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In a game of persuasion with evidence, a sender has private information. By presenting evidence on the infor-
mation, the sender wishes to persuade a receiver to take a single action (e.g., hire a job candidate, or convict a
defendant). The sender’s utility depends solely on whether the receiver takes the action. The receiver’s utility
depends on both the action and the sender’s private information.

We study three natural variations. First, we consider the problem of computing an equilibrium of the game
without commitment power. Second, we consider a persuasion variant, where the sender commits to a signal-
ing scheme and the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation
variant, where the receiver first commits to taking the action if being presented certain evidence, and the
sender presents evidence to maximize the probability the action is taken. We study these variants through
the computational lens, and give hardness results, optimal approximation algorithms, and polynomial-time
algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite
program that might be of independent interest, since, to the best of our knowledge, it is the first such approx-
imation algorithm in algorithmic economics.
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1 Introduction

Persuasion is a fundamental challenge arising in diverse areas such as recommendation problems
in the Internet, consulting and lobbying, employee hiring. Persuasion problems occupy a central
role in economics and received significant interest since the early 2000s. A prominent approach is
persuasion with evidence as introduced by Glazer and Rubinstein [14, 15]. In this problem, a sender
wishes to persuade a receiver to take a single action by presenting evidence. The sender’s utility
depends solely on whether the action is taken, while the receiver’s utility depends on both the
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action as well as the sender’s private information. Consider, for example, a prosecutor trying to
convince a judge that a defendant is guilty and should be convicted, or a job candidate trying to
convince a company that she has the best qualifications and should be hired. How should these
pairs of agents interact?

The literature on persuasion games in economics and game theory is vast; see Sobel [33] for
a survey. In sharp contrast, very little is known about computation in this domain, especially for
the persuasion problem with evidence. How does the restriction to evidence impact the computa-
tional complexity of persuasion strategies? Our main contribution of this article is to initiate the
systematic study of persuasion with evidence though a computational lens.

We examine three natural model variants that arise from the power to commit to certain
behavior. If there is no commitment power, then the scenario is an extensive-form game. We
prove that finding a subgame-perfect equilibrium is always possible in polynomial time. However,
the sender and the receiver can significantly improve their utility when they enjoy commitment
power.

If the sender has commitment power, then she can commit in advance which evidence is pre-
sented in each possible instantiation of her private information, and the receiver seeing the evi-
dence then takes the action or not. We refer to this situation as constrained persuasion, since the
sender with commitment power wants to persuade the rational receiver to take the action. The
sender is constrained to providing concrete evidence instead of just making a recommendation as
is the case in the so called Bayesian persuasion paradigm [22]. Constrained persuasion is a natural
model in the example of prosecutor and judge, where the prosecutor (sender) with private infor-
mation would first present evidence before the judge (receiver) makes a decision. Although this
scenario seems structurally rather simple, we show that the sender’s task in constrained persuasion
can in general become computationally (highly) intractable. Unless P = NP, optimal persuasion
is hard to approximate within a polynomial factor of the input size. However, many persuasion
scenarios exhibit a natural condition that we term “global signal”: At least one signal (such as, e.g.,
staying silent and presenting no evidence at all) is available independently of the private informa-
tion held by the sender. In this case, the persuasion problem becomes tractable.

If the receiver has commitment power, then she commits to taking the action if and only if being
faced with a specific set of evidence. We refer to this situation as constrained delegation, since we
assume that the receiver with commitment power delegates inspection of the state of nature to
a sender, whose incentive becomes to provide convincing evidence to support taking the action.
Constrained delegation better fits the second example, where the company (receiver) can give the
candidate (sender) a test to present evidence on the private information about qualifications, and
commit to hiring her if she performs well. We show that the receiver’s task in delegation is also
intractable — unless P = NP, optimal delegation can become hard to approximate within a factor
of 2 — ¢, for any constant ¢ > 0. Notably, this result applies even in instances with the natural
condition of a global signal.

These computational differences complement conceptual differences known from the econom-
ics literature. Namely, persuasion lacks a condition termed “credibility” that was shown for del-
egation. Formally, credibility implies that there is a deterministic optimal solution that does not
require randomization, see Glazer and Rubinstein [15] for details. We proceed to study algorithms
with matching approximation guarantees for constrained persuasion and delegation, as well as
a number of exact and approximation algorithms for various special cases. This includes, in par-
ticular, an approximation algorithm for a class of delegation problems that solves and rounds a
semidefinite program (SDP). This last result might be of independent interest and, to the best of
our knowledge, it is the first natural problem in information structure design, as well as mechanism
design, where the SDP toolbox is used.
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2 Preliminaries

Following [15, 30, 31], we study the fundamental problem of persuasion with evidence. There are
two players, a sender and a receiver. The receiver is tasked with either taking a specific action and
“accept” (henceforth A), or sticking to the status quo and “reject” (henceforth R). The sender wants
to convince the receiver to take action A. There is a state of nature 6 drawn from a distribution D
with support © of size n. We denote the probability that 8 is drawn by gp. The set © is partitioned
into the set of acceptable states © 4 and the set of rejectable ones O = ©\ © 4. We denote the total
probability on acceptable states by g4 = Xpce, 90, and the total probability on rejectable states
by qr = Xgcoy qo-

Both players know D. The sender knows the realization of the state of nature, the receiver does
not. The sender has utility 1 whenever the receiver takes action A, and 0 otherwise. Formally, for
the sender utility we have us(A, 0) = 1 and us(R, 0) = 0, for all 6 € ©. The utility of the receiver
depends on the combination of the chosen action a € {A, R} and the state of nature 6. She has
utility 1 if she makes the “right” decision—accept in an acceptable state of nature or reject in a
rejectable state of nature—and 0 otherwise. Formally, u,(a, ) = 1 when (1) a = Aand 6 € O4, or
(2) a = R and 6 € Og. Otherwise, u,(a, 0) = 0.

The sender strives to send a message to the receiver according to a signaling strategy that is
known to all parties. This message should persuade the receiver to accept. However, upon receiv-
ing the message, the receiver strives to infer the state of nature and make the right accept/reject
decision. We focus on games with evidence, where the messages that can be sent are not arbitrary.
Every state of nature has intrinsic characteristics (e.g., a candidate for a position has grades, de-
grees, or test scores) that can be (but don’t have to be) revealed to the receiver, and cannot be
forged. More formally, there is a set 2 of m possible messages or signals that the sender can report
to the receiver. We are given as input a bipartite graph H = (OUZX, E), where an edgee = (0,0) € E
implies that signal o is allowed to be sent in state 8. We use N(6) C ¥ to denote the neighborhood
of 0, i.e., the set of allowed signals for state 6. Similarly, N(c) C © is the set of states in which sig-
nal o can be sent. To avoid trivialities, we assume that none of the neighborhoods N(-) are empty,
i.e., there are no isolated nodes in H.

We study the computational complexity of games with evidence for different forms of interac-
tion between the sender and the receiver. In the case of constrained persuasion, the game starts with
the sender committing to a signaling scheme. A signaling scheme ¢ is a mapping ¢ : E — [0, 1],
where ¢(0, o) is the joint probability that state 0 is realized and signal o is sent in state 6. Clearly,
for any signaling scheme we have 3, cn() ¢(0,0) = qg for every state § € ©. After the sender
has committed to a scheme ¢, nature draws 8 € © with probability gg, and 0 is revealed to the
sender. Then, the sender sends signal o with probability ¢(6, 0)/qe. The receiver then decides on
an action A or R. Finally, depending on the (state of nature, action)-pair, the sender and receiver
get payoffs as described by the utilities above.

PROBLEM 1 (CONSTRAINED PERSUASION). Find a signaling scheme ¢* for commitment of the sender
such that, upon a best response of the receiver, the sender utility is as high as possible.

In the case of constrained delegation, the game starts with the receiver committing to an action
for every possible signal o € X, according to a decision scheme. A decision scheme ¥ is a mapping
¥ : X — [0, 1], where /(o) is the probability to choose action A. After the receiver has committed
to a scheme ¢, nature draws 8 € © with probability gy, and 6 is revealed to the sender. Then,
the sender decides which signal o she will report (under the constraint that o € N(0)). The
receiver then takes action A with probability {/(c), and R otherwise. Finally, depending on the
(state of nature, action)-pair, the sender and receiver get payoffs as described by the utilities
above.
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PROBLEM 2 (CONSTRAINED DELEGATION). Find a decision scheme y* for commitment of the re-
ceiver such that, upon a best response of the sender, the receiver utility is as high as possible.

Finally, in the game without commitment power, we look for a pair (¢, ) of signaling and
decision schemes that constitute a Bayes—Nash equilibrium in the extensive-form game, where
nature first determines the state of nature, the sender then picks ¢ to provide evidence, and then
the receiver uses ¢ to accept or reject based on the evidence provided. Given that the sender picks
¢, the receiver shall pick ¢ as a best response for every given evidence. Similarly, given that the
receiver responds to evidence with ¢, the signaling scheme ¢ shall be a best response for the
sender.

PROBLEM 3 (CONSTRAINED EQUILIBRIUM). Find a pair of signaling scheme ¢ and decision scheme
Y that represents a Bayes—Nash equilibrium in the persuasion game with evidence and without com-
mitment power.

2.1 Structural Properties

While the persuasion problem with evidence appears rather elementary, it turns out that both
persuasion and delegation variants are NP-hard, and even NP-hard to approximate. Hence, even
in this seemingly simple domain, it is necessary to identify additional structure to obtain positive
results. We mostly consider structural properties of the neighborhoods of the states of nature.

Unique Accepts and Rejects. In an instance with unique accepts, there is a single acceptable
state, i.e., |©4| = 1. Similarly, for unique rejects we have |@g| = 1. This is equivalent to assuming
that every acceptable (rejectable, respectively) state 6 has the same neighborhood N(0).
Degree-bounded States. In an instance with degree-k states, every state 0 € © has [N(0)| < k.
Similarly, for degree-k accepts, every acceptable state § € ©4 has |[N(0)| < k, and for degree-k
rejects every rejectable state 0 € O has |[N(0)| < k.

Foresight. Sher [31] considers instances with foresight defined as follows. For an acceptable state
0 € ©4, a signal o is called minimally forgeable for 0 if (1) o € N(0), that is, o is valid evidence
for 0, and (2) 0 € N(0’) implies ¢’ € N(0’) for every other signal o’ € N(6) and every rejectable
state 0’ € Og. In an instance with foresight every acceptable state has a minimally forgeable signal.
Intuitively, in such a problem every acceptable state 6 has a (not necessarily unique) signal that is
maximally informative about 0 with respect to the set of rejectable states. Foresight strictly gen-
eralizes other properties studied in previous work, e.g., normality [5]. Normality requires a signal
for every state (not only the acceptable ones) that satisfies the condition of minimally forgeable,
and it satisfies the condition w.r.t. all states (not only w.r.t. rejectable ones). In addition, foresight is
a generalization of instances with unique rejects, as well as a generalization the class of degree-1
accepts.

Global Signal. In an instance with global signals, there is at least one signal o with N(o) = 0, i.e.,
the signal can be sent in every possible state. For example, one can think of “being silent” as such
a global signal.

Proof of Membership. In an instance with proof of membership, the set of signals ¥ is the set of
all subsets of ©, and the sender is constrained so that when the state is 6 she can only send a signal
o if 6 € o. This special structure is also considered by Grossman [18] and Milgrom [26]. Note that
this class is a special case of instances with global signal.

Laminar Neighborhoods. In an instance with laminar signals, the family of neighborhoods of
states {N(6) | 0 € ©} forms a laminar family, i.e., for two states 0, 8’ the sets of allowed signals
fulfill either N(68) € N(0’) or N(0) N N(6’) = 0. In an instance with laminar states, the family of
neighborhoods of signals {N(c) | 0 € X} forms a laminar family.
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Table 1. Approximation Results shown in this Article, as well
as Results shown or implied by [31]

Scenario Constrained Delegation Constrained Persuasion
Upper \ Lower Upper | Lower
General 2 —e(P#NP) | O(n) n'=¢ (P # NP)
Degree-2 States 1.1 APX-hard [31] || O(n) n'~¢ (P # NP)
Degree-d States 2—1/d* | APX-hard [31] || O(n) n!'=¢ (P # NP)
Degree-1 Rejects 2 APX-hard [31] || O(n) n'=¢ (P # NP)
Degree-1 Accepts 1[31] O(n) n'=¢ (P # NP)
Foresight 1[31] O(n) n'~¢ (P # NP)
Unique Rejects 1[31] 1
Unique Accepts 1 PTAS | Strongly NP-hard
Global Signal 2 2—¢(P#NP) 1
Proof of Membership 1 1
Laminar States 1 1
Laminar Signals 1 Weakly NP-hard

In an instance with laminar states, consider a connected component C of the state-signal graph
H. If H has several connected components, then the instance can be treated separately for each
connected component. Let us consider a single component, or, equivalently, assume H is connected.
Due to laminarity, there is at least one signal ¢ that has a maximal set of neighboring states, i.e.,
for every signal o’ we have N(c’) € N(o). We assume that every state has an incident signal, so
N(o) = 0, i.e., every instance with (connected H and) laminar states has global signals.

