4819 (0.035)* 0 0) 5183
NODEO - - - 3863
Ours NIR-H 0.7809 (0.020)* 0.5561 (0.021)* 1.31e—04 (4.75e—-05)* 3341
NIR-H-Diff 0.7904 0.020) 0.5826 (0.021) 1.11e-06 7.84e-07) 3177
Category Experiment (2) OASIS Running
method/metrics DSCX"”'”’ ) DSC, ) Jo b time (s)
VoxelMorph 0.8412 (0.051)* 0.7873 (0.039)* 1.57e—-03 (3.38e-03)* -
VoxelMorph-Diff 0.8257 (0.065)* 0.7820 (0.038)* 3.71e—06 (1.63e—06)* -
Learning-based SYM_Net 0.9031 (0.037) 0.8302 (0.026)* 4.10e—05 (1.29e-05)* -
(pre-trained) TransMorph 0.8865 (0.038)* 0.8218 (0.027)* 2.66e—02 (5.73e—03)* -
TransMorph-Diff 0.7141 (0.055)* 0.7667 (0.034)* 4.33e—06 (9.43e—06)* -
SynthMorph 0.8782 (0.033)* 0.8191 (0.023)* 1.83e—04 (6.47e—05)* -
VoxelMorph 0.8962 (0.035)* 0.8274 (0.024)* 5.63e—03 (2.07e—03)* <20
VoxelMorph-Diff 0.8913 (0.039)* 0.8197 (0.026)* 6.93e—06 (1.18e—05)* <25
Learning-based SYM Net 0.9050 (0.028) 0.8397 (0.020) 7.51e—05 (1.84e—05)* <3.0
(finetuned) TransMorph 0.9164 0.025) 0.8506 0.020) 1.41e-02 (3.31e-03)* <25
TransMorph-Diff 0.8118 (0.039)* 0.8270 (0.019)* 7.84e—06 (9.47e—06)* <3.0
XMorpher 0.8636 (0.026)* 0.8173 (0.021)* 3.52e-03(2.42e—04)* < 4.0
NiftyReg 0.8905 (0.048)* 0.8234 (0.035)* 1.28e—03 (8.99e-04)* ~ 2521
SyN 0.9058 (0.026) 0.8371 (0.020) 6.38e—06 (8.49e—06) ~ 1273
Optimization-based Grid 0.7897 (0.092)* 0.7613 (0.045)* 8.04e—04 (1.65e—04)* ~ 3969
IDIR 0.8042 (0.036)* 0.7748 (0.034)* 0 0) ~ 3969
NODEO - < 0.783 (-) 3.0e-04 (-) =~ 80
Ours NIR-H 0.8984 (0.032)* 0.8274 (0.023)* 1.62e—04 (7.18e—05)* ~ 90
NIR-H-Diff 0.9071 (0.034) 0.8382 (0.025) 4.55e—06 (1.05e—05) ~ 640

The GPU memory consumption for the learning-based methods are “training consumption — inference consumption”, but for our proposed
methods, are just maximum memory consumption during optimization. The GPU memory consumption in optimizing the hybrid NIR models
varies in two phases because the numbers of sampled coordinates in two phases are different. Specifically, the number of coordinates sampled
by the downsize sampler and the mini-patch sampler in two phases are 165888 and 163840, respectively. Thus, the maximum GPU memory
consumption for hybrid NIR models comes from the first phase of optimization. In the case of pre-trained learning-based methods, the GPU
memory consumption reflects the cost of inference, whereas in the case of fine-tuned learning-based methods, the GPU memory consumption

reflects the cost of training.

Experiment 2): Similar as Experiment (1), we compare our NIR
framework with other methods on OASIS dataset under the data split
setting from Section 4.1.

Experiment 3): Experiment 3 is designed to assess and compare
the generalization capability of various methods for handling image
registration between pairs of scans from different datasets. Specifically,
60 pairs of test data are created by matching three randomly selected
moving scans of healthy brains from the Mindboggle101 test set with
20 target volumes randomly chosen from the OASIS dataset, which
comprises patients with moderate Alzheimer’s disease and a Clinical
Dementia Rating (CDR) exceeding 0.5. The pre-trained learning-based
methods are fine-tuned on the Mindboggle101 training set and incor-
porate moderate data augmentations, such as “RandGaussianNoise”,
“RandScalelntensity”, “RandAdjustContrast” and “RandAxisFlip” tech-
niques, implemented by the MONAI (Cardoso et al., 2022) package, to
enhance their generalization performance.

The first two experiments aim to evaluate the effectiveness of our
proposed methods in brain MRI registration. The third experiment is
designed to test the robustness of our optimization-based methods.

To determine the optimal values of certain hyperparameters, such
as the learning rate and regularization weight, for our proposed NIR
framework, we randomly select 15 image pairs from nine Mindbog-
gle101 validation data to create our validation set.

4.5. Evaluation metrics

All methods in our comparison aim to register the moving volumes
to the target volumes. If the moving and target volumes belong to
the same dataset, we evaluate the registration performance using the
Dice coefficient (DSC) and the ratio of coordinates with a non-positive
Jacobian determinant (J ). However, if the moving and target vol-
umes have different annotations, we use the Structural Similarity Index
(SSIM) and J ( for evaluation.

