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Thin-film equations are utilised in many different areas of fluid dynamics when there exists
a direction in which the aspect ratio can be considered small. We consider thin free films
with Marangoni effects in the extensional flow regime, where velocity gradients occur
predominantly along the film. In practice, because of the local deposition of surfactants or
input of energy, asymmetric distributions of surfactants or surface tension more generally,
are possible. Such examples include the surface of bubbles and the rupture of thin films.
In this study, we consider the asymmetric thin-film equations for extensional flow with
Marangoni effects. Concentrating on the case of small Reynolds number Re, we study
the deposition of insoluble surfactants on one side of a liquid sheet otherwise at rest
and the resulting thinning and rupture of the sheet. The analogous problem with a
uniformly thinning liquid sheet is also considered. In addition, the centreline deformation
is discussed. In particular, we show analytically that if the surface tension isotherm
σ = σ (Γ ) is nonlinear (surface tension σ varies with surfactant concentration Γ ), then
accounting for top–bottom asymmetry leads to slower (faster) thinning and pinching if
σ = σ (Γ ) is convex (concave). The analytical progress reported in this paper allows us
to discuss the production of satellite drops from rupture via Marangoni effects, which,
if relevant to surface bubbles, would be an aerosol production mechanism that is distinct
from jet drops and film drops.
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1. Introduction

1.1. Background
Thin-film equations are utilised in fluid dynamics when there exists a direction in which
the aspect ratio can be considered small (Oron, Davis & Bankoff 1997; Craster & Matar
2009; Eggers & Fontelos 2015). Examples include bubble caps, tear films, ice sheets and
lubrication configurations. In particular, thin-film equations have been used to consider
flows influenced by surface tension variations (De Wit, Gallez & Christov 1994; Breward
1999; Timmermans & Lister 2002; Bowen & Tilley 2013; Kitavtsev, Fontelos & Eggers
2018). Such Marangoni flows are responsible for many different physical processes across
varied lengthscales, such as the calming of surface ocean waves, tears of wine, and the
decrease in velocity of a rising bubble (Manikantan & Squires 2020).

Recently, Marangoni effects have been suggested as a potential mechanism for rupture of
surface bubbles (Poulain, Villermaux & Bourouiba 2018), which refers to bubbles that rest
near a liquid–vapour interface. The caps of such surface bubbles are thin liquid films. It has
been noted theoretically (Bowen & Tilley 2013; Kitavtsev et al. 2018) and experimentally
(Néel & Villermaux 2018) that a sufficiently large local deposition of surfactants or (heat)
onto a liquid film is enough to rupture the film. Surface bubble rupture is of importance in
industry, health (Bourouiba 2021), volcanic activity (Gonnermann & Manga 2007; Nguyen
et al. 2013) and ocean–atmosphere interaction (Veron 2015; Deike 2022). Once emitted in
the atmosphere, aerosols formed from the rupture of ocean surface bubbles can serve as
cloud condensate nuclei and affect the radiative balance of Earth.

In studies of thin films influenced by Marangoni effects, top–bottom symmetry is often
assumed (De Wit et al. 1994; Bowen & Tilley 2013; Kitavtsev et al. 2018). In practice,
asymmetric, i.e. top to bottom in the case of a horizontal sheet and side to side in the
case of a vertical sheet, distributions of surfactants, or surface tension more generally,
are possible. An immediate consequence of assuming symmetry is that the bending of
the sheet, i.e. the centreline deformation, is ignored. For a nonlinear surface tension
isotherm σ = σ (Γ ), indicating how surface tension σ varies with surfactant concentration
Γ , we expect that σ (Γ ) /= 2σ (1

2Γ ) in general. Thus, modelling an asymmetric set-up,
e.g. surfactant concentration Γ on the top surface and zero surfactant concentration on
the bottom surface, with a symmetric configuration, where the surfactant concentration
is 1

2Γ on both the top and bottom surfaces, may potentially lead to inaccurate tangential
Marangoni forces, which will be discussed in § 4.6 below.

We consider the extensional flow regime, where the velocity (and pressure) in the
direction of the large length scale can be taken to be roughly independent of the small
direction. This flow regime is amenable to theoretical analysis but places restrictions (see
§ 3.2) on the magnitude of the Reynolds number (comparing inertia and viscous forces),
Marangoni number (comparing Marangoni and viscous forces) and capillary number
(comparing viscous and capillary forces).

The broken symmetry in surface tension means that the bending of the sheet should
be considered. Centreline deformation of thin films has been discussed in the literature.
For example, a heavy liquid filament sags under the influence of gravity (Teichman &
Mahadevan 2003). Folding liquid sheets are also an example (Ribe 2002, 2003). A well
known phenomenon for thin liquid sheets with top–bottom asymmetry is the flapping of a
retracting liquid sheet (Lhuissier & Villermaux 2009), which has been proposed recently
to be relevant for the production of film drops (Jiang et al. 2022).

In the context of surface bubbles, the inside of a bubble and the outside of a bubble can
have different distributions of surfactants. Indeed, top–bottom asymmetry of a surface
bubble with surfactants can be seen in numerical work by Atasi et al. (2020) and in
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Asymmetric Marangoni flow

(a)

(b)

Figure 1. Schematic diagram of the (a) extensional flow regime and (b) shear flow regime (non-extensional
flow).

experimental work by Zawala et al. (2023). Theoretically, Shi, Fuller & Shaqfeh (2022)
considered the drainage of a surface bubble with surfactants, where their derivation
also considered extensional flow with top–bottom asymmetry (without inertia, similar
to Breward 1999). In their subsequent analysis and experimental verification of their
extensional flow equations, Shi et al. (2022) assumed top–bottom symmetry in order to
focus on important characteristics of non-axisymmetric drainage.

It should be noted that although surface bubbles serve as motivation for this study, flow
in the film of a surface bubble cap may not be in the extensional flow regime. When shear
stress increases in an otherwise free thin liquid film, e.g. by imposing a stronger surface
tension gradient, the flow transitions (Champougny et al. 2015; Atasi et al. 2020) from
the extensional flow regime, where the flow profile is plug-like, to the shear flow regime,
where the flow profile is nearly parabolic (see figure 1). In particular, for surface bubbles,
there are cases where the extensional flow regime is considered (Debrégeas, De Gennes &
Brochard-Wyart 1998; Howell 1999; Shi et al. 2022; Bartlett et al. 2023), cases in which
the shear flow regime is considered (Lhuissier & Villermaux 2012), and cases where both
the extensional flow and shear flow regimes are considered (Champougny et al. 2016; Atasi
et al. 2020; Miguet et al. 2020). For example, extensional flow is usually only considered
for surface bubbles with drainage at low Reynolds number (Debrégeas et al. 1998; Nguyen
et al. 2013); such a regime is of interest in industry and volcanology. Thus, the examples
provided in §§ 4 and 5 should be seen as a fundamental study in liquid film dynamics
rather than directly representing the film flow of any given surface bubble cap.

1.2. Outline of the paper
The paper is structured as follows. In § 2, the governing Navier–Stokes equations with
corresponding boundary conditions are given. Then, in § 3, we give the asymmetric
thin-film equations, including Marangoni effects, using an asymptotic expansion strategy
from previous works (Howell 1996; Breward 1999), where the resulting equations extend
equations already given by these authors. In §§ 4 and 5, we consider the example of the
deposition of insoluble surfactants on one side of a liquid film. Specifically, in § 4, the
liquid film is otherwise at rest and in § 5, the liquid film is otherwise uniformly thinning
with a constant extension rate. We consider the case of low-Reynolds-number motions,
Re ≪ 1; see Appendix C for a brief discussion on including inertia.

1.3. Main results of the paper
The main results of the paper are as follows. First, analytical extensions to prior work
is given for the relevant thin-film equations. For the surfactant deposition problem,
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z = H (x, t) +    h (x, t)1
2

z

x

σ+ (x, t)

σ– (x, t)

z = H (x, t)

n+

n–

t+

t–
z = H (x, t) –    h (x, t)1

2

Figure 2. Schematic of a thin film with curved centreline H(x, t) and thickness h(x, t) (the x axis is in the
horizontal direction, the z axis is in the vertical direction and t is time). The top surface of the film is given
by z = H(x, t) + 1

2 h(x, t) and the bottom surface of the film is given by z = H(x, t) − 1
2 h(x, t). The outward

normal of the top/bottom surface is denoted n± and the tangential vector (in the direction of increasing x) on
the top/bottom surface is denoted t±. Surface tension at the top/bottom of the sheet is given by σ±(x, t).

analytical progress is made via transforming to Lagrangian coordinates, which allows us to
(a) describe the evolution of the sheet, (b) discuss the effects of the shape of surfactant
isotherms and (c) to discuss the possibility that satellite drops may be formed from
pinching via Marangoni effects, such as when the initial surfactant isotherm has a double
maximum.

2. Governing equations and boundary conditions
We consider an incompressible, two-dimensional Newtonian film (viscosity µ, density ρ)
with the horizontal direction given by the x axis and the vertical direction given by the z
axis. The top surface of the film is given by z = H(x, t) + 1

2 h(x, t) and the bottom surface
of the film is given by z = H(x, t) − 1

2 h(x, t) (see figure 2). We assume that the fluid of
the thin film is not coupled to the surrounding fluid; typically, the thin film is surrounded
by air otherwise at rest.

Let ϵ := H/L be the aspect ratio between the characteristic vertical scale H, e.g. the
film thickness, and horizontal scale L, e.g. a typical wavelength of a perturbation. Assume
that ϵ ≪ 1, i.e. a thin film. The velocity field is denoted by (u, w) where u is the horizontal
velocity and w is the vertical velocity. As we focus on the influence of asymmetries, we
consider variable surface tension fields on the top and bottom interfaces, given by σ+(x, t)
and σ−(x, t), respectively.

We consider the extensional flow regime u(x, z, t) ≈ u(x, t) and p(x, z, t) ≈ p(x, t),
where the necessary conditions are given in § 3.2. The extensional flow regime is
considered so that a one-dimensional description can be obtained formally, as is common
in the thin-film literature (e.g. De Wit et al. 1994; Howell 1996; Breward 1999;
Timmermans & Lister 2002; Bowen & Tilley 2013; Kitavtsev et al. 2018).