2.2 Results and Contribution

We provide polynomial-time exact and approximation algorithms as well as hardness results for
the general problems and the domains with more structure described above.

For the constrained equilibrium problem, we show that a Bayes—Nash equilibrium can always
be computed in polynomial time by repeatedly solving a maximum flow problem. We compare
the utility obtained in an equilibrium with the one achievable with commitment power, for the
sender and the receiver, respectively. Formally, we define and bound the ratio of the utilities for
best and worst-case equilibria, in the spirit of prices of anarchy and stability. For the receiver, it is
known that the price of stability is 1 [15]; we show that the price of anarchy is 2. For the sender
we show that both ratios are unbounded. This substantial utility gain provides further motivation
to study problems with commitment power. Our results for constrained delegation and persuasion
are summarized in Table 1.

For the constrained delegation problem, we show two interesting non-trivial approximation
results in Section 4.2. For instances with degree-d states we give a (2 — ﬁ)—approximation algo-
rithm via LP rounding. For degree-2 states, we propose a SDP-based algorithm to compute a 1.1-
approximation. To the best our knowledge, this is the first application of advanced results from
the SDP toolbox in the context of information design, as well as mechanism design.

We discuss tractable special cases in Section 4.3. Sher [31, Theorem 7] shows that in instances
with foresight the optimal decision scheme can be found in polynomial time by solving a network
flow problem. Unique rejects and degree-1 accepts are special cases, so the same result holds. For
proof of membership, the optimal decision scheme is very simple. In case of laminar states or
laminar signals, the instance does not necessarily fulfill the conditions of foresight. In both cases,
we provide new polynomial-time algorithms based on dynamic programming.
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For constrained persuasion, the strong hardness arises from deciding which action should be
preferred by the receiver for each signal. It holds even in several seemingly special cases with
degree-2 states and degree-1 accepts or degree-1 rejects. As a consequence, good approximation
algorithms can be obtained only in significantly more limited scenarios than for delegation. For
unique accepts, we prove strong NP-hardness (i.e., there is no FPTAS unless P= NP) and provide
a polynomial-time approximation scheme (PTAS). In contrast, for unique rejects, the problem can
even be solved in polynomial time.

In the natural scenario when a global signal is available, we show a transformation into a stan-
dard Bayesian persuasion problem with direct signals, in which a sender with commitment power
simply transmits the recommended action the receiver should take. This problem can be solved
optimally in polynomial time via linear programming. This stands in strong contrast to delegation,
where availability of a global signal has no effect on the hardness of approximation. More gener-
ally, we prove the positive result for a very general version of the 2-action constrained persuasion
problem with arbitrary utilities for receiver and sender. By applying the result to each component
of the state-signal graph H, we can also obtain an optimal signaling scheme for instances with
laminar states in polynomial time. The optimal signaling scheme can be obtained easily for proof
of membership. Finally, for laminar signals, we show weak NP-hardness. It is an interesting open
problem to strengthen this lower bound and to obtain a non-trivial approximation algorithm for
this case.

While our hardness results obviously hold for more general scenarios, the majority of our posi-
tive results crucially use the fact that the receiver’s action is binary (accept or reject). In constrained
delegation, the general 2-approximation algorithm that picks the better of “always accept” and “al-
ways reject” can be naturally extended to the problem with more receiver actions (with the approx-
imation guarantee degrading as the number of actions grows), but there is no natural extension
for our more specialized algorithms that beat the factor of 2 in special cases. In constrained per-
suasion, a signaling scheme partitions the signal space into two sets, £ 4 and X, in the sense that
the receiver takes action A if and only if she gets signal ¢ € ¥4 (and R for ), and our positive
results in crucially rely on the fact that a signal is either in a set or its complement. Therefore,
to get positive results for more general settings, a new approach seems necessary. Understanding
the landscape of constrained persuasion and constrained delegation in more general settings, e.g.,
when there are multiple receiver actions, is left as an interesting research direction.

2.3 Related Work

There is a large body of literature on strategic communication, see Sobel [33] for an extensive
review. The works most closely related to ours are Glazer and Rubinstein [15] and Sher [31]. Glazer
and Rubinstein [15] introduce the problem of constrained delegation. They show, among other
things, that the optimal decision scheme in constrained delegation is deterministic. Furthermore,
they prove that there is always a Bayes—Nash equilibrium where the receiver plays the optimal
decision scheme from constrained delegation, i.e., the price of stability for the receiver is 1. This
condition is termed “credibility” and it is strengthened by Sher [31] to sequential equilibria. It
is easy to see that this is not true when sender moves first. This conceptual difference between
persuasion and delegation is reflected as a difference in the problems’ computational complexity.
Deterministic optimal strategies and “credibility” hold also beyond the simple model with 2
actions—when receiver utility is a concave transformation of sender utility, see Sher [30]. Sher
[31] builds on the model of Glazer and Rubinstein [15] and characterizes optimal rules for static
as well as dynamic persuasion. Furthermore, and more relevant to our interest here, he proves an
NP-hardness result for constrained delegation, as well as provides a polynomial-time algorithm
for optimal delegation in instances with foresight. Here we strengthen this hardness result to a
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hardness of approximation within a factor of 2— ¢ (and provide a matching, alas trivial, approxima-
tion algorithm). While this subsumes NP-hardness in general, we observe that his hardness proof
applies in case of degree-2 states and degree-1 rejects, and that it even implies APX-hardness for
such instances.

Glazer and Rubinstein [14] study a related setting, where the state of nature is multi-dimensional,
and the receiver can verify at most one dimension. The authors characterize the optimal mecha-
nism as a solution to a particular linear programming problem, show that it takes a fairly simple
form, and show that random mechanisms may be necessary to achieve the optimum. Carroll and
Egorov [6] study the problem of fully revealing the sender’s information in a setting with multi-
dimensional states, where the receiver can verify a single dimension. Importantly, the dimension
the receiver chooses to reveal depends on the sender’s message.

A number of works in the algorithmic economics literature investigate the computational com-
plexity of persuasion and information design. Computational aspects of the Bayesian persuasion
model of Kamenica and Gentzkow [22] are studied in, e.g., [7, 9-12, 19, 20], but in these works
there are no limits on the senders’ signals, i.e., H is the complete bipartite graph. Closer to our
work are Dughmi et al. [8] and Gradwohl et al. [17] who study computational problems in Bayesian
persuasion with limited signals, where the number of signals is smaller than the number of actions.

To be consistent with most works in algorithmic economics we use the terms “price of anar-
chy” and “price of stability” to refer to the ratios of the optimal utility of a player with commit-
ment power, over their utility in the worst/best equilibrium. The “value of commitment,” the ra-
tio of the utility of a player when she has commitment power over her utility when she does
not have commitment power, is a related notion studied in [24, 34] in the context of Stackelberg
games.

3 Equilibria, the Price of Anarchy, and the Price of Stability

We first study the scenario without commitment power. Our interest here is to obtain a signaling
scheme ¢ : E — [0,1] and a decision scheme ¢ : 3% — [0, 1], such that the pair (¢, ) forms a
Bayes—Nash equilibrium.

We prove this result for a general class of games, in which the receiver has two actions (denoted
A and R for consistency). Moreover, sender and receiver can have utilities ug, u, : {A,R} X0 —» R
that yield arbitrary positive or negative values for every (state of nature, action)-pair.

We conjecture that our results can be strengthened to the refined concept of sequential equilib-
rium (which was studied in [15, 30, 31]) using suitable sequences of belief systems. For simplicity,
we here stick to the more straightforward notion of Bayes—Nash equilibrium.

THEOREM 4. A Bayes—Nash equilibrium can be computed in polynomial time when the receiver
has two actions.

The proof of the theorem is deferred to Appendix A.1.

How desirable is an equilibrium for the sender and the receiver? By how much can each player
benefit when he or she enjoys commitment power? Toward this end, we bound the ratios of the
optimal utility achievable with commitment power over the utilities in the worst and best equilib-
rium. Intuitively, commitment power might be interpreted as a form of control over the game, so
we use the term price of anarchy and price of stability to refer to the ratios, respectively.

More formally, for the price of anarchy we bound the ratio of the optimal utility achievable
with commitment over the worst utility in any Bayes—Nash equilibrium. For the price of stability
we bound the ratio of the optimal utility achievable with commitment over the best utility in any
Bayes—Nash equilibrium.
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For the receiver, the optimal scheme with commitment leads to an equilibrium [15], so the price
of stability is 1. The price of anarchy is 2 (cf. Proposition 7 below). For the sender, both prices of
anarchy and stability are easily shown to be unbounded.

ProposITION 5. The price of anarchy for the receiver is 2 and this is tight. The prices of anarchy
and stability for the sender are unbounded.

Proor. For the price of anarchy for the receiver, consider any equilibrium. For every signal
o € 3, the best response for the receiver is to choose the accept/reject decision that is correct with
larger conditional probability. Hence, for every signal the receiver makes the right decision with
probability at least 0.5. Clearly, in the optimum he can be correct with probability at most 1.

For tightness, consider one acceptable state 6, and one rejectable state 6,, both with gg, = qp, =
0.5. There are two signals o1, 0, and three edges (0,, 1), (64, 02) and (0, 0»). In the optimal scheme,
the receiver sets /*(o1) = 1 and ¥*(03) = 0, which leads to a utility of 1. In the worst equilibrium,
the receiver sets /*(02) = 1 and the sender sets ¢((6,, 01)) = ¢((04, 02)) = 0.5. The decision for oy
does not matter. In this case, the receiver obtains a utility of 0.5.

For the prices of anarchy and stability for the sender, consider one acceptable state 6, and one
rejectable state 0,, with qp, = 0.25 and gg, = 0.75. There are two signals oy, 0. H is the complete
bipartite graph. An optimal scheme for a sender with commitment turns o7 into an accept signal,
ie., (04, 01)) = ¢((0,01)) = 0.25 and ¢((0,, 02)) = 0.5. This yields a utility of 0.5 for the sender.

Consider any equilibrium. A positive acceptance probability /(o) > 0 requires that for signal ¢
the conditional probability for 6, is at least as high as for 6, i.e., 9((64, 0)) > ¢((6,, 0)). Since qp, <
qo, this can happen for at most one signal. Suppose w.l.o.g. that this signal is oy, i.e., (07) > 0 and
Y(02) = 0. Then ¢((6,, 01)) < 0.25 and, thus, ¢((0,, 02)) > 0. Not that this implies a contradiction to
the sender playing a best response against i — given i, it would be a better to set ¢((6,, 01)) = 0.75
and signal o7 always. This shows that in every equilibrium we have ¥/(o1) = /(o) = 0. Hence,
the receiver always rejects and the sender has utility 0. Both prices in this example would be 0.5
divided by 0, i.e., unbounded. m]

4 Constrained Delegation

In constrained delegation, the game starts with the receiver committing to a decision scheme i :
> — [0, 1], where /(o) is the probability to choose action A if the sender reports signal o. The first
insight is due to Glazer and Rubinstein [15, Proposition 1]; for completeness we include a proof in
Appendix B.1.

LEMMA 6 (GLAZER AND RUBINSTEIN [15]). In constrained delegation, there is an optimal decision
scheme " that is deterministic, i.e., y*(c) € {0,1} forallo € 3.

Given a deterministic decision scheme ¥/, the sender’s problem is trivial: after learning 6, report
an arbitrary signal o € N(6) such that /(o) = 1 if one exists. Otherwise, report an arbitrary signal
o € N(0). In the following, we focus on the computational complexity of the receiver’s problem:
How hard is it to compute the optimal 1/? What about a good approximation algorithm?

This problem turns out to be much easier than the sender’s problem in constrained persuasion
studied below. It readily admits a trivial 2-approximation algorithm. Let 14 be the scheme that
accepts all signals, i.e., 4(c) = 1 for all o, and g the scheme that rejects all signals. The better of
4 and g results in utility max{qa, qr} for the receiver, which is, of course, at least 1/2. Trivially,
the receiver can obtain at most a utility of 1.

ProrosiTION 7. For the constrained delegation problem, the better of Y4 and Yr is a 2-
approximation to the optimal decision scheme {/*.
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Algorithmic Persuasion with Evidence 12:9

In Section 4.1 we show that the factor 2 is essentially optimal in the worst case, unless P = NP.
In Section 4.2 we present our results on approximation algorithms. The results on special cases
with optimal schemes are discussed in Section 4.3.

4.1 Hardness

Sher [31, Theorem 7] shows NP-hardness of constrained delegation, even in the special case with
degree-1 rejects. His proof easily extends to show APX-hardness, even for degree-1 rejects and
degree-2 states; we provide the arguments in Appendix B.3 for completeness. Our main result in
this section is a stronger hardness result that matches the guarantee of the trivial algorithm in
Proposition 7.

THEOREM 8. Forany constant e € (0, 1), it is NP-hard to approximate constrained delegation within
a factor of (2 — ¢).