Two types of DSC — volumetric DSC, and surface D.SC;, are used
to evaluate the overlap between two regions. Given the target mask

My and warped mask My, , the volumetric DSC, can be computed as

2| My 0 My, |

DSC, = . According to Reinke et al. (2021), volumetric
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measurements may yield similar evaluation scores even if the regions
have vastly different shapes, especially in complex structures such as
cortical regions. Therefore, boundary-based measures are preferred in
such cases. Specifically, we use the surface Dice coefficient (D.SC)
introduced by Nikolov et al. (2018) to assess the alignment accuracy.
Unlike volumetric DSC,, the surface DSC, evaluates the overlap of
two surfaces within a specific tolerance ., formulated as

|sr By

|Sr|+ [Swl

where S; refers to the surfaces of mask M,, and /3] denotes the border
regions for the surface S; within a tolerance z, which is 1 mm in
our experiments. For more details about the surface DSC, please look
into Nikolov et al. (2018). Both volumetric and surface DSC range from
0 to 1 and higher score represents better registration accuracy. The final
reported scores are the average D.SC of all structures over all pairs.

J ¢ is a metric that assesses the regularity of deformation fields,
measured as the ratio of coordinates with non-positive Jacobian deter-
minant. The Jacobian matrix represents the derivatives of the defor-
mations and reflects the local properties of the deformation field. Only
the local regions with a positive Jacobian determinant are transformed
in a way that preserves topology and invertibility. Thus, a higher J
indicates poorer registration regularity. The calculation of the Jacobian
matrix of deformations is described in Section 3.4.2.

The Structural Similarity Index (SSIM) (Wang et al., 2004) is a
metric that calculates the similarity between two images based on three
components: luminance, contrast, and structure. The SSIM value
ranges between 0 and 1, where higher values indicate greater simi-
larity between the image pairs. For further information regarding the
calculation details, please refer to the original paper (Wang et al.,
2004).

In order to evaluate the performance of our proposed NIR-H-Diff
method, we will report the mean and standard deviation of all the
evaluation metrics used in the experiments in the following tables. In
addition, we will perform a paired samples t-test for experiments (1),
(2), and (3) between the proposed NIR-H-Diff method and all other
comparative methods, and calculate two-sided p-values. A p-value of
less than 0.001 will indicate that the scores of NIR-H-Diff and the
comparator methods are significantly different and we will mark the
scores with an asterisk (*) when our NIR-H-Diff performs significantly
better than the corresponding methods on that metric.

)
+|SWnBT’|

DSCP = 13)

4.6. Quantitative comparisons with baselines

In this section, we compare the registration performance of our
proposed methods with that of the baseline methods. The reported
results of the NIR variants in Tables 2 and 3 were obtained after 900
iterations of optimization.

Table 2 provides a comparison of the performance among all meth-
ods in experiments (1) and (2) in terms of registration accuracy, reg-
istration regularity, and maximum GPU memory consumption during
optimization and inference. The box plots in Fig. 6 demonstrate the
Dice’s Coefficient of six representative methods for different groups
of anatomical structures in experiments (1) and (2). Our proposed
methods demonstrate highly competitive performance regarding reg-
istration accuracy and regularity while consuming significantly less
GPU memory than training or fine-tuning learning-based methods. In
experiment (1), NIR-H-Diff outperforms all pre-trained learning-based
models across all three evaluation metrics and performs comparably
to the finetuned TransMorph in terms of DSC,. Additionally, our
method exhibits superior registration regularity when compared to
other competing methods. It can be seen from Fig. 6(a) our advantages
in alignment accuracy applied to almost all annotated structure groups.
In experiment (2), our methods continue to outperform pre-trained
learning-based models in almost every metric, except for SYM-Net
on DSCSI’""'). Even though the finetuned TransMorph and SYM_Net
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Table 3

Registration performance comparison on experiment (3).
Method SSIM ) Jo D
VoxelMorph 0.7459 (0.0072)* 9.68e—02 (3.55e—03)*
VoxelMorph-Diff 0.7471 (0.0061)* 7.09e—06 (1.43e—05)*
SYM_Net 0.7799 (0.0051)* 7.31e—05 (1.82e-05)*
TransMorph 0.7907 (0.0074)* 6.23e—02 (5.68e—03)*
TransMorph-Diff 0.7469 (0.0065)* 7.65e—06 (1.51e—05)*
XMorpher 0.7738 (0.0073)* 1.45e—03(4.23e—03)*
SynthMorph 0.8051 (0.0052)* 7.68e—03 (4.91e—03)*
NiftyReg 0.8389 (0.0057)* 1.36e—03 (8.23e—-04)*

SyN 0.8478 (0.0043)*

0.8408 (0.0052)*
0.8530 0.0034)

5.80e—06 (7.16e—-06)*

2.30e—04 (8.91e-05)*
2.28e-06 3.71e-06)

NIR-H
NIR-H-Diff

3 target volumes from Mindboggle101 dataset and 20 moving volumes from OASIS
dataset are randomly selected to conduct the cross-dataset image registration experi-
ments. The learning-based methods are trained with the training set of Mindboggle101
dataset.

performs better than us in terms of registration accuracy, NIR-H-Diff
is significantly superior to other finetuned learning-based models in
all evaluation metrics. Based on the results presented in Table 2, we
observed that the performance advantage of our proposed methods
over the learning-based methods decreased in experiment (2). This
outcome may be attributed to the availability of more data for training,
all of which were collected from the same institution and followed
similar scanning protocols in the OASIS dataset, thereby limiting the
exposure of the generalization issue of the learning-based methods in
this experiment.