In order to close the equations, the surface tension σ (x, t) must be given in terms of
other variables in the system. For example (see § 4), the surface tension could be given in
terms of a surfactant field Γ (x, t), which in turn will have its own transport equation (Stone
1990). Another common scenario is when the surface tension is coupled to a temperature
field (e.g. Bowen & Tilley 2013; Kitavtsev et al. 2018).
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Asymmetric Marangoni flow

The two-dimensional continuity and Navier–Stokes equations apply to the fluid between
H − 1

2 h ≤ z ≤ H + 1
2 h,

∂u
∂x

+ ∂w
∂z

= 0, (2.1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 + ∂2u

∂z2

)
, (2.2)

ρ

(
∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

)
= −∂p

∂z
+ µ

(
∂2w
∂x2 + ∂2w

∂z2

)
. (2.3)

The outward normals of the top and bottom surfaces are denoted, respectively, by n±
and the corresponding unit tangent vectors (in the direction of increasing x) are denoted,
respectively, by t± (see figure 2). For each of the two surfaces, z = H(x, t) ± 1

2 h(x, t),
we have one kinematic boundary condition and two dynamic boundary conditions. For
notational convenience, let z± := H(x, t) ± 1

2 h(x, t). The kinematic boundary conditions
at the top and bottom surfaces, z = z±, are given by

w|z=z± =
(

∂H
∂t

± 1
2

∂h
∂t

)
+ u|z=z±

(
∂H
∂x

± 1
2

∂h
∂x

)
. (2.4)

Consider the n± and t± directions. Denote the curvatures of the surfaces by κ±. The
normal and tangential stress boundary conditions at the top and bottom surfaces, z = z±

are given, respectively, by the two equations

σ±κ± =

⎛

⎜⎜⎜⎝
p − µ

2
(

∂H
∂x

± 1
2

∂h
∂x

)2

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2
∂u
∂x

+ µ

2
(

∂H
∂x

± 1
2

∂h
∂x

)

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂u
∂z

+ ∂w
∂x

)

− µ
2

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2
∂w
∂z

⎞

⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
z=z±

, (2.5)

∂σ±
∂x

=

⎛

⎜⎜⎜⎜⎝
±µ

2
(

∂H
∂x

± 1
2

∂h
∂x

)

√

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂w
∂z

− ∂u
∂x

)

± µ

1 −
(

∂H
∂x

± 1
2

∂h
∂x

)2

√

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂u
∂z

+ ∂w
∂x

)

⎞

⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
z=z±

, (2.6)
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where the curvatures κ± of the top and bottom surfaces, z = z±, are given by

κ± =
∓∂2H

∂x2 − 1
2

∂2h
∂x2

(

1 +
(

∂H
∂x

± 1
2

∂h
∂x

)2
)3/2 . (2.7)

3. Asymmetric thin-film equations in extensional flow
In this section, we provide a derivation, using an asymptotic expansion in the small aspect
ratio ϵ, to obtain the leading-order non-symmetric thin-film equations for extensional flow.
In particular, we allow for top–bottom asymmetry, which leads to a curved centreline. The
full details of the derivation are provided in the supplementary material available at https://
doi.org/10.1017/jfm.2024.501 for completeness, while here we provide a summary of the
key ideas.

The derivation is analogous to that of Howell (1996) and Breward (1999). There
are slight differences in the terms considered since Howell (1996) does not consider
Marangoni effects and Breward (1999) does not consider inertia (and time evolution of
H and w̄). Thus, the resulting equations in this paper are extensions to previous work
(see § 3.5). In particular, the inclusion of the inertial and Marangoni effects are important
for the examples given in §§ 4 and 5. The shortened derivation has been included for
completeness.

3.1. Non-dimensionalisation
We first non-dimensionalise the equations according to

x = Lx̃, u = U ũ, H = ϵLH̃, t = L
U t̃, y = ϵLỹ, w = ϵU w̃,

h = ϵLh̃, p = µU
L p̃, σ = Σ + ((Σ) σ̃,

}
(3.1)

where U is some constant characteristic velocity, Σ is some constant characteristic surface
tension and (Σ is a characteristic surface tension variation of interest in the problem.
There are three dimensionless parameters: Reynolds number Re = ρUL/µ, Marangoni
number M = (Σ/ϵµU and capillary number C = ϵµU/Σ . The parameter ϵ is included
in the definition of M and C in a way such that (a) the later discussed thresholds for the
extensional flow conditions are O(1) (see (3.10) and (3.11)) and (b) the complete equations
become independent of ϵ (see § 3.5). Note that in the non-dimensionalisation (3.1), we are
considering timescales L/U (see § 4.7 for a discussion of shorter timescales). Henceforth,
the tilde (̃ ) will be omitted.

3.1.1. Non-dimensional equations
The bulk equations (2.1), (2.2) and (2.3) in dimensionless form are

∂u
∂x

+ ∂w
∂z

= 0, (3.2)

Re
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −∂p

∂x
+
(

∂2u
∂x2 + 1

ϵ2
∂2u
∂z2

)
, (3.3)

Re
(

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

)
= − 1

ϵ2
∂p
∂z

+
(

∂2w
∂x2 + 1

ϵ2
∂2w
∂z2

)
. (3.4)
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Asymmetric Marangoni flow

Next, the kinematic boundary conditions (2.4) are given by

w|z=z± =
(

∂H
∂t

± 1
2

∂h
∂t

)
+ u|z=z±

(
∂H
∂x

± 1
2

∂h
∂x

)
. (3.5)

With the non-dimensionalisation, the normal and tangential stress boundary conditions
(2.5) and (2.6) are given by

ϵ2

C
(1 + MCσ±) κ± =

⎛

⎜⎜⎜⎝
p −

2
(

∂H
∂x

± 1
2

∂h
∂x

)2

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2 ϵ2 ∂u
∂x

+
2
(

∂H
∂x

± 1
2

∂h
∂x

)

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂u
∂z

+ ϵ2 ∂w
∂x

)
− 2

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2
∂w
∂z

⎞

⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
z=z±

(3.6)

and

ϵ2M
∂σ±
∂x

=

⎛

⎜⎜⎜⎜⎝
±

2
(

∂H
∂x

± 1
2

∂h
∂x

)
ϵ2

√

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂w
∂z

− ∂u
∂x

)

±
1 − ϵ2

(
∂H
∂x

± 1
2

∂h
∂x

)2

√

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2

(
∂u
∂z

+ ϵ2 ∂w
∂x

)

⎞

⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
z=z±

, (3.7)

where the curvatures κ± (2.7) are given by

κ± =
∓∂2H

∂x2 − 1
2

∂2h
∂x2

(

1 + ϵ2
(

∂H
∂x

± 1
2

∂h
∂x

)2
)3/2 . (3.8)

These equations involve four non-dimensional parameters, ϵ, Re, M and C.

3.2. Conditions for extensional flow
In order to have extensional flow, i.e. u(x, z, t) ≈ u(x, t) and p(x, z, t) ≈ p(x, t) to leading
order in ϵ, we require three conditions. The first condition is that inertia does not play a
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dominant role:

Re
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= O(1) or less. (3.9)

Starting with (3.3), this condition yields ∂2u/∂z2 = 0 to leading order; see (3.13). The
second condition is that the tangential stress is not too large:

M
∂σ±
∂x

= O(1) or less. (3.10)

This condition yields the horizontal velocity field u(x, z, t) ≈ u(x, t); see (3.14). The third
condition is that the capillary pressure due to surface tension is not too large:

1
C

(1 + MCσ±) κ± = O(1) or less. (3.11)

This condition yields the pressure field p(x, z, t) ≈ p(x, t); see (3.19).
The first two conditions (3.9) and (3.10) are commonly discussed elsewhere (De Wit

et al. 1994; Breward 1999; Timmermans & Lister 2002; Bowen & Tilley 2013; Kitavtsev
et al. 2018). The third condition (3.11) has also been mentioned (Howell 1996; Breward
1999). In the case of symmetry (σ = σ±, κ = κ±), the right-hand side of (3.11) may be
replaced with the phrase ‘O(ϵ−2) or less’ (see Appendix A). Thus, (3.11) is a condition
that becomes more strict due to the asymmetry of interest.

3.3. Leading-order expansion
We expand the horizontal velocity as

u(x, z, t) = u0(x, z, t) + ϵ2u1(x, z, t) + · · · (3.12)

and consider analogous expansions for w, H, h, and p. We consider the leading-order
expansion first where we ignore relative errors of order O(ϵ2). The horizontal momentum
equation (3.3) using the first condition (3.9) gives

∂2u0

∂z2 = 0. (3.13)

The tangential boundary conditions (3.7), after using the second condition (3.10), give

∂u0

∂z

∣∣∣∣
z=z±

= 0, (3.14)

which shows that the leading-order horizontal velocity is independent of z,

u0 = u0(x, t). (3.15)

Then, continuity (3.2) gives

w0 = w̄(x, t) − (z − H0)
∂u0

∂x
, (3.16)

where w̄ denotes the average of w in the vertical direction ( f̄ := (1/h)
∫ z+

z− f (x, z, t) dz).
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Asymmetric Marangoni flow

Next, turning to the vertical momentum equation (3.4) and using (3.9) gives

∂p0

∂z
= ∂2w0

∂z2 , (3.17)

which upon substitution of (3.16) yields

p0 = p0(x, t). (3.18)

Then, considering the normal stress boundary conditions (3.6), along with continuity (3.2),
gives

0 = p0 + 2
∂u0

∂x
. (3.19)

Finally, with the kinematic boundary conditions (3.5), and using (3.16) for w0, we find

w̄ ∓ 1
2

h0u0 =
(

∂H0

∂t
± 1

2
∂h0

∂t

)
+ u0

(
∂H0

∂x
± 1

2
∂h0

∂x

)
, (3.20)

which can be added and subtracted to find

∂H0

∂t
+ u0

∂H0

∂x
= w̄ (3.21)

and
∂h0

∂t
+ ∂

∂x
(u0h0) = 0. (3.22)

3.4. Next-order expansion
We can follow the same steps as in § 3.3 for the O(ϵ2) equations. The details are provided
in the supplementary material. Explicitly, we consider the horizontal momentum equation
and the tangential stress conditions to deduce

Reh0

(
∂u0

∂t
+ u0

∂u0

∂x

)
= M

(
∂σ+
∂x

+ ∂σ−
∂x

)
+ 4

∂

∂x

(
h0

∂u0

∂x

)
. (3.23)

Similarly, the vertical momentum equation and the normal stress conditions lead to

Reh0

(
∂w̄
∂t

+ u0
∂w̄
∂x

)
= 1

2
M

∂2

∂x2 (h0(σ+−σ−)) + ∂

∂x

(
∂H0

∂x

(
2
C

+ M (σ++σ−)

))

+ 4
∂

∂x

(
h0

∂H0

∂x
∂u0

∂x

)
. (3.24)

3.5. Complete equations
In this subsection, the complete non-dimensional equations are given for clarity. From this
point onwards, we refer to h0 as h, H0 as H and u0 as ū. Then, the evolution equations for
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J. Eshima, L. Deike and H.A. Stone

the dimensional counterparts h, H, ū and w̄ are given by

∂h
∂t

+ ∂

∂x
(ūh) = 0, (3.25)

∂H
∂t

+ ū
∂H
∂x

= w̄, (3.26)

Reh
(

∂ ū
∂t

+ ū
∂ ū
∂x

)
= M

(
∂σ+
∂x

+ ∂σ−
∂x

)
+ 4

∂

∂x

(
h
∂ ū
∂x

)
, (3.27)

Reh
(

∂w̄
∂t

+ ū
∂w̄
∂x

)
= 1

2
M

∂2

∂x2 (h(σ+ − σ−)) + ∂

∂x

(
∂H
∂x

(
2
C

+ M (σ+ + σ−)

))

+ 4
∂

∂x

(
h
∂H
∂x

∂ ū
∂x

)
. (3.28)

In the above equations, the dynamics depend only on Re, M and C. In the symmetric case
H = 0, σ± = σ and w̄ = 0, we recover equations already familiar in the literature (De Wit
et al. 1994). The capillary pressure term 1

2 (ϵ2/C)h(∂3h/∂x3) does not appear in the above
equations since we consider C = O(1) or greater; see Appendix A.

