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ABSTRACT
Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks.
Despite their success, however, existingGNNs suffer from two significant limitations: a lack of interpretability
in their results due to their black-box nature, and an inability to learn representations of varying orders. To
tackle these issues, we propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which
is able to effectively integrate information of various orders, extract knowledge from high-order neighbors,
andprovidemeaningful and interpretable results by identifying influential compact graph structures. In par-
ticular, MaGNet consists of two components: an estimation model for the latent representation of complex
relationships under graph topology, and an interpretation model that identifies influential nodes, edges,
and node features. Theoretically, we establish the generalization error bound for MaGNet via empirical
Rademacher complexity, and demonstrate its power to represent layer-wise neighborhood mixing. We
conduct comprehensive numerical studies using simulated data to demonstrate the superior performance
of MaGNet in comparison to several state-of-the-art alternatives. Furthermore, we apply MaGNet to a real-
world case study aimed at extracting task-critical information from brain activity data, thereby highlighting
its effectiveness in advancing scientific research. Supplementarymaterials for this article are available online,
including a standardized description of the materials available for reproducing the work.
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1. Introduction

Graph-structured data is ubiquitous throughout the natural and
social sciences, from brain networks to social relationships. A
graph is simply a collection of nodes representing entities such
as people, genes, and brain regions, along with a set of edges rep-
resenting interactions between pairs of nodes. By representing
such interconnected entities as graphs, it is feasible to leverage
their geometric topology to study statistical relationships among
nodes using network-based frameworks. Among graph repre-
sentationmethods, the family of graph neural networks (GNNs)
has achieved remarkable success in real-world graph-based tasks
(Veličković 2023). In general, GNNs iteratively aggregate and
combine node representations within a graph, through a process
called message passing, to generate a set of learned hidden
representation features. The main neural architectures of GNNs
include graph convolutional networks (GCNs; Kipf andWelling
2016), graph attention networks (GATs; Veličković et al. 2017),
graph transformer networks (GTNs; Yun et al. 2019), among
many other variants.

While GNNs are capable of capturing subgraph information
through message passing, they can be prone to over-smoothing
the learned representations when applying multiple rounds of
message passing operations. This can cause models to treat all
nodes uniformly, leading to node representations that converge
into indistinguishable entities (Li,Han, andWu2018).Addition-
ally, over-smoothing could limit the ability to capture high-order
information, which can be only aggregated through a sufficient
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number ofmessage passing operations (Hamilton 2020). Several
studies suggest that over-smoothing significantly contributes
to deep GNN performance degradation (Bodnar et al. 2022).
To address this issue, (Zhang et al. 2022) advocated for using
shallow GNNs (e.g., up to three layers). However, this approach
fails to capture high-order information due to insufficient mes-
sage passing. Additionally, Zhao and Akoglu (2019) and Yang
et al. (2020) developed normalization layers to prevent node
embeddings frombecoming indistinguishable, but this increases
training difficulty and limits the expressive power of GNNs.

A main premise of this article is that to enhance the overall
representation power of GNNs with statistical guarantees, we
need to develop new learning mechanisms that directly incor-
porate and effectively combine information from neighbors at
different orders. Statistically, by integrating both low-order (i.e.,
immediate neighbors) and high-order (i.e., neighbors beyond
the immediate vicinity) information, GNNs can learn a richer
and more complete representation under the graph topology.
Models that follow the principle of effectively combining infor-
mation from different orders are known as multi-scale GNNs,
as they enable the exploration and integration of information
at different levels of granularity within a graph (Xu et al. 2018;
Sun, Zhu, and Lin 2019; Oono and Suzuki 2020; Liu et al.
2022). The main idea is to direct the outputs of intermediate
layers to contribute to the final representation. Existing meth-
ods however struggle to effectively integrate representations of
different orders in a sequential manner due to their memo-
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ryless property: at each GNN layer, node representations are
updated entirely based on the current input from their imme-
diate neighbors, without directly retaining information from
previous layers. Furthermore,Multi-scale GNNs still suffer from
over-smoothing issues and generally fail to capture high-order
latent representations.

To address the aforementioned issues, we develop a novel
Model-agnostic Graph neural Network (MaGNet) framework
consisting of two components: the estimation model and the
interpretation model. The estimation model captures the com-
plex relationship between the feature information and a target
outcome under graph topology, allowing for powerful latent
representation corresponding to unique-order graph informa-
tion. The interpretation model, on the other hand, identifies a
compact subgraph structure—specifically, influential nodes and
edges—along with a small subset of node features that play a
crucial role in the learned estimation model. The main advan-
tages of the proposed framework, along with our contributions,
are outlined below. First, the proposed neural architecture of
the model alleviates the over-smoothing issue and thus can
effectively extract knowledge from high-order neighbors. The
proposed actor-critic neural architecture effectively integrates
multi-order information by resolving the memoryless issue. It
adaptively combines representations from actor graph neural
networks, each focused on a specific order, while a critic network
evaluates the quality of the learned representations. Second, we
develop an interpretation framework, formulated as an opti-
mization task that maximizes information gain over the distri-
bution of possible subgraph structures. This approach is model-
agnostic as there is no assumption on the true statistical models
or data-generating mechanisms. Third, we study the ability to
integrate various-order information as well as the statistical
complexity of the proposedmodel via an empirical Rademacher
complexity. Unlike existing analyses limited to standardmessage
passing neural networks, our results are applicable to a mix of
message passing and feedforwardneural networks, withmessage
passing networks being a special case in our framework. Fur-
thermore, we provide a statistical generalization error bound for
the MaGNet estimation model that consists of sequential deep-
learning component models.

2. Preliminaries

2.1. Graph Structure

In this section, we present some preliminaries and notations
used throughout the article. Let G = (V ,E) represent the
graph, where V represents the vertex set consisting of nodes
{v1, v2, . . ., vN}, and E ∈ V × V denotes the edge set with
(i, j)th element eij. The number of total nodes in the graph
is denoted by N. A graph can be described by a symmetric
(typically sparse) adjacency matrix A ∈ {0, 1}N×N derived from
V and E. In this setting, aij = 0 indicates that the edge eij is
missing, whereas aij = 1 indicates that the corresponding edge
exists. There is a T-dimensional set of features, Xi, associated
with each node, vi so that the entire feature set is denoted as
X ∈ R

N×T . Suppose we have observed n graph instances, each
consisting of a fixed graph structure but with different node
features. Let Gi denote the ith instance of a graph, where i ∈

1, 2, . . . , n. While our approach can be used for predictive mod-
els in general, here we focus on classification problems, where
the objective is to assign a binary label s ∈ {−1, 1} to each graph
instance.

