


which scenarios are restricted to share the same action at each

step in the planning horizon. However, a major limitation

of scenario or particle approaches for controlling multiple

model systems manifests in ensuring safety, since they have

at most asymptotic safety guarantees. In our approach, we

design a controller that maximizes robustness over mode

uncertainty without sampling scenarios.

Several safety techniques have been proposed for MPC, in-

cluding barrier approaches [11]–[13], computation of reach-

able sets [14] and discrete approximations [15]. Particularly,

work [16] leverages CBFs to generate policies that consider

uncertainty in dynamics. In this paper, we utilize CBFs in

MPC and extend it to the case of JMLS mode uncertainty.

Feasibility of MPC problems involving CBF constraints

has been studied and enhanced in recent work [17]–[20].

[17], [18] enhance feasibility by reducing the CBF decay rate

for single mode systems. [19] increase feasibility by using

Generalized CBFs for inconsecutive timesteps. While this in-

creases feasibility, safety is no longer enforced for intermedi-

ate timesteps. Another approach is using soft constraints via

slack variables, compromising on safety guarantees [20]. In

this work, we discuss the impact of the size of the consensus

horizon on the feasibility of the JMLS MPC problem with

CBF constraints, and propose a method to improve feasibility

while maximizing safety for each planning horizon.

B. Contribution

In this work, we present an MPC design that encodes the

safety of JMLS with uncertain mode jumps and mode switch

detection delays using CBFs. We provide a feasibility and

safety analysis of the size of the consensus horizon, and

propose a method to obtain the optimal consensus horizon

while ensuring the finite-horizon optimization problem is

feasible. We evaluate our control design on two case study

scenarios. Results indicate that the proposed technique of

maximizing the robustness horizon guided by the feasibility

of the optimization problem and the use of CBFs are critical

for the overall safety and performance of MPC for JMLS.

In summary, the main contributions of this paper are four-

fold: (i) A safety-aware control design for controlling JMLS

using CBF constraints, (ii) An analysis of the role of the

consensus horizon on feasibility and safety of the closed-

loop system, (iii) A practical method to obtain the optimal

consensus horizon that maximizes robustness while ensuring

problem feasibility at each time step, and (iv) Simulation

case studies and benchmarks that demonstrate the safety and

performance of the proposed approach.

II. SYSTEM SETUP

In this work, we aim to develop safety-critical control poli-

cies for multiple-model systems subject to mode switches.

Consider a discrete-time Jump Markov Linear System

xt+1 = Ai(t)xt +Bi(t)ut,

yt = Hi(t)xt + vt,
(1)

where t ∈ N and system state xt ∈ R
n. The control input

ut ∈ U ⊂ R
m, where U is a compact set. The dynamics

and control matrices of the i(t)th mode are Ai(t) ∈ R
n×n

and Bi(t) ∈ R
n×m, respectively. Measurement yt ∈ R

p is

governed by Hi(t) ∈ R
p×n, and the additive noise term vt ∈

R
p. The index i(t) ∈ {1, . . . ,M} represents the discrete

mode at a given time t, of which evolution is governed by a

state and input independent finite state Markov chain

µt+1 = Ωµt, (2)

where Ω = {ωij} ∈ [0, 1]M×M defines the mode transition

matrix and µt ∈ [0, 1]M defines the categorical mode

probability at time t.
Due to noisy measurements, the system’s state is estimated

by a hybrid state estimator, such as an Interacting Multiple

Model (IMM) filter [3] which generates a mode probability

distribution µ̂t and a mean continuous state x̂t at each

timestep t from the measurements. Then, starting from an

initial state x0 and mode i(0) ∼ µ0, under an output-

feedback controller π, the evolution of the discrete-time

closed-loop system is

xt+1 = Ai(t)xt +Bi(t)π(Yt),

yt = Hixt + vt,

i(t) ∼ µt,

µt+1 = Ωi(t),

(3)

where Yt = {y0, . . . ,yt} and Ωi(t) refers to the i(t)th

column of the mode transition matrix.