Equations (3.25) and (3.26) have been given in the literature previously (Howell 1996;
Breward 1999). In addition, (3.27) was given by Breward (1999), though inertia was
omitted, and (3.28) with σ+ = σ− constant was given by Howell (1996). To the best of the
authors’ knowledge, the evolution equation (3.28) for w̄ with Marangoni effects has not
been considered so far in the literature. In the example of surfactant deposition on a sheet,
which we consider in §§ 4 and 5, asymmetric surface tension variations are considered in
(3.28) in order to solve for the resulting centreline deformation H.

Before proceeding further, we provide intuition for (3.25)–(3.28). The evolution
equation for h (3.25) expresses conservation of mass. The evolution equation for H (3.26)
can be regarded as DH/Dt = w̄ where D/Dt is the material derivative. Thus, the evolution
equation for H indicates that the centreline moves with the mean vertical flow. For the
horizontal momentum equation (3.27), the left-hand side is inertia, the first term of the
right-hand side is from the Marangoni force and the second term of the right-hand side
is viscous stresses (sometimes referred to as ‘Trouton viscosity’). The vertical momentum
equation (3.28) can be discussed in a similar way.

4. Thinning, rupture and bending of a liquid sheet due to an asymmetric deposition
of insoluble surfactants

In this section, we consider the localised deposition of insoluble surfactants onto the top,
z = H + 1

2 h, of a sheet of initial uniform thickness h = hI otherwise at rest (the bottom,
z = H − 1

2 h, remains clean). Without surfactants, we assume that σ± = Σ = constant.
A gradient of surface tension is created as result of the surfactants and Marangoni-driven
flow occurs. Since we consider surface tension variations due to surfactants, we must use a
surface tension isotherm (Manikantan & Squires 2020) σ = σ (Γ ), such as the Langmuir
isotherm. We show that due to top–bottom asymmetry, the centreline H will evolve (see
(4.8)), i.e. bending will occur. Since the sheet starts at rest, the flow requires some time
before reaching the extensional flow regime. For Re = O(1) or less, this short time may
be safely ignored (see Appendix B).
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Asymmetric Marangoni flow

We assume that the Péclet number, defined by L(Σ/ϵµD (see § 4.1) is large enough
such that diffusion may be ignored. We consider Re ≪ 1. In Appendix C, we discuss the
effect of including some inertia up to Re = O(1).

A related set-up was considered experimentally (Néel & Villermaux 2018), where
rupture of a liquid sheet could be achieved due to Marangoni flow arising from the
deposition of surfactants. It should, however, be noted that the set-up considered in the
experiment yields Re ≫ 1. In contrast, this section considers Re ≪ 1. There are also
many studies considering numerically and/or analytically the thinning of a symmetric
two-dimensional sheet due to Marangoni effects in an extensional flow regime (e.g. De
Wit et al. 1994; Bowen & Tilley 2013; Kitavtsev et al. 2018; Wee, Wagoner & Basaran
2022).

A physical example where the equations would be valid is as follows. Consider a
glycerol film (ρ ≈ 103 kg m−3, µ ≈ 1 Pa s, Σ ≈ 0.06 N m−1) with L = 100 µm, ϵ = 0.1
and (Σ/Σ = 0.5. The values represent, for example, the deposition of a drop of
surfactants over a scale of 100 µm onto a sheet of thickness 10 µm and assumes that the
drop changes the surface tension by 50 %. Then, Re = ρL(Σ/ϵµ2 ≈ 0.03 (see § 4.1) so
Re ≪ 1, C = O(1) and the approach given in the following is applicable.

For the figures in this section, we pick a particular choice of the capillary number,
C = 0.5. Other choices for C with C = O(1) or greater would have been valid also. The
effect of changing C is only a change in the prefactor of H and w̄ (see (4.8) and (4.14)).

4.1. Non-dimensional equations
Since there is no background flow, we note that U is set by the tangential Marangoni stress.
Thus, we take U = (Σ/ϵµ (in other words, take M = 1). Then, Re = ρL(Σ/ϵµ2,
C = (Σ/Σ . We define ϵ = hI/L. In addition, non-dimensionalise the surfactant
concentration with a characteristic surfactant concentration Γc. Explicitly,

x = Lx̃, u = (Σ

ϵµ
ũ, H = ϵLH̃, t = ϵµL

(Σ
t̃, y = ϵLỹ, w = (Σ

µ
w̃,

h = ϵLh̃, σ = Σ + (Σσ̃, Γ = ΓcΓ̃ .

⎫
⎬

⎭
(4.1)

Note that, by definition, σ̃ (Γ = 0) = 0. Again, the tilde (̃ ) is dropped. We consider
C = O(1) or larger so that we have extensional flow (see § 3.2). The horizontal length scale
L is given by the width of variation of the initial surfactant concentration. For example a
Gaussian initial surfactant distribution ΓI is represented as ΓI ∝ e−x2

.
Equations (3.25) and (3.26) are as before. Since Re ≪ 1, the inertia terms of (3.27)

and (3.28) can be neglected to deduce, respectively, quasi-static balances of horizontal
momentum and vertical momentum given by

0 =
(

∂σ+
∂x

+ ∂σ−
∂x

)
+ 4

∂

∂x

(
h
∂ ū
∂x

)
, (4.2)

0 = 1
2

∂2

∂x2 (h(σ+ − σ−)) + ∂

∂x

(
∂H
∂x

(
2
C

+ (σ+ + σ−)

))

+ 4
∂

∂x

(
h
∂H
∂x

∂ ū
∂x

)
. (4.3)

It should be noted that there is now a single parameter (C) remaining, which as noted at the
beginning of the section, only changes the prefactor of H and w̄. The quasi-static balance
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z

x

Γ+ = ΓI+ = e– x2

z = 12

z = – 1
2

Figure 3. Initial set-up considered in § 4.4. An initial Gaussian surfactant distribution ΓI+(x) = e−x2
,

ΓI−(x) = 0 is deposited onto the top of a uniform sheet at rest − 1
2 ≤ z ≤ 1

2 at t = 0. The horizontal direction
is given by the x axis and the vertical direction is given by the z axis. See (4.1) for the non-dimensionalisation.

occurs on the dimensional timescale given by tqs := ϵµL/(Σ . The system adjusts itself
from the initial condition to the quasi-static balance on dimensional timescales much
shorter than tqs and these details are discussed in § 4.7, where inertia is important. Since
diffusion of surfactants is neglected, the equations for surfactant concentration at the top
and bottom surfaces, Γ±(x, t), are given to leading order, correct up to O(ϵ2) errors, by

∂Γ±
∂t

+ ∂

∂x
(ūΓ±) = 0. (4.4)

If diffusion is not ignored, the term (ϵµD/L(Σ)(∂2Γ±/∂x2) (diffusion coefficient
D) appears on the right-hand side of (4.4). In neglecting diffusion of surfactants, we
are assuming that the Péclet number L(Σ/ϵµD is sufficiently large. Neglecting the
influence of diffusion is also physically motivated. Upon taking surfactant diffusivity
D = 10−10 m2 s−1, along with the values quoted at the beginning of the section ((Σ =
0.006 N m−1, L = 100 µm, µ = 1 Pa s, ϵ = 0.1) and the Péclet number L(Σ/ϵµD ≈
6 × 104 ≫ 1.

4.2. Initial and boundary conditions
For the initial conditions, we consider a uniform sheet otherwise at rest, along with some
initial surfactant distribution ΓI±(x) where ΓI± → 0 as x → ±∞. Far field conditions are
taken for the boundary condition. See figure 3 for a particular example where ΓI+ = e−x2

and ΓI− = 0, which is considered in § 4.4. Explicitly,

h = 1, H = 0, ū = 0, w̄ = 0, Γ± = ΓI± at t = 0 (4.5)

and

h = 1, H = 0,
∂ ū
∂x

= 0, w̄ = 0, Γ± = 0 at x = ±∞. (4.6)

4.3. Lagrangian coordinates
Lagrangian coordinates are useful in discussing the inertialess evolution of liquid
sheets and liquid threads (Eggers & Fontelos 2015). In this problem, using Lagrangian
coordinates allows us to deduce physical conclusions for a general surfactant isotherm
σ = σ (Γ ).

Before switching to Lagrangian coordinates, we first do some algebra. Integrating the
horizontal momentum equation (4.2) with respect to x, and using boundary conditions
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Asymmetric Marangoni flow

(4.6), gives
∂ ū
∂x

= − 1
4h(x, t)

(σ (Γ+(x, t)) + σ (Γ−(x, t))) , (4.7)

which can be substituted into (4.3) and integrated twice with respect to x to deduce an
analytic expression for the centreline H shape given by

H(x, t) = −C
4

h(σ (Γ+(x, t)) − σ (Γ−(x, t))). (4.8)

Denote the Lagrangian coordinates by the initial material spatial coordinate s defined
so that x = x(s, t) with s = x(s, 0). At initial time t = 0, the Eulerian and Lagrangian
coordinates therefore agree. Denoting the Lagrangian time derivative by D/Dt, (3.25) and
(4.4) give

Dh
Dt

∣∣∣∣
(s,t)

= −h
∂ ū
∂x

∣∣∣∣
(x(s,t),t)

(4.9)

and
DΓ±
Dt

∣∣∣∣
(s,t)

= − Γ±
∂ ū
∂x

∣∣∣∣
(x(s,t),t)

, (4.10)

which gives that
D
Dt

(
Γ±
h

)∣∣∣∣
(s,t)

= 1
h2

(
−Γ±h

∂ ū
∂x

+ hΓ±
∂ ū
∂x

)∣∣∣∣
(x(s,t),t)

= 0. (4.11)

Thus, in Lagrangian coordinates,
Γ±(s, t) = ΓI±(s)h(s, t); (4.12)

note that (4.12) would not have been deduced if diffusion was included. The result makes
sense physically by considering a material volume of initial width (s. For example,
halving h would mean that the width of the volume has doubled, the interfacial area along
a surface doubles, and thus in the case of no diffusion, surfactant concentration would be
halved. The conservation equation (4.11) has been discussed by Chomaz (2001). Finally,
(4.7) and (4.12) can be substituted into (4.9) to deduce that