2.2. Neural Message Passing

The basic graph neural network (GNN) model can be moti-
vated in a variety of ways. The same fundamental GNN model
has been derived as a generalization of convolutions to non-
Euclidean data (Bodnar et al. 2022), and as a differentiable
variant of belief propagation (Dabkowski and Gal 2017), as
well as by analogy to classic graph isomorphism tests (Graham,
Wang, and Ravanbakhsh 2019). Regardless of the motivation,
the defining feature of a GNN is that it uses a form of neu-
ral message passing in which vector messages are exchanged
between nodes and updated using neural networks (Abu-El-
Haija et al. 2019). During each round of message passing in a
GNN, a hidden embedding corresponding to each node v ∈ V ,
denoted as H(k)

v for the kth layer where k = 1, . . .,K, is updated
according to information aggregated from v’s graph neighbor-
hood N (v). This message passing update can be expressed as
follows:

H(k+1)
v = fupdate(k)

(
H(k)
v , fagg(k)

({
H(k)
u ,∀u ∈ N (v)

}))
= fupdate(k)

(
H(k)
v ,M(k)

N (v)

)
,

where fupdate and fagg are the update and aggregate functions,
which are arbitrary differentiable functions (here, neural net-
works). The term MN (v) is the “message” that is aggregated
from v’s graph neighborhood N (v). We use superscripts to
distinguish the embeddings and functions at different rounds
of message passing. At each round of message passing, the
aggregate function takes as input the set of embeddings of the
nodes in v’s graph neighborhoodN (v) and generates a message
M(k)

N (v) based on this aggregated neighborhood information. The
update function then combines the message M(k)

N (v) with the
previous embedding H(k−1)

v of node v to generate the updated
embedding H(k)

v .

2.3. Graph Convolutional Network (GCN)

Let D̃ be the degree matrix corresponding to the augmented
adjacency matrix Ã = A + I with D̃ii = ∑N

j=1 Ãij. The hidden
graph representation of nodes with two graph convolutional
layers (Kipf and Welling 2016) can be formulated in a matrix
form:

H = L̃ ReLU(L̃XW(0))W(1), (1)

where H ∈ R
N×T(1) is the final embedding matrix of nodes and

T(1) is the dimension of the node hidden representation (embed-
ding). The graph Laplacian is defined as L̃ = D− 1

2 ÃD− 1
2 . In

addition, the weight matrix W(0) ∈ R
T×T(0) is the input-to-

hidden weight matrix for a hidden layer with T(0) feature maps,
and W(1) ∈ R

T(0)×T(1) is the hidden-to-output weight matrix.
Here we consider the two-layer case that aims to simplify the
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Figure 1. An illustrative example of three-layers neural architecture of the actor-critic graph neural network.

notation; the above definition can be easily extended to k graph
convolutional layers with k > 2.

3. EstimationModel

In this section, we introduce a novel graph neural network,
which aims to represent feature information and capture it rela-
tionship to an outcome of interest. To achieve this goal, it effec-
tively integrates both low-order and high-order neighbor node
information to form a powerful latent representation. Here, the
low-order information refers to information aggregated from
the local neighbors of a node, while the high-order information
means themessages aggregated beyond just the immediate/close
neighbors, capturing the global graph information.

To characterize the feasibility and effectiveness of capturing
various-order information rigorously, we first introduce a gener-
alized 2-order �-representer, which is defined by Abu-El-Haija
et al. (2019), that is, the corresponding K-order counterpart for
K ≥ 3 as follows.

Definition 3.1. Given a graph neural network,�(K)-representer
represents K-order node neighbor information for K ∈ N, for
example, there exists a real-valued vector ν = (ν1, ν2, . . ., νK)

and an injective (one-to-one) mapping function g(·), such that
the output embedding of this graph neural network can be
represented as

g

( K∑
k=0

νk · LkX

)
:= �(K),

for any type of graph Laplacian L operation and input node
feature matrix X.

Learning such a representer enables GNNs to capture feature
differences among K-order node neighbor’s information. When
a candidate GNN model learns the �(K)-representer, it effec-
tively captures the K-order neighborhood information in the
hidden representation.

In GCNs, the graph representation is obtained through inter-
actions of neighboring nodes during multiple rounds of learned
message passing. Ideally, one could consider a deep architecture
via stacking K GCN layers in order to learn a �(K)-representer.
However, most of the existing GCN models employ shallow
architectures, typically using only second- or third-order infor-
mation (Zhang, Cui, and Zhu 2020). The reason behind this
limitation is 2-fold. First, when repeatedly applying Laplacian
smoothing, GCNs may mix node features from different clus-
ters, rendering them indistinguishable. This phenomenon is
known as the over-smoothing issue (Li et al. 2021). Second,
most GCNs are built upon a feedforward mechanism and suf-
fer from the memoryless problem. After each layer operation,
the representation learned from the current layer modifies the
representation produced from the previous layers. As a result,
there is no explicit memory mechanism. In other words, the
over-smoothing issue creates difficulties in capturing high-order
information, while thememoryless issue leads to a loss of lower-
order information. Theoretically, under Definition 3.1, the GCN
models with over-smoothing or memoryless issues cannot learn
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the�(K)-representer. Amore detailed discussion is provided in
the Appendix.

3.1. Actor-Critic Graph Neural Network

In this section, we describe our actor-critic graph neural net-
work (Figure 1), which is designed to effectively aggregate dif-
ferent levels of node-neighbor information to obtain a powerful
graph embedding. In this dual neural network structure, the
actor graph neural network aims to capture the hidden represen-
tation for each order of node-neighbor information, while the
critic neural network plays the role of evaluating the quality of
the hidden representation learned by the actor network. To this
end, we perform a fusion operation to integrate the representa-
tions from individual actor networks using the corresponding
quality scores as weights. This framework resolves the over-
smoothing and memoryless issues, ensuring a properly learned
�(K)-representer.

In contrast to GCNs, we adopt the simple weighted sum
aggregator and abandon the nonlinear transformation. As a
result, the graph convolution operation in our actor graph neural
network is defined as

H(k) = (L)kXW, (2)

where the graph LaplacianL = D− 1
2AD− 1

2 , andW is the weight
matrix, which can be fixed as identity matrix in every message
passing round. We argue that the majority of the benefit arises
from the local averaging of neighboring features. This is because
unlike multi-dimensional image data, the vectorized temporal
signal does not require many nonlinear layers to capture the
information. Furthermore, the nonlinear feature transformation
in GNNs is useful but not critical (Wu et al. 2019). By removing
the nonlinear activation, our graph convolution layer achieves
slower convergence in certain values for embedding vectors,
thus, alleviating the over-smoothing issue. Additionally, aban-
doning the nonlinear feature transformation operation greatly
improves computation.

It is also worth noting that in (2), we aggregate only the
connected neighbors without integrating the target node itself.
That is, the graph Laplacian is based on the adjacency matrix
A instead of its augmented counterpart Ã. The fusion operation
in our model, to be discussed later, essentially captures a sim-
ilar effect as “self-connection” with adaptivity. This partial self-
connectionmitigates over-smoothing issues. In theAppendix,we
provide a discussion on this theoretical investigation of the par-
tial self-connection in Theorem S.1. Notably, this distinguishes
our model from the closely related GNN works, for example,
(Kipf andWelling 2016; Sun, Zhu, and Lin 2019;Wu et al. 2021),
that aggregate extended neighbors and need to handle the self-
connection explicitly without flexibility.