In many safety-critical systems, the mode transition matrix

Ω is an approximation [21]. As such, the state estimator may

have inaccurate mode probability distributions, or require

additional time to detect mode switches when they occur.

In this work, we aim to develop a safety-aware controller π

robust to the inaccuracy of the mode estimate.

III. SAFETY-AWARE TRAJECTORY PLANNER DESIGN

The safety-aware trajectory planning problem consists of

synthesizing a controller for a robot subject to uncertain

mode switches. This section discusses our approach to de-

signing a controller for this problem. The approach uses

MPC with control barrier functions and a novel variable con-

sensus horizon that balances between maximizing robustness

over modes and feasibility of the optimization problem.

A. Model Predictive Control

To guarantee safety for the entire problem duration, a

planner would have to reason about all possible sequences

of states and modes across the planning horizon. This

presents a significant computational challenge, rendering

most problems computationally infeasible. However, open-

loop planning can often provide a satisfactory approximation

of an optimal closed-loop plan while greatly enhancing

computational efficiency [6], [22]. To this effect, we adopt

the receding horizon paradigm of MPC.

We provide a base template MPC formulation for JMLS

that we build upon in the following sections. At each time

step, the Model Predictive Controller plans over a finite

horizon H . We represent the stage cost as q(xi
k,uk, µ̂k)
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and the terminal cost as p(xi
H , µ̂k), where xi

k represents

the state for mode i(k) at planning time k. The system

is subject to the continuous dynamics in System (1) with

mode-switching dynamics (2), initial state xt, and initial

mode probability µ̂t. The safety criteria, e.g. "avoid obstacle

collisions" is represented by constraining the state for each

mode xi
k to remain within a designer-specified set Sk. In

our approach, we utilize CBFs for Sk. Finally, under some

control constraints, the goal is to generate a control sequence

that minimizes the cost function subject to the constraints.

This yields the following optimal control problem (OCP):

U∗

t := argmin
Xt,Ut

p(x1:M
H , µ̂k) +

H−1
X

k=0

q(x1:M
k ,u1:M

k , µ̂k)

(4a)

s.t. ∀k ∈ {0, . . . , H − 1}, i ∈ {1, . . . ,M},

xi
k+1 = Aix

i
k +Biu

i
k, (4b)

xi
k+1 ∈ Sk, (4c)

xi
0 = xt, (4d)

ui
k ∈ U , (4e)

µ̂k = µ̂t, (4f)

where Xt = {{xi
k}

M
i=1}

H−1
k=0 ,Ut = {{ui

k}
M
i=1}

H−1
k=0 and the

mode probability µ̂ is assumed to remain constant over H .

We assume that p and q are quadratic cost functions, making

(4) a Quadratic Program.

At each instance of Problem (4), a sequence of open-loop

control inputs is generated, and only the first input is applied

to System (1). After each control input is applied, the system

generates a new hybrid state observation. Then, the state

is updated and Problem (4) is solved again. This recursive

process allows the closed-loop controller π to overcome

the inaccuracies of neglecting the acquisition of future state

information due to open-loop planning.

In this current formulation, each mode has a corresponding

control input trajectory that may be unique with respect

to the other trajectories. Thus, π must somehow choose

between these trajectories to execute the first control input.

In Section III-C, we discuss how to account for uncertainty

in the modes and mode switches to make this decision.

B. Control Barrier Functions

CBFs provide a framework of safety by creating a link

between the dynamical system (1) and a designer’s expressed

safety criteria (4c), guaranteeing the satisfaction of these cri-

teria [23]. For JMLS, we leverage CBFs as state constraints

of (4c) to provide robustness against mode uncertainty. We

first introduce our notion of safety for closed-loop JMLS

using the concept of set invariance [23].

Definition 1 (Forward Invariance & Safety). A compact set

C ⊂ R
n is forward invariant for closed-loop System (3) if

x0 ∈ C implies xt ∈ C for all t ∈ N. In this case, we call

System (3) safe with respect to set C.