Dh
Dt

∣∣∣∣
(s,t)

= 1
4

(σ (ΓI+(s)h(s, t)) + σ (ΓI−(s)h(s, t))) . (4.13)

Equation (4.13) is a first-order ordinary differential equation (ODE) for h in Lagrangian
coordinates at a given point s with the initial condition h = 1. An expression for w̄ can
also be found in terms of h from

w̄(s, t) = DH
Dt

∣∣∣∣
(s,t)

, (4.14)

which directly follows from (3.26). Thus, given a surfactant isotherm σ = σ (Γ ), one
only needs to solve a single ODE, (4.13), to find the evolution of h following a given
Lagrangian coordinate (s, t), which in turn can be used to find the evolution of H, ū, w̄, and
Γ± via, respectively, (4.8), (4.7), (4.14) and (4.12). Finally, the Lagrangian and Eulerian
coordinates are related via

∂x
∂s

∣∣∣∣
(s,t)

= 1
h(s, t)

, (4.15)

which can be deduced from standard arguments using conservation of mass (see
Appendix D).
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4.4. Example: linear isotherm, Gaussian deposition on top
In this subsection, we consider an example where the initial surfactant distribution given
by ΓI+(s) = e−s2

and ΓI−(s) = 0 and the surface tension isotherm is linear σ (Γ ) = −Γ
(see figure 3 for the set-up). Then, we have

Dh
Dt

∣∣∣∣
(s,t)

= −K(s)h(s, t), (4.16)

where K(s) := 1
4 e−s2

. Using the initial condition h(s, 0) = 1, we have the analytic solution

h(s, t) = e−K(s)t. (4.17)

Equation (4.17) is the solution for h given the (3.25), (3.26), (3.27), (3.28), (4.5) and (4.6)
with σ (Γ ) = −Γ , ΓI+(s) = e−s2

and ΓI−(s) = 0. In turn, the solution for h given by
(4.17) can be substituted into (4.8), (4.7), (4.14) and (4.12) to deduce equations for H, ū, w̄
and Γ± via

H(s, t) = CK(s)e−2K(s)t, (4.18)

ū(s, t) =
∫ s

0
K(s′)eK(s′)t ds′, (4.19)

w̄(s, t) = −2CK2(s)e−2K(s)t, (4.20)

Γ+(s, t) = 4K(s)e−K(s)t and Γ−(s, t) = 0. (4.21a,b)

The corresponding transformation into Eulerian coordinates is given by

x(s, t) =
∫ s

0

1
h(s′, t)

ds′, (4.22)

which follows from (4.15) and the symmetry condition x(0, t) = 0.
In particular, we can conclude from (4.13) that h does not pinch off in finite time.

A point of caution is that as the thickness of the sheet tends towards rupture, other forces
such as van der Waals forces become important. The rupture of a liquid film with van der
Waals forces has been discussed elsewhere, both for the case without surfactants (Vaynblat,
Lister & Witelski 2001) and with surfactants (Wee et al. 2022). In comparison, when the
initial condition is a uniformly thinning sheet (see § 5.4), there is finite time pinch off even
without van der Waals forces.

4.4.1. Description of the solution
Next, we give a description of the solution given by (4.17), (4.18), (4.19), (4.20) and
(4.21a,b) in Eulerian coordinates to help gain intuition for the thinning and rupture of the
sheet. For the figures in this section, we pick a particular choice of the capillary number,
C = 0.5. Other choices for C with C = O(1) or greater would have been valid also. The
effect of changing C is only a change in the prefactor of H and w̄ (see (4.8) and (4.14)).

An example with C = 0.5 is given in figure 4. In particular, figure 4(a) shows the
bottom of the sheet H − 1

2 h, the centreline H, the top of the sheet H + 1
2 h and the

surfactant distribution Γ+ at the initial time. By initial time, we mean t = 0 where a
quasi-static balance has already been achieved and so, in particular, the centreline is bent
(see §§ 4.1 and 4.7). Figure 4(b) shows the velocity profiles ū and w̄ at the initial time.
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Figure 4. Plots of the space and time evolution of the thin-film dynamics, as given by (4.17), (4.22), (4.18),
(4.19), (4.20) and (4.21a,b) for C = 0.5. The spatial variable x is in Eulerian coordinates. The three curves from
bottom to top in (a) are H − 1

2 h (black), H (blue) and H + 1
2 h (coloured with surfactant concentration Γ ) at

the initial time and (b) shows the velocity profiles ū (blue) and w̄ (red) at the initial time. Similarly, (c,d) report
the variables at t = 1 and (e, f ) report the variables at t = 10. For the non-dimensionalisation, see (4.1).

Similarly, figure 4(c,d) report the variables at t = 1 and figure 4(e, f ) report the variables
at t = 10. The times t = 1 and 10 were chosen to represent mid and late times, respectively,
for the thinning problem.

The non-uniform surfactant distribution means that there are Marangoni effects,
where surfactants spread from a region of high concentration to low concentration (see
figure 4a,c,e), since low concentration regions have higher surface tension. As result of
the horizontal velocity ū induced by the spreading of surfactants, h decreases and the
sheet thins as seen in figure 4(a,c,e).
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ΓI+ (x) = e–(x–2)2 + e–(x+2)2

H
 ±

   
h

1 2

t = 20(a) (b)

Figure 5. A deposition problem with initial surfactant concentration given by ΓI+(x) = e−(x−2)2 + e−(x+2)2
,

ΓI−(x) = 0. (a) The initial surfactant concentration at the top surface ΓI+. (b) The sheet profile H ± 1
2 h at

t = 20, where the inset shows the sheet profile H ± 1
2 h near the satellite drop (included to illustrate the drop

shape). In (b), the inset and the main figure have the same axes. The spatial variable x is in Eulerian coordinates.
The isotherm chosen is σ (Γ ) = −Γ and the capillary parameter C = 0.5. For the non-dimensionalisation, see
(4.1). A ‘satellite drop’ is formed around x = 0.

Since asymmetry has been accounted for, it is also possible to discuss the evolution of
the centreline H and the vertical velocity w̄. There is only non-uniform surface tension
on the top of the sheet. Initially, the centreline H bends towards the top surface, which
makes sense physically since the surface tension on the top surface is lower (the same fact
can be seen from (4.8)). For the example shown in figure 4, the top of the sheet is pulled
away from x = 0. As result, there is a region of negative w̄ around x = 0. Then, as time
progresses, H reverts back towards the straight configuration at z = 0.

4.5. Example with a satellite drop: linear isotherm, double maximum
The example shown in § 4.4 considered a single maximum in the initial surfactant
distribution. Another important example would be to consider multiple maxima.
Continuing from § 4.4, we consider an example where the initial surfactant distribution is
given by ΓI+(s) = e−(s−l)2 + e−(s+l)2

for some l > 0 and ΓI−(s) = 0, which for l ! 0.71
has two maxima at ±sm with sm > 0 and so we expect pinching to occur at two points
sr = ±sm (see § 4.6.1), with the consequence being that ‘satellite drops’ are formed. The
parameter l is thus a geometric variable that controls how far apart the maxima are located.
Upon replacing the definition of K(s) with K(s) := 1

4(e−(s−l)2 + e−(s+l)2
), expressions for

h, H, ū, w̄, and Γ± are still given, respectively, by (4.17), (4.18), (4.19), (4.20) and (4.21a,b)
along with conversion into Eulerian coordinates via (4.22). In order to discuss a real drop,
one should consider the axisymmetric case rather than the two-dimensional set-up that is
considered in this paper. As mentioned in the introduction, the formation of satellite drops
due to rupture via Marangoni effects is an interesting avenue of research.

An example with parameters C = 0.5 and l = 2 is shown in figure 5. In particular,
figure 5(a) shows the initial surfactant concentration ΓI+(s) = e−(s−2)2 + e−(s+2)2

. From
(4.17), we have that the point of minimum thickness (pinch off) rupture occurs near
sm ≈ ±2. For example, figure 5(b) shows the sheet profile H ± 1

2 h (black curves) at t = 10,
with a satellite drop around x = 0.

A point of physical interest in areas such as aerosol production at the ocean–air interface
is the volume of the satellite droplet that is formed. In our framework, the volume (since
we have a two-dimensional set-up, really, a surface area) of the droplet produced, V , can
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Asymmetric Marangoni flow

σ σ

Γ Γ

(a) (b)

Figure 6. Schematic diagram of an isotherm σ = σ (Γ ) that is (a) convex or (b) concave. In general, we
consider σ = σ (Γ ) strictly monotonically decreasing.

be written as

V =
∫ x(sm,tr)

x(−sm,tr)
h(x, tr) d x =

∫ sm

−sm

ds = 2sm. (4.23)

For l ≫ 1, sm ≈ l and then V ≈ 2l and the volume of the satellite drop produced is just
given by the spacing between the maxima (in fact, l does not need to be much greater
than 1, e.g. l = 1.4 already gives sm = 1.399 to 3 decimal places). In general, the same
argument gives that if pinching occurs at two locations with Lagrangian coordinates sL <
sR, then the volume of satellite drop produced is V = sR − sL.

4.6. Comparison between symmetry and asymmetry
In this section, we investigate the differences and similarities of a top–bottom asymmetric
configuration and a top–bottom symmetric configuration for general surface tension
isotherms σ = σ (Γ ). More explicitly, we compare the thinning and rupture of two cases
given by the purely asymmetric case (PA),

Γ PA
I+ (s) = f (s) and Γ PA

I− (s) = 0, (4.24a,b)

and the ‘corresponding’ symmetric case (S),

Γ S
I+(s) = 1

2
f (s) and Γ S

I−(s) = 1
2

f (s). (4.25a,b)

A function F(x) is said to be strictly monotonically decreasing if a > b ⇒ F(a) <
F(b). In this section, we only consider surfactant isotherms σ = σ (Γ ) that are strictly
monotonically decreasing. In other words, the addition of any amount of surfactant strictly
decreases the surface tension. In § 4.6.1, we show that the rupture occurs at the Lagrangian
point where f is maximal for both the purely asymmetric case (PA) and the symmetric case
(S). In § 4.6.2, we show that the purely asymmetric case (PA) thins slower/faster than the
symmetric case (S) when σ = σ (Γ ) is convex/concave (see figure 6). For comments about
cases where there are surfactants on each side but not necessarily deposited symmetrically,
see Appendix E, where it is found that the conclusions about the rate of thinning and
convexity/concavity still hold. Experimentally, convexity and concavity can be observed
for various surface tension isotherms (Prosser & Franses 2001; Liu & Duncan 2003; Erinin
et al. 2023).
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4.6.1. Location of minimum thickness
Here, we analyse the location of minimum thickness of the sheet h at a given time. In
particular, this will give the location at which there is pinching. From (4.13), we have

DhPA

Dt

∣∣∣∣
(s,t)

= 1
4
σ ( f (s)hPA(s, t)) (4.26)

and
DhS

Dt

∣∣∣∣
(s,t)

= 1
2
σ

(
1
2

f (s)hS(s, t)
)

. (4.27)

We first analyse the purely asymmetric case (PA). Consider two Lagrangian points denoted
by s1 and s2 with f (s1) > f (s2). Suppose that at some t = te, the thickness is equal at the
two Lagrangian points hPA(s1, te) = hPA(s2, te). Then, it follows from (4.26) that

D
Dt

(
hPA(s1, t) − hPA(s2, t)

)∣∣∣
t=te

= 1
4

(
σ
(

f (s1)hPA(s1, te)
)

− σ
(

f (s2)hPA(s2, te)
))

< 0, (4.28)

where the inequality follows since σ is strictly monotonically decreasing and f (s1) >
f (s2). At t = 0, we have h(s, t) = 1 for all s. Thus, for f (s1) > f (s2), we have

hPA(s1, t) < hPA(s2, t), ∀t > 0 (4.29)

and an analogous argument using (4.27) gives that

hS(s1, t) < hS(s2, t), ∀t > 0. (4.30)

Then, we deduce that the location of minimum thickness for both hPA and hS at any time
t > 0 is given by the Lagrangian point sm with maximum value for f (explicitly, sm :=
arg maxs0 f (s0)). In particular, the point of minimum thickness for the purely asymmetric
case (PA) and symmetric case (S) will both be at the Lagrangian point s0 = sm. It should be
noted that although the rupture point of the purely asymmetric case (PA) and symmetric
case (S) is the same in Lagrangian coordinates, they need not be the same in Eulerian
coordinates.