For simplicity, we sketch below an outline for a reduction that does not give the NP-hardness,
but nonetheless encapsulates the main ideas of the proof. After the outline, we roughly explain
the changes needed to achieve the NP-hardness; the full proof is deferred to Appendix B.2.

We reduce from the BIPARTITE VERTEX EXPANSION problem. In this problem, we are given a
bipartite graph (U, V, E) and positive real number f. The goal is to select (at least) S|U| vertices
from U such that their neighborhood (in V) is as small as possible. Khot and Saket [23] show the
following strong inapproximability result:

THEOREM 9 ([23]). Assuming NP € (\sso DTIME(Z"J), for any positive constants T,y > 0, there
exists p € (0,1) such that no polynomial-time algorithm can, given a bipartite graph (U, V ,E), dis-
tinguish between the following two cases:

— (YES) There exists S* C U of size at least f|U| where [IN(S*)| < y|V|.
— (NO) For every S C U of size at least f|U|, IN(S)| > (1 — y)|V].

The main idea of our reduction is quite simple. Roughly speaking, given a bipartite graph
(U,V,E), we set & = U, Ogp = V and the edge set between them is exactly E. To get a high
utility on ©g, we must pick a signal set T C ¥ such that |[N(T)| is small, and set /(c) = 1 for all
o € T, this does not mean much so far, since we could just pick T = . This is where the set of
acceptable states comes in: we let © 4 be equal to U’ = {(wy, . .., u)|u; € U} for some appropriate
¢ € N, and there is an edge between 0 = (uy,...,ur) and 0 = u if u; = u for some i € [{]. Intu-
itively, this forces us to pick T that is not too small as otherwise ® 4 won’t contribute to the total
utility. Finally, we need to pick a distribution D over © such that g4 = gr, as otherwise the trivial
algorithm already gets better than a 2-approximation.

As stated earlier, the above reduction does not yet give NP-hardness, because Theorem 9 relies
on a stronger assumption' that NP ¢ (Nss, DTIME(2”5). To overcome this, we instead use a
“colored version” of the problem, where every vertex in U is colored and the subset S C U must
only contain vertices of different colors (i.e., be “colorful”). It turns out that the above reduction can
be easily adapted to work with such a variant as well, by changing the acceptable states © 4 to “test”
this condition instead of the condition that |S| is small. Furthermore, we show, via a reduction from
the Label Cover problem, that this colored version of BIPARTITE VERTEX EXPANSION is NP-hard to
approximate. Together, these imply Theorem 8. Our proof formalizes this outline; see Appendix B.2
for details.

!We remark that it is entirely possible that Theorem 9 holds under NP-hardness (instead of under the assumption NP &
Ns>o DTIME(Z"(s )) but this is not yet known.
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12:10 M. Hoefer et al.

Global Signals. In constrained delegation the existence of global signals, i.e., a set of signals
that every state has access to, does not substantially change the receiver’s problem (cf. [31, pg.
103]). Specifically, if some global signal o is accepted, then o will be sent from every single state
of nature, resulting in a trivial solution with receiver utility g4. If all global signals are rejected,
then the receiver is left to solve the problem on the remaining, possibly arbitrary state-signal
graph H.

CoROLLARY 10. For any constant ¢ € (0, 1), it is NP-hard to approximate constrained delegation
with global signals within a factor of (2 — ¢).

4.2 Approximation Algorithms

By Theorem 8 there is no hope for a (2—¢)-approximation algorithm for the constrained delegation
problem. Proposition 7 provides a matching guarantee.

As a consequence, we examine in which way instance parameters influence the existence of
polynomial-time approximation algorithms. In particular, the maximum degree d is a main force
that drives the hardness result. For the case of degree at most d, we give a 2 — # approximation
algorithm via LP rounding. When d = 2, we improve upon this by giving a 1.1-approximation
algorithm via SDP rounding.

4.2.1 Better Than 2 via LP Rounding. For instances with degree-d-states we take the better of
(1) rounding the natural linear program for constrained delegation and (2) the trivial scheme of
Proposition 7.

THEOREM 11. For constrained delegation with degree-d states there is a polynomial-time (2 — %)-
approximation algorithm.

Proor. Consider the following integer program for constrained delegation (cf. [15, 31]):

max Z coqo, (1a)
6ecO
s.t. Z Yo > cp, forall@e®y, (1b)
geN(0)
> Yo < INO)I(1-cp) forall 0 € O, (1c)
seN(6)
Vo € {0,1},forallo € X and ¢y € {0,1},forall 6 € ©. (1d)

The variable i/, encodes whether the action is accept or reject for signal 0. The variable ¢y encodes
whether the receiver makes the correct choice when the state of nature is 0. Constraint (1b) states
that if 6 € ©4, then she cannot make the correct choice when she rejects all signals available from
0. Constraint (1c) states that if 6 € Og, then making the correct choice means rejecting all signals
available from 0; the |N(0)| term ensures that the constraint can still be satisfied even when ¢y = 0.

Our algorithm first solves the linear relaxation of this integer program; let xﬁo and ¢g be the
fractional optimum. We round this solution by (independently) setting ¢/, = 1 with probability
1}0, and 0 otherwise. We can optimally pick cy given the i/,;’s. The rounded solution is feasible by
definition; we show that it is a good approximation to the optimal LP value, i.e., > gco Coqo-

Let G = m Y.eo, €9q0 and B = @ 2.0<oy €oq0 be the average contribution to the LP
objective from the acceptable and rejectable states, respectively. The LP value is G|©4| + B|Og|.
We start by showing the following lower bound on the expected value of the rounded solution:

Lemma 12. E[Sgeo cogo] = L4l + gr(1 - d) + dB|©k|.
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Algorithmic Persuasion with Evidence 12:11

Proor. First, consider a state 8 € ® 4. The probability that ¢y = 1 is at least the probability that
we rounded one of the i/, variables to 1, for o € N(6), i.e.,

Pr[cg:l]zarenﬁf(e)%zll\fc(—eﬁl_% , ()
where we used the fact that ¢y satisfies Constraint (1b). For a state 6§ € Og, the probabil-
ity that cg = 1 is exactly the probability that none of its signals were selected, which is
Moeno)(1 = Vo) 2 1= X peno) Vo Thus,

Prlco=1]>1- Z Yo > 1— [NO)|(1-¢g) > 1—d+déo, 3)
oceN(0)

where we used the fact that ¢y satisfies Constraint (1c). Adding up Equations (2) and (3), the
expected value of our rounded solution is

Z coqo

06

E

¢ G|e
> 3 L N o1 —d+diy) 2 Odl 4 r-ay+aBlogl. o
d d
0€0 4 0ecOr

Our final algorithm, i.e., the better of the trivial scheme and the rounded LP solution, has
expected value at least max{qa, qr, E[>gco coqo]}. We have that

Z coqo

1
(Zd - 3) max {qA,qR,E

}z (d—%)qA+(d—1)qR+E

o

0O 0O
Lemr;a 12 (d B é) qa+ (d- 1)qR + G|O4| + qR(l —d) + dB|©g]|
(G104]<an) dG|®4| + dB|Og,
which is d times the value of the optimum fractional value of the LP. The theorem follows. O

4.22 Better Than 2 via Semidefinite Programming. In this subsection we give a 1.1-
approximation algorithm for constrained delegation with degree-2 states, where every state of
nature 0 has at most two allowed signals, o, and o,,. The approach stems from an observation that
the problem belongs to the class of constraint satisfaction problems (CSPs); we make use of
the toolbox for SDP rounding in approximating CSPs (e.g., [13, 16, 25]).

Consider the integer program (4a) for our problem below. We assume w.l.o.g. that every state
has exactly two adjacent signals; if there is a state § with a single neighbor o, then we can add
a parallel edge (0, 0) in H and the analysis remains valid. Note that the integer program here is
not the same as the one used in the previous subsection. An intuitive reason for the change is that
the variables ¢y there are redundant: Given {{; }c3, the values of {cy}pco are already fixed. In
particular, each ¢y can be expressed as a degree-d polynomial® in {{/, }sen(e), Which is exactly
how the integer program below is written,

1 1
max 7 Z (3 —xi —xj — xixj)qe + " Z (1 +x; + x5 +xix5)q9. (4a)
x€{-1,1} 0=(01,07)€04 0=(01.07)<Or
In the program above x; = —1 is interpreted as accepting when the signal is ;. One can check that

% (3 —Xi—Xj — xl-xj) is equal to 1 iff at least one of x;, x; is —1 (and zero otherwise), i.e., a state of

. . . . . Yo;+Vo;
Note that linear functions do not suffice to express cg. In particular, if we rewrite (1c) for @ = (o7, oj)ascg < 1— RALRAA N

then it is still possible to have ¢y = 1/2 when ¢, = 1, Yo, = 0.
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12:12 M. Hoefer et al.

nature 6 € ©4 contributes to the objective only when at least one of its allowed signals is accepted.
Similarly, i(l + x; + xj + x;x;) is equal to 1 if and only if both x; and x; are equal to 1.

We will solve the semidefinite relaxation of this program, and give a rounding algorithm. The
SDP is the following, where we replaced x; by w;, to distinguish these vector variables from the
variables of our integer program above,

1
max — Z (3—wi-wo—wj-Wo— W - Wj)qp
0=(0,0;)€0 4
1
+ = Z (14 w; - wo + wj - wo + Wi - Wj)qo, (5a)
0=(0;,0;)€OR

st. w;-w; =1 forallie[m]uU{0}, (5b)
wi-wo+Wwj-wo+w;-w; >~-1 foralli,je [m], (5¢)
—wi-wo+wj-wo—w;-w; >-1 foralli,je[m], (5d)
—wi-wo—wj-wo+w;-w; >-1 foralli,je[m], (5e)

w; € R™1 foralli e [m]U {0}.

Constraint (5b) is standard. Constraints (5¢)-(5¢) encode the triangle inequalities, which are
satisfied by every valid solution to the original program; these strengthen the relaxation a bit
(see [13, 25]). Let Vspp denote the optimal value of this SDP. We generally cannot find the exact
solution to an SDP, but it is possible to find a feasible solution with value at least Vspp — € in time
polynomial in 1/e (see Alizadeh [2]). In our analysis we will (as is typically the case) ignore the €
factor as it can be made arbitrarily small given sufficient time.

It is known that the SDP written above provides the optimal approximation achievable in poly-
nomial time for any 2-CSPs [27, 28] including our problem, assuming the Unique Games Conjec-
ture (UGC). However, a generic rounding algorithm from this line of work (see, e.g., [28]) does not
give a concrete approximation ratio. Below, we describe a specific family of rounding algorithms
for which we can provide the concrete approximation ratio of 1.1.

Rounding Algorithm. Given solution vectors {wp, wy,...wy}, w; € R™*1 for this SDP we
produce a feasible solution x; € {-1,1} (for i € [m]) to the original integer program as follows.

Let & = wy - w;, and w; = M_l—gl‘;:" be the part of w; orthogonal to wy, normalized to a unit vector.

Our rounding algorithm mostlylfollows the rounding procedure of Lewin et al. [25], which they
call THRESH ™. First, pick a (m + 1)-dimensional vector® r ~ N(0,1) r € R™"!, Then, set
x; = —1 (which corresponds to accepting signal o;) if and only if w; - r < T(¢;), where T(.) is
a threshold function, and set x; = 1 otherwise. Specifically, T(x) = d)_l(l_VT(x)), where ®71(.) is
the inverse of the normal distribution function, and v : [-1,1] — [-1, 1] is a function. Later in
the analysis—and this is essentially the point in which various SDP rounding methods diverge
from each other, e.g., see [32] for the different choices for MAX-2-SAT and MAX-2-AND—we will
optimize over a family of v(.), exploiting structure in our problem, to improve our approximation
ratio.

Generic Analysis. We now derive a generic analysis for THRESH ™ algorithms; note that these
are similar arguments as in [3, 25]. However, in the end, we will pick a different function v than
previous works, which results in better approximation ratios for our problem.

