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1. Introduction

In simple fluids where molecular transport is modelled as a gradient-diffusion process,
the mixing rates of quantities such as momentum, heat and species are determined by the
associated molecular diffusion coefficient and the magnitude of spatial gradients of the
quantity. In a turbulent flow, complex stirring motions lead to the intensification of spatial
gradients of flow quantities, which in turn enhances the mixing rates. In this sense, the
mixing rates are controlled by the stirring processes themselves. This fact is often exploited
when modelling mixing rates because the wide range of dynamically relevant length and
time scales in high Reynolds number turbulent flows means that the small-scale mixing
often cannot be directly resolved, and so it is instead modelled indirectly based on stirring
rates at resolved scales. This assumption underlies large eddy simulations which model
the unresolved small-scale mixing by connecting it to the resolved large-scale dynamics.
The assumption also underlies the classical k–ε closure (where k is the turbulent kinetic
energy, and ε is the turbulent kinetic energy dissipation rate) for the Reynolds averaged
Navier Stokes equations (RANS), as well as models based on a turbulent Prandtl number
(we do not distinguish between heat and species and use the term Prandtl number for both).
In particular, typical RANS models carry information primarily about the large-scale
dynamics. On the other hand, ε is primarily associated with small-scale physical processes,
and the strategy in all RANS models is to model ε indirectly through its connection to
the large-scale energetics via the energy cascade. Second-order closures for RANS and
conditional moment closure are examples of approaches that do not directly couple mixing
and stirring rates, however, nevertheless, the former is inferred from the latter without
information about the dynamics at the smallest scales where the mixing actually takes
place.

The motivation for the research reported here is that in stably stratified flows (subject
to the Boussinesq approximation), varying the diffusion coefficient of the scalar has been
observed to affect the mixing rates of not only the scalar but also of momentum. In the
very simple configuration of initially homogeneous and isotropic turbulence subjected to a
stabilizing density gradient, Riley, Couchman & de Bruyn Kops (2023) find that not only
is the dissipation rate of potential energy significantly lower at Prandtl number Pr = 7 than
at Pr = 1, but the dissipation rate of kinetic energy is also higher at Pr = 7. In fact, it has
been known for some time that higher Pr results in slower mixing of heat in stratified flows
(Smyth, Moum & Caldwell 2001). More recently, Salehipour & Peltier (2015) found that
Pr has a strong effect on secondary instabilities in stratified flows, and Legaspi & Waite
(2020) observed transfer of potential to kinetic energy at small scales that depends on Pr.

An interesting feature of the homogeneous flow studied by Riley et al. (2023) is that
the large-scale structures are not obviously affected by the changes in Pr other than that
they lose energy at differing rates depending on Pr. But if mixing rates are determined by
stirring rates, then since the mixing rates were observed in Riley et al. (2023) to depend
strongly on Pr, the stirring rates at some scales in the flow must also be strongly affected
by Pr. The connection between stirring and mixing rates in stratified turbulence has been
traditionally approached from the perspective of multiscale flow energetics, i.e. analysing
kinetic and potential energies using Fourier analysis. However, to understand the physical
mechanism by which stirring and mixing rates in stratified turbulence are affected by Pr,
we find it more insightful to study the problem by analysing the equations governing
velocity and scalar gradients in the flow. Production mechanisms in these equations are
associated with the stirring processes that intensify flow gradients, and the magnitude of
the resulting gradients determines the mixing rates.
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Understanding Prandtl number effects on turbulent mixing

In the context of homogeneous, isotropic turbulence, studying turbulent flows from
the perspective of velocity gradient dynamics has a long and rich history that has led to
numerous insights into the physics of small-scale turbulence (Vieillefosse 1982; Ashurst
et al. 1987; Nomura & Post 1998; Chertkov, Pumir & Shraiman 1999; Tsinober 2001;
Chevillard & Meneveau 2006; Gulitski et al. 2007; Meneveau 2011; Danish & Meneveau
2018; Carbone, Iovieno & Bragg 2020; Tom, Carbone & Bragg 2021). For stratified flows
where the momentum and density fields are coupled, velocity gradient dynamics would
need to be studied in conjunction with that of density gradients, and very little has been
done on this. Diamessis & Nomura (2000) studied the interaction of vorticity, strain-rate
and density gradient fields in stratified homogeneous sheared turbulence. Through the
buoyancy force, density gradients give rise to a baroclinic torque term in the vorticity
equation, and they argued that the interaction of vorticity and density gradients involves
an inherent negative feedback between baroclinic torque and reorientation of the density
gradients by the vorticity. By contrast, the interaction of the strain-rate and density
gradient fields involves a positive feedback that promotes the persistence of vertical density
gradients. The stratified flows in their study exhibited a decay of turbulent kinetic energy,
and as time advanced, the third invariant of the velocity gradient tensor approached
zero, indicating that the flow was becoming dynamically two-dimensional. More recent
studies are the insightful studies of Sujovolsky, Mindlin & Mininni (2019), Sujovolsky
& Mininni (2020) and Marino et al. (2022). In these, simplified forms of the velocity
and density gradient equations were considered in which molecular transport and the
non-local pressure Hessian terms were discarded (similar in spirit to the restricted Euler
model of Vieillefosse 1982). For the resulting simplified model, invariant manifolds were
discovered, and the way that phase-space trajectories move between these manifolds
was shown to explain the enhanced intermittency and marginal instability that has been
observed in stably stratified flows when the Froude number is within a certain range (Rorai,
Mininni & Pouquet 2014; Feraco et al. 2018).

In our study we will analyse the exact (within the Boussinesq framework) forms of the
coupled velocity and density gradient equations in order to understand the mechanism
responsible for the strong Pr dependence of mixing rates in stably stratified turbulence
observed in Riley et al. (2023). It will be shown that the mechanism is associated with the
competition between distinct production terms in the gradient equations that are associated
with either the fluctuating or mean density gradient field. The term associated with the
mean density gradient actually opposes the production of fluctuating density gradients,
and this is ultimately the effect responsible for the momentum mixing rate increasing and
the density mixing rate decreasing as Pr is increased, as observed in Riley et al. (2023).
Furthermore, we also study the behaviour of velocity and passive scalar gradients in the
context of stationary, homogeneous, isotropic turbulence with a mean-scalar gradient. It
will be seen that the mechanism responsible for the striking effect of Pr on scalar mixing
rates in stratified turbulence is in fact already present even in the case of a passive scalar.
It is simply that this mechanism plays a very small role in the passive scalar case, although
it could play an important role even in that case depending upon the parameter regime of
the flow.

2. Theory: gradient dynamics for high Reynolds number neutral flows

So that we can consider passive and active scalars using the same notation, let the scalar in
all cases be density ρ and we assume the non-hydrostatic Boussinesq approximation. Then
ρ = ρr + γ z + �, where ρr is the reference density, and � is the fluctuation about the mean
density 〈ρ〉 = ρr + γ z, with γ a constant. Furthermore, it is convenient to introduce the
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A.D. Bragg and S.M. de Bruyn Kops

variable φ ≡ �g/(Nρr) which has dimensions of a velocity, where g is the gravitational
acceleration and where N ≡

√
−gγ /ρr is the buoyancy frequency. The equations for the

velocity u and φ are

Dtu = −∇p + ν∇2
u − Nφez + F , (2.1)

Dtφ = (ν/Pr)∇2φ + Nuz, (2.2)

where Dt ≡ ∂t + (u · ∇) is the Lagrangian derivative, p is the pressure, ν is the kinematic
viscosity, ez is the unit vector in the vertical direction, F is a forcing term and Pr is the
Prandtl number.

For statistically homogeneous flows (as considered in this paper), the equations
governing the average kinetic energy (per unit mass) 〈‖u‖2〉/2 and average ‘scalar energy’
〈φ2〉/2 are

(1/2)∂t〈‖u‖2〉 = −2ν〈‖S‖2〉 − N〈φuz〉 + 〈F · u〉, (2.3)

(1/2)∂t〈φ2〉 = −(ν/Pr)〈‖B‖2〉 + N〈φuz〉, (2.4)

where S ≡ (A + A
�)/2 is the strain-rate tensor, A ≡ ∇u and B ≡ ∇φ. Here and

throughout, ‖ · ‖ denotes a Frobenius norm, and 〈·〉 denotes an ensemble average (which
is approximated in the direct numerical simulation (DNS) results using appropriate
combinations of spatial and temporal averages).

In (2.3) and (2.4), the energy dissipation rates are 〈ε〉 ≡ 2ν〈‖S‖2〉 and 〈χ〉 ≡
(ν/Pr)〈‖B‖2〉. In the context of stratified flows, 〈φ2〉/2 can be interpreted as the mean
turbulent potential energy in the flow and 〈χ〉 is its dissipation rate. One of the key goals
of this work is to understand the mechanisms controlling 〈ε〉 and 〈χ〉 and how they depend
upon Pr. Since these dissipation rates are fundamentally related to the gradient fields S

and B, it is the behaviour of these gradients that must be understood in order to understand
the dissipation rates and their dependence on Pr.

Derived from (2.1) and (2.2), the equations governing S and B are

DtS = −S · S − (1/4)(ωω − ‖ω‖2
I) − ∇∇p + ν∇2

S − (N/2)(Bez + ezB) + ∇F S,

(2.5)

DtB = −A
�

· B + (ν/Pr)∇2
B + NA

�
· ez, (2.6)

where ∇F S ≡ (1/2)(∇F + ∇F
�), and the role of each of the terms in these equations

will be discussed in the analysis that follows.
Of particular importance to the analysis in this paper is the competition between the

nonlinear/bi-linear terms in these equations and the terms involving the mean-scalar
gradient. To assess this, we can consider the scaling of these terms. To scale S we use
σS ≡

√
〈‖S‖2〉, to scale ω we use σω ≡

√
〈‖ω‖2〉 and using the results of Betchov (1956)

we have σω =
√

2σS = σA, where σA ≡
√

〈‖A‖2〉. Due to the pressure Poisson equation,

the pressure Hessian ∇∇p is scaled by σ 2
S , and to scale B we use σB ≡

√
〈‖B‖2〉. With

these choices we have
‖ − (N/2)(Bez + ezB)‖

‖ − S · S − (1/4)(ωω − ‖ω‖2I) − ∇∇p‖
∼ O(ΛS), (2.7)

‖NA
�

· ez‖
‖ − A

�
· B‖

∼ O(ΛB), (2.8)

where ΛS ≡ NσB/σ 2
S , and ΛB ≡ N/σB.
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Understanding Prandtl number effects on turbulent mixing

The parameter ΛS is essentially an inverse small-scale Froude number since it comes
from the ratio of the size of the buoyancy gradient to the size of the nonlinear term in
the equation for S. We will return later to consider the meaning of ΛS and its relation
to more familiar parameters in stratified turbulence. In the limit ΛS → 0 the contribution
from buoyancy to the dynamics of S vanishes since the equation is regular in this limit,
and this corresponds to the passive scalar limit.

The parameter ΛB (which is effectively equal to the inverse of the square root of the
Cox number that is used in Salehipour & Peltier 2015) determines the importance of
the mean-scalar gradient on the evolution of B, and this parameter will be seen to be
important for understanding the strong effect of Pr on the turbulent kinetic energy (TKE)
and turbulent potential energy (TPE) dissipation rates in stratified turbulence. Although
ΛB ≡ N/σB explicitly depends on N, since the equation for B is linear, then for the passive
scalar limit where u and hence A is independent of N, the dependence of ΛB on N vanishes.
To show this, we write the equation for B in operator form as L {B} = NA

�
· ez, where

the linear operator is L { } ≡ Dt − (ν/Pr)∇2 + A
�
·. Since the inverse of a linear operator

is also linear, we have B = L −1{NA
�

· ez} = NL −1{A�
· ez}. From this, it follows that

σB = N

√
〈‖L −1{A�

· ez}‖2〉, (2.9)

and hence ΛB ≡ N/σB is independent of N for a passive scalar (except for the trivial
requirement that N /= 0 since the scalar is driven by a mean-scalar gradient). The size of
ΛB is therefore controlled only by the parameter ν/Pr in the passive scalar limit.