Additionally, we say π is safe if the closed-loop system

under π is safe with respect to C. Formally, we enforce the

notion of safety using CBFs for discrete systems [24]. To

that extent, let set C be described by the 0-superlevel set of

a continuously differentiable function β : Rn → R, such that

C = {x ∈ R
n | β(x) ≥ 0},

∂C = {x ∈ R
n | β(x) = 0}.

(5)

Function β is a CBF if ∂β
∂x

̸= 0, ∀x ∈ ∂C, and there exists

an extended class K∞ function γ, such that for discrete-time

System (1), β satisfies for a given time k

∃uk ∈ U s.t. ∆β(xk,uk) ≥ −γ(β(xk)), (6)

where ∆β(xk,uk) := β(xk+1)− β(xk). For simplicity, we

will use the scalar form of γ throughout the manuscript:

0 < γ ≤ 1. From (6) we see that 1−γ defines a lower bound

on the rate of exponential decrease of β(x), i.e., β(xk+1) ≥
(1− γ)β(xk).

For our System described in (1), the safe set is the set of

states satisfying (6) at each time k,

Sk = {xt+k ∈ R
n : β(xt+k) ≥ (1− γ)β(xt+k−1)}. (7)

Note, Sk is implicitly generated from the safe control input in

(6). Since our problem is characterized by mode uncertainty

due to imperfect modeling and estimation, we first represent

safety with respect to each mode. When planning over M
modes, the mode-specific set is, ∀i ∈ {1, ...,M},

Si
k = {xi

t+k ∈ R
n : β(xi

t+k) ≥ (1− γ)β(xi
t+k−1)}. (8)

Eq. (4c) requires the controller to be safe for each mode,

separately. In the next section, we show how to enforce finite

horizon safety across all modes using control consensus.

C. Robustness via Control Consensus across Modes

The optimal solution to (4) contains the optimal trajectory

for each mode i. When there is high uncertainty over modes,

or when detection of mode switching is inaccurate, executing

the control input for one mode optimistically, based on

maximum likelihood, may lead to unsafe behavior if the

mode is estimated incorrectly. A safer and more conservative

approach to tackle mode uncertainty is by enforcing the

control inputs of the modes to be the same across all modes

for some number of time steps during planning [25]. This

number of steps is called the consensus horizon.

Definition 2 (Consensus Horizon). A consensus horizon h ∈
{0, . . . , H − 1} is a horizon up to which the control input is

constrained to be the same for all modes during planning,

i.e., ui
k = u

j
k ∀i, j ∈ {1, . . . ,M}, ∀k ∈ {0, . . . , h}.

Thus, Problem (4) requires a constraint specifying that all

modes share the same control input for h planning time steps.
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This yields the updated formulation:

U∗

t := argmin
Xt,Ut

p(x1:M
H , µ̂k) +

H−1
X

k=0

q(x1:M
k ,u1:M

k , µ̂k)

(9a)

s.t. ∀k ∈ {0, . . . , H − 1}, i, j ∈ {1, . . . ,M},

xi
k+1 = Aix

i
k +Biu

i
k, (9b)

xi
k+1 ∈ Si

k, (9c)

xi
0 = xt, (9d)

ui
k ∈ U , (9e)

µ̂k = µ̂t, (9f)

∀l ∈ {0, . . . , h− 1},

ui
l = u

j
l . (9g)

The interaction between mode-dependent CBF constraints

(9c) and consensus horizon control constraints (9g) leads to

robustness over all modes over the consensus horizon.

With (9) now parametrized with a consensus horizon h,

we are faced with the following question: what should h
be? The typical approach for multi-modal MPC is to use a

user-defined fixed consensus horizon h [25]. One common

approach is to set h = 1, for one-step consensus, resembling

hindsight optimization techniques. This approach reasons

through a certainty equivalent lens that assumes the robot

will resolve its uncertainty after the first timestep. Another

common approach is to set h = H , for full consensus,

corresponding to robust control methods. Conversely, such

an approach plans under the assumption that the uncer-

tainty will not be resolved throughout the planning horizon.