4.6.2. Rate of thinning
Another natural question to ask would be whether the purely asymmetric case (PA)
thins faster/slower and, hence, pinches off earlier/later than the symmetric case (S). In
order to analyse this problem, we consider two cases where (i) σ = σ (Γ ) is convex and
(ii) σ = σ (Γ ) is concave (see figure 6). From (4.26) and (4.27), we have

D
(
hPA − hS)

Dt

∣∣∣∣∣
(s,t)

= 1
4

(
σ ( f (s)hPA(s, t)) − 2σ

(
1
2

f (s)hS(s, t)
))

, (4.31)

which we now analyse. From the definition of convexity and concavity, if σ = σ (Γ ) is
convex, then for a ∈ R,

σ (a) + σ (0)

2
≥ σ

(
1
2

a
)

(4.32)
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Asymmetric Marangoni flow
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 ±
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1 2

Figure 7. The symmetric case (S) (black curves) and the purely asymmetric case (PA) (red curves) are plotted
for (a) σ (Γ ) = Γ (Γ − 2) at t = 10 and (b) σ (Γ ) = log(1 − Γ /2) at t = 20. The curves plotted are the
sheet profile H ± 1

2 h. The spatial variable x is in Eulerian coordinates. In both cases, the initial surfactant
concentration is given by ΓI+(x) = e−x2

and ΓI−(x) = 0. C = 0.5. For the non-dimensionalisation, see (4.1).

and if σ = σ (Γ ) is concave, then

σ (a) + σ (0)

2
≤ σ

(
1
2

a
)

. (4.33)

Furthermore, since σ (Γ ) is monotonically decreasing and σ (0) = 0, we have that if σ =
σ (Γ ) is convex and hPA(s, t) ≥ hS(s, t), then

σ ( f (s)hPA(s, t)) ≥ 2σ

(
1
2

f (s)hPA(s, t)
)

≥ 2σ

(
1
2

f (s)hS(s, t)
)

(4.34)

and if σ = σ (Γ ) is concave and hPA(s, t) ≤ hS(s, t), then

σ ( f (s)hPA(s, t)) ≤ 2σ

(
1
2

f (s)hPA(s, t)
)

≤ 2σ

(
1
2

f (s)hS(s, t)
)

. (4.35)

At that initial time, hPA(s, 0) = hS(s, 0) = 1. Thus, from (4.31), (4.34) and (4.35), we
deduce that

hPA(s, t) ≥ hS(s, t) ∀t if σ = σ (Γ ) is convex (4.36)

and
hPA(s, t) ≤ hS(s, t) ∀t if σ = σ (Γ ) is concave, (4.37)

which, in other words, says that the purely asymmetric case (PA) thins slower/faster than
the symmetric case (S) if σ = σ (Γ ) is convex/concave. The conclusion also holds when
considering a general asymmetric case (see Appendix E). The conclusion makes sense
physically, because a convex/concave σ = σ (Γ ) means that the decrease of surface tension
is smaller/greater with a larger concentration of surfactant. The purely asymmetric case
(PA) would correspondingly have smaller/larger total Marangoni stress than the symmetric
case (S).

In figure 7, for C = 0.5. we compare the symmetric case (S) (black curves) and the
purely asymmetric case (PA) (red curves) with results reported for (a) σ (Γ ) = Γ (Γ − 2)
for Γ ∈ [0, 1] at t = 10 and (b) σ (Γ ) = log(1 − Γ /2) at t = 20. In both cases, the initial
surfactant concentration is given by ΓI+(x) = e−x2

and ΓI−(x) = 0. The curves plotted
are the sheet profile H ± 1

2 h. The isotherm σ = Γ (Γ − 2) is chosen to represent some
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Not extensional flow Extensional flow

Section 4.7.1 Section 4.7.2 Sections 4.1–4.6

t ≪ O(Retqs) t = O(Retqs) t = O(tqs)t = O("Retqs)

Figure 8. Summary of timescales in § 4. For t ≪ O(Retqs), the flow is not extensional (red) (see Appendix B).
For t = O(Retqs) or greater, the flow is extensional (green) (see Appendix B). Three timescales are discussed
in § 4: t = O(Retqs) (§ 4.7.1), t = O(

√
Retqs) (§ 4.7.2) and t = O(tqs) (§§ 4.1–4.6).

convex isotherm (strictly monotonically decreasing for Γ ∈ [0, 1]). The isotherm σ (Γ ) =
log(1 − Γ /2) is chosen to represent an example of a concave isotherm with motivation
from the Langmuir isotherm. As expected from (4.36), we see that in figure 7(a) the
symmetric case pinches faster than the purely asymmetric case. Similarly, as expected
from (4.37), we see in figure 7(b) that the symmetric case pinches more slowly than the
asymmetric case. A small point to note is that figure 7 is given in Eulerian coordinates
(whereas (4.36) and (4.37) are results in Lagrangian coordinates).

4.7. Early time behaviour
In this subsection, we discuss the early time behaviour for the initial conditions (4.5)
and boundary conditions (4.6). It is common in low-Reynolds-number flow analyses to
consider inertia at early times in order to analyse how the quasi-static (inertialess) balance
is obtained. For the case of liquid sheets and threads, see Buckmaster, Nachman & Ting
(1975) and Howell (1996). For many problems, the exact details of the shorter timescale is
not as interesting as the later time thinning and pinching as described in §§ 4.1–4.6. Thus,
we keep discussions in this section brief. In particular, we only consider ϵ2 ≪ Re ≪ 1.
For even smaller Re, analogous approaches can be considered, but the exact equations are
different (see Howell 1996). In this subsection, we work in Eulerian coordinates.

The main timescale (dimensional) for thinning as described in prior sections is tqs =
ϵµL/(Σ . There are two shorter timescales. The first is the timescale (dimensional) Retqs,
which evolves the horizontal velocity ū, and the second is the timescale (dimensional)√

Retqs, which evolves the centreline H. Note that since Re ≪ 1, we have separation of
three timescales Retqs ≪

√
Retqs ≪ tqs, which is a familiar concept in asymptotics (Hinch

1991). It will be shown in §§ 4.7.1 and 4.7.2 that on the timescale Retqs, the horizontal
velocity ū evolves as a diffusion equation and on the timescale

√
Retqs the centreline H

evolves as a wave equation. For a summary of the timescales, see figure 8. The evolution of
ū on the timescale Retqs is an inner solution for the centreline evolution H on the timescale√

Retqs, which, in turn, is an inner solution for the quasi-static evolution as considered in
§§ 4.1–4.6.

4.7.1. Diffusion equation for horizontal velocity ū
On the dimensional timescale Retqs, the non-dimensionalisation is now given by

x = Lx̃, u = (Σ

ϵµ
ũ, H = ϵLH̃, t = Re

ϵµL
(Σ

T̃1, y = ϵLỹ, w = 1
Re

(Σ

µ
W̃1,

h = ϵLh̃, p = (Σ

ϵL
p̃, σ = Σ + (Σσ̃,

⎫
⎪⎬

⎪⎭

(4.38)

and we may apply the same expansion techniques as shown in § 3. Then (again dropping
the tildes), the analogues to (3.25), (3.26), (3.27), (3.28) and (4.4) are given, respectively,
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Asymmetric Marangoni flow

by

∂h
∂T1

= 0, (4.39)

∂H
∂T1

= W̄1, (4.40)

h
∂ ū
∂T1

=
(

∂σ+
∂x

+ ∂σ−
∂x

)
+ 4

∂

∂x

(
h
∂ ū
∂x

)
, (4.41)

h
∂W̄1

∂T1
= 0, (4.42)

∂Γ±
∂T1

= 0. (4.43)

We can immediately deduce from the initial conditions (4.5) that

h = 1, H = 0, W̄1 = 0, Γ± = ΓI±, (4.44)

which then gives that

∂ ū
∂T1

− 4
∂2ū
∂x2 = ∂

∂x
(σ (ΓI+) + σ (ΓI−)) . (4.45)

Thus, we see that the evolution equation for ū is a diffusion equation with diffusion
coefficient 4 and forcing given by the right-hand side of (4.45). From standard
considerations of the diffusion equation (see Appendix F), it can then be deduced that

lim
T1→∞

∂ ū
∂x

= −1
4

(σ (ΓI+) + σ (ΓI−)) , (4.46)

which satisfies the quasi-static balance (4.2) as expected. A subtle point to be made here is
that the initial condition (4.5) is compatible with the boundary condition (4.6) because the
early time dynamics discussed here respects the far-field condition ∂ ū/∂x = 0 (explicitly,
limx→±∞ limT1→∞(∂ ū/∂x) = 0).