Compared with the optimization-based registration methods
(NiftyReg and SyN), our NIR-H-Diff and NIR-H can both provide
high-accuracy registration performance but only NIR-H-Diff achieve
the top performance in terms of registration regularity. NIR-H is not
comparable with diffeomorphic registration method, i.e., SyN, in the
metric of J . but it only generates about 1/10 folds in deformation
fields compared with NiftyReg. Another important criterion to assess
the optimization-based methods is the performance relationship with
optimization duration, which will be discussed in Section 4.9. Fig. 6(a)
and Fig. 6(b) present a closer inspection of registration accuracy of
methods in comparison, from which we can tell that our proposed
method can achieve the better performance than the other optimization
methods in 9 out of 12 structure groups in experiment (1) and 9 out of
15 structure groups in experiment (2).

Compared with Grid, our NIR-H is significantly better in terms of
registration accuracy and regularity, consuming less GPU memory. Be-
cause Grid and NIR-H share a similar optimization process but mainly
differ in the ways to describe the deformation fields, the significant
advantage of our proposed method may suggest the effectiveness of
neural fields in modeling the deformation fields.

Compared with other neural field based methods, specifically IDIR
and NODEO, our proposed techniques exhibit notable advantages in
terms of registration accuracy. IDIR, which operates as a displacement-
based registration method, demonstrates commendable performance
concerning J ( by enforcing deformation smoothness through auto-
matic differentiation. Nevertheless, this achievement is accompanied
by significantly higher GPU memory consumption and notably inferior
registration accuracy when contrasted with our NIR-H and NIR-H-
Diff methods. Regarding NODEO, while their official implementation
remains unreleased, making it challenging to reproduce their results,
we have managed to perform a preliminary performance comparison
based on the reported outcomes, as discussed in Appendix A.2. This
comparison has underscored a substantial gap between our methods
and NODEO in terms of accuracy and regularity.

Table 3 compares the performance of NIR-H, NIR-H-Diff with six
learning-based and two optimization-based methods in experiment (3).
As the moving volumes are healthy scans from the Mindboggle101
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(a) Experiment (1). We group all 31 structures into 12 groups: Cin (caudal anterior cingulate, rostral anterior cingulate, isthmus cingulate, posterior cingulate), Fl (caudal middle frontal,
rostral middle frontal, superior frontal), Pl (inferior parietal, superior parietal, supramarginal), T1 (inferior temporal, middle temporal, superior temporal, transverse temporal), Orfl (lateral
orbitofrontal, medial orbitofrontal), LaOcc (lateral occipital), Cen (postcentral, precentral, paracentral), Cu (cuneus, precuneus), Pars (pars opercularis, pars orbitalis, pars triangularis), Hip
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(entorhinal, parahippocampal), Vis (lingual, fusiform, pericalcarine).

N SYM Net mEE SyN SRR
I VoxelMorph W NIR-H .
I NiftyReg I NIR-H-Diff T

I I
Orfl

0.6

Ins Cin Cen Tl

Hip

FI Cu LaOce Vis

(b) Experiment (2). The abbreviations above indicate: brain stem (BS), thalamus (Th), cerebellum cortex (CblmC), cerebral white matter (CeblWM), cerebellum white matter (CblmWM),
putamen (Pu), Ventral-DC (VDC), Pallidum (Pa), Caudate (Ca), Lateral Ventricle (LV), Hippocampus (Hi), 3rd Ventricle (3V), 4th Ventricle (4V), Amygdala (Am), and Cerebral Cortex

(CeblC).

Fig. 6. Boxplots of Dice’s Coefficients for Various Anatomical Structures. Left and right hemispheres are combined together, e.g. we average two Dice’s Coefficients of the
left and right pair of anatomical structures into one. The white '+’s in the above boxes indicate the average Dice’s Coefficients.

dataset and 20 target scans with Alzheimer’s disease come from the OA-
SIS dataset, the results in experiment (3) might suggest the robustness
of an algorithm against modest domain shift. It is apparent from Table 3
that, compared with optimization-based methods, the learning-based
methods learned from the one dataset cannot as well generalize to pair
of images coming from different datasets with different health status.
Our NIR-H-Diff method can significantly outperform all learning-based,
including SynthMorph, as well as optimization-based methods, in the
metric of both SSIM and J .

4.7. Qualitative comparisons with baselines

Fig. 7 presents the qualitative comparisons between our proposed
and selected benchmarks. Fig. 7 shows that all registration methods
are able to align the subcortical regions well, while differences between
methods are mainly observed in the cortex regions (indicated by white
dotted boxes). NIR-H-Diff and TransMorph exhibit substantially better
performance in these regions, but TransMorph achieves great accu-
racy at the expense of much more foldings in the deformation map.
NIR-H-Diff and other methods such as SYM_Net and SyN support dif-
feomorphic registration, but are not able to generate large deformations
when needed. In contrast, our proposed NIR-H-Diff can generate sharp
deformation maps without violating diffeomorphism.

4.8. Influence of coordinate samplers

In this section, we investigate the effects of coordinate samplers on
the registration results. These experiments are performed on the testing
set, and the evaluation is based on DSCS“"'") and J .

