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Abstract. We consider the fundamental problem of fairly and efficiently allocating T indi-
visible items among 7 agents with additive preferences. Items become available over a
sequence of rounds, and every item must be allocated immediately and irrevocably before
the next one arrives. Previous work shows that when the agents” valuations for the items
are drawn from known distributions, it is possible (under mild assumptions) to find alloca-
tions that are envy-free with high probability and Pareto efficient ex post. However, this
requires that agents accurately report their values to the algorithm, which rarely happens
in practice. We study a partial-information setting, where true item values are hidden from
the algorithm and it is only possible to elicit ordinal information in the form of a ranking or
pairwise comparison relative to prior items. When values are drawn from ii.d. distribu-
tions, or correlated distributions consisting of a shared common value for each item with
iid. noise, we give an algorithm that is envy-free and (1 — €)-welfare-maximizing with
high probability. We provide similar guarantees (envy-freeness and a constant approxima-
tion to welfare with high probability) even with minimally expressive queries that ask for a
comparison with a single previous item. For independent but nonidentical agents, we
obtain envy-freeness and a constant approximation to Pareto efficiency with high probabil-
ity. Our results are asymptotically tight. A computational study shows that envy-freeness
and efficiency can be achieved on practical time-horizons.
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1. Introduction

distribution D, the simple algorithm that maximizes

Motivated by operations in food rescue services, we
consider the following fundamental fair division prob-
lem. A set of T indivisible items, arriving one at a time,
must be allocated among a set of 11 agents with additive
preferences. The value v; ; that agent i has for the item in
round ¢ is realized once the item arrives. Each item is
allocated immediately and irrevocably upon arrival,
and we ask that the overall allocation is both fair and
efficient.

As fairness measure, we study envy-freeness, a promi-
nent notion of fairness which requires that every agent
prefers their allocation over the allocation of any other
agent. Previous work shows that, despite the uncer-
tainty about future items, one can achieve simultaneous
fairness and efficiency when agents’ values are stochas-
tic. Specifically, when each v;; is drawn iid. from a

welfare—each item is allocated to the agent with the
highest value—is envy-free with high probability and
(obviously) ex post Pareto efficient (Dickerson et al.
2014, Kurokawa et al. 2016). The same guarantee holds
for independent and nonidentical agents (where v, ; is
drawn from an agent-specific distribution D;) for the
algorithm that maximizes weighted welfare (Bai and
Golz 2022). Even when agents’ valuations for an item
are correlated (but items are independent), Pareto effi-
ciency ex post is compatible with strong fairness guar-
antees (Zeng and Psomas 2020).

Despite the computational simplicity of (most of) the
aforementioned algorithms, an unappealing aspect,
especially from a practical perspective, is the require-
ment that agents report an exact numerical value for
each item. There are rare organizations that are able to
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elicit such fine-grained valuations: for example, Feeding
America manages their allocations with a market-based
mechanism in which recipients bid daily on available
donations (Prendergast 2022). However, eliciting
numerical valuations is often deemed too difficult when
low volume, the unpredictability of donations arriving.
and the cognitive burden of elicitation may prevent reci-
pients from forming regular habits of reporting valua-
tions, or when it is difficult to compare reports between
recipients. Furthermore, interpersonal comparisons of
reported utilities are quite controversial (Robbins 1938).
Because of this, many real-world settings discussed in
the literature involve much simpler forms of eliciting
agents’ interest than reporting cardinal utilities. For
example, Shi et al. (2021) describes that at 412 Food Res-
cue, based in Pittsburgh, PA, a dispatcher matches a
donation to a recipient on an ad hoc basis and gives
them the opportunity to claim it, before continuing to
the next recipient, if necessary; MEANS database, a non-
profit matching donors to food shelves and soup kitch-
ens in 50 states, announces an available donation and
assigns it to the first recipient who expresses interest
(MEANS database 2023). In both cases eliciting values is
limited to getting a binary signal of interest from a
potential recipient, a far cry from knowing their exact
value for the item.