Nonetheless, selecting h is challenging due to the difficulty in

estimating how quickly the mode can be determined during

execution. Substantial trial and error has to be conducted to

choose a sufficient consensus horizon a priori. Additionally,

as we discuss in the following, a fixed a priori chosen

consensus horizon may lead to safety and feasibility issues

during closed-loop execution.

D. Feasibility Analysis

In this section, we discuss the potential safety and feasi-

bility drawbacks of planning with a pre-defined consensus

horizon. Specifically, we show that too large h may lead to

infeasible OCP while too small h may have safety issues.

First, note that a larger consensus horizon leads to a smaller

feasible set. This is formalized in the following proposition.

Proposition 1. Let Fh be the feasible set for (9) with a

consensus horizon h. Given two consensus horizons h1 <
h2 ≤ H , Fh1

⊇ Fh2
.

Proof. The feasible set of the optimization problem is the

intersection of the feasible set for each independent con-

straint. A larger consensus horizon strictly adds constraints

to the optimization problem. Therefore, the feasible set for

h2 cannot be a superset of the feasible set for h1.

Increasing the consensus horizon may shrink the feasible

set and may lead to an infeasible optimization problem (if

the feasible set becomes empty). Thus, we need to ensure

that (9) is parameterized with a feasible consensus horizon.

Definition 3 (Feasible Consensus Horizon). A feasible con-

sensus horizon h is a consensus horizon for which (9) is

feasible.

On the other hand, a lower consensus horizon may be

unsafe during closed-loop execution.

Proposition 2. Let πA be a safe controller that generates a

feasible sequence of control inputs that repeatedly solves (9)

with a consensus horizon hA = H for t ∈ {1, ...,∞}. Let

controller πB repeatedly solve (9) with a consensus horizon

hB < H . πB may be an unsafe controller.

Proof Sketch. Let FhA,1
and FhB,1

be the feasible set at t =
1 for πA and πB , respectively. From Proposition 1, FhB,1

⊇
FhA,1

.

Let (X∗,U∗) be the optimal state and control inputs

output by πB at t = 1. Since FhB,1
⊇ FhA,1

, it is possible

that (X∗,U∗) /∈ FhA,1
. That is, (X∗,U∗) is not a feasible

decision set for the horizon hA,1. Therefore, when the first

control input u1 is executed for πB , the system may reach

a state xB,2 that is not contained within the reachable set of

states for πA at t = 2, i.e.

xB,2 ∈

{x : x2 = Aix1 +Biu1,u1 ∈ FhB,1
, i ∈ {1, . . . ,M}}

⊇ {x : x2 = Aix1 +Biu1,u1 ∈ FhA,1
, i ∈ {1, . . . ,M}}.

Then, at t = 2, if xB,2 is not in the reachable set of

states for πA, there exists scenarios in which the system

starting from xB,2 may be unsafe. In the worst case scenario,

the optimization problem (9) with xB,2 may immediately be

infeasible since the previous optimization at t = 1 did not

account for the control consensus constraints for planning

time steps k = hB to k = hB + 1, leading to an empty

feasible set for the optimization problem (9) starting from

xB,2, whereas xA,2 ∈ {x2 : x2 = Aix1 + Biu1,u1 ∈
FhA,1

, i ∈ {1, . . . ,M}} with hA = H is safe.

Therefore, if a controller that maximizes the consensus

horizon is safe, a controller operating with a lower consensus

horizon is not necessarily safe. Propositions 1 and 2 exem-

plify the dilemma in pre-determining a consensus horizon.

Consider Example 1 again. If the hexacopter adopts a

longer consensus horizon and is close to an obstacle, there

may be no single sequence of control inputs that allows it to

avoid a collision with the mineshaft walls across all possible

mode dynamics. In this case, the OCP becomes infeasible.