4.7.2. Wave equation for centreline H
On the dimensional timescale

√
Retqs, the non-dimensionalisation is now given by

x = Lx̃, u = (Σ

ϵµ
ũ, H = ϵLH̃, t =

√
Re

ϵµL
(Σ

T̃2, y = ϵLỹ,

w = 1√
Re

(Σ

µ
W̃2, h = ϵLh̃, p = (Σ

ϵL
p̃, σ = Σ + (Σσ̃,

⎫
⎪⎬

⎪⎭
(4.47)
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and we may apply the same expansion techniques as shown in § 3. Then, the analogues to
(3.25), (3.26), (3.27), (3.28) and (4.4) are given, respectively, by

∂h
∂T2

= 0, (4.48)

∂H
∂T2

= W̄2, (4.49)

0 =
(

∂σ+
∂x

+ ∂σ−
∂x

)
+ 4

∂

∂x

(
h
∂ ū
∂x

)
, (4.50)

∂W̄2

∂T2
= 1

2
∂2

∂x2 (h(σ+ − σ−)) + ∂

∂x

(
∂H
∂x

(
2
C

+ (σ+ + σ−)

))

+ 4
∂

∂x

(
h
∂H
∂x

∂ ū
∂x

)
, (4.51)

∂Γ±
∂T2

= 0. (4.52)

Regarding the shorter timescale T1 (in dimensional variables, Retqs) of the evolution for
ū described in § 4.7.1 as the inner solution, we deduce from (4.46) that on the timescale T2
of centreline evolution,

∂ ū
∂x

= −1
4

(σ (ΓI+) + σ (ΓI−)) , (4.53)

along with

h = 1 and Γ± = ΓI±, (4.54)

which can be substituted into (4.49) and (4.51) to get

∂2H
∂T2

2
− 2

C
∂2H
∂x2 = 1

2
∂2

∂x2 (σ (ΓI+) − σ (ΓI−)) . (4.55)

Equation (4.55) is a wave equation with wavespeed c =
√

2/C and forcing term
independent of T2 given by the right-hand side of (4.55). In dimensional variables, the
wavespeed is ((Σ/ϵµ)Re−1/2√2/C. Thus, the solution can be written as

H = − 1
4c2 (2g(x) − g(x − cT2) − g(x + cT2)) , (4.56)

where g(x) := σ (ΓI+(x)) − σ (ΓI−(x)). Equation (4.56) is the famous d’Alembert’s
solution for the wave equation and can be interpreted as having two travelling waves, one
travelling to the left with wavespeed c and one travelling to the right with wavespeed c. In
particular, we may deduce that

lim
T2→∞

H = −C
4

(σ (ΓI+) − σ (ΓI−)) , (4.57)
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Asymmetric Marangoni flow

which satisfies the quasi-static balance (4.3) as expected. Again, it should be noted that
the initial condition (4.5) is, thus, compatible with the boundary condition (4.6) since the
early time dynamics discussed here respects the far field condition H = 0.

5. Asymmetric deposition of insoluble surfactants onto a uniformly thinning sheet
In this section, we consider the localised deposition of insoluble surfactants onto the
top, z = H + 1

2 h, of a uniformly extending sheet of initial uniform thickness h = hI

(the bottom, z = H − 1
2 h, remains clean) with initial horizontal velocity u = αx for α

constant. Without surfactants, we assume that σ± = Σ = constant. We assume that the
Péclet number, defined by L2α/D is large enough such that diffusion may be ignored.
We consider Re ≪ 1. For the configuration considered in this section, there is a non-zero
extensional flow at the initial time. Thus, unlike for the configuration considered in § 4,
where the sheet is otherwise at rest (see Appendix B), the flow is extensional at all times.

Much of the analysis is similar to the example considered in § 4 and details are therefore
omitted. In particular, we omit the discussion of the evolution starting with an initial
surfactant concentration with a double maximum, which leads to satellite drops, since
this is equivalent to § 4.5.

Similarly, we omit the discussion of the effect of convexity/concavity of surface tension
isotherms, which would be equivalent to § 4.6. The two conclusions still hold, that is:
(a) the location of minimum thickness for hPA and hS is given by sm := arg maxs0 f (s0)

and (b) hPA thins faster/slower than hS if σ = σ (Γ ) is convex/concave.
The choice of the initial condition h = hI and u = αx is physically and mathematically

motivated. Large bare viscous surface bubbles have films that thin exponentially with
respect to time (Debrégeas et al. 1998). The evolution of a uniform sheet with constant
extension rate is, by definition, given by h = hIe−αt and u = αx. Thus, the initial condition
corresponds mathematically to a sheet that would otherwise be exponentially thinning
uniformly. This initial condition is also the simplest case of extensional flow with nonzero
velocity gradient ∂u/∂x. In addition, the profile of a uniformly thinning sheet with constant
extension, h = hIe−αt and u = αx, is considered when discussing the thin-film region in
foams (Breward & Howell 2002). However, for a large bare viscous surface bubble, Bartlett
et al. (2023) has recently shown that the thickness is, in fact, not uniform.

We compare the physical relevance of the example in this section to the surface bubble
drainage experiment given by Debrégeas et al. (1998). Consider physical values when a
viscous surface bubble of radius ≈ 6 mm starts to exponentially thin (e.g. t ≈ 200 s in
figure 1 of Debrégeas et al. 1998). Here, the characteristic thickness ≈ 20 µm, horizontal
length L ≈ 6 mm, viscosity µ ≈ 103 Pa s, density ρ ≈ 103 kg m−3, surface tension Σ ≈
2 × 10−2 N m−1 and inverse timescale α ≈ 10−2 s−1. Then, ϵ ≈ 3 × 10−3 and upon
identifying U = Lα, we have Re = ρL2α/µ ≈ 4 × 10−7 and C = ϵµLα/Σ ≈ 0.01. As
shown in § 3.2, we require Re = O(1) or less and C = O(1) or greater in order for the
extensional flow approximation to be valid, along with M = O(1) or less.

The flow field h = hIe−αt and u = αx satisfies conservation of mass (3.25) but only
satisfies conservation of horizontal momentum (3.27) in the case where inertia can be
ignored to leading order, since Reū(∂ ū/∂x) is not zero. Thus, it only makes sense to discuss
the example when Re ≪ 1. However, once again, inertia is important at early times.

5.1. Non-dimensional equations
Non-dimensionalise the equations according to (3.1) with U = Lα (in other words,
consider the timescale of the background exponentially thinning flow), where ϵ = hI/L.
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z

x

Γ+ = ΓI+ = e– x2

z = 1
2

z = – 1
2

ū = ūI = x

Figure 9. Initial set-up considered in § 5.4. An initial Gaussian surfactant distribution ΓI+(x) = e−x2
,

ΓI−(x) = 0 is deposited on top of a uniform sheet − 1
2 ≤ z ≤ 1

2 at t = 0 with initial condition for horizontal
velocity given by ūI(x) = x. The horizontal direction is given by the x axis and the vertical direction is given
by the z axis. The red arrows denote the direction of horizontal flow. See (5.1) for the non-dimensionalisation.

In addition, non-dimensionalise the surfactant concentration with a characteristic
surfactant concentration Γc. Explicitly,

x = Lx̃, u = Lαũ, H = ϵLH̃, t = 1
α

t̃, y = ϵLỹ, w = ϵαLw̃,

h = ϵLh̃, σ = Σ + (Σσ̃, Γ = ΓcΓ̃,

⎫
⎬

⎭ (5.1)

We then have parameters M = (Σ/ϵµLα, Re = ρL2α/µ and C = ϵµLα/Σ . Again,
the tilde (̃ ) is dropped. We consider M = O(1) or less and C = O(1) or more so that we
have extensional flow (see § 3.2). The horizontal length scale L is once again given by the
width of variation of the initial surfactant concentration.

Equations for h and H are given by (3.25) and (3.26). The equations for ū and w̄ are given
by (3.27) and (3.28) with the inertia term neglected (note that unlike § 4, the constant M
is not necessarily 1). Diffusion is ignored once again by assuming a large enough Péclet
number L2α/D (diffusion coefficient D). Thus, Γ is given by (4.4).

5.2. Initial and boundary conditions
For the initial conditions, we consider a uniform sheet with constant extension, along
with some initial surfactant distribution ΓI±(x) where Γ± → 0 as x → ±∞. Far-field
conditions are taken for the boundary condition. See figure 9 for a particular example
where ΓI+ = e−x2

and ΓI− = 0, which is considered in § 5.4. Explicitly,

h = 1, H = 0, ū = x, w̄ = 0, Γ± = ΓI± at t = 0 (5.2)

and

h = e−t, H = 0,
∂ ū
∂x

= 1, w̄ = 0, Γ± = 0 at x = ±∞, (5.3)

where it should be noted here that x = ±∞ more rigorously means some 1 ≪ x ≪ Re−1

(in order for the inertia terms to be neglected, Reū(∂ ū/∂x) = Rex ≪ 1).
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Asymmetric Marangoni flow

5.3. Lagrangian coordinates
We may proceed with the same technique as in § 4.3 to deduce the equivalent equations to
(4.7), (4.8), (4.12), (4.13), (4.14) and (4.15):

∂ ū
∂x

= − M
4h(x, t)

(σ (Γ+(x, t)) + σ (Γ−(x, t))) + e−t

h(x, t)
, (5.4)

H(x, t) = −M
2

h(σ (Γ+(x, t)) − σ (Γ−(x, t)))(
2
C

+ 4e−t
) , (5.5)

Γ±(s, t) = ΓI±(s)h(s, t), (5.6)

Dh
Dt

∣∣∣∣
(s,t)

= M
4

(σ (ΓI+(s)h(s, t)) + σ (ΓI−(s)h(s, t))) − e−t, (5.7)

w̄(s, t) = DH
Dt

∣∣∣∣
(s,t)

, (5.8)

∂x
∂s

∣∣∣∣
(s,t)

= 1
h(s, t)

. (5.9)

5.4. Example: linear isotherm, Gaussian deposition on top
In this subsection, we consider the example where the initial surfactant distribution given
by ΓI+(s) = e−s2

and ΓI−(s) = 0 and the surface tension isotherm is linear σ (Γ ) = −Γ
(see figure 9 for the set-up). Then, we have

Dh
Dt

∣∣∣∣
(s,t)

= −K(s)h(s, t) − e−t, (5.10)

where K(s) := (M/4)e−s2
. Using the initial condition h(s, 0) = 1, we have the analytic

solution

h(s, t) =

⎧
⎨

⎩

e−t

1 − K(s)
− K(s)

1 − K(s)
e−K(s)t, K(s) /= 1,

(1 − t)e−t, K(s) = 1,
(5.11)

where we note that the point K(s) = 1 is not a discontinuity since

lim
k→1

(
e−t

1 − k
− k

1 − k
e−kt

)
= (1 − t)e−t. (5.12)

Noting that x(0, t) = 0 by symmetry, we have from (5.9) that

x(s, t) =
∫ s

0

1
h(s′, t)

ds′. (5.13)
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The equations for H, ū, w̄ and Γ± are given by

H(s, t) = 2K(s)h(s, t)2
(

2
C

+ 4e−t
) , (5.14)

ū(s, t) =
∫ s

0

K(s′)

h(s′, t)
+ e−t

h2(s′, t)
ds′, (5.15)

w̄(s, t) = − 4K(s)h(s, t)(
2
C

+ 4e−t
)
(
K(s)h(s, t) + e−t)+ 8e−tK(s)h(s, t)2

(
2
C

+ 4e−t
)2 , (5.16)

Γ+(s, t) = 4
M

K(s)h(s, t), Γ−(s, t) = 0. (5.17)

5.4.1. Description of the solution
First, we note from (5.11) that h(s, t) = 0 when t = (1/(K(s) − 1)) log(K(s)) for K(s) /= 1
or when t = 1 for K(s) = 1. Thus, rupture occurs at time t = tr and location s = sr where

tr = min
s

⎧
⎨

⎩

1
K(s) − 1

log(K(s)), K(s) /= 1,

1, K(s) = 1,
(5.18)

and

sr = arg min
s

⎧
⎨

⎩

1
K(s) − 1

log(K(s)), K(s) /= 1,

1, K(s) = 1,
(5.19)

which, by noting that the function f (k) := log(k)/(k − 1) is a strictly decreasing function
of x > 0, can be evaluated as

tr =

⎧
⎪⎨

⎪⎩

1
M
4

− 1
log

(
M
4

)
, M /= 4,

1, M = 4,

(5.20)

and

sr = 0. (5.21)

There is no discontinuity once again since limM→4(1/(M/4 − 1)) log(M/4) = 1.
It is interesting to note that for any M > 0, finite time rupture now occurs (in contrast

to the case without surfactants where the sheet is exponentially thinning h = e−t). The
fact that sr = 0 follows once again from the more general notion that rupture occurs at the
Lagrangian point of maximum Γ .