In this paper, we study the power and limits of elicit-
ing ordinal information in dynamic fair division. The
value v; ; of agent i for item f is drawn from an unknown
distribution upon arrival. Instead of this value, the algo-
rithm is provided only partial ordinal information about
the item, for example, its rank relative to a subset of the
past items allocated to this agent, or even just a pairwise
comparison with a single previous item (a binary sig-
nal). Does this give up too much in an attempt to sim-
plify elicitation? Or, can we learn the unknown
distribution sufficiently accurately to simultaneously
guarantee fairness and efficiency?

1.1. Our Contribution
We start by establishing a separation between the cardi-
nal setting and our ordinal one. Pareto efficiency alone
is trivial (allocate all goods to the same agent), and in the
cardinal setting, Pareto efficiency ex post is compatible
with envy-freeness with high probability as long as
agents are independent. We prove in Theorem 1 that in
our setting, even for the case of two i.i.d. agents and any
known distribution, envy-freeness with high probability
is incompatible with even a very mild notion of exact
Pareto efficiency, one-swap-Pareto efficiency, which
requires that there is no beneficial one-to-one trade of
items between agents but allows for improvements via
many-to-many trades of items.

We proceed to give an essentially matching positive
result. For any number of i.i.d. agents and an unknown
value distribution D, there exists an algorithm

(Algorithm 1) that is envy-free with high probability
and guarantees a (1 — ¢) approximation to the optimal
utilitarian social welfare (the sum of utilities), for all
¢ > 0, with high probability (Theorem 2). When an item
arrives, the algorithm learns for each agent i its relative
rank compared with a subset of prior items allocated to
agent 7, but otherwise knows nothing about the underly-
ing numerical valuation nor the value distribution. We
view this lack of additional knowledge as a key feature
of our algorithm, aligning with the Wilson doctrine
(Wilson 1985), that mechanisms should not rely on
agents’ underlying beliefs and value distributions.
Developing this algorithm requires balancing explora-
tion and exploitation. We need enough reference items
to “estimate” values accurately but not too many to
avoid inefficiency. We alternate between these goals
with carefully timed phases to achieve the desired
properties.

Given this strong positive result, we explore the limits
of what we can achieve when further restricting the
amount of information available. Indeed, even ranking
an item among arbitrary received ones may be too
demanding if the reference items were given hundreds
of time steps ago. What if each agent can remember only
a single item previously allocated to them, and the fresh
item is compared with just this one item? That is, the
algorithm only learns whether the new item is better or
worse than the item in memory and may, at that time,
choose to replace the item in memory. Surprisingly, the
aforementioned positive result can almost be recovered
even in this very restrictive setting. We prove that there
exists an algorithm (Algorithm 2) that is envy-free with
high probability and guarantees a 1 —1/e — ¢ approxi-
mation to the optimal welfare with high probability, for
all £ > 0 (Theorem 4). It again requires no extra informa-
tion about the underlying numerical values or distribu-
tion, only making use of the elicited comparisons. In
addition, we give a near-matching lower bound: no
algorithm with a memory of one item can achieve a
0.999 approximation to the social welfare with high
probability (Theorem 3); therefore, a constant approxi-
mation like Algorithm 2 is all we can hope for.

Next, we relax the ii.d. assumption and show that
our algorithms are still effective when agents are corre-
lated or nonidentical. First, we consider agents that
agree on a noisy common valuation of each item, so
Vi1 = Ut + €;¢ for vy ~ D", v;  ~ D", Algorithm 1 (with
some small modifications) is enough to guarantee envy-
freeness and a 1 — € approximation to welfare with high
probability (Theorem 5). Second, when each agent i’s
values are drawn from an unknown distribution D;, we
show that it is impossible to get a %ﬁ ~ 0.809 approxi-
mation to Pareto efficiency with probability more than
2/3, even for two agents and unbounded memory (The-
orem 6). At the same time, Algorithms 1 and 2 are envy-
free and 1/e approximately Pareto efficient with high
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probability. Note that, though both algorithms give the
same formal guarantees for nonidentical agents and
Algorithm 2 elicits strictly less information, one might
still prefer to use Algorithm 1 because it has signifi-
cantly shorter exploration phases.