In what follows, we will begin by considering the dynamics of neutrally buoyant flows
corresponding to the case for which the scalar is passive, since it will be shown that some
of the key properties of a passive scalar driven by a mean-scalar gradient play an important
role in the behaviour of stratified flows. For the passive scalar case it will be assumed
that the forcing F generates a statistically stationary, isotropic turbulent flow. We will
also consider the case where the scalars are introduced into a fully developed turbulent
flow with B(0) = 0 since this is the situation that will be considered later in the DNS of
decaying stratified turbulence, and we want to understand how B evolves from its initial
state to its quasi-stationary behaviour. Note that for the passive scalar case the statistics
of B change trivially under the transformation γ → −γ , and so, for consistency with
the stably stratified case, we only consider γ < 0 in the analysis that follows such that
N ∈ R

+.

2.1. Impact of the Batchelor regime

When Pr /= 1 there is a difference between the smallest scales of the momentum and
scalar fields. While the smallest scale (in a mean-field sense) of the momentum field
is the Kolmogorov scale η, the smallest scale of the scalar field is the Batchelor scale
ηB = Pr−1/2η when Pr ≥ 1 (Batchelor 1959), while for Pr < 1 it is the Obukhov–Corrsin
scale ηOC = Pr−3/4η (Obukhov 1949; Corrsin 1951). When Pr 
 1, there is a separation
of scales η 
 ηB corresponding to the so-called ‘viscous–convective range’ in which the
effects of viscosity are important, but the effects of molecular diffusion on the scalar field
are not. In terms of (2.6), the significance of this is that for the term −A

�
· B, which

describes how the fluctuating velocity gradients amplify (or suppress) the fluctuating
scalar gradients (as well as re-orientating them), A and B may exhibit fluctuations at
different scales in the flow. When Pr 
 1, B will exhibit fluctuations on a much finer
scale than A, on average, and this ‘de-localization’ between the scale at which A and B
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A.D. Bragg and S.M. de Bruyn Kops

fluctuate impacts the behaviour of −A
�

· B. This de-localization effect was previously
considered in Nazarenko & Laval (2000) for passive scalars in two-dimensional turbulence
using Fourier analysis, rather than the gradient fields as discussed here.

The de-localization effect and the associated Batchelor scaling that arises in the
viscous–convective regime can impact the Pr dependence of 〈χ〉. In Donzis, Sreenivasan
& Yeung (2005), a model for 〈χ〉 was presented that captures this effect. In particular, for
the case of Pr ≥ 1, the scalar spectrum in the inertial–convective range (where the effects
of ν and Pr are both assumed to be unimportant) was modelled using a Obukhov–Corrsin
spectrum (Obukhov 1949; Corrsin 1951), and that in the viscous–convective range was
modelled using a Batchelor spectrum, leading to

L

U

〈χ〉
〈φ2〉

∼
1

c1( f 2/3 − c3Re−1
λ

) + c2Re−1
λ

ln Pr
, (2.10)

where L is the integral length scale of the velocity field, U is the root-mean-square
(r.m.s.) velocity, Reλ is the Taylor Reynolds number, f ≡ A(1 +

√
1 + (B/Reλ)2) and

A ≈ 0.2, B ≈ 92, c1 ≈ 0.6, c2 ≈ (5/3)
√

15, c3 ≈
√

15. These values were determined by
fitting the model to DNS data (since the assumed spectra involve unknown O(1)

coefficients), except for the factors involving
√

15, which arise due to isotropy of the flow.
The ln Pr dependence in (2.10) arises from the contribution due to the Batchelor

spectrum for the viscous–convective range. This model predicts that for finite
Pr, limReλ→∞[L〈χ〉/(U〈φ2〉)] ∼ 1/(c122/3A2/3), i.e. a constant reflecting anomalous
behaviour in this limit. However, for finite Reλ it predicts limPr→∞[L〈χ〉/(U〈φ2〉)] ∼
Reλ/(c2 ln Pr), i.e. no dissipation anomaly. This logarithmic behaviour was confirmed in
Donzis et al. (2005) at low Reλ, and more recently in Buaria et al. (2021b) at a higher
Reynolds number Reλ = 140 over the range Pr ∈ [1, 512]. In view of the derivation of
(2.10), the interpretation is that the behaviour of L〈χ〉/(U〈φ2〉) will only be anomalous
when the Batchelor regime makes a sub-leading contribution to L〈χ〉/(U〈φ2〉), and the
Obukhov–Corrsin regime dominates.

In addition to the model in (2.10), Donzis et al. (2005) also derived a model for
L〈χ〉/(U〈φ2〉) that applies for Pr < 1 by integrating the Obukhov–Corrsin spectrum up
to the cutoff wavenumber k ∼ 1/ηOC. This model also predicts a Pr dependence of
L〈χ〉/(U〈φ2〉), however, in this case it involves Pr1/2 rather than the ln Pr factor that arises
for Pr ≥ 1. The Pr dependence of L〈χ〉/(U〈φ2〉) only vanishes in the regime Pr < 1 when
ReλPr1/2 is sufficiently large.

2.2. Behaviour of production terms and the role of ramp-cliff structures

In addition to the de-localization effect that influences the behaviour of −A
�

· B in (2.6)
when Pr > 1, there is a second way in which Pr can influence the stirring processes that
govern the amplification of B, which in turn can influence the Pr dependence of 〈χ〉. This
second effect arises due to a Pr-dependent competition between −A

�
· B and NA

�
· ez

in (2.6). This effect was not accounted for in the model of Donzis et al. (2005) for 〈χ〉
because they assumed that the direct effect of the mean-scalar gradient is unimportant for
the behaviour of 〈χ〉. Provided that Reλ 
 1 and Pr ≥ O(1), we expect ΛB � 1, reflecting
that the fluctuating scalar gradients are much larger than the mean density gradient. As a
result, this second effect is usually not important for passive scalars in turbulent flows.
Nevertheless, we explain it in significant detail here because it will be shown that it is in
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Understanding Prandtl number effects on turbulent mixing

fact the main contributor to the strong Pr dependence of 〈χ〉 observed for stratified flows
in Riley et al. (2023). This therefore provides mechanistic insights into how scalar mixing
can differ in significant ways for neutral and stratified flows.

From (2.6) we obtain

1
2 Dt‖B‖2 = PB1 + PB2 + (ν/Pr)∇2‖B‖2 − DB, (2.11)

where

PB1 ≡ −B · A
�

· B, (2.12)

is the production term associated with the fluctuating scalar gradient

PB2 ≡ NB · A
�

· ez, (2.13)

is the production term associated with the mean scalar gradient and DB ≡ (ν/Pr)‖∇B‖2

is the dissipation rate of ‖B‖2.
For a statistically homogeneous flow

1
2∂t〈‖B‖2〉 = 〈PB1〉 + 〈PB2〉 − 〈DB〉. (2.14)

Unlike the dissipation term 〈DB〉, the production terms 〈PB1〉 and 〈PB2〉 are not sign
definite and so may in fact act to oppose the growth of 〈‖B‖2〉 (despite the misnomer, we
refer to them as production terms in keeping with the standard terminology used for the
production terms in the Reynolds stress equation that are also not sign definite Pope 2000).
We must therefore consider the sign of these terms in order to understand the role they play
in governing 〈‖B‖2〉. It will be shown that the sign of 〈PB2〉 is intimately connected to the
emergence of ramp-cliff structures in the scalar field, and we therefore first consider in
view of (2.6) how these structures form, and then show how this impacts the sign of 〈PB2〉
relative to that of 〈PB1〉.

When a scalar field is driven by a mean scalar gradient, ramp-cliff structures emerge
which are associated with the fluctuating gradients developing a skewness whose sign
corresponds to the direction of the imposed mean-scalar gradient (Holzer & Siggia 1994;
Sreenivasan 2018; Buaria et al. 2021a). To understand how this asymmetry arises from the
equation for B, we may consider the case where the probability density function (p.d.f.) of
the initial condition B(0) is an isotropic and symmetric function, and uncorrelated from
A. Writing B in terms of Cartesian components, the equation for Bz ≡ B · ez is obtained
from (2.6)

DtBz = −BxAxz − ByAyz − (Bz − N)Azz + (ν/Pr)∇2Bz, (2.15)

where subscripts x and y denote components in the horizontal directions of the flow. For
an isotropic flow, the p.d.f.s of Axz and Ayz are symmetric. Therefore, given the symmetric
initial condition for B, the symmetry breaking responsible for the p.d.f. of Bz becoming
skewed cannot come from the terms −BxAxz − ByAyz (or ∇2Bz), but must come from
−(Bz − N)Azz. The strongest symmetry breaking associated with this term is generated
in the range |Bz| ∈ [0, N) and so we focus on this range. In the range |Bz| ∈ [0, N) we
can write −(Bz − N)Azz = |Bz − N|Azz, and so Azz < 0 events drive Bz towards negative
values, while Azz > 0 events drive Bz towards positive values. Since in an isotropic flow,
the p.d.f. of Azz is negatively skewed, then the term |Bz − N|Azz will generate larger
negative values of Bz than positive ones, and hence negative skewness. If the flow field
were Gaussian, however, this mechanism would be absent. Nevertheless, random Gaussian
flows also generate skewed p.d.f.s for Bz (Holzer & Siggia 1994) and, therefore, there must
be another mechanism responsible for this. This second mechanism arises from the fact
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A.D. Bragg and S.M. de Bruyn Kops

that, starting from the isotropic initial condition for Bz(0) and in a flow where the p.d.f. of
Azz is symmetric, statistically −(Bz(0) − N)Azz will be larger in regions where Bz(0) < 0
than in regions where Bz(0) > 0. This means that −(Bz(0) − N)Azz will generate larger
negative values of Bz than positive ones, and hence negative skewness. This mechanism
fundamentally arises in (2.6) due to the ability of the fluctuating production −A

�
· B

and mean gradient production NA
�

· ez terms to act together or against each other, and
skewness of the p.d.f. will be generated in the direction for which the two terms act
together. The same argument applied to the case γ > 0 shows that in this case, Bz will
be positively skewed, the opposite of the γ < 0 case.

In view of this, the emergence of ramp-cliff structures is determined by the interplay
between −A

�
· B and NA

�
· ez, which are associated with the production terms PB1 and

PB2 in (2.11). It may therefore be anticipated that ramp-cliff structures are also relevant
to understanding the signs of the average terms 〈PB1〉 and 〈PB2〉. To consider this, we
begin by examining the behaviour of 〈PB1〉 and 〈PB2〉 in the ‘short-time regime’ for the
case where scalars are introduced to a fully developed turbulent flow with initial condition
B(x, 0) = 0 ∀x (a situation that will be of relevance to the DNS shown later). Using the
Kolmogorov time scale τη, for t � τη we have τηA(t) = τηA(0) + O(t/τη), and inserting
this into (2.6) yields the solution τηB(t) ∼ τηNtA�(0) · ez + O([t/τη]2) when B(0) = 0.
From this we obtain for t � τη

〈PB2〉 ∼ N2t〈‖A
�(0) · ez‖2〉, (2.16)

and hence at short times 〈PB2〉 > 0. Using the same approach we can also derive

〈PB1〉 ∼ N2t2〈PA1〉. (2.17)

The invariant

PA1 ≡ −A
� : (A · A), (2.18)

is the velocity gradient self-amplification term and it is positive on average (Tsinober 2000)
so that it acts as a source term in the equation for ∂t〈‖A‖2〉. As a result 〈PB1〉 > 0 at
short times, but its contribution is sub-leading compared with that from the mean gradient
production term 〈PB2〉.