Further, in contrast to node classification, our interest lies in
graph classification tasks. Therefore, based on the learned node
representation H(k), we can apply a graph pooling operation
to summarize the graph embedding from H(k). The goal of
the graph pooling operation is to aggregate information across
the entire graph to produce a single, fixed-size representation.
Specifically, we could use a simple average graph pooling oper-
ation to obtain graph embeddings with a compact node repre-
sentation: H̄(k) = 1

N 1NH
(k). See the Appendix for other types

of graph pooling operation, and Hamilton (2020) for a more
comprehensive review.

As previously stated, our primary objective is to aggregate
mixed-order information. To this end, we propose a fusion oper-
ation to completely preserve the information fromvarious-order
neighbors. Specifically, we can regard the graph embedding H̄(k)

from kth round of message passing as the output of the lth order
information summarization, denoted as H̄(k). From the perspec-
tive of meta algorithms, the embedding H̄(k) can be regarded as
the graph embedding learned from the kth actor graph neural
network. Then the ultimate graph embedding can be weighted
combined from the various order graph embeddings, that is,

H̃ =
K∑

k=1
α(k)H̄(k), (3)

where α(k) is the fusion weight corresponding to the quality (or
importance) of the kth order knowledge for k = 1, . . .,K. This
fusion operation can be understood as the ensemble of multiple
single actor networks. that is, the actor networks for generating
graph embedding H̄(k). Thus, the fusion operation naturally
combines the unique characteristics of different single learners
with different order information.Moreover, as we discussed pre-
viously, the fusion operation intrinsically captures the so-called
partial self-connection effect and thus relaxes over-smoothing
issues. Theorem S.2 in the Appendix provides another view of
the partial self-connection effect from the perspective of the
graph spectral analysis. It shows that our model is more capable
of mitigating the over-smoothing issue in comparison to GCNs.

To determine the fusion weights α(k), we introduce a critic
network, fcritic : H̄(k) �→ �{−1,1} for a probability simplex
�{−1,1}, which takes the graph embedding vector as input and
output the binary probability logits. Generally, this critic net-
work could be any proper parametric or nonparametric clas-
sification model including softmax (logistic) regression, ran-
dom forest, feedforward neural network (multilayer perception,
MLP), and so on.Without loss of generality, we choose the critic
network as a class of the softmax regression in the following for
illustration purposes.

The critic network plays a role in evaluating the quality of the
graph embedding H̄(k) in a bias induction way. That is

α(k) = 1
2
log

(
1 − ε(k)

ε(k)

)
,

where the function logit(x) = log(x/(1 − x)) and the error rate
ε(k) is defined as

ε(k) =
n∑

i=1
β

(k)
i 1

{
si �= argmax

{s=−1,1}
softmax(H̄(k)

i )

}
/

n∑
i=1

β
(k)
i .

(4)

Here H̄(k)
i denotes the graph embedding for the ith graph sam-

ple, argmax{s=−1,1}(x) is the operator taking the maximum
element in the two-dimensional vector x, and the coefficient
β

(k)
i denotes the weight of the ith graph sample. Intuitively, ε(k)

can be understood as the weighted classification error rate for
the kth critic network, that is softmax(H̄(k)). For i = 1, . . .n,
we adjust the graph sample weights β

(k)
i sequentially from
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the kth to the (k + 1)th step by following the updating rule:
β

(k+1)
i ∝ β

(k)
i e1{si �=argmax{s=−1,1} softmax(H̄(k)

i )}·α(k)
. This update

rule intentionally pays more attention to the misclassified graph
samples with potentially insufficient representation power and
increases their weights when training the next single actor net-
work. Notably, instead of enhancing the nonlinear representa-
tion for embedding vectors, for example, H̄(k)

i during the phase
of the fusion, wemight opt to perform nonlinear transformation
on the graph embedding H̃. This helps to relax the training
difficulties well, in contrast to the existing (Sun, Zhu, and Lin
2019; Ivanov and Prokhorenkova 2021) where the nonlinear
transformation is performed layer-wisely.

The embedding of the ultimate graph H̃ in (3) combines
information adaptively from the 1st to the Kth order node
neighbors, using adaptive weights. Furthermore, the sequential
updates of single actor networks maintain the same learning
pattern as standard GCNs, wherein the message passing for the
(k + 1)th hop directly succeeds the message passing for the
kth hop. In this manner, our actor-critic graph neural network
maintains most of the desirable properties found in standard
GCNs, including invariance to graph isomorphism (Xu et al.
2018a) and effective relational representation (Wu et al. 2020).

Ultimately, we establish the classification model and the rule
for prediction based on the graph embedding H̃i corresponding
to the ith graph sample,

p(·|H̃i) = softmax(g(H̃i)). (5)

where g(·) is an arbitrary function to perform the lin-
ear/nonlinear (or even identity) transformation mapping. The
equation returns the classification logits. To streamline the nota-
tion throughout the article, we use pθ̂ (·) to represent a trained
actor-critic graph neural networkmodel. To have a better under-
standing of the proposed actor-critic neural network.

Finally, we note that training the model in (5) is a well-
studied convex optimization problem. It can be performed using
efficient second-order methods or stochastic gradient descent
(SGD) (Bottou 2010). As long as the graph connectivity pattern
remains sufficiently sparse, SGD can naturally scale to handle
very large graph sizes. Furthermore, we ensure the neural net-
work architecture’s consistency by training the layers sequen-
tially, following the order of node neighbors’ message passing.
This sequential training approach enables us to use the trained
parameters from the previous training to initialize the current
model training, which effectively reduces computational costs.

4. InterpretationModel

Although the estimation model provides strong representation
power to capture the complex relationship between the outcome
of interests and features, understanding the rationale behind its
predictions can be quite challenging. In this section, we present a
practically useful interpretation framework designed to uncover
the reasoning behind the “black-box” estimation model.

To bridge the gap between estimation and interpretation, we
first observe that our estimationmodel extracts feature informa-
tion from various-order node neighbors as well as graph topol-
ogy to output the hidden graph representation for predictions.
This suggests that the prediction made by the estimation model,

that is, ŝ = argmax{s=−1,1} pθ̂ (·) in (5), is determined by the
adjacency matrix A and the node feature information X. For-
mally, to comprehend the model mechanism and provide expla-
nations, the problem is transformed into identifying important
subgraphs, denoted asGsub ⊆ Gwith a corresponding adjacency
matrix Asub, along with a small subset of the node feature Xsub
in full dimension. We first focus on the identification of influ-
ential subgraphs by assuming Xsub has been obtained and then
discuss how to perform node feature selection simultaneously
with subgraph identifications.

We adapt the principle of information gain, which was first
introduced in the context of decision trees (Larose and Larose
2014), into our framework. In particular, we formulate an opti-
mization framework for influential subgraph identification. Our
goal is to maximize the information gain with respect to sub-
graph candidates Gsub:

argmax
Gsub

IG
(
pθ̂ ,Gsub

) = η(pθ̂ ) − η
(
pθ̂ | Gsub,Xsub

)
, (6)

where η(·) and η(·|·) denote the entropy and conditional
entropy, respectively.

