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Understanding human mobility has become an important aspect of location-based services in tasks such as

personalized recommendation and individual moving pattern recognition, enabled by the large volumes of

data from geo-tagged social media (GTSM). Prior studies mainly focus on analyzing human historical foot-

prints collected by GTSM and assuming the veracity of the data, which need not hold when some users are not

willing to share their real footprints due to privacy concerns—thereby affecting reliability/authenticity. In this

study, we address the problem of Inferring RealMobility (IRMo) of users, from their unreliable historical traces.

Tackling IRMo is a non-trivial task due to the: (1) sparsity of check-in data; (2) suspicious counterfeit check-

in behaviors; and (3) unobserved dependencies in human trajectories. To address these issues, we develop

a novel Graph-enhanced Attention model called IRMoGA, which attempts to capture underlying mobility

patterns and check-in correlations by exploiting the unreliable spatio-temporal data. Specifically, we incor-

porate the attention mechanism (rather than solely relying on traditional recursive models) to understand

the regularity of human mobility, while employing a graph neural network to understand the mutual inter-

actions from human historical check-ins and leveraging prior knowledge to alleviate the inferring bias. Our

experiments conducted on four real-world datasets demonstrate the superior performance of IRMoGA over

several state-of-the-art baselines, e.g., up to 39.16% improvement regarding the Recall score on Foursquare.
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1 INTRODUCTION

The wide use of geo-tagged social media (GTSM) in platforms like Wechat, Facebook, and Twit-
ter, has enabled a generation of huge volumes of location-aware contextual data (e.g., check-ins).
This, in turn, provides unprecedented opportunities to understand human mobility and develop
various attractive and valuable downstream services, e.g., next Point of Interest (POI) recom-
mendation [14, 61], trajectory recovering [48], and social relationship inference [8, 47].

However, while important, understanding human mobility is also a challenging task: not only
relying on advances of model design but also being affected by the reliability of check-in data. This
is due to the fact that users who like to share their daily activities using GTSM may choose not
to record their real visited POIs, for privacy concerns, or other personal reasons [13, 39, 49]. Thus,
some users are either not willing to share these POIs with their friends (and strangers) at all, or they
could choose (i.e., “relocate” to) a deceptive but reasonable POI to cover their current true location.
For example, Bob who is a fitness enthusiast, may not want to disclose that his actual location is
McDonald’s in Wanda Plaza, and will choose another POI in the same plaza when posting a tweet
(for which one could even use available apps, such as https://apps.apple.com/us/app/fake-checkin/
id1044569156). In such and similar scenarios, GTSM could fail to obtain the real daily trajectories of
users like Bob, yielding uncertainty-based risks when capturing their mobility patterns or moving
intentions, even enabling profiting via fraudulent behaviours [31].

Inspired by the recent studies in Human-Computer Interactions addressing users’ behavioral
motivations behind posting fake check-ins [49], in this work, we investigate three types of strate-
gies commonly used by people who attempt to hide their private or purpose-enabled movements,
exemplified in Figure 1:

• (b1)—choosing a nearby POI (using the nearby POIA to substitute for the real visiting place).
According to the survey study in Reference [49], there are usually about 16% of check-ins
that are close to the real locations, barring the positioning errors. Privacy concerns are the
main reason motivating people to choose a nearby POI provided by the GTSMs to replace
their actual current location. As illustrated in References [56, 57], these fake locations/POIs
are sometimes considered to be the uncertain or fuzzy check-ins in the collective POIs.
• (b2)—selecting a POI visited before (e.g., POI B that Bob has visited a couple times before).
GTSMsmay have a reward-offeringmechanism (e.g., points, badges, and real-world rewards)
that encourages users to report their locations with activities from their daily life [44]. For
example, a user who uses Foursquare or Weibo is able to earn points after checking in the
same venue multiple times [33].
• (b3)—picking a popular POI that has never been visited by the user (e.g.,C is a POI that has
been visited by others). To earn more attention from the followers, people may frequently
check in some famous or popular places even though they have never been there. That is to
say, a user may claim a certain location that is quite far (literature has reported cases even
thousands of miles away) from his/her actual location [13, 59].

To tackle these three types of behaviors, we introduce a novel problem, which is Inferring
Real Mobility (IRMo) of users from their historical traces. Solving the IRMo problem has vari-
ous merits in multiple application domains—like, for example, offering more personalized and/or
precise advertising recommendations by GTSM providers, accurately tracking people who have
been infected by COVID-19 (to name a few)—based on a better understanding of human check-in
behaviors and promoting the reliability of check-in data. Certainly, other fake check-in behaviors
could exist in the real world, but the above three behaviors occur often in our daily life [49].

We note that IRMo is different from anomaly trajectory detection [26], as it aims to predict the
real trajectory based on the check-in data containing various types of fake check-ins, whereas
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:3

Fig. 1. User mobility behavior with fake check-ins.

the latter only discriminates whether a given trajectory is abnormal. That is to say, solving the
IRMo problem not only requires distinguishing whether a POI in a given trajectory is real but also
enables inferring the real POI if the given one is fake. The specific additional challenges for IRMo
stem from three main sources: (S1), the fake check-ins lead to deviation and difficulty in modeling
spatial and temporal information; (S2), the uncertainty of human individual trajectories containing
fake check-ins hinders us from distilling the real transition regularities and distinguishing which
check-in is fake; and (S3), the unobserved dependencies in real trajectories during inference could
make IRMo more complicated than traditional trajectory generation methods [22].
Intuitively, one common solution is to statistically model the mobility patterns from historical

check-ins, leveraging Markov-based methods to filter out the real transition regularity [37]. For in-
stance, the transition patternsmodeled on fakemoves are likely to deviate from the normal ones. To
this end, we could leverageMarkov chains to predict real check-ins by constructing a transitionma-
trix from amassive amount of trajectories. However, such an approach is only able to handle simple
mobility patterns, failing to capture complex mobility regularities. Inspired by the achievements of
deep recursive models and end-to-end learning paradigms in various location-specific tasks (e.g.,
trajectory representation learning and sequential check-in modeling [26, 61]), another solution
could be to rely on seq2seq models to capture long-term dependencies in human trajectories [40],
which motivates our solution to IRMo. However, the seq2seq-based methods with recurrent/

convolutional neural networks (R/CNNs) usually concentrate on capturing long-term sequen-
tial information (or local interactions) in a given sequence and are unable to simultaneously model
both local and global correlations among POIs in a sequence. In addition, it is hard to recognize
when the fake check-in will occur in the future, even if we have accumulated their massive his-
torical check-ins—hence, it may not be desirable to infer their real motions by using the existing
sequential learning methods directly (e.g., mobility prediction models [50, 61]).
To overcome the drawbacks of the intuitively appealing existing approaches, we judiciously

tackle IRMo with Graph-enhanced Attention (IRMoGA), for the sparse and complex GTSM
data that possibly contains fake check-ins. More specifically, we first devise an appropriate spatial-
temporal embedding module to explore the geographical and temporal information from historical
check-ins, primarily seeking to mimic human potential fake check-in behavior, i.e., (b1). Next, we
attempt to explore users’ moving patterns and distill historical check-in behaviors from the person-
alized historical trajectory. Correspondingly, we propose a fake trajectory encoding component,
which contains an attention-based movement extractor for mobility pattern learning and a graph-
enhanced behavior interaction module to integrate personalized check-in preferences. Especially,
the movement extractor is able to study both local and global correlations among check-ins while
the graph-enhanced module aims at alleviating the influence of behavior (b2), as such an intention
can hardly conceal human real transitional regularities, governed by their long-standing check-in
habits. Finally, we use another attention-based procedure to derive unobserved dependencies. All
throughout, a novel element for inverse POI popularity is considered to alleviate the inferring bias
(i.e., b3). For the three types of fake check-in behaviors that we focus upon, our proposed IRMoGA
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enables eliminating their impacts and predicts the real human movement corresponding to the
true intended POI visits. Our main contributions can be summarized as follows:

• We investigate IRMo, a novel problem tackling real versus fake human mobility from sparse
movement data, and we address three types of possible fake check-in behaviors.
• To our knowledge, we are among the first pioneers to introduce a novel model, namely,
IRMoGA, to tackle IRMo. It uses an attention mechanism to explore human possible mobil-
ity patterns, and we incorporate a graph-based module to enhance the learning of mobility
regularities and design a novel inverse POI popularity module to involve the external knowl-
edge for alleviating inferring biases.
• We provide extensive experimental observations conducted on four real-world datasets,
demonstrating that IRMoGA is efficient and outperforms several state-of-the-art methods.