In Fig. 8, we illustrate the impact of different coordinate samplers
on the registration performance of a single pair of test data from OASIS
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datset. The downsize sampler can generate more accurate registration
in the price of more distortions in the deformation field while the mini-
patch sampler tends to provide the over-smooth deformation fields
and results in much slower convergence speed. We also noticed that,
in the very early stage of optimization, the regularity of deformation
field from NIR optimized with the downsize sampler is well-preserved
and at the same time, registration accuracy is quite decent. But as
optimization time grows, the fraction of positions with a negative
Jacobian determinant increases a lot. To further validate our analysis
and design decisions, we present a quantitative comparison. Table 4
shows the diffeomorphic registration performance differences resulting
from the choice of coordinate samplers. The table reveals a discernible
pattern where the registration accuracy of both NIR-D-Diff and NIR-
P-Diff increases over time, but the registration regularity deteriorates.
Additionally, the results suggest that NIR-D-Diff can achieve higher
registration accuracy more rapidly than NIR-P-Diff, but NIR-P-Diff is
capable of sustaining a very low J , during the entire optimization
process, while NIR-D-Diff is not.

NIR-H-Diff exhibits superior registration regularity compared to
NIR-D-Diff and NIR-P-Diff, while maintaining comparable registration
accuracy to NIR-D-Diff, without requiring significantly more memory
for optimization. It should be noted that the iteration number for NIR-
H-Diff in Table 4 refers to the second phase of optimization, during
which NIR-H-Diff requires 200 additional iterations compared to the
other two methods. Nonetheless, our design achieves our goal of de-
veloping an efficient method that can quickly converge to high-quality
registration results with good topology preservation.
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(a) Experiment (1)

DSC, = 0.8434 DSC, =0.8305 DSC, =0.7965 DSC, = 0.8430 DSC, = 0.8462 DSC, = 0.8561
J<o = 1.07e-02 J<o = 6.97¢-05 J<o =2.26e-03 o0 J<o = 1.14e-04 J<o=0

b) Experiment (2
Fig. 7. Qualitative Registration Performance Comparison of Different Meth(ogls T‘})le models( ir)l qualitative comparison are TransMorph, SyM_Net, NiftyReg, NIR-H and NIR-H-
Diff. In the above plots, we present two volume pairs from experiment (1) and experiment (2) in two views. The warped volumes generated by different methods are overlapped
with the warped structures which are indicated by colors. The key differences in registration quality of different methods are highlighted by the white dotted boxes. The deformation
fields are illustrated by the downsized deformed grid in blue and the regions with negative jacobian determinant are colored in red. The last row in Fig. (a) and (b) are the
quantitative performance of different registration methods on that image pair. If the J  is less than le — 06, we take it as ~ 0.
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Table 4
Registration performance differences resulting from coordinate samplers.
Metrics psc'™ ) Jo b GPU Memory
method/iteration 100 300 600 900 100 300 600 900 (MB)
NIR-D-Diff 0.7750 0.7906 0.7917 0.7929 1.75e-06 5.75e—05 1.41e-04 2.04e—04 3177
(0.022) 0.021) (0.021) (0.021) (1.48e—-06) (6.36e—06) (2.96e—-05) (7.59e-05)
0.6875 0.7396 0.7669 0.7792 0 4.69e—08 1.13e-06 3.14e-06
NIR-P-Diff 1
R-P-Di (0.025) (0.022) (0.019) (0.019) 0) 1.64e—08) (7.03e—07) (1.19e—-06) 3149
NIR-H-Diff 0.7865 0.7893 0.7897 0.7908 2.26e-06 8.59e-07 9.07e-07 1.12e-06 3177
0.022) (0.021) 0.020) 0.020) (1.42e—06) (4.21e-07) 5.07e-07 7.34e-05)

The table below shows the comparisons of diffeomorphic NIR frameworks optimized via the downsize sampler (NIR-D-Diff), mini-patch sampler (NIR-P-Diff), and hybrid diffeomorphic
NIR (NIR-H-Diff). NIR-D-Diff and NIR-P-Diff solely employ NF1 while NIR-H-Diff uses both NF1 and NF2. The comparisons are based on the registration accuracy (DSCS"""‘)),
registration regularity (J ) and converge speed (Iteration). The iteration number of NIR-H-Diff is that of the second phase of optimization. This table supports the qualitative

comparisons of different coordinate samplers as shown in Fig. 4(d).
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Fig. 8. Comparison of different coordinate samplers (a), (b) and (c) are reg-
istration results of NIR optimized with the downsize sampler, mini-patch sampler
and hybrid NIR. The above image pair are 'OASIS_OAS1_0001_ MR1’ (7) and ’OA-
SIS_OAS1_ 0002 MR1’ (M) from the OASIS dataset and we present the registration
results over the optimization iterations, generated by the differomorphic NIR. DSC and
J , are the evaluation metrics for registration accuracy and regularity separately.

4.9. Optimization duration v.s. Registration performance

Fig. 9 presents the relationship between registration performance
and optimization duration of six optimization-based registration meth-
ods in experiment (2), four of which are our proposed methods and
the other two are SyN and NiftyReg. It is worth noting that NIR-Diff,
NIR-H-Diff and SyN generate diffeomorphic registration fields, while
NIR-D, NIR-H and NiftyReg provide deformable registration fields.