Essentially, information gain can quantify the change in pre-
diction probability between the full model pθ̂ (·) and the one
constrained to the subgraph Gsub and the subset node feature
Xsub Ying et al. (2019). For example, if removing edge eij, that is,
the (i, j)th element in the adjacencymatrixA, from the full graph
G significantly decreases the prediction probability, then this
edge is influential and should be included in the subgraph Gsub.
Conversely, if the edge eij is deemed redundant for prediction by
the learned estimation model, it should be excluded.

Examining the right-hand side of (6), we can easily observe
that the entropy term η(pθ̂ ) remains constant since the param-
eters θ̂ are fixed for an estimated model. Consequently, the
objective of minimizing information gain in (6) is equivalent
to maximizing the conditional entropy η

(
pθ̂ | Gsub,Xsub

)
. Nev-

ertheless, directly optimizing the above objective function is
intractable, as there are 2|V| candidates for the subgraph Gsub.
To address this issue, we consider a relaxation by assuming that
the subgraph is a Gilbert random graph (Reitzner, Schulte, and
Thäle 2017). This way, the selection of edges from the original
input graph G are conditionally independent of each other and
follow a probability distribution. In detail, the edge eij is a binary
variable indicating whether the edge is selected, with eij = 1 if
selected and 0 otherwise. Therefore, the graph Gsub is a random
graph with probability P(Gsub) = 	i,j∈NP(eij). A straightfor-
ward instantiation of P(eij) is the Bernoulli distribution eij ∼
Bern(μij), where μij is the first moment. In particular, we can
rewrite the parameterized objective as

Minimize
Gsub

η
(
pθ̂ | Gsub,Xsub

)
= Minimize

Gsub(μ)
EGsub(μ)[η

(
pθ̂ | Gsub,Xsub

)], (7)

whereGsub(μ) is the parametrized random subgraph. Due to the
discrete nature of the subgraphGsub(μ), the objective function is
non-smooth, making optimization challenging and unstable. To
address this issue, we further leverage a continuous approxima-
tion for the binary sampling process (Maddison, Mnih, and Teh
2016; Luo et al. 2020). Let ε be a uniform random variable, that
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is, ε ∼ Unif(0, 1), and the real-valued parameters ψij ∈ � , and
a temperature parameter ω ∈ R

+, then a sample of the binary
edge eij can be approximated by a sigmoid mapping:

ẽij = sigmoid
( log(ε) − log(1 − ε) + ψij

ω

)
.

We denote G̃sub(�) as the continuous relaxation counterpart
of the subgraph, with the (i, j)th element of the adjacency
matrix being ẽij. Interestingly, the temperature parameter ω can
describe the relationship between G̃sub(�) and Gsub(μ). We
observe that as ω → 0, the approximated edge ẽij converges to
the edge eij, with the probability mass function, limω→0 P(̃eij =
1) = exp(ψij)

1+exp(ψij)
. Recall that the edge eij follows a Bernoulli

distribution with mean μij. If we reparameterize ψij such that
ψij = log

(
μij

1−μij

)
, it achieves asymptotical consistency of the

approximated subgraph by following the limiting theory (Paulus
et al. 2020), that is, limω→0 G̃sub(�) = Gsub(μ). This supports
the feasibility of applying continuous relaxation to the binary
distribution.

Unlike the objective function in (7), which is induced by
the discrete original subgraph, the objective function becomes
smooth under the edge continuous approximation and can be
easily optimized using gradient-based methods. In other words,
the gradient of the continuous edge approximation ẽij with
respect to the parameters ψij is computable. More importantly,
the sampling randomness toward the subgraph is absorbed into
a uniform random variable ε peel-off from the parameterized
binary Bernoulli distribution, which greatly relaxes the com-
plexity of the sampling processing.

In this manner, the objective function in (7) can be reformu-
lated as

Minimize
�

Eε∼Unif(0,1)[η
(
pθ̂ | Gsub(�),Xsub

)].
However, solving the conditional entropy is still computationally
expensive. To avoid this issue, we follow Kipf et al. (2018) to
minimize a cross-entropy as the objective function. We should
note that the conditional entropy is upper bounded by cross-
entropy, which validates the possibility to minimize the cross-
entropy objective. In particular, the empirical objective becomes

Minimize
�

1
n

n∑
i=1

∑
s∈{−1,1}

pθ̂ (si = s|Xsub(i)) log pθ̂ (si = s|Gsub(�),Xsub(i)),

where n is the sampling size and pθ̂ (si = s|Gsub(�),Xsub(i))
denotes the classification logits conditional on the subgraph
Gsub(�) and the subset feature Xsub(i) of the ith graph sample.

So far, we have implicitly assumed that the subset feature
Xsub is known. This is not the case in practice. In the context
where the subset feature Xsub is not given, the main challenges
are: (a) identifying the subset is unknown; and (b) the fact that
integrating this feature selection into the developed subgraph
identification optimization framework is not trivial. Motivated
by the great success of self-supervised techniques in large neu-
ral language models (Devlin et al. 2018), we propose to use a
“masking” approach to convert the feature subsetting problem
into an optimization problem that can be naturally combined

with subgraph identification. Specifically, we define a binary
vector B ∈ {0, 1}T which holds the same dimension as the
raw node feature. For each node vi and its raw node feature
Xi, i = 1, . . .,N, we multiply the raw feature with the binary
vector B to obtain Xi � B, where � is the Hadamard product.
Intuitively, the vector B converts the value in some dimension
of the node feature to 0. This aligns with the rationale that if a
particular feature is not important, the corresponding weights
in the neural network weight matrix take values close to 0. In
terms of the principle of information gain, this type of masking
does not significantly decrease the probability of the prediction
or alter the information gain.

The binary vector B is non-smooth; we also consider a
continuous relaxation for the vector by leveraging a sigmoid
mapping, so that the feature selection procedure becomes a
smooth optimization problem, that is,

X � sigmoid(B̃),

where B̃ ∈ R
T is a real-valued vector and the sigmoid(B̃) is

applied to each row of X. Next, we remove the low values in B̃
through thresholding to arrive at the feature subsetting.

The subgraph identification and the feature selection can be
naturally integrated into a single minimization problem:

min
� ,B̃

1
n

n∑
i=1

∑
s∈{−1,1}

pθ̂ (si = s|X(i) � sigmoid(B̃))

log pθ̂ (si = s|Gsub(�),X(i) � sigmoid(B̃)),

which forms a unified optimization framework. This unified
optimization framework allows for the simultaneous identifi-
cation of influential subgraphs and important node features,
leading to a more interpretable and efficient model. The result-
ing optimization problem can be solved using gradient-based
techniques.

5. Theory

In this section, we present themain theoretical results of the esti-
mationmodel. First, we demonstrate that in contrast to standard
GCNs, our approach is capable of effectively representing the
feature differences among various-order neighbors. Second, we
study the capacity of the actor graph neural network in terms of
empirical Rademacher complexity. The derived bound is tight
through careful analysis of both the lower and upper bounds.
Furthermore, we provide a probabilistic upper bound on the
generalization error of the actor-critic graph neural network
which is calibrated in the fusion algorithm.

Theorem 5.1. The MaGNet actor-critic graph neural network
is capable of learning a �(K)-representer, which means it can
sufficiently and effectively captureK-order node neighbor infor-
mation.

