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Abstract — This paper discusses the in-situ characterization
tools designed to assess radiation tolerance and elemental
migration in perovskite materials. With the increasing use of
perovskites in various technological applications, understanding
their response to radiation exposure is paramount. Ion Beam
Induced Charge (IBIC) emerges as a powerful tool for
investigating the radiation tolerance of perovskites at the
microscale. By employing focused ion beams, IBIC allows for the
spatial mapping of charge carriers, offering insights into the
material's electronic response to radiation-induced defects. This
technique enables researchers to pinpoint areas of enhanced or
suppressed charge collection, providing valuable information on
the perovskite's intrinsic properties under irradiation. Rutherford
Backscattering Spectrometry (RBS) complements the study by
offering a quantitative analysis of elemental migration in
perovskite materials. Through the precise measurement of
backscattered ions, RBS provides a detailed understanding of the
elemental composition and distribution within the perovskite
lattice after radiation exposure. The integration of IBIC and RBS
techniques in in-situ experiments enhances the comprehensive
characterization of radiation effects on perovskites.

I. INTRODUCTION

Mixed halide perovskites (MHP) have recently gained a lot
of attention in the field of photovoltaics due to their excellent
optoelectronic properties, low-cost fabrication, and band gap
tuning [1]. In addition to its terrestrial applications, scientists
are also investigating its potential applications in space
photovoltaics. Recent irradiation studies have shown that
perovskite solar cells are more resilient to radiation than other
conventional solar cell devices [2,3]. To further advance the
understanding of the nature of radiation damage and elemental
migration, developing an in-situ setup is the next step. We can
employ ion beam techniques like Ion Beam Induced Charge
(IBIC) and Rutherford backscattering (RBS) to directly monitor
the behavior of the device in conditions that are very similar to
space (i. e. vacuum, radiation, illumination, temperature cycle
etc.) [4]. The lon Beam Laboratory (IBL) at the University of
North Texas (UNT), Physics Department houses four particle
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accelerators, including a 3 MV tandem Pelletron (NEC 9SDH-
2 Pelletron), a 3 MV single-ended Pelletron (NEC 9SH
Pelletron), a 200 kV Cockcroft-Walton, and a 2.5 MV Van de
Graaff. Each accelerator, with dedicated beamlines, serves
unique purposes. The 9SH Pelletron and 9SDH-2 tandem are
located in the main lab (Fig. 1). The tandem accelerator has
three negative-ion sources installed, two are Cs-sputtered for
solid targets and one for RF type for noble gases. The negative
ions are generated using the NEC Source of Negative lons by
Cesium Sputtering (SNICS-II). Using the NEC SNICS-II ion
source, negative ions of Hydrogen, Carbon, Oxygen, Silicon,
Germanium, Copper, Silver, Nickel, Gold, etc., are generated
and can be accelerated to energies ranging from 10 to 85 keV.

———
Fig. 1. Schematics for the Ion beam laboratory at the IBL, UNT

The single-ended accelerator can produce positive ions of
hydrogen, helium, or nitrogen using an RF source. Currently, it
has three dedicated beamlines associated with it. The first
beamline is a high-energy microprobe beamline. It focuses the
particle beam to sub-micron to perform techniques such as
micro-Rutherford Backscattering spectroscopy (u-RBS),
micro-particle induced X-ray emission (u-PIXE), scanning
transmission ion spectroscopy (STIM), and Ion Beam Induced
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Charge (IBIC) to obtain respective maps of certain regions of
the samples, for analyzing trace elements, amongst other
applications [5]. The second beamline is a high-energy implant
station, while the third beamline is used for broad-beam
analysis.

IBIC is a powerful scanning ion microprobe-based technique
that can be used to provide information about the fundamental
electronic properties of semiconductor materials and devices
including radiation detectors, solar cells, and charge-coupled
arrays, and can pinpoint damage or failure sites within
semiconductor devices. The MeV ion beam while moving
within the target loses energy to the atoms resulting in the
shifting of electrons from the valence band to the conduction
band which leaves a hole in the valence band behind generating
an e-h pair. The generated mobile ions are then separated in the
semiconductor if there is an electric field present as shown in
Fig. 2. These carriers are then processed by a charge-sensitive
pre-amplifier which is further processed by the multichannel
analyzer [6,7].

IBIC requires optimization of the beamline as it only
requires the beam current in the range of ~1 fA (10* particles/s)
to minimize the damage to the device, but still, one single scan
is equivalent to ~10'° ions/cm?, which is enough to generate a
charge map of the device using an event-by-event mode data
acquisition system for better analysis of the data [7].