However, reducing the consensus horizon may expand the

feasible set and render the OCP feasible. On the other hand,

when the problem is already feasible, we generally want the

consensus horizon to be as large as possible to be more robust

to mode uncertainty. A pre-defined fixed consensus horizon

is unable to achieve such a behavior.
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Algorithm 1: Maximally Feasible Consensus

Horizon Binary Search

Input : x,H
Output: h∗

1 hmax ← H − 1
2 hmin, hbest ← 0
3 while hmin < hmax do

4 h ← ⌊(hmin + hmax)/2⌋
5 if feasible(h) then

6 hmin ← h+ 1
7 hbest ← h
8 else

9 hmax ← h− 1
10 if feasible(hmax) then

11 h ← hmax

12 else

13 h ← hbest

14 return h∗ = h

where

• feasible(h): returns a boolean expressing the

feasibility of (10) with consensus horizon h.

E. Adaptive Consensus Horizon Planning

Planning with a pre-defined fixed consensus horizon has

drawbacks in feasibility (if consensus horizon is too large)

and safety (if consensus horizon is too small). This implies

that there exists a possibly varying optimal sequence of

consensus horizons that is best able to balance between

robustness and feasibility to guarantee the safety of the robot.

However, since the controller uses a finite planning horizon

in a receding horizon MPC, computing the optimal consensus

horizon sequence beforehand is not generally possible; De-

signing a recursively feasible MPC controller is an open area

of research [26]. Therefore, using the results of Proposition 1

and 2 as a heuristic, we propose a greedy controller design.

At each time step, we select a consensus horizon that is as

large as possible while maintaining feasibility.

In the first stage of each planning step, we compute the

consensus horizon that maximizes h such that the OCP is still

feasible. We define such a consensus horizon as a maximally

feasible consensus horizon.

Definition 4 (Maximally Feasible Consensus Horizon). A

maximally feasible consensus horizon h∗ is a feasible con-

sensus horizon in which all horizons below h∗ are feasible

and all horizons above h∗ are infeasible, i.e.,

h∗ := argmax
xi
k
,ui

k
,h

h

s.t. (9) is feasible.

(10)

To compute h∗ efficiently, we first see that the feasibility

of consensus horizons is an ordered monotonic sequence.

That is, if hi is a feasible consensus horizon, hj < hi is also

a feasible consensus horizon for all j ∈ {0, . . . , i−1}. Using

this insight, we propose to solve (10) through a search over

an ordered value1. This can be efficiently done using, e.g.,

a binary search over the possible consensus horizon values

{1, ..., H − 1} as shown in Algorithm 1. For a given h, we

construct an optimal control problem identical to (9) with the

objective function (4b) replaced with an arbitrary constant.

During each search iteration, we can tractably determine if a

given h is a feasible consensus horizon by solving the newly

constructed problem parametrized with h and obtaining a

feasibility certificate. This reduces the optimization program

from a Quadratic Program to an Linear Program. After

computing h∗, we solve (9) by setting the consensus horizon

at that time step to h = h∗.

F. Computational Complexity

In comparison to single-mode MPC OCP [28], each con-

trol input call from our approach is more computationally

intensive in the following ways. First, a JMLS inherently

admits a larger optimization problem, as there are more

decision variables and constraints. The number of decision

variables increases linearly in the number of modes, and the

number of constraints increases linearly in the number of

modes and consensus horizon. That is, a JMLS MPC OCP

has O(M · T · H · m · n) decision variables, compared to

O(T ·m ·n) of single-mode MPC OCP. Second, as compared

to using a fixed consensus horizon, computing h∗ in Alg. 1

computes the feasibility of varying consensus horizon log2 H
number of times. Let T be the maximum time taken to solve

an OCP with a fixed h. Then, an upper bound on the time

taken by our approach to solve (9) is (⌈log2 H⌉ + 1)T.

However, each feasibility check is a Linear Program with

a constant objective function, which can generally be solved

faster than finding an optimal solution to the full OCP.