Theorem 5.1 demonstrates that our estimation model can
learn various-order information. This ensures the capability of
the proposed estimation model on high-order message pass-
ing, where nodes receive latent representations from their 1-
order neighbors as well as further K-order neighbors at the
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information aggregation step. In contrast, the existing GCNs are
not capable of representing this class of operations, even when
stacked over multiple layers. Please see further justification for
this statement in Section B of the Appendix. To establish the
bounds on generalization errors, we make the following tech-
nical assumptions.

Assumption 5.1. The feature vector of any graph is contained in
a L2-ball with radius c̃. Specifically, the L2 norm of the feature
vector ‖Xi‖2 ≤ c̃ for all i = 1, . . .,N and some constant c̃ > 0.

Assumption 5.2. Any weight matrix in the estimation model
satisfies that

‖w(l)
MLP‖F ≤ c2, ‖w(l0)

MLP‖2 ≤ c1, ‖W‖F ≤ c0,

with some constant c0, c1, c2 > 0 and the Frobenius norm ‖ · ‖F ,
where w(l)

MLP is the weight matrix in lth layer of MLP for l =
1, . . ., l0 − 1, and w(l0)

MLP is the weight vector in the last layer of
MLP.

Assumption 5.3. The maximum number of elements in
the graph Laplacian matrix is bounded above by, that is,
maxi∈[N] maxj∈[N] |Lij| ≤ cL.

Assumption 5.4. We only consider the undirected, no loops ,
and no multi-edges graphs, and the number of node neighbors
|N (vi)| for all node vi ∈ V is equal to some constant q ∈ N

+.

Assumption 5.5. The maximum hidden dimension across all
neural network layers is h.

The above assumptions are common in the (graph) neu-
ral network literature. Assumptions 5.1–5.2 impose norm con-
straints on the parameters and input feature, making the model
class fall into a compact metric space (Liao, Urtasun, and Zemel
2020). In general, Assumption 5.1 does not require a specific data
distribution for the feature vector. It holds as long as the feature
vector has a bounded L2-norm, regardless of its distribution.
For example, feature vectors following the truncated Gaussian
distribution, uniformdistribution, logarithmic distribution, and
autoregressive distributionwithin the L2-ball all satisfy Assump-
tion 5.1. Assumption 5.3 is a standard assumption to control the
intensity of the graph Laplacian in GNN literature (Hamilton
2020). Assumption 5.4 requires us to focus on homogeneous

graphs (Liao, Urtasun, and Zemel 2020; Lv 2021). Assump-
tion 5.5 is a standard assumption in bounding the width of
neural network layers.

We first present our result on bounding the Rademacher
complexity of the model class Fc0,c1,c2 , which is the estimation
model part before and up to the step that producesH(K). For i0th
graph sample, formally, we define our estimation model class
Fc0,c1,c2 in the setting of K = 3 and l0 = 2 without loss of
generality:

Fc0,c1,c2 :=
{
f (X(i0)) = σ

( d1∑
q=1

w(2)
MLPqσ

( k∑
t=1

w(1)
MLPtq

1
N

N∑
m=1

N∑
i=1

Lmi

N∑
v=1

Liv

×
∑

j∈N (v)
Lvj

〈
X(i0)j,wt

〉 ))
, i0 ∈ [n],

‖w(1)
MLP‖F ≤ c2, ‖w(2)

MLP‖2 ≤ c1, ‖W‖F ≤ c0
}
, (8)

where σ(·) is some activation function, w(1)
MLP and w(2)

MLP is the
weight matrix and vector for the first and second layer of the
MLP for critic network, respectively. The wt is the tth column
of the weight matrixW. Note that we use this particular setting
as an example of the model class for simplifying the expression.
The following theoretical results hold for the general case of K
and l0.

Definition 5.1. Given the input node feature matrix {X(i)}ni=1
and the model class of the actor-critic graph neural network
Fc0,c1,c2 , the empirical Rademacher complexity of Fc0,c1,c2 is
defined as

R̂(Fc0,c1,c2)

:= Eε

⎡⎣ 1
n

sup
f∈Fc0,c1,c2

∣∣∣∣ n∑
j=1

εjf
(
X(j)

) ∣∣∣∣X(1),X(2), . . . ,X(n)

⎤⎦ ,

where {εi}ni=1 is an iid family of Rademacher variables, indepen-
dent of {X(i)}ni=1.

Theorem 5.2. Under Assumptions 5.1–5.5, the empirical
Rademacher complexity is bounded by

R̂(Fc0,c1,c2) ≤ 3(L0)l0 c0c1c2cK−1
L c̃(K+l0)h1.5qK+0.5

2
√
n |λmax(L)|; Upper Bound

R̂(Fc0,c1,c2) ≥ (L0)l0 c0c1c2(minm,i∈[N] Lmi)K−1̃c(K+l0)h1.5qK
5
√
n |λmin(L)|; Lower Bound

where L0 is the Lipschitz constant for activation function
σ(·) in the critic network, and λmin(L) and λmax(L) are the
finite minimum and maximum absolute eigenvalue of graph
Laplacian L.

Theorem 5.2 demonstrates that our derived upper bound
is tight up to some constants when comparing it to the
lower bound. Theorem 5.2 indicates that the upper bound of
R̂(Fc0,c1,c2) depends on the number of graph instances, the node
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degree of the graph, and the graph convolution filter, and also
the maximum width of the neural networks. Interestingly, the
above bound is independent of the maximum number of nodes,
N, for traditional regular graphs. Note that while Esser, Chen-
nuru Vankadara, and Ghoshdastidar (2021) also examine the
relation between the graph information and the feature informa-
tion, their bounds are not directly comparable to our theoretical
results. Lv (2021) also establishes the Rademacher complexity
bound; however, the focus is only on node classification tasks
and graph neural networks with one hidden layer.

Applying our results in empirical Rademacher complexity
R̂(Fc0,c1,c2) to generalization analysis, we now state the fun-
damental result of the generalization bound of the estimation
model. We denote conv(Fc0,c1,c2) as the closed convex hull of
Fc0,c1,c2 . That is, conv(Fc0,c1,c2) consists of all functions that
are pointwise limits of convex combinations of functions from
Fc0,c1,c2 :

conv(Fc0,c1,c2) :=
{
f : ∀x, f (x) = lim

K→∞ fK(x), fK =
K∑

k=1
wkfk,

K∑
k=1

wk = 1, fk ∈ Fc0,c1,c2 ,K ≥ 1
}
.

Obviously, we can observe that the combination in (3) belongs to
conv(Fc0,c1,c2). Next, we present the probabilistic generalization
error for the estimation model.