Front
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Depletion
layer

IBIC Signal

Grain boundaries

Fig. 2. Schematics of the basic processes in IBIC microscopy.

In addition to IBIC, RBS can be employed to study the
elemental migration within the device. In MHP, elemental
migration is one of the leading causes of degradation and
hysteresis which can be accelerated by external factors such as
temperature, humidity, and/or moisture. While there are other
techniques available like electrochemical impedance
spectroscopy (EIS) [8], time of flight secondary ion mass
spectroscopy  (ToF-SIMS) [9], and thermal admittance
spectroscopy (TAS) [10], etc., these techniques require
extensive sample preparation whereas RBS doesn’t require any
such complicated sample preparation. Moreover, RBS is a non-
destructive technique. RBS can be used to identify the
elemental compositions present within the sample along with
their depth profile. Initial RBS measurements were performed
on metal halide perovskite material to gain insights into the
depth profile of Pb and 1. However, this measurement was not
made on the full stack of the solar cell structure [11]. Here, we
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will discuss initial IBIC measurements performed on silicon
PIN diodes and initial RBS measurements on the full stack of
MHP solar cells with triple cation perovskite
((Cs0.0s(MA.17FA0 83)0.0sPb(10.83Br0.17)3)) as the photo absorber
layer to better understand the role of elemental migration in
these complex structures.

II. EXPERIMENTAL

IBIC was performed by exposing the device to 2 MeV H*
ions in the microprobe chamber. Before moving to the PIN
diode, the beam current was measured using Ion-Implanted-
Silicon Charged-Particle Detectors [12]. After confirming the
beam current, the IBIC test was performed on Hamamatsu
S1223 PIN diodes [13]. The diodes were negatively biased at
-20V so that only minority carriers were transported though the
depletion region [14]. The charge created is collected by a
CoolFET Amptek A250CF low noise charge sensitive
preamplifier (CSP) [15]. A schematic of this system is shown
in Fig. 3.

[
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Front contact
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Fig. 3. The schematics for the IBIC setup where CSP corresponds
to charge sensitive preamplifier, DAQ corresponds to the data
acquisition program, and PS to Pulse shaper. Inset displays the picture
of Amptek CoolFET A250 low noise charge sensitive preamplifier.

A 2 MeV He" beam was used to perform the RBS
experiment in the microprobe chamber. Backscattered particles
are detected by a passivated implanted planar silicon (PIPS)
particle detector from Mirion Technologies (Canberra), having
a solid angle of 34 milli-steradian. A total fluence of 3.95x10'*
ions/cm? was collected. The RBS fitting was done by using the
SIMNRA simulation software package. For further analysis of
individual contributions from the perovskite layer another
software package MultiSIMNRA was used.

II. RESULTS

The initial irradiations were performed on an area of
16x16pum? on PIN diodes and fluence was controlled by
increasing the number of scans and the corresponding charge
collection efficiency (CCE) plots were displayed in Fig. 4a. To
prevent potential edge-related influences, the spectra were
acquired from the central regions of the irradiated areas. With
increasing fluence, the CCE is seen to be decreasing, which is
expected for these devices.
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Fig. 4. a) Trend of CCE plot for PIN diodes with increasing fluence.
b) CCE maps containing irradiated areas.

To obtain the plot of all damage profiles in a single map, a
large area scan of 125x125um? was performed, shown in Fig.
4b. RBS was also performed on the MHP solar cell structure

shown in Fig. 5a.
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Fig. 5. a) Schematic depiction of the triple-cation N-I-P PSC used
in this study, and (b) Data of the RBS scan acquired on the active area,
showing contributions from the top contact (Au) and perovskite layer
with its major elemental species i.e. Pb, Cs, I, and Br.

The RBS spectra on the MHP solar cell are shown in Fig. 5b.
The elemental contribution of the MHP was further divided into
individual element species including Br, Cs, I, Pb, and Au
within the energy ranges of 1264-1548 keV, 1362-1676 keV,
1398-1660 keV, 1440-1754 keV, and 1744-1870 keV,
respectively.

IV. CONCLUSION

A brief overview of the in-situ ion-beam characterization
tools designed to assess radiation tolerance and elemental
migration in perovskite materials is provided. In the future, we
plan to extend this technique to other semiconductor detectors,
and photovoltaic devices to better understand the nature of
defects, charge kinetics, and to visualize the radiation effects on
device structures. This study will be further advanced to study
the impact of stressors like moisture and using long exposures
to study elemental migration within these devices.
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