Previously, we analysed where and when the sheet ruptures. We may also analyse how
the sheet ruptures. Again, a point of caution is that this paper does not include van der
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Asymmetric Marangoni flow

Waals forces. As shown in Appendix G, we have for s ≪ 1 and 0 < t∗ := tr − t ≪ 1 that

h(s, t∗) = c1t∗ + c2s2 (5.22)

and

x(s, t∗) = 1√
c1c2t∗

arctan

⎛

⎜⎜⎝
s

√
c1

c2
t∗

⎞

⎟⎟⎠ , (5.23)

where c1, c2 are explicit functions of M, given by (G2). Equations (5.22) and (5.23) can
be rewritten as self-similar solutions

h(η, t∗) = c1t∗
(

1 + η2
)

(5.24)

and

x(η, t∗) = 1√
c1c2t∗

arctan(η), (5.25)

where η := s((c1/c2)t∗)−1/2 is the self-similarity variable. Inverting (5.23) and
substituting into (5.22) gives that near the pinch (s ≪ 1, t∗ ≪ 1), h is given in Eulerian
coordinates by

h(x, t∗) = c1t∗
(

1 + tan2
(

x
√

c1c2t∗
))

. (5.26)

An example with M = 4 and C = 0.5 (representative of parameter values with M =
O(1) and C = O(1)) is given in figure 10. The value M = 4 has the nice property from
(5.20) that the sheet ruptures at t = 1. Figure 10(a) shows the bottom of the sheet H − 1

2 h,
the centreline H, the top of the sheet H + 1

2 h, and the surfactant distribution Γ+ at the
initial time. Again, by initial time, we mean t = 0 where a quasi-static balance has been
achieved and so, in particular, the centreline is bent (see §§ 5.1 and 5.5). Figure 10(b)
shows the velocity profiles ū − x and w̄ at the initial time. The value ū − x is plotted rather
than ū for better visualisation. Similarly, figure 10(c,d) report the variables at t = 0.5 and
figure 10(e, f ) report the variables at t = 0.9 (which is close to the rupture time tr = 1).
The times t = 0.5 and 0.9 were chosen to represent mid and late times, respectively, for
the thinning problem.

The non-uniform surfactant distribution means that there are Marangoni effects,
where surfactants spread from a region of high concentration to low concentration (see
figure 10a,c,e), since low-concentration regions have higher surface tension. As result
of the horizontal velocity ū induced by the spreading of surfactants, h decreases and
the sheet thins, in addition to the background exponentially thinning given by e−t; see
figure 10(a,c,e).

5.5. Early time behaviour
Again, we only consider ϵ2 ≪ Re ≪ 1. There are three timescales once again, given by
Reα−1 ≪

√
Reα−1 ≪ α−1. On the timescale Reα−1, the horizontal velocity ū evolves as
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Figure 10. Time evolution with an imposed extensional flow. Plots of (5.11), (5.14), (5.15), (5.16), (5.17) and
(5.13) for M = 4 and C = 0.5. The spatial variable x is in Eulerian coordinates. The three curves from bottom
to top in (a) are H − 1

2 h (black), H (blue), H + 1
2 h (coloured with surfactant concentration Γ ) at the initial

time and (b) shows the velocity profiled ū − x (blue) and w̄ (red) at the initial time. Similarly, (c,d) report the
variables at t = 0.5 and (e, f ) report the variables at t = 0.9. For the non-dimensionalisation, see (4.1).

a diffusion equation. Proceeding as in § 4.7.1, we deduce that

∂ ū
∂T1

− 4
∂2ū
∂x2 = M

∂

∂x
(σ (ΓI+) + σ (ΓI−)) (5.27)
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Asymmetric Marangoni flow

with the limit T1 → ∞ given by

lim
T1→∞

∂ ū
∂x

= 1 − M
4

(σ (ΓI+) + σ (ΓI−)) . (5.28)

On the timescale
√

Reα−1 the centreline H evolves as a wave equation. Proceeding as
in § 4.7.2, we deduce that

∂2H
∂T2

2
−
(

4 + 2
C

)
∂2H
∂x2 = M

2
∂2

∂x2 (σ (ΓI+) − σ (ΓI−)) , (5.29)

which is the wave equation with wavespeed c =
√

(4 + 2/C) and forcing term independent
of T2 given by the right-hand side of (5.29). In dimensional variables, the wavespeed is
αLRe−1/2√(4 + 2/C). Thus, the solution can be written as

H = − M
4c2 (2g(x) − g(x − cT2) − g(x + cT2)) , (5.30)

where g(x) := σ (ΓI+(x)) − σ (ΓI−(x)). In particular, we may deduce that

lim
T2→∞

H = − M

2
(

4 + 2
C

) (σ (ΓI+) − σ (ΓI−)) . (5.31)

6. Discussion
In § 3, an asymptotic expansion was used to derive the leading-order thin-film equations
in an extensional flow regime with Marangoni effects, where three conditions (3.9),
(3.10) and (3.11) were identified to give extensional flow, i.e. u ≈ u(x, t), p ≈ p(x, t). In
particular, the (3.26) and (3.28) allow for the inclusion of Marangoni effects into the
evolution of the centreline H and the vertical velocity w̄.

With the thin-film equations derived in § 4, the example of surfactant deposition on one
side of a sheet (otherwise at rest) was considered. Then, in § 4.4, we presented an analysis
of the film evolution following a Gaussian deposition of surfactant on top, for the case
of a linear isotherm; a related example was treated in § 4.4. In particular, we considered
three aspects of top–bottom asymmetry. The first was the centreline, given by a quasi-static
solution (4.8) with early time evolution given by a wave equation as in § 4.7.2. Second, it
was shown that the rupture location was the same in Lagrangian coordinates for both the
purely asymmetric case (PA) and symmetric case (S). Then, the differences in thinning
rates between the purely asymmetric case (PA) and symmetric case (S) were discussed
with details depending on whether σ = σ (Γ ) was convex or concave. Finally, in § 5 we
considered the surfactant deposition on one side of an otherwise uniformly thinning sheet.
The analysis was similar to § 4. For a summary of the results, see table 1.

As part of our analyses, we considered the thinning and pinching of a liquid sheet due
to Marangoni effects. A related experimental set-up, similar to that by Néel & Villermaux
(2018), would be the deposition of insoluble surfactants on the top of a viscous planar
film and subsequent measurement of the resulting centreline deformation. It would be
interesting to see what happens after pinching has occurred, for example, by using ideas
of ‘continuation’ that have been developed elsewhere (Eggers 2014; Eggers & Fontelos
2015). In addition, it may be beneficial to explore further the production of satellite drops
from pinching due to Marangoni effects (see § 4.5), which, if relevant to a surface bubble,
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Stationary background (§ 4) Uniformly thinning background (§ 5)

Sheet evolution (linear
isotherm)

No finite time pinch off. (§ 4.4) Finite time pinch off. (§ 5.4)

Satellite drop formation Possible. (§ 4.5) Possible.

Effects due to the shape of the
surface tension isotherm

Convex ⇒ slower thinning. Convex ⇒ slower thinning.
Concave ⇒ faster thinning. Concave ⇒ faster thinning.
Thickness is at minimum at the
Lagrangian point where ΓI(s) is
maximal. (§ 4.6)

Thickness is at minimum at the
Lagrangian point where ΓI(s) is
maximal.

Early time evolution ū evolves as a diffusion equation
(4.45).

ū evolves as a diffusion equation
(5.27).

H evolves as a wave equation
(4.55).

H evolves as a wave equation
(5.29).

Table 1. Summary of the results for the surfactant deposition problem.

would be an additional aerosol production mechanism in addition to the usual jet drops
and film drops.

As mentioned in the introduction, asymmetric Marangoni flow configurations should
occur in many physical systems, such as on the inside of a bubble and the outside of
a bubble. In order to relate this study to naturally important setups such as air–water
interfaces, it would be interesting to consider the case Re ≫ 1.

Although the thin-film equations are commonly used in the literature to study thin-film
Marangoni flows, a comparison to the full Navier–Stokes equations with Marangoni forces
(see § 2) may be needed. We are currently considering the deposition of surfactants
onto a liquid film using direct numerical simulation approaches for Marangoni flow
with the numerical package developed by Farsoiya et al. (2024) in Basilisk (Popinet &
Collaborators 2013).

Finally, it should be noted that the thinning and rupture of a liquid film is complex with
many other different processes potentially involved such as evaporation (Poulain et al.
2018), salt concentration (Poulain et al. 2018; Dubitsky et al. 2023), marginal regeneration
(Mysels, Shinoda & Frankel 1959; Lhuissier & Villermaux 2012; Gros et al. 2021; Miguet
et al. 2021) and van der Waals forces (Erneux & Davis 1993). Consequently, it may
be beneficial to also consider top–bottom asymmetry of liquid sheets for other physical
mechanisms.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.501.
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Asymmetric Marangoni flow

Appendix A. Condition (3.11) for the case of symmetry
In the case of symmetry (σ = σ±, κ = κ±), the right-hand side of (3.11) can be replaced
with the phrase ‘O(ϵ−2) or less’. This can be explained when (3.19) is derived in § 3.3.

Consider the case (ϵ2/C)(1 + MCσ±)κ± = O(1). In addition, consider M = O(1) or
less; see (3.10). Then, (ϵ2/C)(1 + MCσ±)κ± ≈ (ϵ2/C)κ± to leading order in ϵ2 and (3.19)
becomes two equations,

ϵ2

C
κ± = p0 + 2

∂u0

∂x
, (A1)

which implies that κ+ = κ−. Then, we must have κ+ = κ− and consequently that
∂2H/∂x2 = 0 (Howell 1996), which gives a straight centreline, so there are no top–bottom
asymmetries.