Theorem 5.3. Under Assumptions 5.1–5.5, given ŝ as the pre-
dicted label from an K-layers actor-critic graph neural network
with true label s0, then the probabilistic upper bound of the
generalization error

P (̂ss0 ≤ 0) ≤ O

⎛⎜⎝∏K
k=1

{√
ε(k) (1 − ε(k)) +

( log log2
(
2
(
log

∏K
k=1

√
1−ε(k)

ε(k) ∨ 1
))

n

)0.5

︸ ︷︷ ︸
fusion estimation bias

+
√

1
2n

log
2
δ︸ ︷︷ ︸

intrinsic uncertainty

+ (L0)l0c0c1c2cK−1
L c̃(K + l0)h1.5qK+0.5

√
n

|λmax(L)|
(
log

K∏
k=1

√
1 − ε(k)

ε(k) ∨ 1
)

︸ ︷︷ ︸
local complexity

}⎞⎟⎠,

with probability at least 1 − δ for δ ∈ [0, 1), where ∨ is a
maximum operator.

Theorem5.3 demonstrates that the generalization error of the
proposed estimationmodel is bounded in terms of the error rate
at the kth iteration defined in (4), that is, ε(k) ≥ 1/2 for any k =
1, . . .,K. In comparison to the generalization bound on vanilla
GNNs (Scarselli, Tsoi, and Hagenbuchner 2018; Garg, Jegelka,
and Jaakkola 2020), our bound is independent of the number
of hidden units and the maximum number of nodes N in any
input graph. For a regular graph with q = O(1) (Bollobás 1998),
we conclude that λmax(L) = 1, which yields a generalization
error bound of order O(1/

√
n) that is fully independent of the

number of nodes N.

6. Simulation Studies

In this section, we present a comprehensive evaluation of MaG-
Net using synthetic datasets. To generate graphs, we allow the
number of nodes N in the graph to vary with different graph
sample sizes n. Each node has a p-dimensional feature in esti-
mation or interpretation tasks. We distinguish two categories of
nodes, specifically, important nodes and non-important nodes,
and we generate their features by applying two separate pro-
cesses, resulting in two different settings. To establish graph
structure, we calculate the correlation across the varying node
features to obtain the adjacency matrix. In all the experiments,
we use a binary outcome of interest. Inwhat follows, we illustrate
the data-generating process for each setting.

Setting 1: For the important nodes, features are generated
by following a multivariate Gaussian distribution, MVN(0, 0.1 ·
I), where I is an identity matrix. On the other hand, for the
non-important nodes, the instance features are sampled from
a uniform distribution, Unif(0, 1). The difference in feature
generation mechanisms creates a distributional gap influenc-
ing the classification target outcome. It is important to note
that the target outcome or classification rule is based solely
on the features of important nodes and remains indepen-
dent of those of non-important nodes. This generation pro-
cess allows a good classifier to be able to separate important
nodes from non-important ones. In this setting, we form a
linear classification rule e�XV0 e|V0| + N(0, 0.1) > 0, where e is
the column vector whose entries are all 1’s. Here, XV0 is the
node feature matrix associated with the important node set
V0. It has dimension |V0| × p, where | · | is the cardinality
operator.

Setting 2: For the important nodes, features are generated
following aGaussian process in order to introduce a dependency
between the temporal features. The mean function m(xt) for
t = 1, . . ., p and xt ∼ Unif(0, 1). The kernel covariance function
of the Gaussian process is k (xt , xt′) = σ 2 exp

(
− 1

l2 |xt − xt′ |2
)
,

where l = 1 and σ = 1. In contrast, the instance features in
the non-important nodes are sampled from a Gaussian process
with the same mean function, but σ is set to 2.5 in the kernel
covariance function. In this setting, we use a nonlinear and
complex classification rule as follows:

sin(xe1) · cos(xe2) + x◦3e3 + N(0, 0.1) > 0,
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Table 1. The results of classification accuracy over 50 repeated experiments in Setting 1.

Sample size Important nodes Nodes MaGNet PNGAT GTN GPS MSGCN APPNP

100 10 30 0.761 0.715 0.745 0.742 0.719 0.708
50 0.745 0.701 0.738 0.734 0.710 0.696
75 0.740 0.692 0.717 0.719 0.702 0.678

20 30 0.772 0.725 0.754 0.760 0.736 0.719
50 0.764 0.715 0.740 0.741 0.728 0.709
75 0.752 0.708 0.728 0.722 0.719 0.702

250 10 30 0.779 0.744 0.768 0.760 0.739 0.732
50 0.774 0.734 0.754 0.747 0.731 0.726
75 0.763 0.720 0.741 0.732 0.723 0.715

20 30 0.785 0.748 0.769 0.787 0.773 0.744
50 0.781 0.736 0.757 0.761 0.755 0.738
75 0.769 0.732 0.750 0.747 0.734 0.722

The bold values identify the best method in each setting.

Table 2. The results of classification accuracy over 50 repeated experiments in Setting 2.

Sample size Important nodes Nodes MaGNet PNGAT GTN GPS MSGCN APPNP

100 10 30 0.753 0.718 0.740 0.728 0.697 0.746
50 0.742 0.710 0.729 0.718 0.684 0.728
75 0.736 0.697 0.715 0.710 0.672 0.709

20 30 0.768 0.740 0.749 0.762 0.708 0.728
50 0.755 0.729 0.744 0.760 0.701 0.711
75 0.748 0.710 0.717 0.719 0.693 0.704

250 10 30 0.776 0.735 0.778 0.766 0.728 0.735
50 0.771 0.733 0.759 0.758 0.720 0.727
75 0.765 0.731 0.740 0.747 0.711 0.724

20 30 0.786 0.754 0.763 0.770 0.767 0.761
50 0.779 0.750 0.756 0.759 0.752 0.753
75 0.774 0.741 0.752 0.748 0.734 0.739

The bold values identify the best method in each setting.

where ◦ is Hadamard power, and the row vector x =
eTX|V0|×p

|V0| . Moreover, e1, e2, e3 are column vectors with dimen-
sion p. In particular, e1 = [1, 1, . . ., 1︸ ︷︷ ︸

�p/3�
, 0, . . ., 0], e2 =

[0, . . ., 0, 1, 1, . . ., 1︸ ︷︷ ︸
�p/3�

, 0, . . ., 0], e3 = [0, . . ., 0, 1, 1, . . ., 1︸ ︷︷ ︸
�p/3�

].

6.1. Evaluation of the EstimationModel

In this section, we evaluate the classification accuracy of the
MaGNet estimationmodel by comparing it against several state-
of-the-art GNN approaches, including GPS Graph Transformer
Network (GPS, Rampášek et al. 2022), Graph Transformer Net-
work (GTN, Yun et al. 2019), Mean-Subtraction-Norm Graph
Convolutional Network (MSGCN, Yang et al. 2020), PairNorm
Graph Attention Network (PNGAT, Zhao and Akoglu 2019),
and Approximate Personalized Propagation of Neural Predic-
tions (APPNP, Gasteiger, Bojchevski, and Günnemann 2018).
The results are provided in Tables 1 and 2.

As shown in Tables 1 and 2, the MaGNet estimation model
provides the best classification results among all the competing
methods in general. This superior performance is consistent
across varying sample sizes, node quantities, and important
node sizes, indicating MaGNet’s robust performance in graph
classification tasks. This is mainly due to MaGNet’s ability to
effectively integrate both local and global information. The
advantage of our model in solving the memoryless and over-
smoothing issues results in effective and powerful representa-
tions for graph-structured data.