The question is whether the sign of these production terms remains the same once
the stationary regime ∂t〈‖B‖2〉 = 0 has been attained where the ramp-cliff structures are
fully developed. The production terms may be re-expressed using B = ‖B‖eB and index
notation as

〈PB1〉 = −〈‖B‖2(eB · ej)Aji(ei · eB)〉, (2.19)

〈PB2〉 = N〈‖B‖(eB · ej)Aji(ei · ez)〉, (2.20)

where ei are the basis vectors for the Cartesian coordinate system, with i, j ∈ {x, y, z}.
Written in this form it is clear that these terms will only have the same sign if ei · eB and
ei · ez tend to have opposite signs (since we are considering N > 0). This, in turn, depends
on the alignments of eB and ez, which are connected to the formation of the ramp-cliff
structures in the flow.

Since 〈φ〉 = 0 then 〈Bz〉 = 0, because 〈Bz〉 = 〈∇zφ〉 = ∇z〈φ〉 = 0. Ramp-cliff
structures are associated with Bz having larger negative than positive values (when γ < 0),
such that the odd moments of Bz are negative. However, in order for 〈Bz〉 = 0 to be
satisfied, it must be the case that events where Bz > 0 are more probable than those
with Bz < 0. Since Bz = ‖B‖eB · ez, a higher probability of Bz > 0 events corresponds
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Understanding Prandtl number effects on turbulent mixing

to a higher probability of eB · ez > 0 events than eB · ez < 0 events. Due to this, the most
probable configuration is that the signs of ei · ez and ei · eB will be the same, and therefore
once ramp-cliff structures emerge in the field, the production terms 〈PB1〉 and 〈PB2〉 will
have opposite signs.

This argument establishes that 〈PB1〉 and 〈PB2〉 will have opposite signs once ramp-cliff
structures in the flow have developed. The argument does not depend on how strong the
ramp-cliff structures are, but only that they exist, such that the probability distribution of
eB · ez is not strictly uniform. Therefore, although the ramp-cliff structures for a passive
scalar are known to weaken as Pr is increased beyond Pr = 1, with the skewness of Bz

asymptotically approaching zero in the limit Pr → ∞ (Buaria et al. 2021a; Shete et al.

2022), 〈PB1〉 and 〈PB2〉 will have opposite signs at all finite Pr. The argument given above
does not, however, establish the sign of 〈PB2〉, but only that its sign must be opposite to that
of 〈PB1〉. To determine the sign of 〈PB2〉 we would also have to consider the behaviour of
‖B‖ and Aji in the expression 〈PB2〉 = N〈‖B‖(eB · ej)Aji(ei · ez)〉. We can, however, infer
its sign by the following argument: in order for the stationary regime ∂t〈‖B‖2〉 = 0 to be
sustained, it must be that case that 〈PB1〉 + 〈PB2〉 > 0. If ΛB < 1, then according to the
scaling introduced in § 2, |〈PB1〉| > |〈PB2〉|, and it therefore follows from the argument
above that we must have 〈PB1〉 > 0 and 〈PB2〉 < 0 in the stationary regime due to the
ramp-cliff structures.

2.3. The importance of the mean-scalar gradient production

Since 〈PB2〉 < 0, then the mean-scalar gradient term 〈PB2〉 acts to oppose the growth
of 〈‖B‖2〉, and hence acts to decrease the scalar dissipation rate 〈χ〉. In the passive scalar
limit, high Reynolds number turbulent flows with Pr ≥ O(1) will exist in the regime ΛB �
1 due to the fluctuating scalar gradients being much larger than the mean scalar gradient.
Therefore, the effect of 〈PB2〉 on 〈χ〉 is expected to be negligible in the high Reynolds
number passive scalar regime where |〈PB2〉|/|〈PB1〉| ∼ O(ΛB) � 1, which we will later
confirm with DNS data.

The mean-scalar gradient term must nevertheless play a crucial implicit role because
without it the fluctuating scalar gradients would decay. To see this more clearly we should
consider the behaviour of the filtered gradients which provide information about the scalar
gradients at different scales.

We define the filtering operation for an arbitrary field quantity Y to be

Ỹ (x, t) ≡
∫

R3
G�(‖x − x

′‖)Y (x′, t) dx
′, (2.21)

where G� is an isotropic filter kernel with filtering length scale � (the particular choice
of kernel, e.g. a Gaussian or box function, is not important here). Applying this filtering
operator to (2.2) and taking the gradient of the resulting equation leads to

D̃tB̃ = −Ã
�

· B̃ + (ν/Pr)∇2
B̃ + NÃ

�
· ez − ∇∇ · τφ, (2.22)

where D̃t ≡ ∂t + (ũ · ∇), and τφ ≡ ũφ − ũφ̃ is the sub-grid stress vector.
From (2.22), the equation governing ∂t〈‖B̃‖2〉 can be constructed, and for a statistically

stationary, homogeneous flow it reduces to

0 = −〈B̃ · Ã
�

· B̃〉 − (ν/Pr)〈‖∇B̃‖2〉 + N〈B̃ · Ã
�

· ez〉 − 〈B̃ · ∇∇ · τφ〉. (2.23)

For � 
 ηB, where ηB is the Batchelor length scale, the dissipation term (ν/Pr)〈‖∇B̃‖2〉
can be ignored because almost all of the scalar dissipation takes place at scales � = O(ηB).
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A.D. Bragg and S.M. de Bruyn Kops

Therefore, for � 
 ηB we have the balance

−〈B̃ · Ã
�

· B̃〉 + N〈B̃ · Ã
�

· ez〉 ∼ 〈B̃ · ∇∇ · τφ〉. (2.24)

The term 〈B̃ · ∇∇ · τφ〉 will be positive because this term describes how fluctuations are
transferred on average to the sub-grid gradients from the filtered gradients, analogous to
the kinetic and scalar variance cascades which are downscale in three dimensions.

Using the same scaling approach discussed in § 2 but now for the filtered variables leads
to

|N〈B̃ · Ã
�

· ez〉|
|〈B̃ · Ã

�
· B̃〉|

∼ O(Λ̃B), (2.25)

where Λ̃B ≡ N/
√

〈‖B̃‖2〉. Therefore, at scales where Λ̃B � 1, the balance reduces to

−〈B̃ · Ã
�

· B̃〉 ∼ 〈B̃ · ∇∇ · τφ〉, (2.26)

while at scales where Λ̃B 
 1 the balance reduces to

N〈B̃ · Ã
�

· ez〉 ∼ 〈B̃ · ∇∇ · τφ〉. (2.27)

Since 〈B̃ · ∇∇ · τφ〉 > 0, then we must have N〈B̃ · Ã
�

· ez〉 > 0 at scales where Λ̃B 
 1
in order for the balance to be satisfied. Therefore, although lim�/ηB→0 N〈B̃ · Ã

�
· ez〉 →

〈PB2〉 is predicted to be negative due to the ramp-cliff structures, at scales where Λ̃B 
 1
is satisfied then N〈B̃ · Ã

�
· ez〉 > 0. Hence, the role of this mean gradient term in the

equation governing 〈‖B̃‖2〉 changes with scale, providing a source for 〈‖B̃‖2〉 at scales
where Λ̃B 
 1, and providing a sink for 〈‖B̃‖2〉 at scales where Λ̃B � 1.

Note that regardless of Reλ or Pr, there will always be a range of scales where Λ̃B 
 1
is satisfied because statistical homogeneity of the flow enforces that lim�/Lφ→∞ B̃ → 0

(where Lφ is the integral length scale of φ), i.e. for sufficiently large scales, B̃ is equivalent
to the spatial average of B, which is zero. Due to this, lim�/Lφ→∞ Λ̃B → ∞, regardless of
Reλ or Pr.

3. Theory: gradient dynamics in stably stratified turbulence

Having considered the case of passive scalars we now turn to consider stably stratified
turbulence. We will see that some of the effects that are already present for passive scalars
play an important role in understanding stratified turbulence, and in particular, the role of
〈PB2〉. As discussed earlier, the term 〈PB2〉 is expected to be unimportant compared with
〈PB1〉 for passive scalars in turbulent flows for which the particular value of N (on which
〈PB2〉 explicitly depends) is essentially irrelevant due to the linearity of the scalar equation.
This is not true for stratified turbulent flows, however, because the momentum equation
depends on N through the buoyancy term, and the momentum equation is nonlinear.
Therefore, we anticipate that 〈PB2〉 could play an important role in stratified turbulence,
and this suggests that the striking effect of Pr on 〈ε〉 and 〈χ〉 observed in Riley et al.

(2023), which is much stronger than the Pr effect on 〈χ〉 for passive scalars, could be
connected to a Pr-dependence of 〈PB2〉.

3.1. Buoyancy acts as both a source and a sink for velocity gradients in stratified

turbulence

The only difference between the gradient dynamics of passive scalar turbulence and
stratified turbulence is the buoyancy term in the equation for S. For a statistically
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Understanding Prandtl number effects on turbulent mixing

homogeneous flow, the equation governing 〈‖S‖2〉 reduces to

1

2
∂t〈‖S‖2〉 = 〈PS1〉 −

N

2
〈S : (Bez + ezB)〉 − 〈DS〉 + 〈PS2〉, (3.1)

from which the pressure gradient term has disappeared because 〈S : ∇∇p〉 = 0 for an
incompressible, homogeneous flow. In this equation

PS1 ≡ −S : S · S − (1/4)S : ωω, (3.2)

where −S : S · S is the strain self-amplification invariant, and S : ωω is the enstrophy
production invariant associated with the process of vortex stretching (Tsinober 2001). In a
turbulent flow, 〈PS1〉 > 0, reflecting the fact that nonlinearity in the flow self-amplifies
the straining motion. We also note that using the results from Betchov (1956) for an
incompressible, homogeneous flow, it can be shown that 〈PS1〉 = (1/2)〈PA1〉, where PA1
is defined in (2.18). The dissipation term is DS ≡ ν‖∇S‖2, and PS2 ≡ S : ∇F S, which
describes the contribution to the strain from the forcing (which is usually negligible in the
equation for a high Reynolds number flow).

The buoyancy term that appears in (3.1) is −(N/2)〈S : (Bez + ezB)〉. However, it
is straightforward to show that for an incompressible, homogeneous flow 〈S : (Bez +
ezB)〉 = 〈B · A

�
· ez〉, and therefore the buoyancy term in (3.1) is equal to −(1/2)〈PB2〉. It

was argued in § 2.2 that for a passive scalar with B(0) = 0, for t � τη we have 〈PB2〉 > 0,
however, once the ramp-cliff structures form and the stationary regime ∂t〈‖B‖2〉 = 0 is
attained, 〈PB2〉 < 0. The argument that 〈PB2〉 < 0 at long times is statistical in nature,
and depends only on the assumption that there are ramp-cliff structures in the flow which
correspond to a higher probability of eB · ez > 0 events than eB · ez < 0 events. Since
ramp-cliff structures also occur in stratified flows (Riley et al. 2023) then the arguments
given in § 2.2 regarding the sign of 〈PB2〉 also apply to stratified flows. Therefore, since
−(N/2)〈S : (Bez + ezB)〉 = −(1/2)〈PB2〉, then the buoyancy term in (3.1) will act as
a sink term for t � τη, but will act as a source term once 〈PB2〉 < 0 is established,
contributing to the growth of 〈‖S‖2〉, and hence acting to increase 〈ε〉 = 2ν〈‖S‖2〉.
Moreover, since 2〈‖S‖2〉 = 〈‖ω‖2〉 for an incompressible, homogeneous flow (Betchov
1956), this also implies that buoyancy acts to increase enstrophy in the flow.