As for our proposed methods, we evaluate their registration per-
formance at {100, 300, 600, 900} optimization iterations. To finish
100-iteration optimization, the displacement-based NIR methods take
about 9s and the diffeomorphic NIR methods take about 64 s. It needs
to be clarified that the optimization iteration of NIR-H and NIR-H-Diff
counts from the start of the second-phase optimization.

For SyN, we assessed the registration performance by setting the
maximum optimization iteration to {8, 4, 2}, {20, 10, 5}, {60, 30, 15},
and {100, 50, 25} at each level. The average optimization time for each
corresponding iteration is approximately 117 s, 261 s, 829 s, and 1273s.
Regarding NiftyReg, we evaluated its registration performance with the
maximum optimization iteration set to {120, 60, 30}, {400, 200, 100},
{800, 400, 200}, and {1200, 600, 300} at each level. The average
optimization time for each corresponding iteration is approximately
309 s, 901 s, 1638s, and 2521s.

Among all methods in comparison, NIR-D has the fastest converge
speed and the highest D.SC, (0.8435). However, it also has the highest
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J ¢ (1.08e-03), indicating that it may struggle with preserving topol-
ogy during the registration process. NIR-H trades off some registration
accuracy for improved registration regularity compared to NIR-D. How-
ever, as shown in Fig. 9, extending the optimization duration for NIR-H
has the potential to improve both DSC, and J .

NiftyReg exhibits relatively poor performance in terms of converge
speed, registration accuracy, and registration regularity. This is because
the official implementation of NiftyReg has disabled GPU acceleration,
making the optimization process using LNCC similarity very time-
consuming. As a result, NiftyReg is even slower than methods that
support diffeomorphic transformations.

NIR-D-Diff can achieve a decent registration accuracy (DSC, >
0.83) within a short time period of approximately 200 s. However,
the registration regularity deteriorates as the number of optimization
iterations increases. NIR-H-Diff, on the other hand, aims to strike a
better balance between registration accuracy and regularity. It achieves
similar DSC, compared to NIR-D-Diff but with significantly greater
regularity of deformation fields. Specifically, J , remains below 5e-06
during optimization. In experiments (2), SyN demonstrates very strong
performance, especially in terms of registration regularity. However, as
shown in Fig. 9, our approaches have two main advantages over SyN.
Firstly, NIR-D-Diff and NIR-H-Diff can achieve higher D.SC, scores than
SyN when optimized for a similar duration. Secondly, as optimization
iterations increase in the finer scale, SyN exhibits significantly worse
registration regularity and ends with a higher J , compared to our
NIR-H-Diff.

5. Limitations and future directions

One major limitation of NIR is its running time. Although signif-
icantly faster than traditional optimization-based methods, it is still
slower than learning-based methods. There are a few potential ap-
proaches to address this limitation. Firstly, an adaptive coordinate
sampler can be designed that samples coordinates sparsely in regions
with easy alignment and densely in regions with large alignment er-
rors. Secondly, NIR can be used in combination with a learning-based
method in a two-step approach, where the learning-based method
generates an initial registration, followed by fine-tuning through NIR.
Third, neural fields can also be integrated into a learning-based frame-
work (Sun et al., 2022; Park et al., 2019; Zheng et al., 2021), where
the coordinate-based MLPs and an embedding layer are learned from
the training data. During inference, the parameters of coordinate-based
MLPs are fixed and merely a latent code associated with the test data
is optimized.

In addition, how to introduce surface registration into our image
registration framework is a topic worth exploring. NIR establishes
correspondence between image pairs to match voxel intensities. It is
agnostic to anatomic structures within the images and thus does not
always lead to semantically meaningful registrations. One future direc-
tion in this regard is to optimize both intensity and shape similarities
between the two images. Since shape registration can also be realized
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Fig. 9. Optimization Duration v.s. Registration Performance in Experiment 2). The solid and dotted curves respectively illustrate the change of registration accuracy and
regularity over optimization duration. In the bottom half of this plot, the higher a solid curve goes, the better registration accuracy it indicates. While in the top half this plot,
the lower a dotted curve goes, the better registration regularity it reflects. Thus, visually speaking, a method is preferred if its solid and dotted curves get close over time.

via neural fields as we showed previously (Sun et al., 2022), neural
fields provide a promising approach to unify both intensity-based and
shape-based registrations within the same framework.

6. Conclusions

We introduce a new optimization-based framework, named NIR,
for deformable image registration. NIR employs coordinate-based MLPs
with Fourier position encoding and sinusoidal activation functions to
model deformation vector fields. The method utilizes the full power
of existing deep learning toolboxes to solve the optimization effi-
ciently and demonstrates higher generalizability compared to previous
learning-based methods.

We present several options for running NIR, depending on the
type of registration (displacement-based or diffeomorphic) and speed
requirements. (a) NIR-D: the fastest displacement-based deformable
registration method with good registration accuracy; (b) NIR-H: a rapid
displacement-based deformable registration method with a better regis-
tration regularity compared to NIR-D; (c) NIR-D-Diff: a diffeomorphic
registration method with a good registration accuracy and regularity;
and (d) NIR-H-Diff: a slightly slower diffeomorphic registration method
with the best overall performance.