This added computation may lead to a slower solution

output, which may lead to performance issues for on-board

computation, depending on the size of the state space,

number of system modes, and the solution time requirements

of the system. If the ability to run in high frequency, e.g.

real-time, is an important consideration, a practical solution

is to start from h = 1 and increment until h∗ is found or the

planning time limit is reached. Another solution is to solve

(9) with h = 1 as a backup controller in case a solution

is not found in the planning time limit. Further, the search

for h∗ can be parallelized, mitigating the added computation

from maximizing the feasible consensus horizon.

IV. SIMULATION EVALUATION

In this section, we evaluate our approach on two robotic

systems in simulation: a 6-dimensional spacecraft conducting

orbital rendezvous and a 12-dimensional hexacopter system

subject to rotor faults. We demonstrate the performance

of our approach against several baselines. Simulations are

implemented in Julia, and the quadratic programs are solved

using the interior-point solver Clarabel.jl [29]. The optimiza-

tions are all performed single-threaded on a computer with

1This search procedure bears similarities to the bisection method for
quasiconvex optimization [27].
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a nominally 3.7 GHz CPU. The computational performance

of the algorithms is discussed at the end of this section.

For both domains, we represent the cost as a quadratic

stage-wise function that includes a state reference error term

∥(xi
k − xr)∥

2
Q and a penalty on the control effort ∥uk∥

2
R,

where Q,R ≻ 0:

M
X

i=0

µk(i)

"

H−1
X

k=0

(∥(xi
k − xr)∥

2
Q + ∥uk∥

2
R)

#

. (11)

For simplicity, the terminal cost is set to zero. We weight the

stage-wise cost per mode by its corresponding probability.

The purpose of our evaluation is to assess the ability of our

approach to plan robustly with respect to mode uncertainty

and estimator inaccuracy. To this end, at every time step, each

system is given a categorical mode probability estimate and

mean state estimate by an oracle filter. In each simulation,

a mode switch is induced at a time unknown to the con-

troller. Additionally, the oracle filter undergoes a specified

delay, also unknown to the controller, in detecting when a

mode switch occurs. We compare our approach vs. baselines

across a range of mode-switch and estimation-delay times in

addition to problem-specific parameters discussed below.

We compare our approach to the following baselines:

• First-Step Consensus: Use consensus horizon h = 1.

• Full-Step Consensus: Use consensus horizon h = H .

• Non-Robust: No consensus constraints. Instead, plan

for the maximum likelihood mode according to the

categorical mode probability µ̂ given by the oracle filter,

A. Case Studies

1) Spacecraft Orbital Rendezvous: We first demonstrate

our approach on a spacecraft rendezvous involving a chaser

and target satellite. Following [30], the linearized system

dynamics are characterized by the following Clohessy-

Wiltshire-Hill equations:

ẋ =









03 I3
3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0









x+

�

03

I3

�

u (12)

where the state x = [xr, yr, zr, ẋr, ẏr, żr] represents the

relative positions and velocities between the chaser and target

satellites, the control input u = [Fx, Fy, Fz] represents the

thrust of the chaser satellite in the x, y and z directions. The

parameter n =
p

µ/a3 is the mean motion of the target

satellite, where µ is Earth’s gravitational constant and a is

length of the target satellite orbit’s semi-major axis.

The chaser satellite must maintain a safe relative distance

to the target satellite defined the safe set C: the intersection

of the following halfspaces (in kilometers),

β1(x) = {x : 6 ≤ x1 ≤ −6}

β2(x) = {x : 0 ≤ x2 ≤ 4}

β3(x) = {x : −10 ≤ x3 ≤ 10}

(13)

We constructed the barriers with various values of γ and

found γ = 0.05 balances efficiency in reaching the objective

with conservativeness with respect to the obstacles.