This conclusion seems surprising, because in stably stratified turbulence, buoyancy is
expected to play the role of a sink term for turbulence. To understand the role of buoyancy
on the velocity gradients in more detail we can use the filtering approach introduced earlier.
Applying the filtering operator to (2.1) and taking the gradient of the resulting equation
yields

D̃tÃ = −Ã · Ã − ∇∇p̃ + ν∇2
Ã − NB̃ez + ∇F̃ − ∇∇ · τu, (3.3)

where τu ≡ ũu − ũũ is the sub-grid stress tensor. From (3.3), the equation governing
∂t〈‖Ã‖2〉 can be constructed, and for a statistically stationary, homogeneous flow it reduces
to

0 = −〈Ã : (Ã · Ã)〉 − ν〈‖∇Ã‖2〉 − N〈B̃ · Ã
�
·ez〉 + 〈Ã : ∇F̃ 〉 − 〈Ã : ∇∇ · τu〉. (3.4)

Once again, the pressure gradient term does not appear because 〈Ã : ∇∇p̃〉 = 0 for an
incompressible, homogeneous flow. The term 〈Ã : ∇∇ · τu〉 will be positive because this
term describes how fluctuations are transferred on average to the sub-grid gradients from
the filtered gradients, analogous to the kinetic energy cascade which is downscale in three
dimensional stratified turbulence (Lindborg 2006).

992 A10-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



A.D. Bragg and S.M. de Bruyn Kops

For � 
 η the dissipation term ν〈‖∇Ã‖2〉 can be ignored because almost all of the
dissipation takes place at scales � = O(η), leading to the reduced balance

〈Ã : ∇F̃ 〉 ∼ 〈Ã : (Ã · Ã)〉 + N〈B̃ · Ã
�

· ez〉 + 〈Ã : ∇∇ · τu〉. (3.5)

Using the same scaling approach discussed in § 2 but now for the filtered variables leads
to

|N〈B̃ · Ã
�

· ez〉|
|〈Ã : (Ã · Ã)〉|

∼ O(Λ̃A), (3.6)

Λ̃A ≡
N〈‖B̃‖2〉1/2

〈‖Ã‖2〉
. (3.7)

In the regime Λ̃A 
 1 the balance in (3.5) reduces to

〈Ã : ∇F̃ 〉 ∼ N〈B̃ · Ã
�

· ez〉 + 〈Ã : ∇∇ · τu〉, (3.8)

and if we also have Λ̃B 
 1 then as shown in § 2.3, N〈B̃ · Ã
�

· ez〉 > 0. This represents
the balance at relatively large scales where the production term due to forcing is balanced
by losses due to buoyancy and transfer to smaller scales (which is analogous to the TKE
equation (2.3) because the TKE is dominated by the large scales in high Reynolds number

flows). The role of the buoyancy term −N〈B̃ · Ã
�

· ez〉 is therefore subtle, opposing the
production of velocity gradients at scales where Λ̃B 
 1, but aiding their production at
scales where Λ̃B � 1. This must be connected to the observation in Legaspi & Waite
(2020) based on their numerical simulations that the buoyancy spectrum changes sign and
indicates transfer of potential energy to kinetic energy at high wavenumbers in stratified
turbulence. An investigation into this connection will be the subject of future work.

Note that in a flow where Λ̃B ≥ O(1) ∀ �, the buoyancy term will act as a sink term for
the velocity gradients at all scales and corresponds to the case where buoyancy is strong
enough to suppress turbulence at all scales.

3.2. Prandtl number dependence of the kinetic and potential energy dissipation rates

Having considered how stratification impacts the velocity gradients through the buoyancy
term, we now want to understand the impact of varying Pr in order to understand how Pr

affects 〈ε〉 and 〈χ〉 in stratified turbulence. Although a general analytical treatment of this
problem is not possible, we can obtain some insights by considering a limiting case.

In § 2 the following scaling estimate was obtained:

‖ − (N/2)(Bez + ezB)‖
‖ − S · S − (1/4)(ωω − ‖ω‖2I) − ∇∇p‖

∼ O(ΛS), (3.9)

and given that the equation is regular in the limit ΛS → 0, this suggests that we can
use ΛS as an expansion parameter and consider the regime ΛS � 1 where the effects
of stratification on the gradient fields are weak.
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Understanding Prandtl number effects on turbulent mixing

Using the scaled variables A
∗ ≡ A/σA and B

∗ ≡ B/σB, we therefore introduce the
expansions

A
∗ =

∞∑

p=0

A
∗
( p)Λ

p

S, (3.10)

B
∗ =

∞∑

p=0

B
∗
( p)Λ

p

S, (3.11)

where A
∗
(0)

and B
∗
(0)

correspond to the solutions for the passive scalar limit ΛS → 0, and
A

∗
( p)

and B
∗
( p)

for p ≥ 1 can be obtained by inserting the expansions into the evolution
equations for A

∗ and B
∗. Using these expansions we obtain for ΛS � 1

|〈PB2〉| = N|〈B(0) · A
�
(0) · ez〉 + ΛS〈B(0) · A

�
(1) · ez〉 + ΛS〈B(1) · A

�
(0) · ez〉| + O(Λ2

S)

∼ O(NσA0σB0[1 + 2ΛS]), (3.12)

where higher-order terms have been dropped, and where σA0 ≡
√

〈‖A(0)‖2〉 and σB0 ≡
√

〈‖B(0)‖2〉.
Since A(0) corresponds to the solution in the passive scalar limit, σA0 is independent

of Pr. If 〈χ〉 exhibits anomalous behaviour with respect to Pr for a passive scalar then
σB0 ∝ Pr1/2. The results of Donzis et al. (2005), which were discussed in § 2.1, imply
that unless Reλ is sufficiently large then although σB0 grows with Pr, the growth is not
anomalous. Indeed, their results imply that for finite Reλ, σB0 ∝ Pr1/2/ ln(Pr) in the limit
Pr → ∞. Crucially for our purposes, however, the fact that σB0 is an increasing function
of Pr for Pr > 1 implies through (3.12) that for a given Reynolds number, |〈PB2〉| will
grow with increasing Pr in the regime ΛS � 1.

The limitation of this argument, however, is that the scaling estimate on the second line
of (3.12) ignores the effect of alignments between the tensors, e.g. between B(0) · A

�
(0)

and ez, and the fact that these alignments may also depend on Pr. While the argument of
the preceding paragraph would suggest that |〈PB2〉| will grow indefinitely with increasing
Pr, symmetry considerations based on the tensor alignments suggest that the growth must
saturate at sufficiently large Pr. These considerations are motivated by a number of studies
that show that for the case of a passive scalar driven by a mean-scalar gradient in isotropic
turbulence, although anisotropy of B persists for arbitrarily large Reλ for Pr = O(1),
the anisotropy weakens when Pr is increased beyond O(1) (Sreenivasan 2018; Buaria
et al. 2021a; Shete et al. 2022). For example, Shete et al. (2022) developed a model
which suggests that the skewness of Bz scales as ∼ O(Pr−1/2Re0

λ
), which is supported

by their DNS results. Since the scalar gradients are dominated by the smallest scales in the
scalar field, this suggests that in the regime Pr 
 1 there will be a scale �iso � η below
which the scalar gradients are approximately isotropic. In view of this, we introduce the
decompositions B = B̃ + B

′ and A = Ã + A
′, where the prime denotes the sub-grid field

variable, and then write the zeroth-order contribution to 〈PB2〉 as

N〈B(0) · A
�
(0) · ez〉 = N〈B̃(0) · Ã

�
(0)〉 · ez + N〈B̃(0) · (A′

(0))
�〉 · ez

+ N〈B′
(0) · Ã

�
(0)〉 · ez + N〈B′

(0) · (A′
(0))

�〉 · ez. (3.13)

If the filter length � satisfies � 
 ηB, then ignoring the effects of intermittency, B̃(0) will be
independent of Pr (and by definition, Ã(0) and A

′
(0)

are also independent of Pr). However,
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A.D. Bragg and S.M. de Bruyn Kops

‖B
′
(0)

‖ will grow with increasing Pr, and a simple scaling estimate of the sizes of N〈B′
(0)

·

Ã
�
(0)

〉 · ez and N〈B′
(0)

· (A′
(0)

)�〉 · ez would then suggest that these terms (and hence also

N〈B(0) · A
�
(0)

· ez〉) will grow in magnitude with increasing Pr. This is effectively what the
scaling estimate in (3.12) captures. What this argument misses, however, is that the growth
of N〈B′

(0)
· Ã

�
(0)

〉 · ez and N〈B′
(0)

· (A′
(0)

)�〉 · ez with increasing Pr can only occur if B
′
(0)

is an anisotropic field. If it were isotropic then symmetry considerations enforce 〈B′
(0)

·

Ã
�
(0)

〉 = 0 and 〈B′
(0)

· (A′
(0)

)�〉 = 0 because B
′
(0)

· Ã
�
(0)

and B
′
(0)

· (A′
(0)

)� are first-order
tensors whose mean must be zero if they are isotropically distributed. If � 
 ηB ≥ O(�iso)

then B
′
(0)

will be anisotropic and the simple scaling estimates that suggest that N〈B′
(0)

·

Ã
�
(0)

〉 · ez and N〈B′
(0)

· (A′
(0)

)�〉 · ez grow with Pr are reasonable. However, if Pr is large

enough for there to exist a range of scales ηB � � ≤ �iso, then for � in this range B
′
(0)

will
be an approximately isotropic field and equation (3.13) would reduce to

N〈B(0) · A
�
(0) · ez〉 ≈ N〈B̃(0) · Ã

�
(0)〉 · ez + N〈B̃(0) · (A′

(0))
�〉 · ez, (3.14)

which is approximately independent of Pr. Hence, once Pr is large enough for there to exist
a range of scales ηB � � ≤ �iso, then N〈B(0) · A

�
(0)

· ez〉 will saturate to the approximately

Pr-independent value given by the right-hand side of (3.14). The same argument can also
be made regarding the sub-leading terms in (3.12).

These considerations suggest the following: the scaling estimate in (3.12) that predicts
|〈PB2〉| grows with Pr should be reasonable, except that the growth rate with Pr will be
slower than predicted by (3.12) due to the fact that the Pr-dependence of the anisotropy of
B(0) · A

�
(0) is not accounted for in the scaling estimate. However, once Pr becomes large

enough for the condition ηB � �iso to be satisfied, then the growth of |〈PB2〉| with Pr will
saturate, and we denote this saturation Prandtl number by PrS. Recalling that �iso � η,
then the minimum Pr required to obtain ηB � �iso could be estimated as the value of Pr

at which η/ηB = O(10). Since ηB = ηPr−1/2 this yields Pr = O(100), implying that at
minimum PrS = O(100).