In the rest of this article, we review the relevant studies in Section 2, and then we formalize
the problem and present the background of self-attention and GNN in Section 3. The details of
the proposed IRMoGA framework are discussed in Section 4, and the results of the experimental
evaluations quantifying the benefits of our approach are presented in Section 5. Section 6 concludes
the article and outlines the directions of future work.

2 RELATEDWORK

We now provide a review of two global categories of related works—human mobility mining and
the more recent trend of deep representation learning—and we position our results in that context.

2.1 Human Mobility Mining

Understanding human mobility is a primary task for responding to various downstream applica-
tions, including exploring the informative correlations/interactions from user historical check-ins,
capturing long-term spatial-temporal dependencies andmany others. Conventionally,matrix fac-

torization (MF)-based methods have been leveraged to mine user-location or location-location
correlations by decomposing a “rating” matrix into two low-rank matrices, where some implicit,
personalized, and semantic feedback can be integrated, such as user preference, location prefer-
ence, and geographical influence [3, 23, 24]. Rank-basedmethods combinedwithMF have also been
developed to discover user behavior patterns and fit user’s preference rankings for POIs [7, 52].
Li et al. group the sequential tweets in user timelines and extend the Bayesian model to estimate
the information gains between tweets and locations for the purpose of inferring the location of
non-geotagged tweets [21]. Other methods like Bayesian model also can be considered to ex-
plore the human check-in behaviors, e.g., identifying the latent visited-POI label of stay points,
which are automatically extracted from trajectories [34]. In addition, mining potential dependen-
cies (e.g., spatial-temporal and semantic ones) among check-ins is important for understanding
human transition patterns. For example, variants of Markov models have been developed to ex-
plore human spatial-temporal transition patterns [38, 45, 64]. Complementary to these, leveraging
hidden Markov models (HMM) is even capable of capturing semantics-aware mobility [37].
However, the existing methods still fail to elaborate human real check-in behaviors in terms

of the IRMo problem—i.e., they cannot cater to various fake check-ins in human trajectories that
could lead to deviation in understanding human mobility—which is what we address.

2.2 Deep Representation Learning for POIs

Deep representation learning is one of the inspiring but intricate schemes, which aims at unifying
associated information and prior knowledge into low-dimensional vectors to represent various
entities. In particular, POI (or check-in) representation embedding is a preliminary but crucial
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:5

prerequisite for understanding human mobility. Most of the recent works either employ random
initialization methods [4, 48] or word2vec-based techniques [10, 63] to prepare a set of dense rep-
resentations for alleviating the “Curse of Dimensionality” issue. However, the first type is unable
to incorporate any semantic information while the latter usually faces the extreme sparsity issue
of human check-in data, which would bring the poor generalization capabilities of check-ins.
By contrast, we present a graph-enhanced spatial embedding method regarding POIs and in-

troduce a time embedding method to explore the spatial-temporal information, which will not be
constrained by the scale of collected trajectory data.

2.3 Deep Representation Learning for Trajectories

Trajectory representation embedding is also a fundamental topic studied in recent works. Usually,
it should be able to model the long-dependencies in human historical movements. For instance,
Yu et al. developed an LSTM-based model called CatDM that dynamically captures human long-
short visiting interests behind historical check-ins as latent vectors, which also takes into account
geographic influences [53]. In this spirit, we can easily consider applying R/CNN-based models
to obtain a latent code for a provided trajectory [30, 63]. Complementary to this, recent attention
mechanisms (e.g., multi-head self-attention) have become popular due to their success in model-
ing dependencies without regard to their distance in the input or output sequences, automatically
extracting the most pertinent information for various tasks [2, 20, 42]. For instance, Zhao et al. pro-
pose a self-attention-based framework to couple sequential information for next item recommen-
dation [60]. Also, there exist several successful cases to tackle trajectory-based problems such as
POI prediction [30], trajectory recovery [48], and bike station-level flow forecasting [12]. All these
motivate us to develop an attention-based model to tackle our IRMo problem. Furthermore, the
advances of graph neural networks (GNNs), e.g., graph convolutional networks [18] and graph
attention networks [43], provide new opportunities for trajectory mining, by enabling the capture
of potential interactions on graphs, e.g., leveraging GNN to capture and differentiate station-to-
station correlations, modeling dynamic situational context and users’ sequential behaviors [55],
and expressing the high-order connectivity among POIs [62].
Unlike various trajectory mining tasks that use either attention-based or graph-based methods,

our proposed IRMoGA is among the first attempts for tackling the IRMo problem involving an
attention mechanism to couple human sequential mobility while developing a graph-enhanced
module to explore mutual interactions from historical check-ins.

3 PRELIMINARIES

We start this section by introducing the terminology used throughout the article and formalizing
the IRMo problem. Subsequently, we briefly describe the paradigms of Attentive and Graph Neu-
ral Networks. Besides, we summarize the frequently used symbols and explain their meaning in
Table 1.

3.1 Basic Definitions

We observe that in the previous works, often times the terms “POI” and “check-in” are used
synonymously. In our work, we separate the two by assigning to each check-in not only the
spatial attribute as POIs have but also the temporal attribute.

Definition 1. Let P = {p1,p2, . . . ,p |P | } be a set of POIs. Each p ∈ P is associated with a spatial
attribute p.loc , which is a pair (p.lo,p.la) (i.e., (longitude, latitude)), or (p.x ,p.y) (i.e., (x ,y) values
in a suitable coordinate system).
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12:6 Q. Gao et al.

Table 1. Frequently Used Notations

Notation Description

p a POI

P a set of POIs

u user identity

U a set of users

cu a check-in left by user u

t check-in time

T nu nth trajectory of user u

RT nu user u ’s real trajectory

Tu collection of user u ’s trajectories

vs spatial embeddings

vt temporal embeddings

Tnu the dense tensor of T nu
h hidden state

Pu a set of POIs visited by user u

Gp POI graph

Gu user u ’s mobility graph
←−
A/
−→
A outgoing/incoming adjacency matrix

←−
H,
−→
H hidden layer of GNN

d, d ′, d ′′ embedding size

Ψ POI popularity list

W, b trainable parameters

Lθ loss function

A check-in cu of a given user u is characterized by a triplet cu = 〈u,p, t〉 indicating that a user u
has visited the POI p ∈ P at time t .

When there is no ambiguity, in the sequel we will omit the “.” symbol and the respective prefixes
(i.e., we will use la instead of p.la). We also note that if a POI p has a spatial extent, then we will
assume that the coordinates of p.loc will correspond to the centroid of that extent.

Definition 2. For a given user u, the reported check-in trajectory Tu = [c1u , c
2
u , . . . , c

|Tu |
u ] is a

sequence of check-ins.