6.2. Evaluation of the InterpretationModel

In this section, we introduce different types of interpretation
tasks and the corresponding results of the interpretation model.
In particular, we consider three types of model interpretation
tasks: node-wise, edge-wise, and feature-wise reasoning. We
note that each of them is aligned with the functionalities of
the proposed MaGNet interpretation model. In the following
interpretation tasks, we consider a correlated and temporal data-
generating process as in the simulation setting 2 in order to
mimic the scenario with time-varying features in neural activity
experiments.

In the node-wise interpretation tasks, the ultimate aim is to
retain important nodes after node-wise reasoning. This is par-
ticularly crucial in practice for achieving a parsimonious model
that simultaneouslymaintains interpretability and performance.
In the edge-wise interpretation tasks, we initially define the
notions of important and redundant edges (REs). An important
edge refers to an edge connecting two important nodes. In
contrast, all other edges not satisfying this condition are consid-
ered non-important edges. In the task, we seek to minimize the
redundant edges in the trained MaGNet estimation model. To
evaluate the interpretation model performance, we define two
metrics: the absolute metric (AM) and the relative metric (RM),
as follows:

AM := # of existing RE after reasoning
# of all possible RE

,
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Table 3. The node-wise interpretation performance over 50 repeated experi-
ments.

Sample size Important nodes All nodes MaGNet IntGradients

100 10 30 0.763 0.708
50 0.745 0.684

20 30 0.817 0.754
50 0.795 0.752

250 10 30 0.775 0.723
50 0.758 0.687

20 30 0.826 0.767
50 0.814 0.759

The bold values identify the best method in each setting.

and

RM := # of existing RE before reasoning − # of existing RE after reasoning
# of existing RE before reasoning

.

In the feature-wise interpretation tasks, we aim to detect influen-
tial features for graph nodes. In this task, we choose a submatrix
with dimension |V0| × p0 from the feature matrix X for some
p0 < p. Then, we use this submatrix to form a classification rule
as discussed above.

In the following, we present the results of the three types of
interpretation task experiments. We compare our method to a
state-of-the-art approach, Integrated Gradients (IntGradients,
Sundararajan, Taly, and Yan 2017), which is a gradient-based
model interpretation approach designed for deep neural net-
works. For the implementation of IntGradients, we adapt the
module of IntGradients to graph neural network settings and
apply it to our trained MaGNet estimation model. Note that for
the feature-wise interpretation tasks, we only evaluate themodel
performance of the MaGNet interpretation method, because
IntGradients is not able to perform such type of task.

As shown in Table 3, the recovery rate of important nodes
using the MaGNet interpretation model consistently outper-
forms the competing method across various settings. This is
mainly due to the strength of our method in terms of lever-
aging the information gain to directly assess the reduction of
uncertainty for the node subgraph. This technique incorporates
statistical uncertainty as a measurement criterion instead of
applying a fully deterministic gradient-based method. Another
advantage of our method is the reparameterization strategy
for continuously approximating discrete variables. This makes
the proposed interpretation framework more computationally
stable than the competing methods. Furthermore, the MaGNet
interpretation model is particularly designed for the graph neu-
ral network and inherits the properties of the trained MaGNet
estimation model. As a result, it is able to leverage local and
global information to do the interpretation. The results of the
edge-wise interpretation tasks are summarized in Table 4. It
shows that our proposed method has a high edge reduction
rate, showcasing its effectiveness in pruning the non-important
edges. Importantly, the method exhibits the ability to retain
significant edges, suggesting an inherent capability in discrim-
inating between important and non-important edges and, thus,
preserving the influential subgraph structure. This performance
is consistently validated across different settings, demonstrating
the proposed method’s robustness and adaptability to varying

Table 4. The edge-interpretation performance over two metrics with 50
repeated experiments, where higher RM is better, and lower AM is better.

Metric Important nodes All nodes MaGNet IntGradients

RM 10 30 0.806 0.768
50 0.791 0.754

20 30 0.827 0.786
50 0.812 0.771

AM 10 30 0.090 0.132
50 0.128 0.161

20 30 0.056 0.101
50 0.084 0.131

The bold values identify the best method in each setting.

graph sizes. Further, these results demonstrate that our interpre-
tation model can lead to a more parsimonious and interpretable
results in practice. The results of the feature-wise interpretation
task are reported in Figure 2. The interpretation model tends
to assign high scores to the top influential feature. It indicates
that our model achieves great performance in temporal feature
reasoning.

7. Application to Local Field Potential Activity Data
from the Rat Brain

In this section, we apply the proposed method to neural activity
data recorded from an array of electrodes implanted inside
the brain. The brain region of interest is the hippocampus, a
region near the middle of the rat brain known to be important
for the temporal organization of our memories and behaviors.
Although it is well established that the hippocampus plays a key
role in this function across mammals, the underlying neuronal
mechanisms remain unclear. To shed light on these underlying
mechanisms, we previously recorded neural activity in the hip-
pocampus of rats performing a complex sequence memory task
(Allen et al. 2016) (as such high-precision data are currently
not available in humans). Using that dataset, our objective here
is to apply the proposed method to identify key functional
relationships in the local field potential (LFP) activity simul-
taneously recorded across electrodes during task performance,
as this information could provide novel insights into potential
functional relationships within that region.

The LFP neural activity data were collected from the CA1
region of the hippocampus while rats performed an odor
sequence memory task (Figure 3). In this task, rats received
repeated presentations of odor sequences (e.g., ABCDE) at a
single odor port andwere required to identify each item as either
“in sequence” (InSeq; e.g., ABC…) or “out of sequence”(OutSeq;
e.g., ABD…). Importantly, the recordings were performed from
surgically implanted electrodes (tetrodes), organized into two
bundles, which spanned much of the proximo-distal axis of
dorsal CA1. This experimental design thus provides a unique
opportunity to directly examine the anatomical distribution of
information processing along that axis.

In recent work, Shahbaba et al. (2022) showed that infor-
mation about trial content, such as the identity of the odor
presented and whether it was presented in or out of sequence,
could be accurately decoded from the ensemble spiking activity.
However, that study did not determine whether task-relevant
information was also contained in the local field potential activ-
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Figure 2. The feature-interpretation performance over 50 repeated experiments.

Figure 3. (a.) The task involves repeated presentations of sequences of odors and requires rats to determine whether each odor was presented “in sequence” (InSeq; e.g.,
ABC…) or “out of sequence” (OutSeq; e.g., ABD…). Using an automated delivery system (left), all odors were presented in the same odor port (median interval between
odors ∼5 s). Recordings were performed from electrodes organized into two bundles (right), which spanned much of the proximo-distal axis of dorsal CA1. (b.) In each
session, the same sequencewas presentedmultiple times, with approximately half the presentations including all InSeq trials (left) and the other half including one OutSeq
trial (right). Each odor presentation was initiated by a nosepoke and rats were required to correctly identify each odor as either InSeq (by holding their nosepoke response
until a tone signaled the end of the odor at 1.2 sec) or OutSeq (bywithdrawing their nose before the signal;<1.2 sec) to receive awater reward. Incorrect responses resulted
in the termination of the sequence. (c.) Location of three electrode tips (red circles). The leftmost and rightmost electrodes approximate the extent of the CA1 transverse
axis recorded in each animal.

ity. A fundamentally different data type from the discrete neural
spiking activity, the LFP’s continuous signal is more challenging
to decode. To our knowledge, there are only two reports that
exclusively use LFP to successfully decode spatial information
in the hippocampus, which requires high-density recordings
(Agarwal et al. 2014; Taxidis et al. 2015), and none showing
decoding of nonspatial information from hippocampal LFP
alone. To address this gap in knowledge, here we examined
whether the content of odor trials can be decoded from hip-
pocampal LFP activity and, if so, whether the dynamics vary
over space (electrodes) and time.