We model (12) as a JMLS by constructing a 2-mode

system parameterized by the target’s nominal mean motion

n and off-nominal mean motion np. This models uncertainty

in the chaser satellite’s uncertainty over the mean motion of

the target satellite due to, e.g., the target satellite operating

under two possible orbit maneuver strategies. We compare

our approach against the baselines across a range of off-

nominal mean motion value, mode-switch times and delay

times. We set the nominal mean motion n = 0.061 and range

the off-nominal mean motion np from 0.041 to 0.101 with

a step size of 0.01. Additionally, we range the mode-switch

times from 1 to 40 with a step size of 5 and the delay times

from 0 to 5 with a step size of 1. Simulation parameters are

shown in Tab. I.

TABLE I: Simulation Parameters

Parameters Orbital Rendezvous Mineshaft Inspection

Planning Horizon, H 300 s 0.5 s
Sampling time-step, ∆t 10 s 0.05 s
Minimum control, umin −0.1 N 0.1 N
Maximum control, umax 0.1 N 20 N

State weight matrix, Q diag[503×3, 10−1

3×1
] diag[503×3, 10−1

9×1
]

Control weight matrix, R 0.01 · I3×3 0.01 · I6×6

Starting position, x0 [0.01, 3.8, 0]⊤ km [0, 0, 0]⊤ m

Target location, xref [1.0, 1.0, 0]⊤ km [−0.7, 0.7,−5]⊤ m

TABLE II: Orbital Rendezvous simulation results of our

approach against baselines. The best entries are bold.

First-Step Full-Step Non-Robust Ours

Total Trials 336 336 336 336
Successes 188 230 65 336

Success (%) 56.0 68.4 19.3 100.0

Average Cost 2.05 2.29 2.54 1.95

2) Hazardous Mineshaft Inspection: Next, we consider

a safety-critical trajectory planning example whereby an

autonomous hexacopter is tasked to inspect a hazardous

mineshaft. The hexacopter must descend the mineshaft and

reach a defined inspection point. At any time, the system can

experience a complete rotor failure. Throughout its descent

to the goal, the hexacopter must be safe with respect to

the safe set C, a three-dimensional rectangular polyhedron

with no ceiling. Here C is defined as the intersection of the

following halfspaces,

β1(x) = {x : −1 ≥ x1 ≤ 1}

β2(x) = {x : −1 ≥ x2 ≤ 1}

β3(x) = {x : x3 ≥ −6}

(14)

with γ = 0.05 for all barriers.

We consider a simplified representation of the hexacopter

system, where two rotors are prone to failure at any time.

Thus, the system has three modes, one for its nominal

dynamics and two for the modes corresponding to the rotor
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ments and varying parameters imply that the combination of

the CBF constraints and the consensus horizon is critical for

the overall safety and performance of MPC for JMLS.

Finally, Table IV shows the control input rate. Our con-

troller optimizes for control inputs at an average rate of

9.89Hz for Orbital Rendezvous and 11.21Hz for Mineshaft

Inspection. Our approach, although slower than the baselines,

is able to maintain an operational control input computation

rate while delivering a lower cost and higher success rate.

TABLE IV: Control Input Computation Rate (Hz)

Orbital Rendezvous Mineshaft Inspection

Algorithm Mean Std. Dev. Mean Std. Dev.

One-Step 48.74 9.42 63.61 11.68
Full-Step 44.37 10.78 67.08 15.29
Non-Robust 53.97 6.51 66.16 10.88
Our Approach 9.89 1.14 11.21 0.81

V. CONCLUSION & FUTURE WORK

Our work presents an MPC framework that synthesizes

safety-aware control policies for Jump Markov Linear Sys-

tems subject to stochastic mode switches. The MPC frame-

work uses CBFs and tackles the robustness-feasibility trade-

off when asserting control consensus constraints over the

planning horizon. Simulation experiments illustrate the utility

of our proposed approach. For future work, we plan to extend

the CBF constraints to include nonlinear safe sets and to

account for noise in the dynamics. Additionally, we plan

to explore techniques to address the added computation of

computing the maximally feasible consensus horizon at each

time step. Finally, we plan to validate our control design on

hardware experiments.
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