3.2 Problem Definition (IRMo)

Given thenth trajectoryT n
u = [cn,1u , cn,2u , . . . , cn,mu ] of a useru, IRMo aims to infer the real trajectory

RT n
u relative to the reported one T n

u —since T
n
u may contain fake check-ins.

Let Tu = {c1u , c2u , c3u , . . .} denote the collection of user u’s historical trajectories. Since we will
investigate the impact of mobility periodicity from human historical traces, we will consider that
Tu is segmented into κ sub-trajectoriesTu = {T 1

u ,T
2
u , . . . ,T

n
u , . . . ,T

κ
u } with a time span tγ (note that

the time span may vary—e.g., 1 day or 6 h). When there is no ambiguity, we will simply use T h
u to

denote user u’s historical trajectory.

3.3 Attentive Networks

Attentive networks (e.g., self-attention) have been widely adopted in natural language process-

ing (NLP) for sequential knowledge modeling, yielding a higher achievement than recently pop-
ular benchmarks in various text/document tasks [5, 11, 19]. For instance, self-attention as the core
part of Transformer framework attempts to measure the similarity scores between a given query
and a key, whereafter formulating the attentiveweight for a value. The canonical self-attention [42]
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:7

performs the scaled dot-product as follows:

A (Q,K,V) = softmax(QK�/
√
d )V, (1)

where query Q ∈ RLQ×d , key K ∈ RLK×d , value V ∈ RLV ×d , and d is the input dimension.

3.4 Graph Neural Network

Nowadays, there exists a popular trend to study the potential knowledge interactions from various
graph-based data, such as social networks and knowledge bases. Accordingly, graph-based mod-
els (e.g., DeepWalk [36], LINE [41], etc.) have been widely used to learn the dense representation
of graph nodes, where the local correlations among them are well extracted. The more complex
deep neural networks such as convolutional neural networks (CNNs) also enable capturing
the local features from graph-based data—however, they fail to handle the non-Euclidean corre-
lation with simple convolutional operations [15]. Towards that end, the Graph Neural Networks
have emerged—e.g., graph convolutional networks (GCNs) [18]—capable of addressing the said
limitation.
Without loss of generality, letG (V,E,X) denote a graph whereV refers to a set of nodes (e.g.,
|V | = η graph nodes), E (⊆ V ×V ) represents a set of edges, and X denotes the associated node
feature. As an illustrative example, the popular GCN aims at learning a function f on graph G
with a message-passing process. Hence, any kth GCN layer can be written as follows:

H(k+1) = f (H(k ),A|W(k ) ), (2)

where A refers to the adjacency matrix extracted from E, and H(k+1) means the hidden feature
matrix of (k + 1)th layer where H(0) = X. Specifically, GCN defines a spectral formulation in
Fourier domain for the inherent convolution operator on graph learning, whereas Equation (2)
can be rewritten as

f
(
H(k ),A | W(k )

)
= φ
(
D̃−

1
2 ÃD̃−

1
2H(k )W(k )

)
, (3)

where Ã = A + I and I is the identity matrix of A; D̃ii =
∑

j Ãi j ; W
(k ) is a layer-specific trainable

matrix; φ denotes an activation function such as Sigmoid or ReLu. Note that we usually use a one-
hot embedding to represent its feature space if each node has no additional feature and thus this
work uses I to replace X, i.e., X = I ∈ Rη×η .

4 METHODOLOGY

We now describe the specifics of IRMoGA. We first provide an overview on the proposed frame-
work and then follow with a detailed discussion of each component. Subsequently, we present the
training algorithm along with the complexity analysis.

4.1 Overview

Our proposed framework consists of three major components: spatial-temporal embedding, fake
trajectory encoding and real trajectory inference. As shown in Figure 2, we first use the spatial-

temporal embedding to, respectively, obtain the spatial embedding and the temporal embedding
based on the collected check-in data, where the transition relation is not used for the purpose of
excluding the effect of fake check-ins. Then, our fake trajectory encoding attempts to exploit the
self-attention mechanism to capture the dynamic dependencies among the check-ins, where an
Information Fusion module is devised to smoothly yield the spatial-temporal semantics behind
the check-ins. We then use a meticulously designed novel attention-based graph neural network,
introduced to distill the individual check-in preferences from their historical trajectories for the
purpose of learning the mutual interaction between historical and recent traces. In particular, we
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12:8 Q. Gao et al.

Fig. 2. Overall framework of IRMoGA.

Fig. 3. Illustration of Graph-based Spatial Embedding.

fuse such mutual interactions as the input of our third module, the real trajectory inference. It also
has an attention-based component in which we bridge an inverse POI popularity to extract other
users’ check-in preferences to mitigate the issue of inference bias. In the sequel, we describe these
components in detail.

4.2 Spatial-temporal Embedding

Obtaining informative representations of check-ins is an initial (and crucial) prerequisite for
understanding human mobility, which could potentially boost the performance of trajectory
representation. Toward that, we introduce a graph-based spatial embedding method regarding
POIs extracted from check-ins, which intends to incorporate geographical proximity among
POIs for the purpose of addressing behavior (b1). And we also present a temporal embedding
method to cater to our proposed IRMoGA. Note that we do not use any transition informa-
tion from the given check-in data—i.e., fake behaviors will not affect the geographical proximity
distillation.

4.2.1 Graph-based Spatial Embedding. In an effort to explore the geographical information
among POIs into dense representations and to address the sparsity concern of check-ins, we con-
struct a POI graph. Specifically, we first set each POI p (p ∈ P) as a node in our graph Gp (P,Ep ).
For the edges, we collect each POI’s geographical neighbors that are within a given distance thresh-
old δ (in this study, we adopt great circle distance to measure the distance between two POIs, and
following existing works [9], the threshold δ is set to 1 km for all datasets). If the distance between
POI pi and POI pj is ≤ δ , then we create an undirected edge e ∈ Ep connecting them. Inspired
by previous works [36, 46, 58, 63], we obtain the dense representation of each POI by generat-
ing massive POI sequences based on random walks overGp , which is capable of exploring spatial
proximity among POIs. As shown in Figure 3, we first use the random walk strategy to generate
massive POI sequences with a fixed length (e.g., 40). Next, we regard these sequences as the POI
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:9

corpus and embed each POI p by maximizing the probability of its occurrence in a surrounding
POI context. For instance, given a POI sequence: p1,p2, . . . ,pτ , . . ., we have a surrounding con-
text C(pτ ) = pτ−w : pτ+w where w is the fixed size of the sliding window with respect to pτ .
Since such a surrounding context C(pτ ) is a set of geographical neighbors of pτ , thereby we can
preserve the information of geographical proximity among them by maximizing the following
probability:

P (C(pτ ) |pτ ) =
∏

p′ ∈C(pτ )
p′�pτ

P (p ′ |pτ ) (4)

=
∏

p′ ∈C(pτ )
p′�pτ

exp(vs (p
′) · vs (pτ ))∑

p′′ ∈P exp(vs (p ′′) · vs (pτ ))
,

where vs denotes a set of learnable parameters. Since enumerating each p ′′ in P is computation-
ally inefficient, we adopt the popular Negative Sampling technique [32] in the above optimization,
which is similar to the popular word embedding toolkit word2vec [32]. Finally, each POI p is em-
bedded into a low dimensional vector vs (p) ∈ Rd , where d is the dimensionality in the lower space,
and the geographical similarities among POIs are well incorporated.