We assess the performance of our methods on two brain MRI
datasets against multiple benchmarks and show that they achieve
highly competitive results in terms of registration accuracy and regular-
ity. Our approaches outperform traditional optimization-based methods
within shorter computation times. Furthermore, our methods do not
require significant GPU resources for training and exhibit superior
performance on the cross-dataset registration task.
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Appendix. Experiments

A.1. Pre-training setup

Some learning-based registration models were pre-trained on T1-
weighted brain MRI scans from the IXI dataset for atlas-to-patient
registration. Similar to the preprocessing steps used for the OASIS and
Mindboggle datasets, these images were processed using FreeSurfer for
skull stripping and affine alignment to MNI305 atlas. The processed
images have dimensions of 160 x 192 x 144 and their intensity values
are normalized between 0 and 1. The dataset includes a total of 576
MRI volumes, with 403 used for training, 58 for validation, and 115 for
testing. The atlas MRI volume is obtained from CycleMorph (Kim et al.,
2021). This preprocessed dataset can be downloaded from the Trans-
Morph open-source repository, where the pre-trained model weights
of VoxelMorph, VoxelMorph-Diff, TransMorph, and TransMorph-Diff
models are also available. Additionally, we pre-trained another baseline
model, SYM_Net, on the IXI dataset, following the same data split as the
other models.

A.2. Methods in comparisons

VoxelMorph. is a widely recognized learning-based technique that al-
lows for deformable 3D medical image registration between pairs of
images. This method employs a large training dataset to learn the
desired deformation, rather than optimizing the objective function for
each image pair, which can be time-consuming. In our experiments,
we adopted the original setup and trained VoxelMorph using LNCC
as the similarity metric. We utilized the larger variant with one extra
convolutional layer at the output resolution and more channels for
later layers, which showed better performance. We also applied a
regularization term with a weight of 1 to ensure the smoothness of the
predicted displacement field.

VoxelMorph-diff. introduces diffeomorphic registration, which ensures
that the transformation between images or surfaces is smooth and in-
vertible. The authors propose a probabilistic framework for diffeomor-
phic registration, which treats registration as a probabilistic inference
problem. In our experiments, we used the optimal settings, with a value
of 0.01 for ¢ and a value of 10 for A.

SYM Net. is a learning-based technique that offers diffeomorphic de-
formable image registration. SYM Net is a symmetric method that
maximizes image similarity within the space of diffeomorphic defor-
mation and estimates the forward and backward transformation simul-
taneously. In our experiments, we trained SYM_Net using LNCC and
the parameter values recommended in the original paper. Specifically,
we set the weights for penalizing the negative jacobian determinant,
enforcing the smoothness of the velocity field, and constraining the bias
for the bidirectional velocity field to 1000, 3, and 0.1, respectively.

Transmorph. presents a novel image registration approach by introduc-
ing a transformer structure, which enables more precise identification
of the spatial correspondence between fixed and moving images. The
authors offer both a deformable registration model (Transmorph) and
a diffeomorphic registration model (Transmorph-diff). In our experi-
ments, we trained both models with a hyperparameter value of 1 for the
smoothness of the deformation field, as recommended by the authors.

XMorpher. leverages multi-level semantic correspondence to extract
features gradually, enabling effective registration. The method also
enhances the Cross Attention Transformer (CAT) blocks by establishing
an attention mechanism between images to facilitate automatic corre-
spondence detection and efficient feature fusion. In our experiments,
we trained XMorpher using the same weights for the image similarity
and regularization term as recommended in the original paper.
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SynthMorph. introduces a strategy for learning image registration with-
out acquired imaging data, producing powerful networks agnostic to
contrast introduced by MRI. We include this methods into experiment
(3) and directly used their pre-trained “brains” variant,® which is
trained using images synthesized from brain label maps, including
26 the largest brain labels of 40 distinct-subject segmentations with
brain and non-brain labels from Tlw MPRAGE scans of the Buckner40
dataset and a subset of the fMRIDC structural data (Fischl et al.,
2002; Van Horn et al., 2001). The “brain” variant of SynthMorph is
typically better than the “shape” variant, which is trained using images
synthesized from random shapes only.

SyN. is a popular diffeomorphic registration method and we applied
the implementation by DIPY (Garyfallidis et al., 2014) with careful
parameter tuning on the validation set. Because our test image paris
in SyN are in the same modality (T1-weighted), we used NCC as
the metric, where sampling radius and the standard deviation of the
Gaussian smoothing kernel to be 4 and 2. Since SyN is a iterative-based
approach, we set the maximum iteration to {100, 50, 25} for each
level to balance the tradeoff between registration accuracy and running
time. We did not used their official implementation in the Advanced
Normalization Tools (ANTs) (Avants et al., 2009) because it will take
over one hour to register one pair of images with CC as the metric with
only {40, 20} optimization iterations at two scales, which is inhibitive
to practical application.

NiftyReg. is the fast free-form deformation algorithm for non-rigid
registration. In our experiments, cubic B-spline interpolation is used
to deform moving volumes to optimize LNCC image similarity with
the squared Jacobian determinant log as a penalty term. The standard
deviation of the Gaussian kernel and the weight of the penalty term are
set to be 40 and 0.01 separately, as suggested by Shen et al. (2019).
In addition, three scales are used in optimization with the maximum
optimization iterations as {1200, 600, 300} for each scale.

IDIR. is also a neural field based optimization method, which ran-
domly samples the same number of coordinates in one iteration. We
adjusted the regularization strength of IDIR from its default value 10
to 0.01 for higher registration accuracy.