3In other words, the ith dimension r; is sampled independently from a Gaussian with zero mean and variance one.
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Algorithmic Persuasion with Evidence 12:13

First, notice that w; - r is a standard N(0, 1) variable, and therefore by the choice of T(.) we have
that Pr[x; = —-1] = l_v—(fi), which implies that

2
E[x;] = v(&). (6)

Now, we need to also analyze the quadratic terms. Let I (y1, g2) = Pr[X; < t; and X, < t,], where
=Y %), and X1, X, € N(0, 1) with covariance ¢ (in other words, I is the bivariate normal
distribution function with covariance c, with a transformation on the input).
p=Ei&;

V=g 1-e2
random variables with covariance p. Thus, the probability that w; - r < T(&;) and w; - r < T(&))
(i.e., both x;, x; are set to —1) is exactly I[5(v(&;), v(£;)). The probability that x; = x; = 1 is equal to
T5(=v(&:), —v(£))). Austrin [3, Proposition 2.1] shows that Tc(—p1, —p2) = Te(p1, pa) + p1/2 + pia /2.
Using this fact we can calculate the probability that x; = x;, which, in turn, gives that

E [xix;] = 40 (v(&), v(§)) + v(&) + v(§) - 1. ™)

With Equations (6) and (7) in hand we can calculate the expected value of our rounding algo-
rithm (i.e., the expected value of (4a)) for every choice of v, and compare it against the value of
the SDP in (5a). Specifically, we will aim for a term-by-term approximation. Define the following
quantities:

Let p = wywj and p = w;w; = Observe that the products w; - r and w; - r are N (0, 1)

3-&i-&-p
4= 2v(&) — 2v(&)) — 4L (v(&), v(E))
1+&+8+p
2v(&) + 2v(&)) + 4T(v(&), v(&)

(OR (&L E,p) =

P& g p) =

and let

(9% (v) = min £9R(&;, &, p) and ANP(y) = min f’;\ND(gi, &, p),
&85 p &8, p

where the minimization is over all choices of ¢;, &;, p € [~1, 1] that satisfy the triangle inequalities

(Constraints (5¢)—-(5€)). It is now straightforward to see that the term-by-term analysis implies that,

for any choice of v, our approximation ratio is at most max{¢9R(v), £ANP(v)}.

Choosing v and Putting Things Together. We are left to choose the function v that results in the
smallest approximation ratio max{£9R(v), £ANP(v)}. We consider a rounding function of the form
v(y) = a - y + p for parameters «, ff to be chosen. Using extensive computational effort, we found
that @ = 0.8825 and f = 0.0384 perform well. Once we have a choice for « and f, it remains to
prove the approximation ratio.

We have a computer-assisted proof showing that the approximation ratio is at most 1.1; our
computer-based proof approach is similar to that of [32]. Roughly speaking, we divide the cube
(&, &, p) € [-1, 1] into a certain number of subcubes. For each subcube, we (numerically) compute
an upper bound to max{¢9R(&;, &, p), t4NP(&;, &, p)}. If this upper bound is already at most 1.1,
then we are finished with the subcube. Otherwise, we divide it further into a certain number of
subcubes. By continuing this process, we eventually manage to show that for the whole region
[-1, 1]° that satisfies the triangle inequalities, the ratio must be at most 1.1, as desired. (The smallest
subcube our proof considers has edge length 0.00078.)

Comparison to Prior Work. As stated earlier, our algorithm, with the exception of the choice
of v, is similar to [25] and the follow-up works (e.g., [3, 32]). However, perhaps surprisingly, we
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12:14 M. Hoefer et al.

end up with a better approximation ratio than the Max 2-AND problem,* whose approximation
ratio is known to be at least 1.143 assuming the UGC [4]. To understand the difference, recall
that Max 2-AND can be written as max 4—11 Z(i’j’bi’bj)(l +bix; +bjxj + b;bjx;xj) where b;, b; € {1}
(representing whether the variable is negated in the clause). This is very similar to our problem (4a),
except that Max 2-AND has the aforementioned b;, b;-terms for negation. It turns out that this is
also the cause that we can achieve better approximation ratio. Specifically, these negation terms
led previous works [3, 4, 25, 32] to only consider v that is an odd function, i.e., v(y) = v(-y) for
all x € [-1,1]. For example, Austrin [3] considers a function of the form v(y) = « - y. We note
here that, due to the aforementioned UGC-hardness of Max 2-AND, we cannot hope to get an
approximation ratio smaller than 1.143 using odd v. Nonetheless, since we do not have “negation”
in our problem, we are not only restricted to odd v, allowing us to consider a more general family
of the form v(y) = a - y + f for f # 0. This ultimately leads to our better approximation ratio.

4.3 Optimal Constrained Delegation in Polynomial Time

4.3.1 Unique Accepts and Rejects. Let us briefly consider the cases in which we have a unique
acceptable or a unique rejectable state. Constrained delegation with unique rejects is a special
case of foresight, since in this case, for every acceptable state, every incident signal is minimally
forgeable. Hence, an optimal scheme can be found in polynomial time [31]. For unique accepts,
there is a simple algorithm to compute an optimal decision scheme.

PROPOSITION 13. For constrained delegation with unique accepts there is a polynomial-time algo-
rithm to compute an optimal decision scheme /™.

Proor. Since there is only one acceptable state 6,, an optimal decision scheme must turn at
most one signal from the ones incident to 6, into an accept signal (or simply reject all signals).
There are at most m + 1 such schemes that must be considered. The best one for the receiver is an
optimal decision scheme for the instance. ]

4.3.2  Proof of Membership. When the set of signals is the power set of ©, and o € N(0) if and
only if 0 € o, the receiver’s problem is trivial: Reject all signals, except signals corresponding to
singleton sets {6}, for 8 € ©. This scheme is obviously optimal, an in fact results in expected utility
equal to 1 for the receiver.

ProprosITION 14. For constrained delegation with proof of membership an optimal decision scheme
can be found in polynomial time.

4.3.3 Laminar States. For laminar states, we can compute the optimal decision scheme in poly-
nomial time using dynamic programming.

THEOREM 15. For constrained delegation with laminar states there is a polynomial-time algorithm
to compute an optimal decision scheme .

Proor. For laminar states, the neighborhoods of signals N(¢) form a laminar family of states.
For the rest of the proof, we assume that the state-signal graph H is connected, since otherwise
we can apply the algorithm separately to each connected component of H. Moreover, if two sig-
nals o, 0" have the same neighborhood N(c) = N(¢’), then w.lo.g. ¢* treats them similarly with
Y*(o) = ¥*(0’). Hence, for the rest of the proof we assume that every signal ¢ has a unique

neighborhood N(o).

“This is the problem where we are given a set of clauses, each of which is an AND of two literals. The goal is to assign the
variables as to maximize the number of satisfied clauses.
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Since H is connected and signal neighborhoods are unique, we can construct a new graph T =
(%, Er) of signals with edge set Et as follows. There is a directed edge (oy,, ay) iff N(o7) € N(op)
and there is no other signal o with N(o7) € N(o) € N(op). Since the sets are laminar, the graph T
is a rooted tree, where the global signal oy with N(oy) = © is the root of the tree.

For any signal o, if the optimal decision scheme sets /*(c) = 1 and makes ¢ an accept signal,
then we can assume that the sender sends o for every state in N(o). As a consequence, we can
assume w.l.o.g. that all descendants of ¢ in T are accept signals in {* as well.

We use this insight to compute an optimal scheme bottom-up in the tree T rooted in oy. For
any signal o, we restrict attention to the subinstance H, given by all signals in the subtree T,
rooted at o and the stats in N(o). Consider optimal scheme for H,;. There are two options: (1) o is
an accept signal, and so are all signals in T,. (2) o is a reject signal. In this case, all states 6 with
N(0)NH, = {o} would be rejected. For all other states 0 we can assume that o is never sent by the
sender, since every descendant (reject or accept) signal is weakly preferred by the sender. Hence,
in case (2) we can recurse and apply the optimal decision schemes for the instances given by the
subtrees T, rooted at the child signals ¢’ of o.

The recursive procedure now starts at the leaves of the tree and computes the optimal choice
for the subinstances with single signals. Then, the procedure works bottom-up in the tree. For o
it compares (1) the all-accept scheme to (2) the combination of the optimal schemes computed for
the subtrees rooted at the children and a reject decision for o. The better of these two schemes is
the optimal decision scheme for subtree T,;. The resulting algorithm computes an optimal decision
scheme in the instance with laminar states. The overall running time is polynomial in the size of
the instance. O

4.3.4  Laminar Signals. For laminar signals, we also give a polynomial-time algorithm to com-
pute the optimal decision scheme using dynamic programming.

THEOREM 16. For constrained delegation with laminar signals there is a polynomial-time algorithm
to compute an optimal decision scheme *.

ProoF. We again rely on dynamic programming and a tree structure. Observe that there are
subtle differences to the approach taken in the previous theorem. We again assume that the graph
H is connected, since otherwise we can apply the observations for each component separately.

Consider a tree graph T = (Vr, ET) defined as follows. Each node v € Vr corresponds to a subset
> C X of signals that represents a neighborhood N(6) for at least one state 0 € © (note there can
be several states 0, 0" with N(0) = N(0’)). The vertices of the tree are ordered top-down w.r.t. the
subset relation of the associated signal sets. A direct child of vertex v satisfies X, C 2, and there
is no vertex v” € V with ¥, € ¥,» C XZ,. Due to connectedness of H and laminarity of signal
sets, the root vy of T has %, = X.

For each node v, we define a set of high signals EZ C X, as follows. Consider the subtree T,
rooted at v with vertex set V;,. Then =L, = 2, \ (Uyev,.uzo Zu), i€, the signals in 3! are not
present at any descendant of v (but, due to the definition of T, at all ancestors of v). Note that X!
can be empty. Moreover, every signal ¢ € ¥ is a high signal for exactly one vertex. We say this
vertex is the low vertex of o.

First consider the decision scheme with (o) = 0 for all ¢ € 3. Now suppose we change a set
> 4 to become accept signals. For every low vertex v of an accept signal, all states associated with v
and ancestors of v now have an accept signal in their neighborhood. Consequently, we can w.l.o.g.
assume that all high signals of ancestors of v are also accept signals. Put differently, w.l.o.g. the set
of low vertices of 3 4 is“upward closed” in the tree. This is the main structural property that drives
our dynamic programming algorithm.
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The algorithm works bottom-up in the tree. At each node v we compute schemes for the high
signals in the subtree T, rooted at v. More formally, the algorithm computes the best scheme
(denoted ;) for the instance given by T, in which we restrict to states with neighborhoods rep-
resented by nodes in T, and the signals that correspond to high signals of nodes in T,. In addition,
the algorithm maintains the best scheme (denoted 1/2) for the instance T, which contains at least
one accept signal.

First, suppose there is a high signal at node v. Then either (1) the high signal at v is a reject
signal (and, by upward closedness, all high signals in the subtree T;, rooted at v are reject signals),
or (2) the high signal at v is an accept signal. In case (1), the optimal signaling scheme on the high
signals in Ty, is Y/g. In case (2), the optimal signaling scheme results from making the high signal at
v an accept signal and using the optimal signaling scheme ¢/, for every subtree rooted at a direct
child v’ of v. Due to the structural properties, the scheme computed in case (2) is 2. The better
of the two schemes from cases (1) and (2) is the optimal scheme ¢/;,.

Second, suppose there is no high signal at node v. Then either (1) all high signals in the subtree
T, rooted at v are reject signals or (2) at least one high signal in T,, is an accept signal. In case
(1), the optimal signaling scheme on the high signals in T, is . In case (2), we consider adding
the optimal schemes ¢/, for every direct child v” of v. Note that if none of these optimal schemes
contains an accept signal, then we violate the assumption of case (2). In this case, we consider
the subtree T, such that the utility difference between ¥, and v, is smallest and switch to
¥4 in this subtree. Due to the structural properties, it is straightforward to see that the scheme
computed in case (2) is 5. The better of the two schemes from cases (1) and (2) is the optimal

scheme ¥/;,.
The resulting algorithm computes an optimal decision scheme in the instance with laminar
signals. The overall running time is polynomial in the size of the instance. ]

5 Constrained Persuasion

Let us now turn to the constrained persuasion problem. The sender first commits to a signaling
scheme ¢, which she then uses to transmit information to the receiver, once the state of nature
is revealed. Given that the sender has commitment power and the receiver knows ¢, the receiver
picks action A if and only if conditioned on receiving signal o, the expected utility of A is more

thanR, i.e.,
D o)=Y e0.0)

OeN(o)NO 4 6eN(o)NOR

or, equivalently, 2 - % gn(oyne,, #(6.0) = Soen(o) 0(6.0).

In this case, we say that o is an accept signal, otherwise we call ¢ a reject signal. An optimal sig-
naling scheme ¢* maximizes the expected utility of the sender, i.e., the total probability associated
with accept signals. Note that if both accepting and rejecting are optimal actions for the receiver,
then we assume that she breaks ties in favor of the sender (so, in our case, accept). This mild as-
sumption is standard in economic bilevel problems (e.g., when indifferent between buying and not
buying, a potential customer is usually assumed to buy) and is often without loss of generality.
This way we avoid obfuscating technicalities in the definition of optimal schemes ¢*.

We study the computational complexity of finding ¢* and polynomial-time approximation algo-
rithms. In general, approximating ¢* can be an extremely hard problem, even in the constrained
persuasion problem. Our first insight in Section 5.1 is that the main source of hardness in the prob-
lem is deciding on the optimal set of accept signals. We then provide a simple 2n-approximation
algorithm and an n'~¢-hardness in Section 5.2. The PTAS and the matching strong NP-hardness for
instances with unique accepts as well as the efficient algorithm for unique rejects are discussed in
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Section 5.3. The section concludes with the discussion of instances with global signal or laminarity
properties in Section 5.4.

5.1 Signal Partitions

A signaling scheme ¢ partitions the signal space ¥ into (24, 2g), in the sense that the receiver
takes action A if and only if she gets signal ¢ € 34 (and R for ). Determining this partition of
the signal set turns out to be the main source of computational hardness of finding ¢*: Given an
optimal partition of the signal set, the reduced problem of computing appropriate optimal signaling
probabilities is solved with a linear program.