4.2.2 Temporal Embedding. To capture temporal dependencies in user mobility, we leverage
the positional embedding method [42] and encode the temporal information of each check-in into
a low-dimensional representation. In practice, for a check-in cτu , we generate its corresponding
temporal embedding as

⎧⎪⎨⎪⎩
vt (τ2i ) = sin

(
τ/10,0002i/d

′)
,

vt (τ2i+1) = cos
(
τ/10,0002i/d

′)
,

(5)

where i denotes the ith dimension. And d ′ refers to the dimensionality of temporal embedding.

4.3 Fake Trajectory Encoding

Given the existence of fake check-ins in human trajectories, an attention mechanism becomes a
natural choice to deal with correlations among check-ins by weighing distinct attention to real
versus fake check-ins.

4.3.1 Information Fusion. Given T n
u = [cn,1u cn,2u · · · cn,mu ], we fuse the spatial and temporal em-

bedding of each check-in into a single one with a linear transformation. For instance, given a
check-in cn,τu in T n

u , the fused embedding becomes

vn,τu = (vs (c
n,τ
u )Wv + bv ) + vt (c

n,τ
u ), (6)

whereWv ∈ Rd×d ′ and bv ∈ Rd ′ are the learnable parameters. Finally, we can obtain

Tnu = [vn,1u , vn,2u , . . . , vn,mu ]�, (7)

where Tnu ∈ Rm×d ′ .

4.3.2 Movement Extractor. We now use a multi-head attention mechanism to encode the dy-
namic dependencies among check-ins. For vn,τu in Tnu , we use a self-attention to model its mutual
interactions with other check-ins in Tnu . Assume that there areH heads of self-attention. We take
the head π (π ∈ H ) as the example to present the workflow of such interactions. According to the
principle of self-attention [42], we prepare three learnable matricesWπ

Q
,Wπ

K
andWπ

V
to formulate
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12:10 Q. Gao et al.

the query Qπ , key Kπ and value Vπ as follows:

Qπ (vn,τu ) = vτuW
π
Q , (8)

Kπ (Tnu ) = TnuW
π
K , (9)

Vπ (Tnu ) = TnuW
π
V . (10)

We use Qπ , Kπ and Vπ (∈ Rd ′×d ′) to obtainm scores estimating the contribution of each check-
in in Tnu , whereafter an aggregation operation is leveraged to formulate the latent space of vn,τu ,
denoted by

h
n,τ (π )
u = softmax

(
Qπ (vn,τu )Kπ (Tnu )

�
√
d ′

)
Vπ (Tnu ). (11)

Herein, 1√
d ′

is the scaling factor that enables preventing excessive inner product values. Since

there are H heads, we use a concatenation operator (denoted as “| |”) to aggregate all different
views (heads) regarding the interactions by

h′n,τu = (hn,τ (1)u | |hn,τ (2)u | | · · · | |hn,τ (H )
u )Wo + bo , (12)

whereWo ∈ RHd ′×d ′ and bo ∈ Rd ′ are learnable parameters.
In addition, we use a residual network shown below to prune the network connections, which

allows us to leverage more promising residual information instead of the original input:

h′n,τu = LN(vn,τu + DR(h′n,τu )), (13)

h′′n,τu = LN(h′n,τu + DR(ReLU(h′n,τu Wr1 + br1 )Wr2 + br2 )), (14)

whereWr1 ∈ R
d ′×d ′′ , br1 ∈ R

d ′′ ,Wr2 ∈ R
d ′′×d ′ , and br2 ∈ R

d ′ are learnable parameters. Herein,
ReLU = max(0, z) is the popular activation function for non-linear fitting, LN refers to the Layer
Normalization operation for the fast and stable training [1], and DR denotes the dropout operation
for the alleviating overfitting problem. Notably, we can use the above way (Equations (8)–(14)) to
obtain each hidden space corresponding to the check-in in Tnu , i.e.,{h′′n,1u , . . . , h′′n,τu , . . . , h′′n,mu }.
For simplicity, we describe the parallel process of Movement Extractor as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h′′n,1u

h′′n,2u

. . .
h′′n,mu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ME


����
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn,1u

vn,2u

. . .
vn,mu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn,1u

vn,2u

. . .
vn,mu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn,1u

vn,2u

. . .
vn,mu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����
�
, (15)

where the three inputs ofME are the same, and we use them to formulate the query, key, and value,
respectively.

4.3.3 Mutual Interaction Extractor (MIE). According to the early efforts [10, 30], human histori-
cal trajectoriesT h

u exhibit periodicity. Thus, we argue that human recentmobilitywould be affected
by their historical check-in habits, which motivates us to incorporate their historical check-ins
from up toT n

u . However, users’ historical trajectories are usually extremely longer sequences com-

pared to short recent trajectories, i.e., |T n
u | � |T h

u |. Besides, users’ movement varies from each
other due to their different lifestyles. We can obtain each user’s personalized movement habits
from his/her long-term historical check-ins, which can further help us expose real transitional
patterns among POIs. Previous works usually leverage an R/CNN-based module to learn sequen-
tial behavior of user check-ins while an attention mechanism is used to capture user’s personal
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:11

Fig. 4. Mutual interaction extractor (MIE).

Fig. 5. General illustration of outgoing/incoming adjacency matrix construction.

periodicity from their historical trajectories [30]. However, they are unable to consider the higher-
order connections among the check-ins from historical trajectories, possibly leading to the failure
of eliminating the influence of fake check-ins such as the behavior (b2). Hence, we design a cou-
pling graph neural network to distill mutual interactions betweenT n

u andT h
u by a simple attention

mechanism.
Specifically, we first construct a personalized mobility graph Gu to capture transition regular-

ities from T h
u , as shown in Figure 4. We regard the POI set Pu extracted from T h

u as the node set
of Gu . Since we focus on distilling the transition patterns in historical trajectories, we define an

outgoing adjacency matrix
−→
Ah
u = {−→a i, j |i, j ∈ {1, 2, . . . , |Pu |}} and an incoming adjacency matrix

←−
Ah
u = {←−a i, j |i, j ∈ {1, 2, . . . , |Pu |}}, which, respectively, refers to the weighted connections of out-

going edges and incoming edges. Figure 5 presents a simple illustration of the generation of these
adjacency matrices. Each value of the respective cell refers to the statistical frequency, and then we

calculate the corresponding ratio value of each cell. More specifically, −→a i, j indicates the outgoing

ratio from POI pi to POI pj and
←−a i, j indicates the incoming ratio from POI pj to POI pi . As for

the mutual interactions between a trajectory T n
u and the personalized mobility graph Gu—up to

now, we have obtained the hidden representations {h′′n,1u , . . . , h′′n,τu , . . . , h′′n,mu } corresponding to
T n
u . We bridge the interaction between each hidden state (e.g., h′′n,τu ) and Gu by a fused GNN as
follows:

−→
Hh
u =
−→
Ah
u [v

n,1
u , . . . , vn,mu ]�Wд1 + bд1 , (16)

←−
Hh
u =
←−
Ah
u [v

n,1
u , . . . , vn,mu ]�Wд2 + bд2 , (17)

Ĥh
u = (ReLU(

−→
Hh
u )W−→д + b−→д ) | |(ReLU(

←−
Hh
u ))W←−д + b←−д ), (18)
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12:12 Q. Gao et al.

whereW∗ ∈ Rd ′×d ′ and b∗ ∈ Rd ′ are learnable parameters. Next, we present a variant of Bahdanau

Attention [2] to aggregate the graph information from Ĥh
u into h′′n,τu . Taking h′′n,τu as the query

and Ĥh
u as the value, we can obtain the final state of cn,τu by

α = softmax[(h′′n,τu Wα1 + bα1 ) (Ĥ
h
uWα2 + bα2 )

�], (19)

h̄h,τu = αĤh
u , (20)

where W∗ and b∗ are learnable parameters and α are the attention weights. Correspondingly,

we combine h′′n,τu and h̄h,τu to formulate the personalized context-aware state. For example, the
context-aware state of cn,τu can be denoted as

ĥn,τu = h̄h,τu | |h′′
n,τ
u . (21)

Now, we obtain a set of personal context-aware states corresponding to T n
u , denoted as T̂nu =

[ĥn,1u , . . . , ĥn,τu , . . . , ĥn,mu ]�, which will be used as the input of the following real trajectory
inference.