In the case that we have symmetry (σ = σ±, κ = κ±), the two equations become a single
equation,

ϵ2

C
κ = p0 + 2

∂u0

∂x
, (A2)

and the rest of the derivation in § 3 can be followed while keeping the left-hand side of
(A2). Then, the term 1

2 (ϵ2/C)h(∂3h/∂x3) appears on the right-hand side of (3.27), which
is already familiar in the literature (De Wit et al. 1994). Thus, in the case of symmetry, the
right-hand side of (3.11) can be replaced with the phrase ‘O(ϵ2) or less’. In other words,
(3.11) is a condition that becomes more strict due to the asymmetry of interest.

Appendix B. Justification of extensional flow in § 4
Here, we give justification for only considering extensional flow in § 4. In this appendix,
all variables are dimensional for clarity. Since the sheet starts at rest, there is a timescale ta
required for the horizontal velocity of the sheet to accelerate to the extensional flow scaling
UE := (Σ/ϵµ. The scaling UE = (Σ/ϵµ can be seen from balancing extensional stress
with the Marangoni stress (µ(∂/∂x)(h(∂u/∂x)) ∼ ∂σ±/∂x). We can give an estimate for
the timescale (dimensional) ta required for the horizontal velocity to reach UE = (Σ/ϵµ.
From the horizontal force balance (ρh(∂u/∂t) ∼ ∂σ±/∂x), we have

ρ
ϵLUE

ta
= (Σ

L
, (B1)

which rearranges to

ta = ρL2

µ
. (B2)

As expected, the acceleration timescale ta for the horizontal velocity is the same timescale
as discussed in § 4.7.1, since ta = Retqs where tqs = ϵµL/(Σ , Re = ρL(Σ/ϵµ2. In
conclusion, the flow is extensional for t = O(ta) or greater and not extensional for t ≪
O(ta).

We now show that the details of the time t ≪ O(ta), when the flow is not extensional,
can be safely ignored for Re = O(1) or less. Consider times t ≪ O(ta). From the horizontal
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force balance (ρh(∂u/∂t) ∼ ∂σ±/∂x),

|u|
UE

≪ 1. (B3)

From conservation of mass (∂h/∂t ∼ −h(∂u/∂x)), we have that

|h − hI |
hI

∼ t|u|
L

≪ taUE

L
= Re (B4)

and similarly from continuity (∂w/∂z ∼ −(∂u/∂x)), the kinematic condition (∂H/∂t ∼
w) and conservation of surfactant (∂Γ±/∂t ∼ −Γ±(∂u/∂x)), we deduce that (using ϵ =
hI/L)

|w|
ϵUE

≪ 1 and
|H|
hI

,
|Γ± − ΓI±|

ΓI±
≪ Re. (B5)

Then, for Re = O(1) or less, we have that

|h − hI |
hI

,
|H|
hI

,
|u|
UE

,
|w|
ϵUE

,
|Γ± − ΓI±|

ΓI±
≪ 1. (B6)

Thus, the values for h, H, u, w and Γ± do not vary appreciably from the initial condition in
the timescale t ≪ O(ta) and the details of the timescale t ≪ O(ta) can be safely ignored.
In other words, we only need to consider the extensional flow regime for § 4.

Appendix C. The inclusion of inertia
We may compare the solutions of (3.27) and (3.28) with the inertialess solutions of (4.2)
and (4.3). For the numerical solution, we use the one-dimensional PDE solver routine
(src/grid/cartesian1D.h) on Basilisk (Popinet & Collaborators 2013). Note that for both
cases, the evolution equations for h and H are given by (3.25) and (3.26). Solutions for
(3.27) and (3.28) are obtained numerically subject to the initial conditions given by (4.5)
and boundary conditions (4.6). The initial surfactant concentration is given by ΓI+ = e−s2

and ΓI− = 0. We choose C = 0.5 and M = 1, which is the same set-up as in figure 4.
Figure 11(a) shows the sheet profile H ± 1

2 h at t = 1, where we compare the inertialess
result (dashed black line), Re = 10 (solid blue line), Re = 1 (solid green line) and
Re = 0.001 (solid red line). Figure 11(b) shows the same case as figure 11(a) but at
t = 10 instead. The times t = 1 and t = 10 are chosen to represent mid and late times
of the thinning problem (also chosen for figure 4). The horizontal direction x is Eulerian.
As expected, the agreement between the inertialess solution (dashed black line) and the
Re = 0.001 solution (solid red line) is good at both t = 1 and t = 10. As Re increases, we
can see from figure 11(b) that the influence of inertia slows down the pinching at x = 0.
The bumps on the sheet profile H ± 1

2 h for the Re = 1 curve (solid green line) at x = ±20
are the right and left travelling waves of the centreline deformation as described in § 4.7.2
(although it is not a direct comparison since § 4.7.2 considered Re ≪ 1).

Appendix D. Derivation of the relationship between Eulerian and Lagrangian
coordinates
Although the following approach is standard (Eggers & Fontelos 2015), the derivation of
(4.15) is included below for completeness. Consider some fixed Lagrangian point sf and a
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Figure 11. Effect of including inertia on the evolution of the liquid sheet. The curves are the solutions for
the deposition problem with initial surfactant concentration given by ΓI+(s) = e−s2

and ΓI−(s) = 0 with
parameters C = 0.5. (a) Sheet profile H ± 1

2 h at t = 1, where we compare the inertialess result (dashed black
line), Re = 10, (solid blue line), Re = 1 (solid green line) and Re = 0.001 (solid red line). The horizontal
direction x is Eulerian. (b) Same as (a) but at t = 10. The horizontal direction x is Eulerian.

variable Lagrangian point s. Then, by global conservation of mass

s − sf =
∫ x(s,t)

x(sf ,t)
h(x′, t) dx′ =

∫ s

sf

h(s′, t)
∂x
∂s

∣∣∣∣
(s′,t)

ds′, (D1)

which upon taking the derivative with respect to s gives

1 = h(s, t)
∂x
∂s

∣∣∣∣
(s,t)

(D2)

as required.

Appendix E. General asymmetric setups
Consider the general asymmetric case (A), where there are surfactants on each side but not
necessarily symmetrically deposited. Explicitly, the surfactant concentrations are given by

Γ A
I+(s) = f (s), Γ A

I−(s) = g(s), (E1)

for some f (s), g(s). The ‘corresponding’ symmetric case (S) is given by

Γ S
I±(s) = 1

2
( f (s) + g(s)) . (E2)

Then, we may proceed as in § 4.6.2, to deduce that

D
(
hA − hS)

Dt

∣∣∣∣∣
(s,t)

= 1
4

(
σ
(

f (s)hA(s, t)
)

+ σ
(

g(s)hA(s, t)
)

−2σ

(
1
2

( f (s) + g(s)) hS(s, t)
))

, (E3)

which we will now analyse. From the definition of convexity and concavity, if σ = σ (Γ )
is convex, then for a, b ∈ R,

1
2

(σ (a) + σ (b)) ≥ σ

(
1
2

(a + b)

)
(E4)
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and if σ = σ (Γ ) is concave, then

1
2

(σ (a) + σ (b)) ≤ σ

(
1
2

(a + b)

)
. (E5)

Furthermore, since σ (Γ ) is monotonically decreasing, we have that if σ = σ (Γ ) is convex
and hA ≥ hS, then

σ
(

f (s)hA(s, t)
)

+ σ
(

g(s)hA(s, t)
)

≥ 2σ

(
1
2

( f (s) + g(s)) hA(s, t)
)

≥ 2σ

(
1
2

( f (s) + g(s)) hS(s, t)
)

(E6)

and if σ = σ (Γ ) is concave and hA ≤ hS, then

σ
(

f (s)hA(s, t)
)

+ σ
(

g(s)hA(s, t)
)

≤ 2σ

(
1
2

( f (s) + g(s)) hA(s, t)
)

≤ 2σ

(
1
2

( f (s) + g(s)) hS(s, t)
)

. (E7)

At initial time, hA(s, 0) = hS(s, 0) = 1. Thus, from (E3), (E6), (E7), we deduce that

hA(s, t) ≥ hS(s, t) ∀t if σ = σ (Γ ) is convex (E8)

and

hA(s, t) ≤ hS(s, t) ∀t if σ = σ (Γ ) is concave. (E9)

The location of the rupture is more complicated. With the same argument as in § 4.6.1,
we deduce that for the particular case where both f (s1) > f (s2) and g(s1) > g(s2), then

hA(s1, t) < hA(s2, t), ∀t > 0. (E10)

Appendix F. The limit T1 → ∞ of the diffusion equation
From (4.45), by letting u = u′ − F(x) with

F(x) :=
∫ x

0

1
4

(σ (ΓI+( y)) + σ (ΓI−( y))) dy, (F1)

we have

∂u′

∂T1
− 4

∂2u′

∂x2 = 0 (F2)

with initial condition u′(x, 0) = F(x). Throughout this paper, we only consider examples
where F(−∞) and F(∞) are finite. Then, as is usual for a diffusion equation, the solution
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is given by

u′(x, T1) = 1√
16πT1

∫ ∞

−∞
F( y) exp

(−(x − y)2

16T1

)
dy, (F3)

which upon a change of variables gives

u′(x, T1) = 1√
π

∫ ∞

−∞
F(x + 4

√
T1v)e−v2

dv. (F4)

Hence,

lim
T1→∞

u′(x, T1) = 1√
π

∫ ∞

−∞
lim

T1→∞
F(x + 4

√
T1v)e−v2

dv = 1
2

(F(∞) + F(−∞)) ,

(F5)

where upon noting that F is bounded everywhere: F(−∞) ≤ F( y) ≤ F(∞), the limit
was passed under the integral sign using the dominated convergence theorem (Billingsley
2017). Thus, in total, we have

lim
T1→∞

u(x, T1) = −F(x) + 1
2

(F(∞) + F(−∞)) . (F6)

In particular, we obtain (4.46):

lim
T1→∞

∂ ū
∂x

= −1
4

(σ (ΓI+) + σ (ΓI−)) . (F7)

Appendix G. Derivation of the shape of the pinch in § 5
Upon expanding (5.11) for s ≪ 1 and t∗ ≪ 1, we have with errors at O(s4, s2t∗, (t∗)2):

h(s, t∗) = c1t∗ + c2s2, (G1)

where

c1 = e−tr , c2 =
1 − M

4
+ M

4
log

(
M
4

)

(
1 − M

4

)2 e−tr , (G2)

and tr is given by (5.20). Then, we may use (5.13) to deduce that

x(s, t∗) =
∫ s

0

1
h(s′, t∗)

ds′ = 1√
c1c2t∗

arctan

⎛

⎜⎜⎝
s

√
c1

c2
t∗

⎞

⎟⎟⎠ . (G3)
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