We prove this result in a general case of the persuasion problem, in which the receiver has an
arbitrary finite set A of actions. Moreover, sender and receiver can have utilities us, u, : AXO — R
that yield arbitrary positive or negative values for every (state of nature, action)-pair.

PROPOSITION 17. Given a partition P = (3,)qea of the signal space such that the receiver’s best
action for a signal o € X, is action a, an optimal signaling scheme ¢}, for the general persuasion
problem that (1) implements these receiver preferences and (2) maximizes the sender utility, can be
computed by solving a linear program of polynomial size.

Proor. Given P = (2;),e4, consider the following linear program (8),

Max. D7 > > Xoo-usa6)

acA o€, eN(o)
s.t. Z X0.c - Ur(a,0) = Z x0,0 - ur(a’, 0) forallae A,o € 34,a’ € A

6eN(o) 0eN(o)
X6,6 = 96 forall 0 € ©
ceN(0)
X6 = 0 forall o € 3,0 € N(o0).

(®)

For each 0 € ¥, and every action a’ # a we must satisfy that E[u,(a,0) | ] > E[u,(da’,0) | o],
encoded by the first constraint. The other two constraints encode the feasibility of the scheme.
Subject to these constraints, the objective is to maximize the expected utility of the sender. An
optimal LP-solution x* directly implies an optimal signaling scheme ¢},(6, o) = x;a. O

5.2 A 2n-Approximation Algorithm and Hardness

Going back to constrained persuasion with binary actions, we start by giving a simple 2n-
approximation algorithm. First, we give a useful benchmark for the optimal scheme.

LEMMA 18. An optimal signaling scheme ¢* yields a sender utility of at most min{1, 2q4}.

Proor. The upper bound of 1 is trivial. ¢* partitions the signal space into (X4, 2g), the accept
and reject signals, respectively. The expected utility of the sender is

Z Z ¢*(0,0) < Z Z 2-¢"(0,0) <2 Z qo =2-qa. O

g€Xp 0eN(o) 0€EXA OEN(0)NO 4 0O,

Our simple algorithm considers the m partitions with a single accept signal 4 = {c}, for every
o € X. For each such partition, the algorithm determines an optimal scheme and then picks the
best one, among all m partitions. Instead of solving the LP of Proposition 17, given a proposed
partition we proceed as follows. Assign as much probability mass from ®4 N N(o) to o and at
most the same amount from ©g N N(o)—this ensures that ¢ is an accept signal. The remaining
probability mass is assigned arbitrarily to other signals. Note that if this is impossible, then there
is no scheme that makes ¢ an accept signal.
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PRoOPOSITION 19. For constrained persuasion there is a 2n-approximation algorithm that runs in
polynomial time.

PRrRoOF. Suppose 6’ € B4 is an acceptable state from which ¢* assigns the largest amount to
accept signals, i.e., 0" = argmaxgee, Xses,nn(9) ¢ (0, 0). Clearly, the optimum accumulates on
the accept signals at most n times this probability mass from the set of acceptable states, and at most
the same from rejectable states. Hence, 3., c5,nn(o) ¢ (0',0) < qo is at least a 1/(2n)-fraction of
the optimal sender utility.

Consider the accept signals 3 4 in ¢* and any such signal ¢’ € N(0") N 2 4. When our algorithm
checks the partition with ¢’ as the unique accept signal, it finds a feasible scheme, since the opti-
mum scheme makes ¢’ an accept signal and the algorithm only assigns more probability from © 4
to o’. The value of this solution is at least gg'. ]

In addition to this simple algorithm, we show a number of strong hardness results for con-
strained persuasion. The proofs of the following two theorems are relegated to Appendix C.

THEOREM 20. For any constant ¢ > 0, constrained persuasion is NP-hard to approximate within a
factor of n'~¢, even for instances with degree-2 states and degree-1 accepts.

For instances with degree-1 rejects a similar result follows with an adjustment of the reduction.

THEOREM 21. For any constant ¢ > 0, constrained persuasion is NP-hard to approximate within a
factor of n'~¢, even for instances with degree-2 states and degree-1 rejects.

In contrast to constrained delegation, the optimal signaling scheme for constrained persuasion
does not necessarily have the “credibility” property, i.e., it might not represent a best response
against the induced behavior of the receiver in the game without commitment power. As such, it
is a natural question to ask for the best signaling scheme that enjoys this property: Compute the
best signaling scheme of any Bayes—Nash equilibrium of the game without commitment power.
We term this problem constrained persuasion with equilibrium schemes.

Inspecting the reduction of Theorem 21, we observe that in each of these instances the optimal
signaling scheme has this property, i.e., it is a best response against the induced action scheme of
the receiver. As such, constrained persuasion with equilibrium schemes is also NP-hard to approx-
imate within a factor of n'~¢, even for instances with degree-2 states and degree-1 rejects.

COROLLARY 22. For any constant ¢ > 0, constrained persuasion with equilibrium schemes is NP-
hard to approximate within a factor of n'~¢, even for instances with degree-2 states and degree-1
rejects.

5.3 Unique Accepts and Rejects

5.3.1 Unique Accepts. In this section, we examine instances in which there is only a single
acceptable state, for which we prove NP-hardness and give a PTAS. It will be convenient to state a
lemma that allows us to get a better handle on the sender utility in an optimal signaling scheme for
a given signal partition. This lemma will be helpful in both our hardness and algorithm analyses.

To state this lemma, we need some additional notation: for every subset 3 C 3, we use @R(i)
to denote {# € O | N(§) C 5}; when ¥ = {o} is a singleton, we write ©g(c) in place of Or({c})
for brevity. Moreover, let N(2) denote Uy es N(0). The lemma can now be stated as follows:

LEMMA 23. Suppose that there exists a unique accept state 0,. For any partition P = (24,2R) of
the signal space such that 3 4 # (0, we have

(1) There exists a signaling scheme ¢ such that every signal in X 4 is accepted and every signal in
g is rejected by the receiver if and only if 24 C N(6a) and Ypcops,) 90 < 96,-
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(2) When the above condition holds, any optimal signaling scheme ¢* for the sender has utility
equal to

min 1 2qqg,, Z qo ¢
O0eN(Z4)

and, such a signaling scheme can be computed in polynomial time.

We remark that the algorithm for finding ¢* in the above lemma is a simple greedy algorithm
that tries to “put as much probability mass from rejectable states as possible” in X4 and then
use the probability mass of the acceptable state 6, to “balance out” the mass from the rejectable
states, so that eventually the signals in ¥ 4 are accepted. This is in contrast to the generic linear
program-based algorithm in Proposition 17. The simpler greedy algorithm allows us to consider
more concrete conditions and exactly compute the utility as stated in Lemma 23.

PrROOF OF LEMMA 23. (1) (=) First, assume that there is such a signaling scheme ¢. Clearly,
every signal not in N(0,) must be rejected, which implies that X4 € N(0,). Furthermore, for
all o € 34, we must have ¢(0a, 0) > 2 pen(o)neg ¢(0; o). Summing up over all o € 34 gives

0.2 Y, Y. 0.0
g€Xp 0eN(0)NOR

>3 D, wlo= Y Y eo= )

0€24 0€OR(ZA) 0€OR(Za) 0E€ZA 0€OR(Z4)

(<) Assume that 0 # X4 C N(0,) and Ygcopz,) 90 < 9o,- We may construct a desired
signaling scheme ¢ as follows. First, we assign ¢(0, o) arbitrarily for all 8 € Og(Z4). Then,
we assign ¢(0,, o) such that ¢(0,, o) = 0forall o ¢ ¥4 and that ¢(04,0) > Ypcoy,) (0, 0)
for all 0 € X 4. The former is possible because X4 # 0 and the latter possible because
20cor(a) 90 < qo,- Finally, for each 0 € O \ Or(24), assign ¢(0,0) = 0 forall o € 34. It
is straightforward from the construction that this ¢ is a desired signaling scheme.

(2) First, we will show that any signaling scheme ¢ has utility at most min{2qq,, X pcn,) 96}
for the sender. Observe that the upper bound 2qy, follows trivially from Lemma 18. Thus, it
suffices for us to prove that the utility is at most 2 gen(s,) go- To do so, let us rearrange the
utility as follows:

>, D el Y Y el.0)= ). q

0€Xa 0eN(o) OeN(Z4) c€N(O) 0eN(Z4)
Finally, we will construct a signaling scheme ¢* with utility equal to min{2qq,, X.gen(s,) 96 }-
The algorithm is a modification of the algorithm from the first part, and it works in four
steps:
— For every 0 € Or(24), assign ¢(0, o) arbitrarily.
— For every 0 € (N(24) N Og) \ Or(Z4), assign ¢(0, o) so that

Z ¢(0,0) =min{qp,, Z qe

g€Xp OeN(0)NOR OeN(ZA)NOR

(Note that this step is possible because Y. gceyz,) 90 < 90,-)

— Assign ¢(0,, o) so that ¢(0,, 0) = 0 for all o ¢ 34, and that (04, 0) > Y gen(o)no, ©(0,0)
for all 0 € 4. (Note that this is possible because, from the previous step, we must have
Yirex, 2oeN(onex P(0.0) < qo,.)

— All other remaining assignments are made arbitrarily to turn ¢ into a feasible signaling
scheme.
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It is straightforward to check that ¢ is the desired signaling scheme with utility equal to

qp, + minqqo,, Z qo ¢ = minA 2qg_, Z qo (- a
OeN(ZA)NOR O0eN(Z4)

With Lemma 23 ready, we now prove NP-hardness of the problem.
THEOREM 24. Constrained persuasion with unique accepts is NP-hard.

Proor. We reduce from the MAX-K-VERTEX-COVER problem, where we have a graph G = (V, E).
The goal is to choose a set V' of k vertices to maximize the number of edges incident to at least
one vertex in V’. For every vertex v € V, let E(v) be the set of incident edges, then we try to pick
a subset V' of k vertices to maximize | |, ¢y E(v).

For each edge e € E, we introduce a rejectable state 0, with gg, = WIIHHZIE\ For each
vertex v we introduce a signal o,,. The graph H between states and signals expresses the incident

property of edges and vertices. In addition, for each signal o, we introduce auxiliary rejectable
|E|+1

. . . — (IVI+R)(E[+1)+2]E]*

the unique acceptable state 0, is incident to all signals and has probability

a k(|E| + 1) + |E|
D0 = (VI + (E[+ 1) + 2[E]

states that have o as their unique signal. Each auxiliary state 6 has gy = Finally,

From Lemma 23, the optimal signaling scheme has sender utility equal to

rréaxmin 2q0,, Z qo ¢,
4 0EN(EA)

where the maximum is over non-empty >4 C X such that }gcg )90 < qo,- Notice that, in
our construction, this condition is satisfied iff |[X 4| < k. This means that X4 = {0, }, <y for some
subset V’ of size at most k. It is also not hard to see that

. (V' +K)IE| + 1) + | Upev E()|
min 4 2qg,,, Z qo( = Z qo = .
A A (VI+ K0+ D)+ [E]
In other words, the utility is maximized iff V' is an optimal solution to the instance of MAX-K-
VERTEX-COVER. Since the latter is NP-hard, we can conclude that constrained persuasion with
unique accepts is also NP-hard. ]

We next give a PTAS for the problem. Before we formalize our PTAS, let us give an informal
intuition. Observe that the condition in Lemma 23 implies that qg, > X, e5, (ZQEGR(U) qp)- This
latter constraint is a knapsack constraint. One generic strategy to solve knapsack problems is to first
brute-force enumerate all possibilities of selecting “heavy items,” which in our case are the signals
with large ¥ pco, () 96- Then, use a simple greedy algorithm for the remaining “light items”. Our
PTAS follows this blueprint. However, since neither our constraints nor our objective function are
exactly the same as in knapsack problems, we cannot use results from there directly and have to
carefully argue the approximation guarantee ourselves.

THEOREM 25. For constrained persuasion with unique accepts, for every fixed ¢ € (0,1], Algo-
rithm 1 runs in time m©/9n%W and outputs a (1 + ¢)-approximate solution.
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ALGORITHM 1: A PTAS for Constrained Persuasion with Unique Accepts.

10

Input: Graphs H with a single acceptable state 04, and ¢ > 0.
Output: Signaling scheme @1 G.
SetZs, = {O' ex | 20cOr(c) 96 = sqga} and X<, =2\ Z5,.
Initialize pa1G as an arbitrary signaling scheme.
for every (possibly empty) subset S C >, of size at most 1/¢ do
LetT =S5
while > pco,(1) 90 < 90, do
If the utility of LG is less than min{2qq,_, X9 n(T) 90} then let a1 be the optimal
signaling scheme consistent with signaling partition X4 = T, which can be computed in
polynomial time due to Lemma 23.
IfT =3<, N N(0,), break from the loop.
Otherwise, add an arbitrary signal from (X<, N N(6,)) \ T to T.