4.4 Real Trajectory Inference

We now describe how to infer the real transition dependencies among check-ins using another
attention mechanism. In practice, we do not have any prior knowledge regarding whether the
current check-in of a given trajectory is real or fake. In this study, we attempt to check and infer
real check-ins one by one in an auto-regressive manner.

4.4.1 Movement Inference. During inference, which is distinct from the former Movement Ex-

tractor, we should not only capture the inner interaction in currently predicted results but also

integrate the mutual interaction between the personalized context-aware state T̂nu and currently

predicted results. That is to say, we assume that we have predicted out the sub-sequence R̃T
n,τ−1
u =

c̃n,1u , . . . , c̃n,τ−1u . The goal is to use R̃T
n,τ−1
u and the personalized context-aware state T̂nu to forecast

the next real check-in c̃n,τu . Thus, we first use Equation (6) to prepare the fused embeddings for

R̃T
n,τ−1
u = c̃n,1u , . . . , c̃n,τ−1u , i.e., R̃T

n,τ−1
u . In accordance with Equations (8)–(12), we design a similar

structure to capture the inner interaction in R̃T
n,τ−1
u . We also applyH heads in self-attention, and

for each head π (omitting n for brevity/clarity), we have

Qπ
1 (R̃T

τ−1
u ) = R̃T

τ−1
u Wπ

Q1
, (22)

Kπ
1 (R̃T

τ−1
u ) = R̃T

τ−1
u Wπ

K1
, (23)

Vπ
1 (R̃T

τ−1
u ) = R̃T

τ−1
u Wπ

V1
, (24)

Z̃
τ−1(π )
u = softmax


�
�
Qπ
1 (R̃T

τ−1
u )Kπ

1 (R̃T
τ−1
u )�

√
d ′

��
�
Vπ
1 (R̃T

τ−1
u ), (25)

whereWQ1 ,WK1 , andWV1 denote the trainable matrices. Similar to the aboveMovement Extractor,

we use a concatenation operator (i.e., Equation (12)) to aggregate each π head of Z̃
τ−1(π )
u , and obtain

Z̃τ−1u . Now, we use the last state z̃τ−1u ∈ Z̃τ−1u as the query for next real check-in reference.
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:13

To incorporate the mutual interaction between z̃τ−1u and T̂nu , we use a variant of self-attention
withH heads for next real check-in reference. For π ∈ H head, we have

Qπ
2 (̃z

τ−1
u ) = z̃τ−1u Wπ

Q2
, (26)

Kπ
2 (T̂

n
u ) = T̂nuW

π
K2
, (27)

Vπ
2 (T̂

n
u ) = T̂nuW

π
V2
, (28)

z̃
τ (π )
u = softmax 


�
Qπ
2 (̃z

τ−1
u )Kπ

2 (T̂
n
u )
�

√
d ′

�
�
Vπ
2 (T̂

n
u ), (29)

where WQ2 , WK2 , and WV2 denote the learnable matrices. Herein, we also adopt Equation (12) to
make head aggregation with concatenation operator, and obtain z̃τu . Following Equations (13) and
(14), we also apply the residual connection and layer normalization here to obtain the final state

z̃′
τ

u regarding z̃τu , and use a dense layer to obtain the final result—i.e., c̃n,τu —formulated by

c̃n,τu = argmax
(
Wc z̃′

τ

u + bc
)
, (30)

whereWc and bc are projection parameters for the next check-in prediction.

4.4.2 External Data Fusion. Recall the behavior (b3) (cf. Section 1). We argue that the user’s
intention of generating a fake check-in may be influenced by other users. That is to say, they
could have been located at a POI that the user u has never visited. However, when that POI is
frequently visited by other users, it enables us to integrate prior knowledge of other users’ check-
ins to assist in the discovery of fake check-ins for a given user u. Thus, we design an inverse POI
popularity bias to incorporate other users’ interests. Specifically, we first obtain a POI popularity
list Ψ = {ψi |i ∈ {1, 2, . . . , |P |}} by calculating the frequency of each POI visited by other users.

Since IRMo aims at eliminating fake check-ins, we further use the inverse ofΨ , denoted by Ψ̌ =

{ 1
ψi
|i ∈ {1, 2, . . . , |P |}}, tomitigate the bias from extremely popular POIs. In other words, we regard

Ψ̌ as the inference bias to deal with the (b3). To this end, we replace Equation (30) with

c̃n,τu = softmax((Wc z̃′
τ

u + bc + softmax(Ψ̌ ))), (31)

c̃n,τu = argmax(c̃n,τu ), (32)

whereWc ∈ Rd ′× |P | and bc ∈ R |P | refer to the learnable parameters. c̃n,τu is the probability distri-

bution of the predicted result. Finally, the predicted trajectory is denoted as R̃T
n

u = c̃n,1u , . . . , c̃n,mu .

4.5 Training

Herein, we conclude our training objective, where the loss function of IRMoGA is defined as the
cross-entropy of the prediction and the ground truth. It is denoted as

Lθ =
∑
u ∈U

|Tu |∑
n=1

|T n
u |∑

τ=1

−cn,τu,r log
(
c̃n,τu

)
, (33)

where |U | is the number of users, |Tu | means that useru has |Tu | trajectories to infer, θ denotes the
learnable parameters in IRMoGA, and cn,τu,r is the one-hot representation of a ground-truth check-
in. For a given trajectory T n

u , it contains both real and fake check-ins. In fact, we do not know
which check-in in trajectory T n

u is fake, i.e., uncertainty. Hence, the optimization of Equation (33)
actually contains two parts. For a real check-in, Equation (33) can be considered as reconstruction
loss. For a fake check-in, Equation (33) can be treated as the correction loss.
We now summarize the algorithmic details for the purpose of formalizing the workflow of the

proposed IRMoGA.
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12:14 Q. Gao et al.

ALGORITHM 1: IRMoGA Training

Input: user trajectories T = {T1, . . . , Tu, . . . , T|U | }, ground truth RT = {RT1, , . . . , RTu, . . . , RT|U | }.
1 extract POI set P from T ;

2 generate an inverse POI popularity Ψ̌ from T ;

3 obtain POI embeddings vs based on P;
4 initialize the train model θ ;

5 for epoch i=0; i=i+1; i < N do

6 foreach u ∈ U do

7 foreach T nu ∈ Tu do

8 obtain the Tmu and T hu ;

9 represent each check-in in T nu based on vs ;

10 make temporal embedding for each check-in in T nu based on vt ;

11 use Equation (6) to make information fusion;

12 obtain {h′′n,1u , . . . , h′′n,τu , . . . , h′′n,mu } based on Equations (8)–(14);

13 use Equations (16)–(21) to tackle T hu and obtain T̂nu = {ĥn,1u , . . . , ĥn,τu , . . . , ĥn,mu };
14 generate a predicted trajectory R̃T

m
u based on Equations (22)–(31);

15 compute the training loss according to Equation (33);

16 update the learnable parameters;