NODEQ. is another neural field based optimization method, which rep-
resents the dynamic functions of NODE with 3D Unet. Since they have
not released their official implementation, We attempted to replicate
their results multiple times, but the optimization loss never converged.
Our methods utilized the identical data partitioning scheme as reported
in their study for the OASIS dataset. While NODEO reported dice scores
across 28 structures, we computed them across 27 structures since they
additionally annotated CSF for the OASIS dataset. NODEO reported a
mean dice score of 0.779 on the OASIS dataset, and from Fig. 7 of
their paper, we can infer that the dice score for CSF was greater than
0.65. Thus, the maximum value of mean dice score across 27 structures
for NODEO shall be less than (0.779 * 28 - 0.65) / 27 = 0.783. Also,
Negative Jacobian ratio, GPU memory and time consumption can also
be found in their paper.

Grid. method treated the displacement vectors of all grid coordinates
as independent variables, which are optimized by the same similarity
measurement (LN CC), regularization term (LOCC), and gradient de-
scent optimizer (Adam) as NIR-H uses. ‘Grid’ applies the multi-scale
optimization strategy. At coarser scales, we downsized the original
moving and target images and optimized a low-resolution deformation
field. At finer scales, we upsampled the moving and target images
and initialized the higher-resolution deformation field with the results
from the lower-resolution optimization. In practice, we optimized the
displacement field at three scales, ranging from a lowest resolution
of 40 x 48 x 52 to a highest resolution of 160 x 192 x 144. The
regularization weights and iteration numbers were {100, 1000, 2000}
and {100, 400, 600}, respectively.

3 https://github.com/voxelmorph/voxelmorph/tree/dev/data



S. Sun et al.

wy,=10,6 =3

=30, =3

wy=30,0 =1 ®y=30,0=3

Medical Image Analysis 97 (2024) 103249

we=50,0=3 wy=100,0=3
10k
®w=30,06=5 wy=30, 0 =10

‘. ‘.li

Fig. A.10. Shifted fourier transform of registration fields with different frequency priors w, and ¢. The above visualization provides evidence that w, and ¢ can modulate
the frequency of neural deformation fields. In all our experiments, we applied w, = 30 and ¢ = 3.

Table A.5

Influence of frequency priors w, and o.
o o DSCA_]'”"‘) ) Jo b
30 1 0.8024 (0.080) 6.64e—05 (1.16e-05)
30 5 0.7824 (0.087) 2.63e—04 (3.60e—-05)
30 10 0.7526 (0.089) 1.48e—03 (3.08e—04)
10 3 0.7897 (0.082) 3.01e-05 8.96e—06)
50 3 0.7941 (0.082) 1.80e—04 (2.14e—05)
100 3 0.7789 (0.087) 2.96e—-04 (4.59e—05)
30 3 0.8033 0.081) 1.27e—-04 (1.45e-05)

Increasing values of w, and o result in more folding in the warping map. However,
when o, and ¢ are either too large or too small, the registration accuracy (as measured
by DSC,'™™) drops.

A.3. Influence of frequency priors w, and o

In our proposed methods, the inclusion of frequency information
is crucial to effectively represent complex deformation with a high
level of flexibility. We present two approaches for manipulating the
frequency of the registration fields in our proposed methods. The first
method involves using sine activation functions with a scale factor w, as
described in Section 3.3.2. The second method involves using positional
embedding through Fourier feature mapping with a factor ¢ as de-
scribed in Section 3.3.1. The choice of w, and o is determined through
a hyperparameter sweep on the validation set, and the results of NIR-
D-Diff using different frequency priors are presented in Table A.5. To
ensure label-agnostic hyperparameter selection, we chose not to apply
label-based registration accuracy metrics such as volumetric dice score
and surface dice score in our experiments. As indicated in Table A.5,
increasing ®, and o leads to more folding in the registration fields.
However, excessively large or small w, and ¢ values result in decreased
registration accuracy.

Fig. A.10 illustrates the shifted Fourier Transform of registration
fields with different parameters, providing evidence that w, and o
can modulate the frequency of neural representation. The first row of
Fig. A.10 shows that registration fields generated by neural fields with
smaller w, have more low-frequency components, represented by the
central region in the Fourier domain. Similarly, in the second row of

Table A.6
Influence of regularity weight 4;,,,.
Method Kaer psclmm ) Jo b
100 0.7929 2.04e—04
0.021) (7.59e-05)
NIR-D-Diff 1000 0.7902 3.96e—05
(0.021) (8.43e-06)
0.7856 8.05e—06
1
0000 (0.022) (3.26e—06)
10 0.7823 2.63e-05
NIR-P-Diff (0.020) (2.44e-05)
100 0.7792 3.14e-06
(0.021) (2.03e-05)
. 0.7908 1.12e-06
NIR-H-Diff 100 (0.020) 7.34e-07)

The effect of 4,,,, in the balance of DSC,'"™ and J , can be observed
on NIR-D-Diff and NIR-P-Diff. However, by merely adjusting the scale
of 2;4e, both methods cannot outperform NIR-H-Diff in terms of
registration accuracy and regularity.

Fig. A.10, the registration fields generated by neural fields with smaller
o contain more low-frequency components. Thus, we can expect that a
neural field will generate smoother deformations when it has smaller
o and o. In our experiments, we chose w, = 30 and ¢ = 3 as they
provide good registration accuracy with only modest irregularity of
deformations.