PRrOOF. It is clear that our algorithm runs in time m®/9)n®M Let ¢* be any optimal signaling

scheme, with utility OPT for the sender. We prove that the utility of g1 is at least (1 — 0.5¢)OPT.

Without loss of generality we assume that the utility of ¢* is non-zero. Now, let (%, ¥%) denote

the signal partition of ¢”; since the utility of ¢* is non-zero, we must have % # 0. Furthermore,
the first item of Lemma 23 implies that ¥% N ¥, must be of size at most 1/¢. As a result, our
algorithm must consider S = (2% N X.) in the for-loop (3). For this particular S, let T” denote the
largest T for which Line (8) is executed. We next consider two cases, based on whether or not we
have T = SU (Z<, N N(0,)).

—Case . T" = SU (3<¢ N N(6,)). Notice that T 2 3. Lemma 23, implies that the utility of
@aLGc must be at least OPT.

—Case II: T" # SU (<. N N(6,)). This means that there exists a signal ¢* € (X<, N N(6,))
whose addition to T’ breaks the condition of the while-loop (5), i.e., qo, < Xgcop(ru(o+}) 96-
The right hand side of this inequality is equal to

Z qo = Z qo + Z qo
0eOg 0eOg 0eOg
N(O)S(T'U{c*}) NONT' #0 N(0)={c"}
= Z q0 t Z q0
OeN(T")NOR 0€OR(c*)
< Z qo + £90,,
0eN(T")NOg

where the last inequality, since ¢ belongs to X.,. Combining the two inequalities we have

> qo> (1-e)g, )

0eN(T")NOR

However, from Lemma 23, when we execute line Line (8) for T = T’, it must result in a
signaling scheme of utility

. . Ol
min 1 2qs,, Z qo ( = min 2qg,,qs, + Z qo( > (2—-€)qo,,
OeN(T) OeN(T')NOR

which is at least (1 — 0.5¢)OPT due to Lemma 18.
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Hence, we can conclude that our algorithm always outputs a signaling scheme with sender utility

at least (1 — 0.5¢)OPT. In other words, its approximation ratio is at most ﬁ <1l+e. |

5.3.2  Unique Rejects. In contrast to the case with unique accepts studied in Section 5.3 above,
the problem can be solved in polynomial time for the unique rejects case. The main insight is
that we can restrict attention to signaling schemes with at most 1 reject signal, and then use
Proposition 17.

LEMMA 26. For constrained persuasion with unique rejects there is a polynomial-time algorithm to
compute the optimal signaling scheme ¢*.

Proor. We denote the single rejectable state by 6, and its set of incident signals by >’. Note
that all signals in ¥ \ ¥’ must be accept signals. Our scheme ¢* sends deterministic signals for
acceptable states, but possibly a randomized one for 6,. First, for every acceptable state we pick
an incident signal from ¥’ if possible. Now consider two cases.

If the total probability mass of acceptable states incident to X’ is more than gy, , then when the
state of nature is 6, our signaling scheme will randomize over signals in >’ in a way that all signals
become accept signals. Consequently, all o € ¥ are accept signals. This is obviously optimal for
the sender.

If the total probability mass of acceptable states incident to X’ is less than gqg,, then it suffices
to create a single reject signal in X’. Suppose o € X’ is chosen to become the unique reject signal.
Then we can use Proposition 17 to compute an optimal signaling scheme with X = {o} and
>4 = 2\ {c}. There are at most m signals in X', hence, constructing an optimal scheme for each of
them can be done in polynomial time. Among these m schemes, the one that maximizes the sender
utility is an optimal scheme ¢*. ]

5.4 Global Signal and Laminarity

5.4.1 Global Signal. In this section, we study the natural scenario with a global signal oy € =
that can be sent from every state of nature. We think of this as a “stay silent” or “no evidence”
option. We consider the general persuasion problem (as in Proposition 17) with k = 2 actions.

THEOREM 27. For the two-action constrained persuasion problem with global signal there is a
polynomial-time algorithm to compute the optimal signaling scheme ¢*.

Proor. The main idea is that the problem can be reduced to Bayesian persuasion using Proposi-
tion 17. Consider an optimal partition (2 4, Xr) of the signal set into accept and reject signals, and
w.l.o.g. assume that oy € X 4. Given a scheme ¢ such that there is o7 € 34 with o7 # 09, we design
another scheme ¢’ that never uses ay: We set ¢’(0, ay) = ¢(0, 09) + ¢(0, 01) and ¢’(0, 01) = 0 for all
0 € O. Since in ¢’ the signal oy is never issued, w.l.o.g. we can assume that in this scheme o7 € Zg.
Moreover, in ¢’ the signal oy represents an accumulation of the accept signals o7 and oy from ¢,
so in both schemes the receiver prefers the accept action when given 0. As a consequence, both
¢ and ¢ yield the same expected utility for the sender. Therefore, by repeating this argument, we
see that there is an optimal scheme with ¥4 = {0y} and Zg = 2 \ {00 }.

Thus, we only need to consider two partitions, ({go}, 2 \ {0o}) and (2 \ {00}, ({00}). For each
of the partitions we solve the LP in Proposition 17. If the LP is feasible, then we obtain an optimal
scheme for the corresponding partition of signals. The better of the two schemes represents an
optimal scheme ¢* for the general 2-action persuasion problem with silence. ]

Proof of Membership. Proof of membership structure is a special case of the global signal
property. Here we can limit attention to |©g| signals of the form oy = {0}, corresponding to states

ACM Trans. Econ. Comput., Vol. 12, No. 4, Article 12. Publication date: November 2024.

"6Z0T ‘6 11dy uo Aysioatun) snpind Aq Areiqry [BNSIQ INDV U3 woly papeojumod



Algorithmic Persuasion with Evidence 12:23

0 € Og, as well as the global signal corresponding to ©. If g4 > g, then the optimal scheme ¢
only sends the global signal and obtains sender utility 1. Otherwise, ¢ sends the global signal for
all acceptable states, and for an arbitrary portion of g4 from the rejectable states. The global signal
is still acceptable, and therefore the sender gets expected utility 2q4. By Lemma 18 the scheme is
optimal.

PROPOSITION 28. For constrained persuasion with proof of membership there is a polynomial-time
algorithm to compute an optimal signaling scheme ¢*.

Laminar States. As outlined in the model section, we can compute the optimal signaling scheme
for each component of the state-signal graph H separately. Due to the laminarity of signal neigh-
borhoods, in each component there is a signal ¢ that has a maximal set of incident states, which
must be the all states of this component. Hence, o represents a global signal in this component.
We can apply Theorem 27 to obtain the following corollary.

COROLLARY 29. For constrained persuasion with laminar states there is a polynomial-time algo-
rithm to compute an optimal signaling scheme ¢*.

5.4.2 Laminar Signals. In contrast to laminar states, the condition of laminarity for state neigh-
borhoods does not result in a polynomial-time algorithm.

THEOREM 30. Constrained persuasion with laminar signals is NP-hard.

Proor. We reduce from the PARTITION problem. In this problem we are given n positive integers
ai,...,a,. We denote their sum by A = )7, a;. The goal is to decide whether there is a subset
Sc{1,...,n}suchthat };.ga; = A/2.

For each integer a;, we introduce a signal o;. For each signal there is a rejectable state 6; with
N(6;) = {o;} and probability qs, = 2a;/(3A). Finally, there is a global acceptable state 8,4 with
N(04) =X and qg, = A/(3A) =1/3.

If the PARTITION instance has a solution S, then we choose accept signals X4 = {o; | i € S}. We
distribute the probability mass of 84 to exactly match the mass of 8; for each i € S. In this way,
the sender obtains a utility of 2qy, = 2/3, which is optimal by Lemma 18.

Conversely, suppose the sender obtains a utility of 2gg, = 2/3. Then the signaling scheme
must assign the probability mass of 04 in a way such that it is exactly matched by the mass
of the rejectable states for every accept signal. Consequently, the set of accept signals satisfies
Yoiena 90; = 2ioex, 2ai/(3A) = A/(3A), or put differently, >, o5, @i = A/2. Hence, the set of
accept signals infers a solution for the PARTITION instance. O

We leave a non-trivial approximation algorithm for constrained persuasion with laminar signals
as an interesting open problem.

Appendices
A Missing Proofs for Constrained Equilibrium
A.1  Proof of Theorem 4

Our algorithm (see Algorithm 2 for pseudo-code) starts by adopting a normalized representation
for the utility functions of the agents. For each state 0, we set §,(0) = min{u,(A, 0), u,(R, 0)} and
adjust the utilities to u,(x, 8) — 5,(0) for both x € {A, R} in each state 6. In this way, we subtract
6,(0) from the utility of the receiver in each state 6, no matter which action is taken. Clearly, such a
shift has no influence on the preference of the receiver for choosing an action. In a similar fashion
we define §;(0) for the sender and shift the utilities u;. In the normalized representation, for each
state, an agent has positive utility for at most one action.
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ALGORITHM 2: Bayes-Nash Equilibrium for Games with Two Actions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

29

Input: Graph H, distribution g, utility functions u, and us.
Output: Equilibrium schemes (¢, ).
Compute normalized representation of utility functions
Construct initial flow network N° with edge capacities ¢® and set j < 0
Let f° be a maximum s-t-flow in N°
while there is an unsaturated edge (s, ') in N/ do
Let @é and Z]; be states and signals reachable by augementing paths from 6’, respectively
Set (o) « Aforall o € ZJC-
for 6 € Op R ﬂ@é do
L if 0 has a neighboring signal o € 3/ \ ZJC. then remove 0 from @JC

forf e ®y 4N (®\0))do '
L if 0 has a neighboring signal o € X1, then set ¢(0, o) « ¢/(s, 0)/u,(A, 0)

for each € Og N @jc do set p(0,0) «— fI(c,0)/ur(R,0) for each o € Z];
for each € ®4 N @Jc do
Set (0, 0) — FI(0,0)/ur(A,0) for each o € =7,
£(0) — ¢J(5,0) = ¥ s exi 16, 0)
if £(6) > 0 then
Pick arbitrary o € ZJ; adjacent to
L Increase (0, 0) «— (0, 0) + €(0)/ur(A, 0)

Construct network N/*1: Remove @JC and ZJ; from N/ along with all their incident edges.
Let f/*! be a maximum s-t-flow in N/+1
je—j+1
Set /(o) « Rforall o € 3/
for each 0 € ©4 N © do set p(0, 0) « (0, 0)/ur(A,0) for each o € 3/
for each 6 € O N &/ do
Set (6, 0) — fI(c,0)/ur(R, ) for each o € 3/
£(0) ¢ (6,1) = Yy esi f(0,0)
if £(0) > 0 then
Pick arbitrary o € 3/ adjacent to 0
L Increase (0, 0) «— ¢(0,0) + £(0)/ur(R, 0)

for each 6 € O do set ¢(0, ) < gy for an incident o € X as preferred by the sender

Based on the normalized utilities, let us define the following sets of states:

—0p4={0€0|u (A0 >0andus(A0) >0}
—0Oar={0€0|u(A0) >0andus(R,0) > 0}
—0Ora={0€0O|u (R 0)>0andus(A0) > 0}
—Orr=1{0€0|u (R 0)>0andus(R,0) > 0}
— 04 =04 4 UOy g, the (receiver) accept states
— O = Op 4 U Op R, the (receiver) reject states.
—0On ={0€0|u(A0) =u(R0)}

The remaining algorithm is an iterative procedure. In each round j, it uses a flow network N/ =

(s,t,©/,%/, E/, /), which is governed by the part of the graph H, for which signaling and action
schemes have not been decided yet. In NJ, there is a source s and a sink t. We start with states ©° =
© \ Oy and all their adjacent signals 3° = {o € 3 | there is {0, 0} € E with 6 € @°}. In the initial
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edge set E°, there are directed edges (s, 0) for each 6 € @, directed edges (0, o) for each {0, 0} €
(©4x=%)NE, directed edges (o, §) for each {6, o} € (£°xOg)NE and an edge (6, t) for each § € OF.

The flow network is a five-layer network, in which edges go from s to each of the accept states,
then from each accept state to every signal adjacent in H, and then from each signal to every
adjacent reject state, and then from each reject state to the sink t. The initial edge capacities c°
are given as follows. Each edge between states and signals has ¢/(0, o) = o0 and ¢/(c, §) = co. For
edges from the source c°(s, 8) = qg - u-(A, 9), for the sink c(0,t) = qp - u,(R, 0). Here we use the
normalized utility values to define edge capacities.

The interpretation of a flow is expected receiver utility. Consider a max-flow f° in N° and a
single signal o. Suppose o is sent from every state 6 € ® 4 with a probability £°(0, o)/u,(A, §) and
every 0 € O with probability f°(c,0)/u,(R, 0). Then the (unconditional) expected utility upon
receiving o for the receiver is

1%, 0) f(o,0)
E[u,(A0) | o] Prlo] = 9€§®A 4 (A 0) “up(A,0) + 9€§®R m “ur(A,0) = 9€§®A fo(e’ o),
v 0.0 /(2.0) i
E[ur(R,0) | o] -Pr[o] = 95§@A A D) “ur(R,0) + QEE@R wR.0) “ur(R,0) = QEE@)R (. 0).