17 end

18 end

19 end

Output: the optimal Model θ ∗

In a nutshell, IRMoGAfirst extracts the POI setP from training dataT and uses this set to obtain

the POI embeddings based on the POI graph, whereafter an inverse POI popularity Ψ̌ is prepared.
For each user’s sub-trajectory (e.g., T n

u ), we leverage Fake Trajectory Encoding to formulate a set
of hidden states regarding it. Next, we use the corresponding historical trajectory to construct the
user’s personalized mobility graphGu , and then apply our Mutual Interaction Extractor to obtain a
set of personal context-aware states corresponding to the given sub-trajectory. Finally, we leverage
our Real Trajectory Inference to predict human real trajectory, where the inverse POI popularity
is fused. In the practical implementation, we use the mini-batch for model training.
When it comes to the complexity of Algorithm 1, we note that there mainly exist three atten-

tion structures in IRMoGA, where attentions in Movement Extractor and Movement Inference
are similar. Recall that (cf. Equation (11)), we use the dot-product computation for m check-ins
in T n

u , resulting in the time complexity of O ( |T n
u |2d ′). Fortunately, users’ recent trajectories are

extremely shorter than their respective historical trajectories—i.e., |T n
u | � |T h

u |. For the last at-
tention in Mutual Interaction Extractor, the time complexity is O ( |T n

u | × |Pu | × d ′) according to

Equation (19). Due to human periodic regularity, we also have |Pu | � |T h
u |, which demonstrates

that the graph-based model enables reducing the time cost. This leads to the drawback of memory
usage—however, we use the individual graph for each user, which is a smaller structure. As such,
it is capable of decreasing the time cost and space usage.

5 EVALUATION

We now present the experimental observations regarding the performance of IRMoGA. First, we
introduce four popular GTSM datasets and the preprocessing procedure to cater to IRMo settings.
Next, we provide the most relevant and popular baselines, whereafter the evaluation metrics are
selected. Finally, we discuss the comparative experimental results, followed by ablation, sensitivity
analysis, and visualization.
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Inferring Real Mobility in Presence of Fake Check-ins Data 12:15

Table 2. Descriptive Statistics of Datasets

Dataset |U | |P | #Check-ins #Sub_T |avg_T| |POI sequences |
OSM 280 4,335 35,934 3,371 78 42,930

Yelp 2,270 7,531 133,937 44,706 45 75,340

Foursquare 1,083 9,815 120,007 36,182 90 98,180

Gowalla 3,987 21,354 239,493 66,612 47 213,570

5.1 Datasets

We conducted our experiments on four publicly available datasets: OSM traces (https://www.
openstreetmap.org/traces), Yelp [25], Foursquare [51], and Gowalla [54]. For OSM traces,
we crawled the GPS points from open-source traces located in Boston (42◦19.8′N–42◦24′N ,
71◦8.4′W –71◦1.2′W ). Since the Yelp dataset contains massive geo-tagged businesses and reviews,
we only use the check-in data from them. In addition, we selected the check-in data from New
York City in Foursquare and California City in Gowalla, where each check-in contains a user ID,
timestamp, POI ID, and geographical coordinates. Table 2 presents the statistics of datasets after
preprocessing.
Notably, #Sub_T is the number of sub-trajectories after splitting, and |avg_T| denotes the aver-

age length of each user’s historical trajectory. In addition, we use the randomwalk strategy to gen-
erate massive POI sequences for spatial embedding. Thus, we randomly generate 42,930 sequences
containing 1,717,200 synthetic check-ins for OSM, 75,340 sequences containing 3,013,600 synthetic
check-ins for Yelp, 98,180 sequences containing 3,927,200 synthetic check-ins for Foursquare, and
213,570 sequences containing 8,542,000 synthetic check-ins for Gowalla. To help other researchers,
our datasets are also publicly available at https://github.com/gcooq/IRMoGA.

5.2 Data Preprocessing

In practice, the behavioral phenomenon (b1) occurs most frequently in daily life (cf. Reference
[49]). Hence, we first choose the OSM dataset to respond to this scenario. In OSM, the publicly
available GPS traces uploaded by anonymous users usually contain noise check-ins that deviate
from the road network due to privacy concerns, inaccuracy of GPS devices, or man-made interfer-
ence. Thus, we leverage a widely employed map matching method [28] to obtain the trajectories
that are alignedwith the road network and set them as the ground truthwith respect to the original
GPS traces. In particular, all GPS points are assigned an ID number according to the road network
structure provided by OSM. In addition, for the Yelp dataset, we adopt the data preprocessing
method in References [56, 57] to replace the POI in the real check-in with one of its associated
collective POIs, where we regard the POI in the real check-in as the ground truth and the replaced
POI as the fake one. Notably, the collective POI is a neighbor of a given POI within 500 meters. We
follow [25] and remove those users with fewer than 25 check-ins as well as those POIs visited by
fewer than 10 users. After preprocessing, the Yelp dataset contains about 15% fake check-ins.
To enable investigating more diverse settings (e.g., (b1), (b2), and (b3)) for the IRMo task, we

use another two datasets—Foursquare and Gowalla—to generate the complex scenarios. We first
remove those POIs that have been visited by fewer than 5 users. For each user, we concatenate all
check-ins to form a single trajectory. Subsequently, we divide each trajectory into sub-trajectories
with the time interval of 6 hours each, as was done in prior studies [6, 9, 16]. Then, we randomly
replace 20% of check-ins in each sub-trajectory with generated ones, where three types of fake
check-in behaviors are used, with equal probability. For (b1), we randomly select a nearby POI
that is less than 1km away from the real POI. For (b2), we randomly choose from POIs that the
user has visited before. As for (b3), we randomly pick a POI from among the top 50 frequently
visited POIs by other users.
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Fig. 6. Check-in Distribution of Gowalla.

For all datasets, we choose each user’s first 80% sub-trajectories as the training set and the
remaining 20% as testing data. As shown in Figure 6, it is hard to observe the changes between
them—illustrating that our data preprocessing will not destroy the ground-truth distribution of
original check-in data.

5.3 Baselines

We compare our IRMoGA with seven state-of-the-art methods, covering both the traditional tra-
jectory mining and more recent deep learning-based approaches:

• Popularity: A simple and intuitive method that selects the most frequently visited POI from
the user’s history to replace the low-frequency POI in his/her trajectory.
• MF [24] explores interactions among POIs. We use it to decompose the POI co-occurrence
matrix and leverage the similarity function to distill most unrelated POIs in a given trajectory,
while recommending similar POIs.
• Markov [38] estimates check-in regularities using the constructed transitional matrix. We
use Markov to distinguish the low-frequency transition and choose POIs with the highest
transitional probabilities to replace each of them.
• NeuNext [61] adopts a recurrent neural network for transitional pattern learning, we lever-
age it to infer human real mobility.
• GM-VSAE [26] leverages two recurrent neural networks to model human sequential mo-
bility in an end-to-end manner, and discriminates the abnormal trajectories. We use it to
predict human real trajectories, where the GRU cell is employed.
• MHA-LSTM [29] is an end-to-endmethod by integrating an attentionmechanism to explore
high-order sequential patterns.
• STAN [27] attempts to exploit relative spatio-temporal information of historical check-ins
with self-attention layers. We extend it to tackle IRMo problem.
• AttnMove [48] leverages multiple self-attention mechanisms to generate fine-grained tra-
jectories. We adapt it to IRMo by following a similar self-attention module to learn human
mobility for real trajectory inference.