A.4. Influence of regularization weight 4,,,

We perform an investigation on the impact of adjusting the regu-
larization weight on the performance of NIR with a hybrid coordinate
sampler. The comparison is conducted among the three diffeomorphic
variants of NIR, namely NIR-D-Diff, NIR-P-Diff, and NIR-H-Diff, on
the validation set from the Mindboggle101 dataset. The results of this
investigation are presented in Table A.6. Our experiments aimed to im-
prove the registration regularity of NIR-D-Diff and registration accuracy
of NIR-P-Diff by adjusting the weight of the regularization term 4,,, in
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Fig. A.11. Visual Comparison for Experiment 3). The target image comes from a patient with moderate Alzheimer’s disease from OASIS dataset and the moving image comes
from a healthy person. The colormap of different images covers the complete value range of the given data. In this case, high-intensity artery structures result in overall dark

image brightness.

Table A.7
Influence of MRI contrast shift.
M-M M-O"

VoxelMorph 0.8260 (0.0065) 0.8217 (0.0073)
SYM Net 0.8451 (0.0058) 0.8392 (0.0055)
TransMorph 0.8587 (0.0061) 0.8474 (0.0065)
NIR-H 0.8475 (0.0054) 0.8432 (0.0054)
NIR-H-Diff 0.8613 0.0049)* 0.8546 0.0048)*

Here are the SSIM scores of registration results on two folds of testing
image pairs. M-M represents testing image pairs where moving and
target images both come from Mindboggle dataset. M-O" represents
testing image pairs where moving and target images are sourced from
Mindboggle and healthy OASIS images, separately.

optimization. Our results, presented in Table A.6, show that increasing
the scale of 4,,, by 100 times for NIR-D-Diff leads to a significant
decrease in DSC when comparable registration regularity to NIR-H-Diff
is achieved. Decreasing 4,,, for NIR-P-Diff does not improve registra-
tion accuracy, but rather harms registration regularity. Therefore, we
conclude that using a hybrid coordinate sampler, as in NIR-H-Diff, is a
more effective approach for achieving a balance between registration
accuracy and regularity, compared to simply adjusting the weight of

the regularization term.
A.5. Visual comparison for experiment 3)

Fig. A.11 displays qualitative comparisons between our innovative
models and two established learning-based methods, SYM_Net and
TransMorph. Compared to the registration results from experiment (1),
featured in Fig. 7, all methods exhibit a decline in performance in
experiment (3), with SYM_Net and TransMorph being particularly af-
fected. A pronounced misalignment of high-intensity arterial structures
is noticeable between the target slice and the registration outputs of
SYM_Net and TransMorph. This misalignment may be attributed to the
hippocampal atrophy observed in the OASIS dataset, an early hallmark
of Alzheimer’s disease.

A.6. Domain shift analysis

In experiment (3), we investigate the performance gap between
the baseline learning-based methods and our proposed methods on
cross-dataset registration task. This section presents a comprehensive
assessment, focusing on contrast shift, population shift, and task shift
analyses.

Contrast shift analysis. To discern the impact of contrast shifts in iso-
lation from population differences, we train learning-based models on
the MindBoggle image pairs, same as experiment (1), and evaluate
them on two folds of 100 healthy MRI scan pairs from the OASIS and
MindBoggle datasets. The results, presented in Table A.7, indicate min-
imal performance degradation in SSIM scores when aligning healthy
MRI scan pairs across different datasets. This suggests that the baseline
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Table A.8
Influence of population shift.
oh-.on ohoh

VoxelMorph 0.8325 (0.022) 0.8274 (0.024)
SYM_Net 0.8453 (0.020) 0.8372 (0.022)
TransMorph 0.8521 0.020) 0.8463 (0.021)
NIR-H 0.8392 (0.021) 0.8392 (0.021)
NIR-H-Diff 0.8496 (0.020) 0.8496 0.020)*

Here are the volumetric dice scores of registration results of models
trained with two folds of image pairs. O"-0% represents training
image pairs where moving and target images both come from healthy
OASIS data. O"-O" represents training image pairs where moving and
target images are sourced from healthy and Alzheimer’s disease OASIS
images, separately.

learning-based methods demonstrate robust generalization capabilities
in the presence of contrast shifts alone, likely benefiting from intensity
augmentation during training.

Population shift analysis. We separately trained models on 9000 healthy
image pairs and 9000 healthy-to-AD image pairs from the OASIS
dataset and evaluated them on 100 healthy-to-AD OASIS image pairs.
The training data are augmented with random elastic transformation.
The findings, detailed in Table A.8, reveal significant performance
drops in volumetric Dice scores, highlighting the profound impact of
population shifts on registration performance. The limited effectiveness
of elastic transformation augmentations in this context suggests the
inherent challenge in replicating realistic AD-related morphological
changes, such as hippocampal atrophy or ventricular enlargement,
through random deformations. Our proposed methods demonstrate
significantly better registration accuracy on the testing healthy-to-AD
OASIS image pairs.

Task shift analysis. As previously discussed in Table 2, we observed that
models pre-trained on IXI image pairs exhibit limited generalizability to
the Mindboggle dataset, despite both involving healthy MRI scans. This
underscores the influence of task-specific domain shifts, with the initial
pre-training focused on atlas-to-patient registration and subsequent
fine-tuning on patient-to-patient registration.
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