Hence, by flow conservation, such an assignment yields E [u,(A, 0) | 0] = E[u,(R,0) | o], i.e., it
leaves the receiver indifferent between both choices upon receiving signal o.

In each iteration j, our algorithm checks if the max-flow leaves an edge (s, 0’) to a state 6’ €
©’ N O, unsaturated. This implies that there is a part of the graph H, in which the expected utility
from the accept side exceeds the one from the reject side. The part of the graph is identified by states
©! and 2% considering augmenting paths from 0’. This ensures that for each signal o € 2 all states

that route flow from or to o are included in ©.. Then by assigning ¢(0, o) = f7/(0, o)/u,(A, ) for
0 e @JC N®,4 and (0, 0) = f/(c,0)/ur(R, 0) for 6 € @JC N Og, we obtain a “break-even” assignment
with the same conditional expectations for the receiver utility of both actions as above.

We then have to incorporate additional probability mass from 6’ and other states in © 4, which
tilts the preference of the receiver to action A. Consequently, we assign each signal o € 3 to
Y(o) = A. If there are states 0 € @JC N ©4 that are not saturated, then we add the remaining
probability mass to an arbitrary adjacent signal from X7. This only increases the preference of the
receiver for A. For a state § € O g, we include 0 in our assignment only if all remaining adjacent
signals are in ©7. This implies that all adjacent signals (from ©/. in current and potentially previous
iterations) are accept signals. Otherwise, removing the contribution of 6 only increases the receiver
preference for A for the adjacent signals. Finally, for states § € ©4 4, both sender and receiver want
that A is chosen. As such, whenever a signal o € >/ has an adjacent state 0 € ©4 4, then we always
signal o in state 6. This can only increase the preference of the receiver for Ain o.

Now suppose the while-loop of the algorithm breaks. Since the remaining network (if any) has
no unsaturated edge (s, 0), a “break-even” assignment of (0, o) = /(0, c)/u,(A, 0)for 0 € @.noe,
and ¢(0,0) = f/(c,0)/u,(R,0) for 0 € @{; N ©r completely assigns all probability mass of the
remaining accept states in ' N @4. As such, we can only have an excess utility on the reject side.
We simply add any excess probability from the remaining states in © N®g, arbitrarily to the signals
in /. We then turn every signal o € 3/ into a reject signal {/(c) = R. This clearly is aligned with
the preference of the receiver.

In the final step, we assign each § € ©y according to the preference of the sender for the actions
of the adjacent signals. In 0, the receiver is completely indifferent between both actions. As such,
an assignment of 6 has no influence on the preference of the receiver for an action upon receiving
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a signal. Overall, this shows that the assignment of actions i for all signals is aligned with the
receiver preferences, i.e.,  is a best response against ¢.

Now consider the incentives for the sender. For every state 8 € ©4 4 U Og 4 for which ¢(6, o)
is assigned during the while-loop, the scheme only sends accept signals. This is clearly in the
interest of the sender. For a state 6 € Oy g, (6, o) gets assigned during the while-loop only when
all adjacent signals are accept signals in 1. As such, the sender must send an accept signal in 6,
and ¢ is a best response against /. Consider a state § € @4 g assigned during the while loop. In the
iteration j, in which ¢(6, o) gets assigned, we have 6 € ©¢. Hence, every adjacent signal o either
(a) was decided to be an accept signal in an earlier iteration, or (b) becomes an accept signal in this
iteration, because o € Z{,—any augementing path to 0 can be extended along (0, o) with infinite
capacity. Hence, all adjacent signals o have /(c) = A, and ¢(0, o) sending only accept signals is a
best response against 1.

Now consider the states assigned to reject signals after the while-loop breaks. For any state
0 € Or RUB4 g, sending reject signals is in the interest of the sender, and hence ¢ is a best response.
If astate 0 € ©4 4 is assigned after the loop, then it has no adjacent accept signal, since otherwise it
would have been assigned to that signal before. As such, all adjacent signals are reject signals, and
¢ is a best response. Now consider a state § € O 4. Suppose 0 has an adjacent accept signal o and
consider the iteration j where o € Z]C‘. Then we can extend the augmenting path from o via (o, 6),
sof e @é and ¢ for 0 must have been assigned during iteration j. This is a contradiction—as such,
if 0 € Og 4 is assigned after the while-loop, then all adjacent signals must be reject signals under
. ¢ is again a best response. Finally, every state 0 € Oy is assigned according to the preference of
the sender to adjacent signals. Overall, this shows that the assignment of ¢ for all states is aligned
with the sender preferences, i.e., ¢ is a best response against ..

B Missing Proofs for Constrained Delegation
B.1 Proof of Lemma 6

In constrained delegation, for every state 6 the sender always picks the signal that maximizes
the probability to accept. Consider any optimal scheme ¢*. For every signal o € X, ¥*(o) is the
probability that the receiver accepts in /*. We set p™%* = max, /*(c) and p™" = min, ¢*(o).

Consider the set 21 = {0 € 2 | ¥*(0) = p™**} of signals with largest acceptance probability
and the set X, = {0 € £ | ¥"(0) = maxses\3, ¥ (0)} with second-largest acceptance probability
p* = ¥ (o) for 0 € %,.If 3 is empty, then we let p>"¢ = 0.

IfE[u,(A0)]| o€ 3] = Elu,(R,0) | 0 € 3], then it is profitable for the receiver to raise all
probabilities /*(o) of signals in 0 € X; to 1. After this step, the signals in ¥; remain to ones
with largest acceptance probability. Hence, this does not change the preferences of the sender
and the resulting assignment of states of nature to signals. Otherwise, it is profitable to lower all
probabilities §/* of signals in ¢ € 3; down to p?"?. As long as the probability stays strictly above
P, the signals in 3; remain to ones with largest acceptance probability. As such, this does not
change the preferences of the sender and the resulting assignment of states of nature to signals.
When the probability becomes equal to p?"?, the set 3 is joined with 3,. At this point the sender
might change the assignment due to different tie-breaking among signals in %, U 2,. However, we
assume that the tie-breaking is executed in favor of the receiver. As such, the resulting scheme
becomes even more profitable for the receiver.

Applying this procedure iteratively, we see that the probabilities for signals in X; are either
raised to 1 or lowered to p>"¢. In the former case, we proceed to 3, and apply the same argument.
In the latter case, we proceed with 3; U X, and repeat the argument. This eventually leads to an
optimal deterministic assignment with all probabilities in {0, 1}. |
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B.2 Proof of Theorem 8

In the COLORED BIPARTITE VERTEX ExpansioN (CBVE) problem, we are given a bipartite
graph (U, V, E) where the left vertex set U is partitioned into Uy U - - - U Uy; we refer to each U; as
a color class. A subset S C U is said to be colorful iff |S N U;| < 1 for all i € [k]. The goal of CBVE
is to find a colorful subset S C U of a given size such that N(S) is minimized.

In this section, we will prove NP-hardness of approximating constrained delegation (Theorem 8).
The reduction is divided into two main parts. First, we show the NP-hardness of approximating
CBVE (Theorem 34), akin to Khot and Saket’s hardness of BIPARTITE VERTEX ExXPANSION (Theo-
rem 9). This is done in the following two subsections. Then, we reduce from COLORED BIPARTITE
VERTEX EXPANSION to constrained delegation in Section B.2.3; this reduction is similar to that from
B1PARTITE VERTEX ExPANSION sketched in Section 4.1.

Since we often deal with multiple graphs in this section, we may write N instead of N to stress
that we are referring to the neighborhood set in graph G to avoid any ambiguity.

B.2.1  From Label Cover to Colored Bipartite Vertex Expansion. We will prove the following NP-
hardness of COLORED BIPARTITE VERTEX EXPANSION. We remark that this is not yet the final hard-
ness we use to reduce to constrained delegation yet; in particular, unlike Theorem 9, the NO case
can still have a/t < 1. We will “boost” the NO case so that the coefficient is arbitrarily close to 1
in the next subsection.

THEOREM 31. For any constants t € (0,1) and a > 1, there exists t = t(r,a) such that, given a
bipartite graph (U, V,E) together with a partition U = Uy U - - - U Uy, it is NP-hard to distinguish
between the following two cases:

— (YES) There exists a colorful S* C U of size k such that IN(S*)| = % -|V].
— (NO) For any colorful S C U of size at least Tk, we have |[N(S)| > £ - |V|.

To prove Theorem 31, we reduce from the Label Cover problem, a canonical problem used as a
starting point in numerous hardness of approximation results. Below we summarize the definition
and hardness of Label Cover needed for our purpose.

Definition 32 (Label Cover). A Label Cover instance £ = (A, B, E, {7 }ccg, ) consists of

— a bi-regular bipartite graph (A, B, E), which we refer to as the constraint graph,
— the label set A,
— for each edge e € E, the constraint (or projection) , : A — A.

We say that an assignment ¢ : (AU B) — A satisfies an edge (a, b) € E iff 74 p)(¢#(a)) = ¢(b). The
goal is to find an assignment that satisfies as large a fraction of edges as possible.

THEOREM 33 ([29]). For every constant ¢ > 0, there exists t = t(¢) such that, given a Label Cover
instance L with |A| = t, it is NP-hard to distinguish between the following two cases:

— (YES) There exists an assignment that satisfies all the edges.
— (NO) Every assignment satisfies less than an e-fraction of the edges.

We now prove Theorem 31. The proof is relatively simple and is based on a viewpoint of the
whole Label Cover instance L as a so-called labelled-extended graph, where the left vertex set is
A XA, the right vertex set is B X A and the edges are defined naturally based on the constraints. It
is not hard to see that, in the YES case, picking a subset according to satisfying assignment results
in a subset that does not expand much into the right vertex set. The NO case can also be argued
as expected. We formalize this intuition below.
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PrOOF OF THEOREM 31. Suppose ¢ = 72/a and t = t(¢) as in Theorem 33. Consider an instance
of Label Cover £ = (A’,B’,E’,{ne}eccr’, A) where |A| = t. We construct an instance G = (U =
Uy U---UU,V,E) of COLORED BIPARTITE VERTEX EXPANSION as follows.

—U=A"XAandV =B’ X A.
— Add an edge between (a,1,) € U and (b, Ap) € V to E iff (a, b) € E’ and (4 5)(Aa) = Ap.
—k = |A’|. Rename the vertices in A" as 1, ..., k. The ith color class is given by U; = {i} X A.

We will now prove correctness of the reduction. First, it is obvious that the reduction can be im-
plemented in polynomial time. Below, we will show completeness (i.e., the YES case in Theorem 33
results in the YES case in Theorem 31) and soundness (i.e., the NO case in Theorem 33 results in
the NO case in Theorem 31). Together with Theorem 33, these complete the proof of Theorem 31.

(Completeness). Suppose that there exists an assignment ¢* : (A’ U B") — A that satisfies all the
edges in L. Let S* = {(a,¢*(a)) | a € A’}. Since ¢* satisfies all edges in £, we have Ng(5¥) =
{(b,$*(D)) | b € B'}. As a result, we have |[Ng(5*)| = |B’| = @ as desired.

(Soundness). We will prove this contrapositively. Specifically, assume that there exists S € U of
size at least tk with [Ng(S)| < £ - |V| = a - |B’|. We will show that there exists an assignment that
satisfies at least an e-fraction of the edges in L.

For convenience, let H = (A, B’, E’), and let us denote by du and dp' the degree of each vertex
in A’ and the degree of each vertex in B, respectively.

We define T = {a € A’ | 31 € A, (a,A) € S}. Now, since S is colorful, we must have |T| = |S| >
tk = 7|A’|. Furthermore, for every b € Ny(T), let A(b) = {1 € A | (b,A) € Ng(T)}. We define a
random assignment ¢ : (A’ U B’) — A as follows:

— For every a € T, let ¢(a) be the unique label such that (a, ¢(a)) € S. (The uniqueness is due
to colorfulness of S.)

—For every b € T, let ¢(b) be a random label from A(b).

— For other vertices ¢ € (A’ UB’) \ (T U Ng(T)), let ¢(c) be an arbitrary label from A.

Observe that, for a € T and b € Ny (a), the probability that (a, b) is satisfied by ¢ is exactly ; A(lh)‘.

Hence, the expected fraction of constraints satisfied by ¢ is at least

1 Z Z 1 1 ) (ZaETZbENH(a)l)Z

>
|E/| acT bENH(a) |A(b)| |E,| (ZaET ZbENH(a) |A(b)|)
_ 1 (T| - dw)?
IE'l (Xpenu(r) Zaenmpnt [AD)])
- ' (r]A'| - dw)?
T E dp (Zpeny(r) 1AD)])
1 (r|E'])?
|E’| dp - [NG(S)|
S 1 (r|E’|)?
|E’| dp -a-|B|
T2
s
= g’

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality from
|T| = 7]A’|, and the third inequality from |Ng(S)| < « - |B’|.