5.4 Metrics

We select three common metrics for evaluations: Recall, F1, and Accuracy [10, 48]. Recall denotes
the percentage of the same part between the predicted trajectory and the ground truth—e.g., Recall
is 1 if the predicted trajectory is the same as the ground truth. F1 is the harmonic mean of the
precision and recall. Accuracy is the ratio that the predicted trajectories and the ground-truth
trajectories are the same in the entire test set (in a sense, Accuracy is a more strict metric).
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Table 3. Performance Comparison on four Datasets

Method
OSM Yelp Foursquare Gowalla

Recall F 1 Accuracy Recall F 1 Accuracy Recall F 1 Accuracy Recall F 1 Accuracy

Popularity 31.40% 30.44% 1.22% 33.67% 33.66% 6.19% 24.78% 24.74% 3.72% 17.44% 17.45% 0.48%

MF 9.87% 9.88% 1.68% 19.43% 19.39% 0.50% 29.00% 28.37% 3.47% 30.72% 30.07% 4.43%

Markov 9.44% 9.37% 0.46% 20.85% 20.84% 0.04% 24.57% 24.56% 4.44% 19.76% 19.74% 0.44%

NeuNext 36.48% 28.85% 5.26% 59.75% 53.10% 39.24% 33.40% 27.34% 15.39% 27.92% 19.66% 6.05%

GA-VSAE 42.52% 33.78% 5.11% 60.15% 53.31% 38.80% 36.56% 30.76% 19.10% 27.28% 19.83% 7.50%

MHA-LSTM 36.14% 28.84% 4.12% 48.89% 46.99% 39.35% 36.83% 30.98% 19.28% 27.53% 20.11% 7.73%

STAN 39.29% 33.01% 5.14% 74.98% 71.09% 59.46% 39.89% 35.36% 27.98% 29.99% 22.95% 9.03%

AttnMove 38.69% 32.30% 6.53% 86.23% 83.91% 75.79% 40.51% 37.31% 30.34% 51.53% 43.14% 24.46%

IRMoGA 57.03% 50.27% 11.22% 94.12% 91.15% 78.76% 79.67% 73.13% 53.67% 77.83% 69.92% 44.03%

We implemented all the baselines and our IRMoGA in Python, while the scikit-learn and Ten-
sorflow are, respectively, leveraged for traditional and deep learning-based methods, accelerated
by the NVIDIA RTX 3090 GPU 24G. The batch size is 64, and the dimensionality of POI is 64. The
initial learning rate is 0.001, the hidden size is set to 128 for OSM, Yelp, and Foursquare, and it is
set to 256 for Gowalla. The number of hidden layers is 1, the number of attention heads is 2, and
the optimizer is Adam [17].

5.5 Empirical Results

Table 3 summarizes the performance of IRMoGA as well as the baselines on the four location-
based datasets with respect to Recall, F1, and Accuracy. We observe that IRMoGA significantly
outperforms all the baselines on all the datasets. The three conventional methods (Popularity, MF,
and Markov) perform worse than the deep learning-based methods, which indicates that the deep
learning-based approaches enable better incorporation of the underlying correlation among check-
ins, as well as highly complex transitional regularities from massive trajectory data containing
numerous fake check-ins. In particular, AttnMove and STAN have higher gains than NeuNext, GA-
VSAE, andMHA-LSTM. The plausible reason could be that AttnMove and STAN enable integrating
multiple interactions among check-ins. In contrast, our IRMoGAoutperformsAttnMove and STAN
due to two possible reasons. First, IRMoGA considers the geographical similarity during check-in
embedding, primarily seeking tomimic human potential fake check-in behavior—i.e., they possibly
select a nearby POI to hide their real moving intention. Although STAN explicitly considers the
spatial distance between POIs, it could fail to capture the geographical similarity between different
POIs. Second, IRMoGA adopts the graph learning scheme to distill people’s personalized check-in
preferences in terms of transitional regularities. Meanwhile, we also consider the impact of other
users’ check-in behaviors, since the daily activities of an individual could be affected by others.
We note that the performance of IRMoGA, while still superior to the baselines, is worse on the
OSM dataset (which contains only (b1) fake check-in behavior). It appears that the main reason
for this is the insufficient amount of regularities in the human traces. Conversely, when tackling
richer and more diverse human behavioral phenomena, IRMoGA performs in the other datasets.
Table 4 presents our experimental observations regarding themodel efficiency of IRMoGA in terms
of both training and inference phases (the latter indicated in “()”), in comparison with the deep
learning-based approaches. Due to the graph construction in theMIE, IRMoGA is slower—however,
we observe that without MIE, IRMoGA achieves similar efficiency to AttnMove while retaining
significant effectiveness improvements.

5.6 Ablation Analysis

We now report our evaluation of the effectiveness of each module in IRMoGA, and the study of its
performance by consideringmore diverse fake check-in behaviors, which enables a more thorough
understanding of various human check-in decisions.
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Table 4. Model Efficiency

Method
Runtime (s/epoch)

OSM Yelp Foursquare Gowalla

NeuNext 7 (1) 40 (7) 52 (8) 144 (47)

MHA-LSTM 42 (3) 184 (21) 57 (9) 213 (23)

AttnMove 7 (3) 72 (28) 61 (17) 91 (42)

IRMoGA 13 (5) 132 (42) 73 (21) 177 (58)

Fig. 7. Ablation Analysis.

5.6.1 Impact of Individual Modules. We designed four variants of IRMoGA to estimate the con-
tribution of each proposed module:

• IRMoGA-Base is a basic model that only uses the Movement Extractor and Movement Infer-
ence, where we make check-in embedding with a random initialization method.
• IRMoGA w/o STE removes the Spatial-temporal Embedding module and uses a learnable
matrix for check-in embeddings.
• IRMoGA w/o IF removes the Information Fusion and uses the sum operation to fuse the
spatial-temporal embedding directly.
• IRMoGA w/o MIE removes the Mutual Interaction Extractor in IRMoGA.
• IRMoGA w/o EKF does not incorporate the External Knowledge Fusion part when inferring
the real trajectory.

Figure 7 shows the impact of different modules in “%” relative to the complete IRMoGA. We
observe that each module contributes differently to tackling the IRMo problem. More specifically,
IRMoGA-Base does not have any domain knowledge such as geographical information, individ-
ual check-in behaviors, and external trajectory information, resulting in the worst performance.
The results of IRMoGA w/o STE suggest that incorporating geographical similarity can signifi-
cantly improve performance. The possible reason is that people usually tend to move in a small
area, which is also in line with the social studies on human daily activities [35]. The results of
IRMoGA w/o IF show that the learnable information fusion can adapt to spatial-temporal infor-
mation extraction and effectively improve the model accuracy. The results of IRMoGA w/o MIE
and IRMoGA w/o EKF indicate that mutual interaction extractor and external knowledge fusion
do help learn better human check-in behaviors. However, the external knowledge fusion part has
only a slight improvement, which encourages future work to develop a more efficient module to
involve external knowledge.
In addition, we explain the motivation for using the geo-spatial information when construct-

ing the POI graph. First, each check-in left by users is often associated with geo-spatial data,
which are highly correlated to users’ visiting preferences. Second, users may prefer to visit nearby
places. For quantitative comparison, we present the transitional distance between all the adjacent
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Fig. 8. Distribution of transitional distance.

Fig. 9. Visualization of POIs.

Fig. 10. Impact of Periodic Regularity.

check-ins for all users in Figure 8. As shown, users often prefer logging into a location within a
very short distance even if they have plenty of opportunities to choose others. In fact, this observa-
tion motivated our choice of distance threshold (e.g., 1 km) to construct the POI graph. To show the
performance of our graph-based POI embedding, we use the K-means method to cluster POI em-
beddings (e.g., Foursquare and Gowalla) and mark different colors for distinct clusters in Figure 9.
We observe that our embedding method is capable of incorporating geographical similarity.