For this analysis, we have focused on decoding the two main
trial types (InSeq and OutSeq) using LFP activity from the
0–500 ms period (0 = odor onset), a time period in which
there are no overt differences in the behavior of the animals
between InSeq and OutSeq trials. We considered each rat’s data
an independent dataset and performed the classification evalu-
ation task separately. For each rat’s data, we randomly selected
about 70 graph instances as the training set and the other 30
graph samples as the testing set. Figure 4 shows that theMaGNet
estimation model achieves the best performance for all the rats.

Figure 4. Barplot of estimation accuracy for the MaGNet estimation model and
alternative competing approaches on decoding the two main trial types.

This is because our method’s integration of both low-order and
high-order information effectively uses more information into
the latent representation. In addition, due to the proposed actor-
critic structure, our method is less likely to suffer the over-
smoothing andmemoryless issue.
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Figure 5. (a.) Significant decoding of InSeq and OutSeq trials based on LFP activity during the first 500ms of odor trials. Scores peak during the 185–320ms period, prior to
the behavioral response. Grey traces indicate individual subject decodings, the black line indicates the mean across subjects. (b.) Informative electrode nodes in the distal
region of CA1. Schematic showing side view of electrode bundles implanted across the CA1 proximal-distal axis (Top). Schematic showing a top view of the anatomical
distribution of electrodes across subjects based on electrode tract reconstruction (bottom). Yellow indicates significant nodes (electrodes). (c.) The clustering of informative
nodes in distal CA1 is consistent with known anatomical differences in input connections. Odor information enters the hippocampus primarily through the LEC, whichmore
strongly projects to the distal segment of CA1. In contrast, the MEC more strongly projects to proximal CA1. Approximate location of the implanted electrode bundles is
shown.

We have also investigated the temporal dynamics of this
decoding during trial periods by applying our MaGNet inter-
pretationmodel. Specifically, we examined themost informative
time bins (Allen et al. 2020) for the InSeq/OutSeq classification
in the first 500ms of trials in Figure 5(a).We found that themost
informative time bins occurred between ∼180 ms and∼320 ms
after the rats poked into the port. This timeline is consistent with
reports of hippocampal neurons responding to odor informa-
tion in as little as 100ms (Allen et al. 2020) andwith the expected
timeline of InSeq/OutSeq identification within trials. With the
neuropsychology’s experimental knowledge, this implies that
theMaGNet interpretationmodel is able to successfully identify
the influential neural dynamics.

In addition, we have found that most informative electrodes
clustered in the distal region of CA1 in Figure 5(b). In fact,
across all five rats, the majority (86.7%) of significant electrodes
were in distal CA1, and more than half of all electrodes in distal
CA1 reached significance. This distribution of significant nodes

suggests distal CA1 plays a more important role in represent-
ing InSeq/OutSeq information than proximal CA1, a pattern
consistent with known differences in their anatomical connec-
tions (Figure 5(c)). Odor information enters the hippocampus
primarily through the LEC (lateral entorhinal cortex), which
more strongly projects to the distal segment of CA1. In contrast,
the MEC (medial entorhinal cortex) more strongly projects to
proximal CA1. However, the observation that some significant
nodes also extended into proximal CA1 suggests that functional
interactions among the two segments of CA1 are critical for task
performance. In summary, we apply the MaGNet framework
to LFP activity data recorded from the hippocampus of rats as
they performed a challenging nonspatial sequencememory task.
According to the analysis, we can decode the trial type (whether
the odor was presented in or out of sequence) as well as identify
themost informative trial periods and electrodes. Therefore, not
only did the model provide the first direct evidence of decoding
nonspatial trial content from hippocampal LFP activity alone, it
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also provided a high degree of specificity about how this infor-
mation was distributed over space and time. This neuroscience
result is consistent with a growing literature on the influence
of anatomical gradients on information processing within brain
regions (Knierim, Neunuebel, and Deshmukh 2014;Witter et al.
2017), specifically with evidence that inputs carrying nonspatial
information more strongly project to distal CA1 than proximal
CA1 (Agster and Burwell 2009).

8. Discussion

In this article, we have proposed a novel graph neural network
framework, MaGNet, which is able to effectively integrate both
low-order and high-order information to allow powerful latent
representation. Furthermore, MaGNet includes a practically
useful interpretation component, which offers a tractable frame-
work for identifying influential subgraphs, as well as important
nodes, edges, and node features. In addition, we have also estab-
lished rigorous theoretical foundations to assess the efficacy, sta-
tistical complexity, and generalizability of the MaGNet estima-
tion model. These theoretical results ensure that the proposed
estimation model is reliable and effective, contributing to the
practical utility of MaGNet in various applications, especially in
neuroscience.

One of the potential directions for exploration is to extend the
current framework to accommodate different types of tasks. For
example, rather than solely focusing on graph classification, the
framework can be extended for node classifications, link predic-
tion, and beyond. Furthermore, conducting rigorous theoretical
investigations into the interpretation model—such as studying
how the introduced approximations and relaxations affect selec-
tion errors—is both crucial and promising. Additionally, future
research could explore studying the expressivity of the proposed
method using the Weisfeiler-Lehman graph isomorphism test.
Another potential research direction is to investigate generaliza-
tion error in non-regular settings to provide amore comprehen-
sive theoretical understanding of the current model. Exploring
these directions will help expand the utility and effectiveness of
our framework for a wide range of applications.

Moreover, there is a pressing need to expand the current
framework to support dynamic settings. While modeling time-
varying changes and dynamic systems holds central impor-
tance in numerous real-world applications, the current MaGNet
framework (along with the majority of GNNmodels) is primar-
ily tailored for static graph data. These models are capable of
incorporating structural information into the learning process,
but they fall short in capturing the evolution of dynamic graphs.
Typically, dynamics in a graph refer to node attribute modifi-
cations or edge-structure changes, including the additions and
deletions of nodes or edges. As a possible expansion of the
existing MaGNet framework, we will explore the incorporation
of node and edge activation functions to signify and capture
the presence of the nodes and edges within each timestamp.
This will enable subsequent utilization of attention mechanisms
such as self-attention and neighborhood attention, which have
shown efficacy in foundational models (Bommasani et al. 2021),
in order to account for historical time-evolved information from
preceding timestamps.

Supplementary Materials

The supplementary materials provide the proof of main theorems and
additional technical results. The corresponding code for the algorithm,
along with instructions to access the real dataset, is available online
at the following GitHub repository: https://anonymous.4open.science/r/
NeuralDecoding-AC33.
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