ACM Trans. Econ. Comput., Vol. 12, No. 4, Article 12. Publication date: November 2024.

"6Z0T ‘6 11dy uo Aysioatun) snpind Aq Areiqry [BNSIQ INDV U3 woly papeojumod



Algorithmic Persuasion with Evidence 12:29

Hence, we can conclude that there exists an assignment that satisfies at least an e-fraction of
the edges in £ as desired. O

B.2.2  Amplifying Completeness of COLORED BIPARTITE VERTEX ExPANSION. Our next step is to
translate the hardness from Theorem 31 into a form similar to that of Theorem 9. Specifically, we
have to “boost” the NO case so that [N(S)| is at least (1 — y)|V|. We give a more precise statement
below.

THEOREM 34. For any constants r,y € (0, 1), given a bipartite graph (U,V,E) together with a
partitionU = Uy U - - - U Uy, it is NP-hard to distinguish between the following two cases:

— (YES) There exists a colorful S* C U of size k such that [N(S*)| < y|V]|.
— (NO) For any colorful S C U of size at least tk, we gave [N(S)| > (1 —y)|V].

The proof of Theorem 34 follows a standard technique of using graph products to amplify gaps.
In particular, it is almost the same as what is referred to as the “OR-product” in [23], except that
we only apply it on one vertex set. We provide the full argument below.

ProOF oF THEOREM 34. We extend our reduction in the proof of Theorem 31. Let « = 12 .

In(10/y) and let t = #(z, @) be as in Theorem 31. Furthermore, we set £ = | yt]. '

Suppose H = (U = Uy U -+ - U Uy, V', E’) is the hard COLORED BIPARTITE VERTEX EXPANSION
instance from Theorem 31. We create a new COLORED BIPARTITE VERTEX EXPANSION instance
G=U=U,U---UU,V,E) as follows.

— U and its partition U; U - - - U U, are the same as in the original instance.
—V = (V)¢ is the set of all £-tuples of vertices in V.
— Add an edge in E between u € U and (vy, ..., vp) € Viff (u,v;) € E’ for at least one i € [£].

It is obvious that the reduction can be implemented in polynomial time. Before we prove the
completeness and soundness of the reduction, let us observe that the following identity holds for
allS c U:

¢
Ng(S Ny(S
Nl _ 1_(1_| L)’ o
Vi v’|
It is simple to check that the above identity holds, because a vertex (vy,...,v7) € V does not

belong to Ng(S) iff (vy,...,v7) € (V' \ Ng(S))!. With this identity in mind, we now proceed to
prove the completeness and soundness of the reduction.

(Completeness). Suppose that there exists a colorful S* C U such that [Ny(S)| = % - |V’|. From
Equation (10), we have

¢ Bernoulli’s
|NG (S*)| 1 inequality Vi
_ = 1-|1-- < - =< v.
|V t t

In other words, [NG(S¥)| < y|V| as desired.

(Soundness). Suppose that any colorful set S C U satisfies |[Ng(S)| > % -|V’|. From Equation (10),
we also have

Mol (1)
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By our choice of @ and soundness of Theorem 31, we must have t > ERS 2/y, meaning that

¢ > yt/2. Plugging this into the above inequality, ‘

INeOI 1_(1_a)ﬂ/2

_ > 1_(e—a/t)yt/2 > 1_)/’
14

t

where the last inequality follows from our choice of . This completes our proof. o

B.2.3  From CoLORED BIPARTITE VERTEX ExPANSION to Constrained Delegation. Finally, we re-
duce from the NP-hardness of COLORED BIPARTITE VERTEX EXPANSION in Theorem 34 to the NP-
hardness of constrained delegation (Theorem 8). The reduction closely follows the sketch in Sec-
tion 4.1, except that the acceptable states are now used to check the “colorfulness” of S instead of
its size.

Proor or THEOREM 8. For any constant ¢ € (0,1),sety = 7 = 0.1e. Let (U = U; U --- U
Uk, V, E) be the input to the BIPARTITE VERTEX EXPANSION problem. We construct an instance of
constrained delegation as follows:

— For every vertex u € U, create a signal o,,.
— The set of rejectable states is O = {6, | v € V}. For each 0,, € Og, its set of allowed signals
is N(0y) = {0, | u € N(v)}. The probability is gg, = ﬁ
— The set of acceptable statesis @4 = {0; | i € [k]}. For each 0; € O, its set of allowed signals
is N(0;) = U;. The probability is gg, = ﬁ
Observe that g4 = qr = 0.5.

It is obvious to see that the above reduction can be implemented in polynomial time. We will
now prove the completeness and soundness properties of our reduction. Specifically, let OPT =
0.5 - (2 — y); we will show below that the YES case (of Theorem 34) results in a decision scheme
with utility at least OPT, whereas the NO case implies that any decision scheme has utility less

than %. Note that this, together with Theorem 34, completes the proof of Theorem 8.

(Completeness). Suppose that there exists a colorful S* C U of size k such that [N(S*)| < y|V]|.
Consider the (deterministic) decision scheme ¥* where ¢*(0,,) = 1 iff u € S*. Since S* is colorful
and has size k, every acceptable state is accepted. However, a rejectable state 6, € O is accepted
iff v € N(S*). Hence, the utility of /* is at least

1

1
VI-INSHD+=- = 0502- = OPT,
(V= INEID+ 5 = 0sz-p)

where the inequality follows from |[N(S¥)| < y|V]|.

(Soundness). Suppose that, for any colorful set S C U of size at least 7k, we have |[N(S)| >
(1 = y)|V|. Consider an optimal decision scheme /. We will show that the utility achieved by ¢
is at most %. From Lemma 6, we may assume that ¢ is deterministic, i.e., ¥(o) € {0, 1} for
all 0 € 3. Observe further that if there exist distinct vertices u, u’ from the same color class U;
such that ¢/(o,) = ¥(0y) = 1, then we may modify /(o) to zero without decreasing the utility.’
In other words, we may assume that o, = 1 for at most one vertex u in each color class U;. Let
S={ueU | ¢(o,) = 1}. The aforementioned assumption implies that S is colorful. We consider
two cases, based on whether |S| > Tk.

SSpecifically, the utility with respect to © 4 remains the same, whereas the utility with respect to ® g does not decrease.
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— Case I: |S| > k.
In this case, from our assumption, we must have |[N(S)| > (1—y)|V]|. Since every rejectable
state o, for v € N(S) is accepted, the utility of ¢ is at most
OPT

(VI-INOD+5 < 0504y < >,

1
2V

where the last inequality follows with our choice of y.
— Case II: |S| < 7k.
In this case, at most |S| acceptable states are accepted; this means that the utility of ¢/ is at
most

18 OPT
—+— < 051+17) <

= ’

2 2k 2—¢

where the last inequality follows with our choice of 7.

Hence, in both cases, the utility of the decision scheme is at most % as desired. O

B.3 APX-hardness with Degree-2 States and Degree-1 Rejects

The following result is a consequence of [31, Theorem 7].

CoROLLARY 35. Constrained delegation is APX-hard for instances with degree-2 states and degree-1
rejects.

Proor. Consider an instance of the VERTEX COVER problem given by an undirected graph G =
(V,E). For each vertex v € V we introduce a signal o,,. For every edge e € E we introduce an
acceptable state of nature 0, i.e., ©4 = {0, | e € E}. For every vertex v € V we introduce a
rejectable state of nature 0,,. For every e = {v, w} the state 0, has two allowed signals o, ,,. For
every vertex v the state 0, has the allowed signal o,,. The distribution over states is the uniform
distribution, i.e., g9 = 1/(|E| + |V]) for every 0 € O.

We can restrict the optimal scheme /* to be deterministic. For an accept signal the acceptance
probability is 1, for a reject signal it is 0. To ensure the correct action in 6,, signal o, must be
a reject signal. To ensure the correct action in 6., at least one incident signal o, 0,, must be an
accept signal. Now consider any subset 3’ of accept signals and the corresponding subset V' of
vertices in G. For this subset the expected utility for R is

’ ’
AT (B0l (vI= VD),
where E(V”) is the set edges incident to at least one vertex in V'.

For an edge e, suppose there is no incident vertex in V’. Then adding one (say v) to V' can
only increase the profit (6, action becomes correct, 8, action becomes wrong). Hence, w.l.o.g. we
assume E(V’) = E, i.e, V' is a vertex cover. As such, the optimal decision scheme ¥/* has a profit
of at least « if and only if G has a vertex cover of size at most (1 — «)(|E| + |V|). This proves
NP-hardness.

For APX-hardness, we consider 3-regular graphs with |E| = 1.5|V|, where every vertex cover
V’ has size |V’| = ©(|V]). In these graphs, VERTEX COVER is APX-hard [1]. Therefore, with our
reduction we also obtain a constant hardness of approximation for the objective

|E| + |V]| = |V'| = 2.5|V] = |V']. O
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C Hardness for Constrained Persuasion

We first prove the approximation hardness for the general case, which applies in the cases of
degree-1 accepts and degree-2 states (Theorem 20). We then also prove the result for degree-1
rejects (Theorem 21).

C.1 Proof of Theorem 20

We build a reduction from the INDEPENDENT SET problem. In this problem, we are given an undi-
rected graph G = (V, E). An independent set is a subset I € V of the vertices such that no two
vertices in I are connected via an edge from E. The goal is to find an independent set of maximum
cardinality. Without loss of generality, we assume there are no isolated vertices in G, since these
vertices are trivially in the optimum solution.

Hastad [21] proved that it is NP-hard to approximate the maximum independent set problem to
within a factor of |V|!™¢ for any constant ¢ > 0. For a given instance G of INDEPENDENT SET we
build a constrained persuasion problem such that the optimum utility of the sender is proportional
to the cardinality of the largest independent set in G. As a consequence, constrained persuasion
cannot be approximated within a factor of |V|!7¢, for any constant ¢ > 0.

Our construction works as follows. For every vertex v € V, we introduce an acceptable state of
nature 0, with probability g, = m For every edge e € E we introduce an rejectable state
0. with probability qp, = m For every vertex v € V we introduce a signal o,. Note that
n=|3| =|V| and m = |®| = |V| + |E|. For the state-signal graph H, we insert an edge (0,,, 0,,) for
every v € V. Moreover, we add (0., 0,,) iff v is incident to e. As such, in state 6, we are forced to
signal o,,. In state 0., we can choose from two signals corresponding to the incident vertices of e.

Hence, in any signaling scheme ¢, we only need to determine ¢(0,, o,,) for one vertex v incident
to e. Observe that, for any edge (v, w) € E, o, and o,, cannot both imply an accept decision for
the receiver, because

Soeba)r Y e0.on) = — A

< =
0eN(o0)NO4 0EN(04)NO4 \VI+3IE| V] +3IE|

< D elo)+ D e0.00).
0eN(0,)\Oa 0eN(0+)\Oa
Hence, the set of accept signals X4 always represents an independent set in G. Moreover, for
any accept signal o, it holds that

S oeoasz Y g0 =

0eN(oo) 0eN(0,)NO 4 IV +3|E]|

Thus, the maximum utility that the sender can obtain is at most |I*|- W, where I is a maximum
independent set in G. Finally, we construct a simple optimal signaling scheme ¢ based on I* using
which the sender obtains this maximal utility. For every vertex v € I*, we pick one incident edge
e = {v,w} and set ¢*(0,, 0,) = %qge and ¢*(0,, 0vy) = %qge (since w ¢ I* by construction). For all
other edges e € E, we set ¢(0,, 0,,) = qg, for some incident vertex w ¢ I*. It is straightforward to
see that for ¢* any signal o,, that has non-zero probability leads to an accept decision of the receiver

if and only if v € I". Moreover, the total probability that the receiver accepts is |I*| - m ]

C.2 Proof of Theorem 21

We again build a reduction from the INDEPENDENT SET problem. Given a graph G = (V, E), there is
a signal oy, for every vertex v € V. Moreover, for every vertex v € V there is a rejectable state 0,
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with weight |V| and an acceptable state 8., with weight |V| — deg(v). For both 0,, 6., we are forced
to signal o,,. For every edge e = {u, v} there is an acceptable state 6, with weight 1, and in 6, we
can signal o, or o,,. The distribution g assigns every state a probability proportional to its weight.
The sum of all weights is |E| + 2|V |2 = 3, deg(v) = 2|V|? - |E|.

For any signal o,,, the receiver will pick action A if and only if the signal is sent deterministically
for all incident acceptable states, i.e., 0, as well as the deg(v) many states 0, with e = {u,v}.
Due to the construction, this implies that no two signals ¢, and o, for neighboring vertices in G
can simultaneously be accept signals. Consequently, the set of accept signals corresponds to an
independent set of G.

If 0, is an accept signal, then the sender obtains a utility from this signal of (2|V])/(2|V|? — |E|).
Hence, the utility of the sender is linear in the number of accept signals, i.e., proportional to the size
of independent set. As such, the NP-hardness of approximation within a factor of [V|7¢ = n!~¢
for INDEPENDENT SET applies. O
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