5.6.2 Impact of Periodic Regularity. As we mentioned in Section 1, exploiting human periodic
regularity is the core work to achieve the discovery of fake check-ins. Therefore, we turn to an
experimental perspective to reveal the impact of human periodic regularity on solving the IRMo
problem. Specifically, we formulate a new training set by randomly shuffling the order of the POIs
in each trajectory from the training data set. And we use it to train the IRMoGA while the testing
data is not changed. In addition, we remove the temporal embedding in our IRMoGA, tagged as
“tem.” As shown in Figure 10, we can find that the performance (e.g., Accuracy) drops significantly
as more trajectories in the training set are shuffled (human periodic regularities are corrupted). Be-
sides, IRMoGA without the temporal embedding performs clearly worse. Therefore, we conclude
that considering the human periodic regularity behind human check-ins does help us detect fake
check-ins and further infer real check-ins.
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Table 5. Comparison on Different Behaviors

Behavior
Foursquare Gowalla

Recall F1 Accuracy Recall F1 Accuracy

b1 82.43% 76.54% 58.48% 77.94% 70.22% 44.96%

b2 77.17% 70.69% 51.93% 77.19% 69.20% 43.10%

b3 76.81% 70.07% 51.86% 76.62% 68.92% 44.15%

b1+b2 80.83% 74.27% 54.78% 77.19% 69.24% 43.42%

b1+b3 77.70% 70.14% 52.40% 76.48% 68.80% 43.88%

b2+b3 78.19% 71.73% 53.39% 75.56% 67.64% 42.17%

b1+b2+b3 79.67% 73.13% 53.67% 77.83% 69.92% 44.03%

Table 6. Sensitivity Test

Rate
Foursquare Gowalla

Recall F1 Accuracy Recall F1 Accuracy

10% 97.07% 96.04% 92.24% 89.18% 85.44% 72.80%

15% 95.70% 94.06% 87.46% 87.19% 82.83% 68.72%

20% 79.67% 73.13% 53.67% 77.83% 69.92% 44.03%

30% 76.46% 68.37% 47.10% 74.20% 67.11% 47.99%

40% 61.79% 52.10% 28.28% 51.07% 39.67% 12.98%

Random 83.29% 72.24% 58.06% 71.70% 62.82% 37.16%

5.6.3 Impact of Fake Check-in Behaviors. Recall the three kinds of fake check-in behaviors men-
tioned in Section 1 (b1), (b2), and (b3). We evaluated the effectiveness of IRMoGA in the context
of diversity of fake check-ins and, as shown in Table 5, IRMoGA performs the best in the context
of (b1). It performs worse in the context of (b2); and worst in the context of (b3) (note that the
gray-highlighted part, which takes these three types of fake check-in behavior into account, is the
same as the last row in Table 3). This indicates that the deceitful behavior of people choosing a POI
that they have never visited is difficult to detect. Undoubtedly, there may be other fake check-in
behaviors in real scenarios, which motivates further explorations, involving social sciences and
HCI domain expertise.
In addition, we provide a sensitivity test on various amounts of fake check-in data. According

to Reference [49], people usually have about 57% real check-ins that are corresponding to their
real physical locations. Thus, we scale the rate of fake check-ins from 10% to 40%. In addition, to
demonstrate the selection biases of different types of fake check-in, we provide a random setting
that makes each trajectory randomly generates 10%–30% fake check-ins of each behavior. Accord-
ing to the results in Table 6, IRMoGA performs well on both datasets when the fake check-in rate
is within 30%. Nevertheless, the results of IRMoGA on Accuracy drop faster as the scale of fake
check-ins increases. The main reason is that Accuracy is a strict metric that reports the prediction
trajectory exactly the same as the ground truth. Moreover, we find that IRMoGA achieves promis-
ing results in the context of Random. In reality, people have diverse preferences when deciding to
make fake check-ins. For instance, some people prefer to choose a nearby POI to replace their real
location while others may tend to choose a POI that is far away from their real location. Therefore,
the results of Random demonstrate that our proposed IRMoGA can well address the diverse and
intricate fake check-in behaviors in real-world scenarios.

5.7 Sensitivity Analysis on Hyper-parameters

We now discuss the impacts of some key hyper-parameters that could affect the model perfor-
mance. Figures 11 and 12 report the results, and we have the following observations.
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Fig. 11. Sensitivity Analysis on Foursquare.

Fig. 12. Sensitivity Analysis on Gowalla.

• Influence of hidden size. We investigate the impact of hidden size controlling the scale of the
attention neural network. As shown in Figures 11(a) and 12(a), we clearly observe that it does affect
the model performance, however, the larger hidden size will not bring the model improvement.
• Influence of head number. Figures 11(b) and 12(b) show the robustness of IRMoGA performance

regarding the head number. It also suggests that it is not sensitive to the model, thus we use a few
heads in our IRMoGA (e.g., two heads).
• Influence of embedding size. Finally, we study the dimensional influence of our spatial-temporal

embedding ranging from 8 to 512 on two datasets. As Figures 11(c) and 12(c) show, we find that the
larger dimension will bring a higher improvement. This phenomenon is similar to other check-in
embedding in various mobility-based tasks. Also, using too large dimension will not bring signifi-
cant improvements, possibly because the model may cause the over-fitting problem.

5.8 Visualization Analysis

We now discuss the properties of IRMoGA from the perspective of visualization. We take the
Foursquare dataset as an illustrative example. As Figure 13 shows, we first visualize check-in distri-
bution of testing data. Notably, the darker color indicates that particular regions are visited more
frequently. We can observe that it is hard to discriminate among Figures 13(a), 13(b), and 13(c)
from a macro perspective, indicating that tackling IRMo problem is indeed an extremely challeng-
ing task. We are incapable of being familiar with users’ correct check-ins, and we also have no
prior information about their fake check-in behaviors. It also demonstrates that the appearance
of fake check-ins could not seriously affect long-established human visiting habits, which inspires
us to regard the proposed Mutual Interaction Extractor as the auxiliary learner to refine human
transitional regularities from their historical trajectories.
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Fig. 13. Comparison: Complete check-in data distribution.

Fig. 14. Comparison: Actual users’ trajectories.

Last, we test the results of two users’ trajectories on Openstreet Map (www.openstreetmap.org),
and show the performance of IRMoGA. As the top portion of Figure 14 shows, for User #187, these
three sub-figures are similar, indicating that our IRMoGA enables refining human real visiting
preferences in terms of check-in distillation. Complementary, as shown for User #138 (bottom
row of Figure 14) the user’s check-in distribution is significantly different from the ground truth.
Interestingly, the results of the middle part show that our IRMoGA is capable of discovering their
real moving intentions. In sum, IRMoGA enables tackling diverse check-in behaviors with respect
to inferring their real mobility.

6 CONCLUSION

We formulated IRMo, a novel problem targeting the inference of human real mobility frommassive
trajectory data containing potential fake check-ins. To the best of our knowledge, this challenging
task has been under-explored.We developed a graph-enhanced attentionmodel (coupling check-in
behaviors), called IRMoGA, to capture complex spatial-temporal dependencies and mutual inter-
actions for the purpose of inferring human real mobility regularity. We presented the results of
extensive experiments on real-world datasets, demonstrating that IRMoGA achieves significant
gains against several relevant baselines. We note that IRMoGA, while being first, is also an exten-
sible solution for detecting human real mobility, and it could be easily enhanced by incorporating
other prior knowledge such as diverse social information. In the future, we plan to study the above
issues in an incremental learning context that is more similar to the manner of human learning
and knowledge accumulation. In addition, we plan to consider how to tackle the human traces that
have no rich mobility patterns or regularities.
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