Having considered the dependence of 〈PB2〉 on Pr, we can now consider how this
will impact 〈ε〉 and 〈χ〉. Since 〈PB2〉 < 0, then in the regime ΛS � 1, as Pr increases
the buoyancy term −(N/2)〈S : (Bez + ezB)〉 = −(1/2)〈PB2〉 in the equation for 〈‖S‖2〉
grows and hence 〈ε〉 will also grow with Pr. On the other hand, this term appears with
the opposite sign in the equation for 〈‖B‖2〉 as 〈PB2〉, and therefore as Pr increases, this
term increasingly opposes the production of 〈‖B‖2〉 which would then act to cause 〈χ〉
to decrease as Pr increases. This behaviour predicted by the asymptotic analysis agrees
qualitatively agrees with the DNS results in Riley et al. (2023), where it was shown that
〈ε〉 increases and 〈χ〉 decreases as Pr is increased from 1 to 7. Since 〈PB2〉 appears with a
pre-factor of 1/2 in the equation for 〈‖S‖2〉 but with a pre-factor of unity in the equation
for 〈‖B‖2〉, then we would anticipate that the effect of Pr via 〈PB2〉 will be stronger on
〈χ〉 than on 〈ε〉, which is again consistent with the DNS results in Riley et al. (2023).
This enhancement of 〈ε〉 and suppression of 〈χ〉 due to 〈PB2〉 as Pr increases is predicted
to persist up to Pr = O(PrS). Finally, we note that the importance of this effect on 〈ε〉 is
determined by the size of ΛS, and vanishes for the passive scalar limit ΛS → 0 for which
〈PB2〉/〈PS1〉 → 0. Its effect on 〈χ〉 is determined by the size of ΛB, and vanishes in the
limit ΛB → 0 for which 〈PB2〉/〈PB1〉 → 0.

In the regime ΛS ≥ O(1), it is not possible to explore analytically the effect of Pr on
the velocity and density gradient dynamics without either renormalizing the expansion
in ΛS (i.e. using some method to partially sum the divergent series) or else introducing
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Understanding Prandtl number effects on turbulent mixing

closure approximations. We can observe, however, that when ΛS ≥ O(1), provided 〈PB2〉
remains negative, then σA and σB will still grow with increasing Pr since the equation
governing ‖B‖2 guarantees that the magnitude of σB will increase with increasing Pr

provided only that 〈PB1〉 + 〈PB2〉 > 0 (which must be satisfied for a statistically stationary
system). Therefore, the scaling estimate |〈PB2〉| ∼ O(NσAσB) suggests that |〈PB2〉| will
grow with increasing Pr even for ΛS ≥ O(1), and so 〈ε〉 will increase with increasing Pr

while 〈χ〉 will decrease. While we argued that this effect of Pr saturates at Pr = O(PrS) for
the weakly stratified regime ΛS � 1, it is not obvious that this should be so for the regime
ΛS ≥ O(1). The reason for this is twofold. First, A will not be isotropic when ΛS ≥ O(1),
and second, results in Riley et al. (2023) show that the skewness of B increases in stratified
turbulence as Pr is increased. Hence the arguments given earlier for why the growth of
〈PB2〉 must saturate at Pr = O(PrS) for the regime ΛS � 1 do not seem to apply for the
regime ΛS ≥ O(1).

3.3. The appropriate estimate for the importance of buoyancy on the gradient fields

The analysis just presented suggests that the relative sizes of the buoyancy and inertial
forces in the equation for 〈‖S‖2〉 will depend upon Pr. This has significant implications
for whether the standard buoyancy Reynolds number can be used to reliably estimate
the impact of buoyancy on the smallest scales of the flow, and the question of in
which parameter regimes the behaviour of the velocity and density gradients in stratified
turbulence approach those of passive scalars.

Riley & de Bruyn Kops (2003) proposed a buoyancy Reynolds number Reb ≡ ReFr2,
where the Reynolds number Re and Froude number Fr are based on the horizontal integral
length scale Lh and the r.m.s. horizontal velocity Uh of the flow. The parameter Reb was
based on a scaling analysis developed in Riley & de Bruyn Kops (2003) to estimate when
the local gradient Richardson number will be less than one, and their analysis showed that
this will be satisfied when Reb > 1. When Reb > O(1) it is usually assumed that the effect
of buoyancy on the smallest flow scales will be sub-leading, and negligible when Reb 
 1
(Riley & Lindborg 2012). The activity parameter Gn ≡ 〈ε〉/(νN2) (Gibson 1980; Gargett,
Osborn & Nasmyth 1984) is also often used instead of Reb, and Reb ∼ O(Gn) provided
that Gn is large enough for Taylor scaling for the dissipation 〈ε〉 ∼ O(U3

h/Lh) to hold (de
Bruyn Kops & Riley 2019; Bragg & de Bruyn Kops 2024).

In § 2 we showed that in the equation for S, the ratio of the buoyancy to inertial terms
is of order ΛS ≡ NσB/σ 2

S . This parameter can be re-expressed in terms of more familiar
parameters as

ΛS = 2Pr1/2Gn−1/2Γ 1/2, (3.15)

where Γ ≡ 〈χ〉/〈ε〉 is the mixing coefficient. For Pr = 1, it is known that when Gn 

1 and Fr � 1 (the strongly stratified regime), Γ ∼ O(1) to leading order (Maffioli,
Brethouwer & Lindborg 2016; Bragg & de Bruyn Kops 2024). In this case, ΛS ∼
O(Gn−1/2), so that the sizes of ΛS and Gn are directly related. However, even for this
case, the condition for the effects of buoyancy on the velocity gradients to be small is not
simply Gn 
 1 but the more restrictive condition Gn1/2 
 1. Furthermore, when Pr = 1,
Gn 
 1 and Fr 
 1 (the weakly stratified regime), Γ ∼ O(Fr−2) (Maffioli et al. 2016;
Bragg & de Bruyn Kops 2024) so that ΛS ∼ O(Gn−1/2Fr−1) � 1. For Pr /= O(1), there is
no simple relationship between ΛS and Gn, and therefore the size of Gn may not provide a
reliable estimate for the importance of buoyancy on the small scales, which should instead
be estimated using ΛS.

992 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



A.D. Bragg and S.M. de Bruyn Kops

Whether this matters in practice as a way of gauging the impact of buoyancy on the
smallest flow scales depends upon the relevant ranges of Gn and Pr. For example, if Gn ≫
1, then unless Pr is very large, we will have ΛS � 1. In this case having Gn ≫ 1 would
lead to the correct conclusion that the effects of buoyancy on the velocity gradients are
negligible. For temperature stratified air and water Pr ≤ O(10), and over this range then
provided Gn 
 1, ΛS will likely be small enough for the effects of buoyancy on S and
B to be small. However, for salt-stratified water Pr = O(1000), and this may cause ΛS

to be large enough for the effects of buoyancy on S and B to be important even when
Gn 
 1. Moreover, field observations in oceanic stratified flows show that Gn has a large
range of values, spanning O(10−2) ≤ Gn ≤ O(105) (see figure 14 of Jackson & Rehmann
2014). This, together with the relevant ranges of Pr, indicates that in oceanic contexts, ΛS

should be used to determine the importance of buoyancy on the smallest flow scales rather
than Gn, since the latter does not correctly capture the impact of Pr on the importance of
buoyancy on the velocity gradient dynamics.

4. Direct numerical simulations

Data sets from DNSs will be used to explore the predictions and insights from the
theoretical analysis. The first is a DNS of passive scalars which was previously reported
in Shete & de Bruyn Kops (2020) and Shete et al. (2022). Specifically, we look at the
DNS denoted in those papers as R633, with Taylor Reynolds number of 633, and where
Pr = 0.1, 1, 7 are resolved using 81903, 81903 and 142563 grid points, respectively. The
velocity field is homogeneous and isotropic, and is forced to be very nearly statistically
stationary as described later in this section. There is a constant mean scalar gradient in the
z-direction so that the scalar field is homogeneous in all directions, and the statistics are
independent of direction in the horizontal.

The second data set is of stably stratified turbulence which was previously reported in
de Bruyn Kops & Riley (2019) and Riley et al. (2023). The velocity field is forced to
achieve homogeneous and isotropic turbulence, and then allowed to decay until it exhibits
power-law decay with Taylor Reynolds number of 335, at which time the density field is
initialized with zero fluctuations and allowed to decay subject to buoyancy. Simulations
with Pr = 1 and Pr = 7 are considered which are resolved using grids of size 81922 ×
4096 and 122882 × 6144, respectively, and in each case the domain is twice as large in the
horizontal than the vertical directions. For both cases, Fr ≈ 0.3 when the density field is
initialized and decreases by a factor of approximately 10 within eight buoyancy periods.
The value of Gn changes from approximately 65 to approximately 20 in the same time.
See figure 1 in Riley et al. (2023) for more details, noting the difference in the definition
of the Froude number (their definition includes a factor of 2π).

For all the simulations, the domain is triply periodic so that a Fourier spectral method
can be used to evolve the flows in time with minimal phase or truncation errors. Derivatives
and addition are done in Fourier space, multiplication is done in real space, a third-order
Runge–Kutta schema is used to advance the solutions in time, and dealiasing is done with
a combination of phase shifting, spectral truncation and alternating between the advective
and conservative forms of the nonlinear terms. In decaying simulations, care must be taken
with large-scale resolution (de Bruyn Kops & Riley 1998), and small-scale resolution
is important in all DNS; the resolution characteristics of the simulations used here are
reported in detail in Shete & de Bruyn Kops (2020) and Riley et al. (2023).

The simulations require the specification of a forcing term F in the momentum equation
either to maintain the velocity field in a quasi-stationary state (for the passive scalar cases)
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Figure 1. Results for (a) 〈χ〉 normalized by its value for Pr = 1, (b) ‘residual’ which is the sum of the
right-hand side of (2.14) normalized using 〈PB1〉 and multiplied by 100, (c) 〈PB2〉/(σAN2) multiplied by 1000,
(d) ratio of production terms 〈PB2〉/〈PB1〉 multiplied by 1000. Note that the same quantity plotted in (b) is
termed ‘unsteadiness’ for the decaying simulations (see figure 3).

or to initialize the velocity field (for the stably stratified cases). The value of F is specified
using a spring–damper model developed by Overholt & Pope (1998) and generalized for
the stratified case in Rao & de Bruyn Kops (2011). The technique efficiently converges the
velocity field to a prescribed spectrum at low wavenumbers.

5. Results and discussion

5.1. Passive scalars

We begin by considering results for passive scalars. In figure 1(a), the results for 〈χ〉 as
a function of Pr are considered, normalized by the reference value at Pr = 1, denoted
by 〈χ〉Pr=1 (note that the vertical axis range used in the plot is chosen for fair comparison
with the stratified results in figure 3 for which this range is necessary). Over the range Pr ∈
[0.1, 7], 〈χ〉/〈χ〉Pr=1 increases with increasing Pr, with values going from approximately
0.97 to 1.05. To ensure that these variations are not due to a lack of stationarity of the scalar
gradient field, in figure 1(b) we plot the ‘residual’, which is the sum of the right-hand side
of (2.14), normalized by 〈PB1〉 (defined in (2.12)). The residual values are two orders of
magnitude smaller than the dominant production term 〈PB1〉, which indicates that the
observed variations of 〈χ〉/〈χ〉Pr=1 are not due to a lack of small-scale stationarity.

The variations observed for 〈χ〉/〈χ〉Pr=1 in the passive scalar case would probably be
considered negligible from a practical standpoint given that this variation corresponds
to varying Pr by two orders of magnitude. However, the variation could be considered
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non-negligible from a theoretical standpoint as it might indicate that 〈χ〉 does not approach
a constant as Pr increases. In § 2.1 the model of Donzis et al. (2005) was discussed which
in fact predicts that unless Reλ is sufficiently high, L〈χ〉/(U〈φ2〉) will vary with Pr at a
rate that is proportional to 1/ ln Pr for fixed Reλ and Pr 
 1. Direct numerical simulation
results in Donzis et al. (2005) confirmed this model prediction, as does the more recent
study of Buaria et al. (2021b) that considers the larger value of Reλ = 140 with results
spanning Pr ∈ [1, 512]. Our results do not reveal such a strong Pr dependence as theirs,
but this is likely due to our DNS having the much higher value Reλ = 633, noting that the
model of Donzis et al. (2005) predicts that 〈χ〉 will become independent of Pr (for finite
Pr) in the limit Reλ → ∞. For our DNS with Reλ = 633, the model of (2.10) predicts that
the normalized dissipation rate L〈χ〉/(U〈φ2〉) will vary by ≈ 6 % in going from Pr = 1 to
Pr = 7, and this is close to the magnitude of the variation that we observe. However, the
model predicts that L〈χ〉/(U〈φ2〉) should decrease as Pr increases; while our data show
that L〈χ〉/(U〈φ2〉) decreases in going from Pr = 0.1 to Pr = 1, and increases in going
from Pr = 1 to Pr = 7. This discrepancy could be due to a lack of statistically stationarity
of the large scales of the passive scalar field in our DNS for Pr = 7. Indeed, our DNS
for Reλ = 633 and Pr = 7 is extremely demanding computationally, and we are only able
to construct the statistics by averaging over one large-eddy turnover time. This averaging
window is much less than that used for the Pr = 0.1, 1 cases, and is also much less than
that used in the DNS of Buaria et al. (2021b) at the much lower value of Reλ = 140.
Regardless of whether a lack of stationarity in the Pr = 7 DNS explains the discrepancy
or something else, what is far more important for the present study is that the variation of
〈χ〉/〈χ〉Pr=1 that we observe over the range Pr ∈ [0.1, 7] for passive scalars is very small
compared with what is observed for stratified flows, as will be shown in § 5.2.

In figure 1(c) we consider the mean production term 〈PB2〉 (defined in (2.13)),
normalized using σAN2. In agreement with the analysis in § 2.2, 〈PB2〉 is negative, which
we argued is due to the emergence of ramp-cliff structures in the scalar field. Moreover,
the magnitude of 〈PB2〉 increases as Pr increases, as was predicted in § 3.2. The analysis
also suggested that this growth would persist up to Pr = O(PrS), and we estimated that at
minimum, PrS = O(100). The results in figure 1(c) are consistent with this in that there is
no indication of a saturation in the growth by Pr = O(10).

As anticipated earlier, figure 1(d) shows that the ratio 〈PB2〉/〈PB1〉 is very small,
with the magnitude of 〈PB2〉 of the order of 1000 times smaller than 〈PB1〉. Hence, the
mechanism associated with 〈PB2〉 that can affect the Pr-dependence of 〈χ〉 is negligible
for these passive scalar cases. The results also show that 〈PB2〉/〈PB1〉 becomes smaller
in magnitude as Pr increases. This can be understood from the scaling discussed in § 2
which suggests that |〈PB2〉/〈PB1〉| ∼ O(ΛB), where ΛB ≡ N/σB. As demonstrated in § 2,
ΛB is independent of N for a passive scalar (because σB is proportional to N), and since
σB increases with increasing Pr, then ΛB decreases as Pr increases.

A significant difference between the two production terms PB1 and PB2 relates to
their behaviour in rotation and strain dominated regions of the flow. In particular,
using the strain-rate S and rotation-rate R decomposition A = S + R, we have PB1 ≡
−B · A

�
· B = −B · S · B due to the antisymmetry of R. Rotation therefore does not

directly contribute to the fluctuating gradient production term PB1, but only indirectly
contributes by influencing the alignments of B with respect to the eigenframe of S. If we
therefore conditionally average PB1 on the invariant Q ≡ −A : A/2, then we expect that
the contribution to the average behaviour

〈PB1〉 =
∫

R

ϕ(Q)〈PB1〉Q dQ, (5.1)
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Figure 2. Results for (a) σAσ−2
B ϕ(Q)〈PB1〉Q and (b) −σAσ−2

B ϕ(Q)〈PB2〉Q for the passive scalar cases. The

horizontal axis is normalized using σQ ≡
√

〈Q2〉.

(where ϕ(Q) is the p.d.f. of Q) from rotation (or vorticity) dominated regions Q > 0
will be small compared with that from strain dominated regions Q < 0. On the other
hand, the rotation contribution to 〈PB2〉, namely N〈B · (R · ez)〉, is not zero because of
the misalignment between B and ez. As a result, the contribution to the average behaviour

〈PB2〉 =
∫

R

ϕ(Q)〈PB2〉Q dQ, (5.2)

from Q > 0 regions may be significant compared with that from Q < 0 regions. Taken
together, this implies that the mean gradient production may play a much more significant
role in governing ‖B‖2 in rotation dominated regions than it does in strain dominated
regions.

The results in figure 2 for σAσ−2
B ϕ(Q)〈PB1〉Q show that this quantity is significantly

skewed towards strain dominated regions where Q < 0, and displays a weak dependence
on Pr. This negative skewness comes entirely from 〈PB1〉Q because ϕ(Q) is positively
skewed in isotropic turbulence, which is associated with the vorticity field being more
intermittent than the strain-rate field (Tsinober 2001). The implication is that the majority
of the production associated with PB1 occurs in strain dominated rather than rotation
dominated regions of the flow, as expected. For σAσ−2

B ϕ(Q)〈PB2〉Q the behaviour is almost
symmetric with respect to Q for Pr = 0.1, but becomes increasingly negatively skewed as
Pr increases. The values of σAσ−2

B ϕ(Q)〈PB2〉Q decrease dramatically as Pr is increased
(essentially because of the reduction of ΛB with increasing Pr, discussed earlier), and at
all Pr considered the values are so small that there are no regions of the flow where PB2
plays a significant role in the production of the scalar gradients relative to PB1. From the
scaling estimates, this can again be understood as a consequence of the flows considered
being in the regime where the parameter ΛB ≡ N/σB is very small. We will return later
to consider σAσ−2

B ϕ(Q)〈PB2〉Q in the context of stratified flows, where its dependence on
Q can gives insights into how the buoyancy term might behave differently in strain and
rotation dominated regions of the flow.
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Figure 3. Results for (a) ‘unsteadiness’ which is ∂t〈‖B‖2〉/〈PB1〉 computed via the sum of the terms on the
right-hand side of (2.14), (b) mixing coefficient Γ ≡ 〈χ〉/〈ε〉, (c) 〈χ〉 normalized by its value for Pr = 1 at
T = 1 (in order to be able to compare the effect of Pr in the stratified case with that for the unstratified case
shown in figure 1(a)), (d) 〈ε〉 normalized by its value for Pr = 1 at T = 1. The inset plots in (c) and (d) show
〈χ〉Pr=7/〈χ〉Pr=1 and 〈ε〉Pr=7/〈ε〉Pr=1. In (b), the value for Γ at Pr = 7 and later times is consistent with that
typically assumed for the ocean whereas the value for Pr = 1 is much higher.

5.2. Stably stratified turbulence

We now turn to consider the results for stably stratified turbulence. One immediate
difference between the DNS for passive scalars and stably stratified turbulence is that in
the former, the large scales are quasi-stationary, whereas in the latter they are decaying.
However, under Kolmogorov’s quasi-equilibrium hypothesis we anticipate that the small
scales of the flow that dominate the velocity and scalar gradients will be in a state of
quasi-equilibrium. To test this, in figure 3(a) we plot the sum of the terms on the right-hand
side of the equation for ∂t〈‖B‖2〉 normalized by 〈PB1〉, as a function of ‘buoyancy
time’ T ≡ Nt/(2π). The results show that after an initial transient, the magnitude of
∂t〈‖B‖2〉/〈PB1〉 takes on values < 0.1 that are similar for both Pr cases. This indicates
that the scalar gradients are indeed in a state of quasi-equilibrium. Therefore, the time
dependence of the large-scale flow in the decaying stratified DNS should not cause
significant differences for the scalar gradients compared with the passive scalar DNS, and
any differences should be due to differences in the basic dynamics of the two cases.
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Understanding Prandtl number effects on turbulent mixing

In figure 3(b) we plot the mixing coefficient Γ ≡ 〈χ〉/〈ε〉, and the results show that
after the initial transient, Γ reduces dramatically as Pr is increased from 1 to 7. Figure 3(c)
and (d) show 〈χ〉 and 〈ε〉, respectively, normalized by their values for Pr = 1 at T = 1.
The results show that as Pr is increased from 1 to 7, 〈χ〉 decreases while 〈ε〉 increases. The
insets in these plots show the ratios 〈χ〉Pr=7/〈χ〉Pr=1 and 〈ε〉Pr=7/〈ε〉Pr=1 in order to show
more clearly the size of the variations. The results show that after the initial transient, 〈χ〉
decreases by roughly 50 % as Pr is increased from 1 to 7, while 〈ε〉 increases by roughly
25 %. This very strong reduction in 〈χ〉 for stratified turbulence as Pr is increased is in
stark contrast to what was observed earlier for the passive scalar runs where 〈χ〉 varied by
only ≈ 6 % as Pr was increased from 1 to 7.

At T = 1.5, when 〈χ〉 has already dropped by ≈ 25 % in going from Pr = 1 to Pr = 7,
the activity parameter Gn ≡ 〈ε〉/(νN2) is ≈ 20. This would usually be taken to suggest
that buoyancy is playing a sub-leading role in the behaviour of the small-scale gradients
that govern 〈χ〉, and that the scalar gradients behave like those for a passive scalar. If
this were the case, then the model of Donzis et al. (2005) would apply, according to
which 〈χ〉 will decrease with increasing Pr for Pr ≥ 1 due to the emergence of the
viscous–convective range, unless Reλ is sufficiently high. Since the value of Reλ in our
DNS of stratified turbulence is much smaller (at T = 0, Reλ = 335) than that in the
DNS of passive scalars shown earlier (where Reλ = 633), perhaps the much stronger Pr

dependence of 〈χ〉 for the stratified runs compared with the passive scalar runs is simply
due to Reλ being much smaller in the former and not due to the effect of buoyancy. To
test this we used the model of Donzis et al. (2005) with the values of Reλ in our DNS
of stratified turbulence and found that their model predicts � 14 % reduction of 〈χ〉 (the
reduction predicted depends on time since Reλ is a function of time in the stratified flow)
in going from Pr = 1 to Pr = 7. This variation is far smaller than the ≈ 50 % reduction
we observe in figure 3(c). Hence, although the effect of the viscous–convection regime,
which is captured in the model of Donzis et al. (2005), may play a role in explaining why
〈χ〉 reduces in our stratified flow when going from Pr = 1 to Pr = 7, it is certainly not the
main cause.

According to the analysis of § 3.2, a strong dependence of 〈χ〉 on Pr will arise when
the mean gradient production term 〈PB2〉 plays a sufficiently large role in the equation
governing 〈‖B‖2〉. To test this argument, we first consider in figure 4(a) the quantity
〈PB2〉/σ 3

A . In agreement with the analysis of § 2.2 (which also applies to the stratified
case, as explained in § 3), the mean gradient production term 〈PB2〉 is positive at t � τη

(this is only observable for the Pr = 1 case; we do not have data at small enough T for the
Pr = 7 case to observe it), but then becomes negative once the ramp-cliff structures have
emerged. The analysis in § 3.2 suggests that at least in the weakly stratified regime, the
magnitude of 〈PB2〉 will grow with increasing Pr while Pr ≤ O(PrS), and we estimated
PrS = O(100). The results in figure 4(a) confirm this expected behaviour, which was also
confirmed earlier for the passive scalar limit λS → 0. The fact that the dependence of
〈χ〉 on Pr is much stronger for the stratified case than for the passive scalar case must
be due to 〈PB2〉 playing a much more significant role in the former case than the latter.
To test this, in figure 4(b) we plot 〈PB2〉/〈PB1〉. For the passive scalar case, this ratio
was shown to be O(10−3), and hence the impact of 〈PB2〉 on 〈χ〉 is irrelevant for passive
scalars. By contrast, the results in figure 4(b) show that for the stratified turbulent flows
the magnitude of 〈PB2〉/〈PB1〉 reaches values that are up to O(1). This is fully consistent
with the argument that it is the mechanism associated with 〈PB2〉 that is responsible for
〈χ〉 exhibiting a much stronger dependence on Pr for stratified turbulence than for passive
scalars.
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Figure 4. Results for (a) 〈PB2〉/σ 3
A , (b) 〈PB2〉/〈PB1〉, (c) (1/2)〈PB2〉/〈PS1〉 and (d) Λ−2

S and Gn. Each plot
shows the data for Pr = 1 and Pr = 7.

The mechanism associated with 〈PB2〉 can only remain important for 〈χ〉 when
〈PB2〉/〈PB1〉 is not negligible. The scaling discussed in § 2 suggests that 〈PB2〉/〈PB1〉 ∼
O(ΛB), and ΛB decreases as Pr increases. This was confirmed for the passive scalars
in figure 1, and the results in figure 4(b) confirm this in the stratified flows for T � 2.
However, at longer times, the magnitude of 〈PB2〉/〈PB1〉 increases with increasing Pr. The
failure of the scaling prediction in this case could either be due to the buoyancy Reynolds
number of the flow at these times being too small for the scaling to be appropriate, or else it
could be due the dependence of geometrical alignments on Pr that are not accounted for in
the scaling estimate 〈PB2〉/〈PB1〉 ∼ O(ΛB) (see detailed discussion in § 3.2). Associated
with this is the fact that in Riley et al. (2023), it was shown that the ramp-cliff structures
become stronger in stratified flows as Pr increases, the opposite of the behaviour for
passive scalars (Sreenivasan 2018; Buaria et al. 2021a; Shete et al. 2022). Understanding
the cause for this difference must be explored in future work, however, for the present
discussion, the significant thing is that it could suggest that in stratified turbulent flows,
〈PB2〉/〈PB1〉 may not become negligible ever for very large Pr.

To test that 〈PB2〉 is also the mechanism responsible for 〈ε〉 increasing with
increasing Pr, in figure 4(c) we plot (1/2)〈PB2〉/〈PS1〉. The ratio is positive and reaches
values of O(1), showing that 〈PB2〉 makes a significant contribution in aiding the
nonlinear production term 〈PS1〉 in amplifying the strain rates in the flow. Moreover,
(1/2)〈PB2〉/〈PS1〉 increases with Pr, consistent again with the argument that 〈PB2〉 is
responsible for the increase of 〈ε〉 with increasing Pr.
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Understanding Prandtl number effects on turbulent mixing

In § 3.3 it was argued that the relative size of the buoyancy to inertial forces in the
equation for S is given by ΛS. The traditional way to estimate the importance of buoyancy
at the smallest scales of the flow is through some kind of buoyancy Reynolds number,
and we argued that for Pr ∼ O(1), ΛS ∼ O(Gn−1/2), where Gn is the activity parameter,
which is one way of defining a buoyancy Reynolds number. The standard argument is
that Gn 
 1 is the regime for which the impact of buoyancy at the small scales should be
negligible. In figure 4(d) we plot Λ−2

S and Gn evaluated for the stratified flows with Pr = 1

and Pr = 7. Consistent with the results in figure 4(c), the results show that Λ−2
S decreases

as Pr is increased, indicating that buoyancy plays an increasingly important role in the
dynamics governing S as Pr is increased. On the other hand, the results in figure 4(d) also
show that Gn increases in going from Pr = 1 to Pr = 7, which would incorrectly suggest
that the impact of buoyancy on the dynamics of the smallest flow scales reduces as Pr is
increased. Therefore, ΛS, rather than Gn, should be used as the metric for estimating the
importance of buoyancy on the smallest scales in a stratified flow.

According to the argument presented in § 2.2, the reason why 〈PB2〉 transitions from
being positive at t � τη to negative at later times is due to the emergence of ramp-cliff
structures in the flow which are associated with a preference for eB ≡ B/‖B‖ to be aligned
with ez. More specifically, the argument is that 〈PB2〉 becoming negative is associated with
eB · ez > 0 events being more probable than eB · ez < 0 events (when γ < 0) due to the
mechanism that generates the ramp-cliff structures. To test this, in figure 5 we plot the
p.d.f. of eB · ez, namely ϕ(eB · ez), for the stratified flows as well as the passive scalar
results for reference. The stratified results for Pr = 1 show a clear bias towards eB · ez >

0 events, consistent with the argument in § 2.2. As T increases the p.d.f. reduces and
becomes more uniform over the central region of the space eB · ez ∈ [−1, +1], while it
increases and becomes less uniform closer to the edges of the space. This suggests that as
T increases and the flow becomes increasingly stratified, the conditions required for the
generation of the ramp-cliff structures are only satisfied in extreme regions of the flow
where the behaviour of B differs strongly from its mean-field behaviour. The results for
Pr = 7 show similar behaviour, except that the asymmetry of ϕ(eB · ez) is weaker than
for Pr = 1. Interestingly, however, the results in Riley et al. (2023) for the same data set
show that the skewness of Bz becomes stronger in going from Pr = 1 and Pr = 7. This
difference reflects the fact that while the skewness of Bz is directly connected to asymmetry
in ϕ(eB · ez), their dependence on Pr can differ because the skewness of Bz is influenced
by the magnitudes of Bz whereas the alignments eB · ez are not.

For the passive scalars which are in the statistically stationary regime, the results in
figure 5 also show that eB · ez > 0 events are the most probable for Pr = 1. However,
the bias towards eB · ez > 0 events becomes weaker in going from Pr = 1 to Pr = 7, and
this is consistent with previous results that show that for fixed Re, the ramp cliffs become
weaker as Pr is increased beyond one (Sreenivasan 2018; Buaria et al. 2021a; Shete et al.

2022). It is interesting to note, however, that the results for Pr = 7 show that ϕ(eB · ez),
while only weakly non-uniform for |eB · ez| � 0.9, is strongly non-uniform for |eB · ez| >

0.9. This residual preferential alignment is likely due to extreme regions of the flow with
weak fluctuating scalar gradients where ‖B‖ ≤ O(N) even though σB 
 N, since in such
regions the mean-scalar gradient would still influence B. However, the probability of such
regions becomes vanishingly small for ΛB ≡ N/σB → 0, in which limit we would expect
a uniform p.d.f. ϕ(eB · ez).

Further insights into the role of buoyancy on the velocity gradient dynamics can
be obtained by considering the relative importance of the nonlinear amplification and
buoyancy terms in regions classified by the invariant Q. Regions where Q > 0 are
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Figure 5. Results for the probability density function of eB · ez for (a) Pr = 1 and (b) Pr = 7. Stratified
results are shown for different buoyancy times T .

rotation (or vorticity) dominated regions, while Q < 0 are strain dominated regions.
The contributions to 〈PA1〉 (defined in (2.18)) and 〈PB2〉 from different regions may be
considered using the decompositions

〈PA1〉 =
∫

R

ϕ(Q)〈PA1〉Q dQ, (5.3)

〈PB2〉 =
∫

R

ϕ(Q)〈PB2〉Q dQ, (5.4)

where ϕ(Q) is the p.d.f. of Q. In a neutrally buoyant flow, 〈PA1〉Q would be positive
for Q > 0 because of the prevalence of vortex stretching over vortex compression, and
for Q < 0, 〈PA1〉Q should also be positive but now because of the prevalence of strain
self-amplification over against suppression, which is associated with the intermediate
eigenvalue of the strain-rate tensor being positive on average (Tsinober 2001; Tsinober,
Vedula & Teung 2001). On the other hand, while the integral of ϕ(Q)〈PB2〉Q over all Q is
negative, there is no reason why ϕ(Q)〈PB2〉Q must be negative for all Q. If it is not, then
this would mean that buoyancy can have opposite effects on velocity gradient amplification
in strain and rotation dominated regions of the flow.

In figure 6 we plot σ−1
A ϕ(Q)〈PA1〉Q and −σ−1

A ϕ(Q)〈PB2〉Q, whose integrals over all Q

yield 〈PA1〉 and −〈PB2〉, respectively. Consistent with the behaviour in neutral flows, the
results imply that in most cases, 〈PA1〉Q is positive for all Q, and so in both strain and
vorticity dominates regions of stratified turbulence, the average effect of PA1 is to amplify

the velocity gradients. However, for Pr = 1 and Q > 0, the quantity σ−1
A ϕ(Q)〈PA1〉Q

decreases significantly with increasing T , and at T = 6 it becomes negative for Q/σQ � 2.
This implies that in regions where the vorticity is largest, vortex compression is dominating
over vortex stretching, and this is why σ−1

A ϕ(Q)〈PA1〉Q steadily reduces for Q > 0 as time

advances. By contrast, for the Pr = 7 case, σ−1
A ϕ(Q)〈PA1〉Q is almost independent of time

for Q > 0.
For Pr = 1, the values of σ−1

A ϕ(Q)〈PA1〉Q are significantly larger for Q < 0 than for
Q > 0, and this is associated with velocity gradient production being stronger in strain
dominated regions that in vorticity dominated regions (which is in turn the reason why
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Figure 6. Results for (a,b) σ−1
A ϕ(Q)〈PA1〉Q and (c,d) −σ−1

A ϕ(Q)〈PB2〉Q from stratified DNS. Panels (a,c) are
for Pr = 1, panels (b,d) are for Pr = 7 and different curves are for different buoyancy times T . Note that for
Pr = 1, σ−1

A ϕ(Q)〈PA1〉Q becomes negative at T = 6 for Q/σQ � 2.

strain self-amplification makes a larger contribution than vortex stretching to the kinetic
energy cascade (Carbone & Bragg 2020; Johnson 2020, 2021), which is also the case in
stratified turbulence Zhang et al. 2022). For Pr = 7, where the effects of buoyancy on
the velocity gradient dynamics are stronger than for Pr = 1, we see that σ−1

A ϕ(Q)〈PA1〉Q

is much more symmetric with respect to Q. Compared with the Pr = 1 case, velocity
gradient production in strain dominated regions is much weaker, and that in vorticity
dominated regions is much stronger for Pr = 7.

The results for −σ−1
A ϕ(Q)〈PB2〉Q reveal that 〈PB2〉Q is in fact positive for all Q, meaning

that buoyancy acts as a source for velocity gradients in both strain and vorticity dominated
regions of the flow. Comparing −σ−1

A ϕ(Q)〈PB2〉Q for Pr = 1 and Pr = 7 shows that the
function increases significantly at almost all Q as Pr is increased, just as was shown
to occur for the mean value −〈PB2〉. Therefore, increasing Pr causes the buoyancy
production term to grow not only in regions of relatively low Q/σQ (which dominate
−〈PB2〉 ), but also in regions of large fluctuations where |Q/σQ| 
 1. In figure 4(c ) it was
shown that for Pr = 7, (1/2)〈PB2〉 and 〈PS1〉 (the latter being equal to (1/2)〈PA1〉) are of
the same order for T � 1. However, the results for σ−1

A ϕ(Q)〈PA1〉Q and −σ−1
A ϕ(Q)〈PB2〉Q

show that the former is generally much larger than the latter when |Q/σQ| 
 1 and
T ≥ 1. This means that during large fluctuations of the velocity gradients, the nonlinear
amplification mechanism PA1 dominates over the buoyancy contribution −PB2. This is
easily understood from the fact that the definition of PA1 involves A to the power of three,
while PB2 involves A to the power of one, and therefore PA1 grows much more rapidly
than PB2 when Q ≡ −A · A/2 is driven to large values.
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Figure 7. Results for the filtered production terms (a) 〈P̃B1〉 ≡ −〈B̃ · Ã
�

· B̃〉, (b) 〈P̃B2〉 ≡ ΛB〈B̃ · Ã
�

· ez〉,
(c) 〈P̃A1〉 ≡ −〈Ã� : (Ã · Ã)〉. Quantities are normalized using σ 3

Ã
, where σ

Ã
≡

√
〈‖Ã‖2〉.

Finally, in § 3 we argued that the filtered buoyancy production term −〈P̃B2〉 ≡ −N〈B̃ ·

Ã
�

· ez〉 will change sign as the filter length � increases in a stationary flow. In particular,
for lim�/ηB→0〈P̃B2〉 → 〈PB2〉, which is negative, but when �/ηB becomes large enough

for |〈P̃B1〉| � |〈P̃B2〉| then 〈P̃B2〉 must become positive because in this range it must act
as the dominant source term in the equation for 〈‖B̃‖2〉 in the stationary regime. The
implication of this is that in the equation for 〈‖Ã‖2〉, the buoyancy term −〈P̃B2〉 acts as
a source term at sufficiently small �/ηB, while it acts as a sink term at large �/ηB. To
test this, in figure 7 we plot 〈P̃B1〉 ≡ −〈B̃ · Ã

�
· B̃〉, 〈P̃B2〉 ≡ N〈B̃ · Ã

�
· ez〉 and 〈P̃A1〉 ≡

−〈Ã� : (Ã · Ã)〉, normalized using σ 3
Ã

, where σ
Ã

≡
√

〈‖Ã‖2〉.
The results show that 〈P̃B1〉 and 〈P̃A1〉 are positive at all scales in the flow, and so act as

source terms at all scales in the equations for 〈‖B̃‖2〉 and 〈‖Ã‖2〉, respectively. The results
for 〈P̃B2〉 for the stratified DNS show that this term changes sign as �/ηB is increased, such
that the buoyancy term −〈P̃B2〉 acts as a source term for 〈‖Ã‖2〉 at small scales, but as a
sink term at larger scales. Although this agrees with the prediction from § 3, the conditions
under which the sign change is observed to occur disagrees with those predicted by the
analysis. In particular, although 〈P̃B2〉 becomes positive as �/ηB increases, it becomes
negative again at even larger �/ηB, even though |〈P̃B1〉| � |〈P̃B2〉| at these larger scales.
This disagreement is, however, almost certainly due to the fact that the analysis in § 3
applies to a stationary flow, whereas the DNS for stratified flow is decaying. As a result, in
view of the analysis in § 2.3, 〈P̃B2〉 need not be positive at scales where |〈P̃B1〉| � |〈P̃B2〉|
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Understanding Prandtl number effects on turbulent mixing

in order to balance 〈B̃ · ∇∇ · τφ〉 because of the contribution from ∂t〈‖B̃‖2〉 < 0 which is
significant at larger scales in the decaying flow.

For the passive scalar cases (not shown), 〈P̃B2〉 remains negative at all scales, which
is contrary to expectation based on the analysis in § 2.3. The most likely reason for

this discrepancy is that since lim�/ηB→0 N/
√

〈‖B̃‖2〉 = N/
√

〈‖B‖2〉 is very small for

the passive scalar cases, then the condition under which 〈P̃B2〉 is predicted to become

positive, namely N/
√

〈‖B̃‖2〉 ≥ O(1), may only occur at � = O(L). At such filter scales,
the data for 〈P̃B2〉 ≡ N〈B̃ · Ã

�
· ez〉 will be strongly affected by statistical noise due to

the box size because, although theoretically lim�/L→∞ B̃ → 0 and lim�/L→∞ Ã → 0 for
a homogeneous flow, in practice these limiting behaviours may be approximately satisfied
for � ≥ O(L). A much larger domain may therefore be required to observe 〈P̃B2〉 becoming
positive for the passive scalar case in order to minimize the effects of statistical noise at
� = O(L), as well as to more fully satisfy the assumptions made in the theoretical analysis
of a statistically stationary, homogeneous flow.

6. Conclusions

This study was primarily motivated by recent DNSs of stably stratified turbulence that
showed that as Pr is increased from 1 to 7, the mean TPE dissipation rate 〈χ〉 drops
dramatically, while the mean TKE dissipation rate 〈ε〉 increases significantly (Riley
et al. 2023). To understand the mechanism responsible for this surprising behaviour,
we analysed the equations governing the fluctuating strain rate S and fluctuating density
gradient B. This was done for both passive scalars driven by a mean scalar gradient and
stably stratified flows in order to understand the extent to which the behaviour observed
for stratified flows is simply due to the effects of an imposed mean-scalar gradient vs the
particular dynamical effects due to buoyancy forces. The predictions from the analysis
were then compared with DNS results for passive scalars and stably stratified turbulence.

Production mechanisms in the equation for 〈‖B‖2〉 (which is proportional to the
mean-scalar dissipation rate 〈χ〉) are associated with the stirring processes that intensify
flow gradients, and the magnitude of the resulting gradients determines the mixing rates.
Prandtl number effects on the mixing rates can therefore be understood at a fundamental
level by examining the effects of Pr on the production mechanisms, of which there are
two; one associated with B, which we refer to as 〈PB1〉, and the other associated with
the mean scalar gradient, which we refer to as 〈PB2〉. In the passive scalar context, we
discussed that 〈PB1〉 is affected by a de-localization effect due to a disparity between the
smallest scales of the velocity and scalar fields when Pr /= 1. This de-localization effect
renders 〈PB1〉 less effective in amplifying 〈‖B‖2〉 as Pr is increased. We also argued that
〈PB2〉 actually opposes the amplification of 〈‖B‖2〉, and that this is associated with the
existence of ramp-cliff structures in the scalar field. The impact of this production term
depends upon the parameter regime of the flow, but when it is important, its oppositional
effect causes 〈χ〉 to decrease with increasing Pr. Our DNS results for Reλ = 633 and
Pr ∈ [0.1, 7] show that on average 〈PB2〉 does indeed oppose the production of 〈‖B‖2〉,
however, its contribution is negligible compared with 〈PB1〉. A weak dependence of 〈χ〉 on
Pr was observed which is mainly due to the de-localization effect associated with 〈PB1〉.

For stably stratified flows where the scalar field is the fluid density, the buoyancy term
in the equation for 〈‖S‖2〉 is equal to −(1/2)〈PB2〉. Since 〈PB2〉 < 0, then the effect
of buoyancy is to amplify 〈‖S‖2〉. This is surprising because in stably stratified flows,
buoyancy is expected to suppress turbulent motion. However, by analysing the filtered
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velocity gradient equation we demonstrated that while buoyancy amplifies the small-scale
velocity gradients, it suppresses the large-scale velocity gradients. This analysis was
confirmed using DNS, and is also connected with the observation in Legaspi & Waite
(2020) based on numerical simulations that there is a transfer of potential to kinetic energy
at the smallest scales in stably stratified turbulence.

Concerning the effect of Pr on 〈ε〉 and 〈χ〉 in stratified turbulence, we presented an
analysis for the weakly stratified regime where the effects of buoyancy on 〈‖S‖2〉 and
〈‖B‖2〉 are perturbative. This analysis predicts that as Pr is increased, the term 〈PB2〉
should grow in magnitude, with the result that 〈ε〉 should increase and 〈χ〉 should decrease
with increasing Pr, in qualitative agreement with the results in Riley et al. (2023). We also
presented arguments that showed that this growth of 〈PB2〉 must saturate at some value
Pr = O(PrS) due to the smallest scales of the density field becoming isotropic in the limit
Pr → ∞, and we estimated that at minimum PrS = O(100). Guided by the results and
insights from the analysis, we used DNS data of stably stratified turbulence with Pr = 1
and Pr = 7 (the same data set used in Riley et al. 2023) to compute the production terms
in the equations for 〈‖S‖2〉 and 〈‖B‖2〉 to see how they are impacted by Pr and how they
differ from the passive scalar case. For 〈‖B‖2〉, the results show that 〈PB2〉 is negative
(i.e. opposes the growth of 〈‖B‖2〉) and grows in magnitude as Pr increases, in agreement
with the theoretical arguments. Moreover, it plays a much larger role in the equation for
〈‖B‖2〉 in stratified flows than for passive scalars, supporting the argument that this term
is the reason why 〈χ〉 decreases strongly with increasing Pr in stratified turbulent flows.
For 〈‖S‖2〉, the DNS showed that the buoyancy term −(1/2)〈PB2〉 is of the same sign
and of the same order as the nonlinear amplification term, and the fact that −(1/2)〈PB2〉
increases with increasing Pr is the reason why 〈ε〉 increases with increasing Pr.

We also argued that the strong effect of Pr in stratified flows means that the activity
parameter Gn (or any other standard definition of the buoyancy Reynolds number) may not
provide a reliable way to estimate the impact of buoyancy on the smallest scales of stably
stratified turbulence. By analysing the equation for S, we proposed a new non-dimensional
number ΛS that compares the buoyancy and inertial terms in this equation and captures
the effect of Pr. Using DNS data we showed that while ΛS correctly predicts that when Pr

increases, the effects of buoyancy at the smallest scales increase, Gn incorrectly predicts
the opposite.

Finally, an analysis of the filtered gradient equations predicted that the mean density
gradient term must change sign at sufficiently large scales, such that buoyancy will act
as a source for velocity gradients at small scales, but as a sink at large scales. Our
DNS confirmed that there is indeed a range of scales where this buoyancy term becomes
negative, however, the conditions under which this is observed to occur do not agree with
those predicted by the theoretical analysis. We argued that this is most likely because,
while the analysis assumes a statistically stationary flow, the DNS is for decaying stratified
turbulence. At larger scales where the time derivative term is significant in the filtered
gradient equations, this changes the dominant balance of the equations relative to the
stationary case, and therefore the scale at which the buoyancy term will change sign.

The analysis suggests that in the limit ΛS → 0, the velocity and density gradient fields in
stratified turbulent flows will behave like those for a neutral flow where density is passive.
In this regime, 〈ε〉 will become independent of Pr, as will 〈χ〉 if the large-scale Reynolds
number of the flow Re is also sufficiently high. However, DNS at higher Re and Pr are
needed in order to understand how quickly this asymptotic regime is attained, and therefore
whether 〈ε〉 and 〈χ〉 might become independent of Pr in parameter regimes relevant to
real stratified flows. Another important topic to be explored in future work is how the
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Understanding Prandtl number effects on turbulent mixing

results and insights from this work that focuses on the gradient field dynamics connects
to the multiscale behaviour of the kinetic and potential energy fields in stratified flows.
In particular, does the positive contribution of buoyancy to the production of fluctuating
velocity gradients imply that at the smallest scales potential energy is transferred back to
the kinetic energy field, and if so, over what scales does this occur and how does it depend
on Pr?
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