We conclude with a computational study on both
synthetic and real-world value distributions. Though
our theoretical results only guarantee that Algorithm 1
is attractive on an infinite time horizon, we find that on
the vast majority of instances we evaluate, after 1,000
items, the allocations are envy-free and provide more
than 90% of the optimal welfare achievable with full
information. Our results show that more correlated and
skewed distributions are harder to learn. Finally, we
consider variants of Algorithm 1 aimed at smoothing
the relatively long periods of poor performance during
sampling phases—these perform essentially as well as
Algorithm 1, as long as the structure of resetting epochs
is retained.

1.2. Related Work

Motivated by the reality that eliciting cardinal valua-
tions is often impractical and prone to errors, a growing
body of work in computer science studies what can be
achieved by algorithms that only elicit preferences of
limited expressiveness. Procaccia and Rosenschein
(2006) consider voting rules that receive ordinal infor-
mation as input but are evaluated on the cardinal utili-
ties underlying the ordinal reports. They define the
notion of distortion to measure the worst-case deteriora-
tion of an aggregate cardinal objective (e.g., utilitarian
social welfare) because of only having access to ordinal
information. Recent works prove bounds on the distor-
tion for many problems in social choice, including
matching (Filos-Ratsikas et al. 2014, Anshelevich and
Sekar 2016, Abramowitz and Anshelevich 2018, Anshe-
levich and Zhu 2019), voting (Boutilier et al. 2015, Cara-
giannis et al. 2017, Goel et al. 2017, Anshelevich et al.
2018, Munagala and Wang 2019, Gkatzelis et al. 2020,
Kempe 2020, Mandal et al. 2020, Kizilkaya and Kempe
2022, Charikar et al. 2024), and participatory budgeting
(Benade et al. 2021); see Anshelevich et al. (2021) for a
recent survey. Beyond ordinal inputs, identical elicita-
tion concerns inspired the study of abstractions, consist-
ing of partial or coarsened information, for computing
market equilibria in Kroer et al. (2021). We are moti-
vated by the same elicitation constraints but where dis-
tortion measures the worst-case loss over all instances,
we assume values are stochastic; as a result, we can
guarantee multiple attractive properties simultaneously
with high probability.

Several papers study fair division in static settings
under ordinal preferences, for example, Aziz et al.
(2015), Bouveret et al. (2010), Baumeister et al. (2017),
and Nguyen et al. (2017), but often these models do not
assume an underlying cardinal model and work directly

on the ordinal preferences. Amanatidis et al. (2016)
assume underlying cardinal information and, among
other results, bound the approximation ratio of truthful
mechanisms that elicit rankings. Closer to our work,
Halpern and Shah (2021) study rules that have access to
the ranking of the top-k items of each agent and bound
the ratio of the social welfare of the allocation returned
by a rule in the worst case. They also characterize the
value of k needed to achieve prominent notions of fair-
ness, namely envy-freeness up to one item (EF1) and
approximate maximin share guarantee (MMS), and
bound the loss in efficiency incurred because of fairness
constraints in this setting.

Our work contributes to the growing literature in
dynamic fair division (Kash et al. 2014; Aleksandrov
et al. 2015; Friedman et al. 2015, 2017; Benade et al. 2018;
He et al. 2019; Zeng and Psomas 2020; Gkatzelis et al.
2021; Gorokh et al. 2021; Barman et al. 2022; Vardi et al.
2022), and we note that the welfare-maximizing algo-
rithms of Dickerson et al. (2014), Kurokawa et al. (2016),
and Bai and Golz (2022) work in the dynamic setting,
even though the their settings are not explicitly
dynamic. Bogomolnaia et al. (2022) study proportional-
ity and envy-freeness and characterize undominated
allocation rules for both goods and bads in a model
which can be interpreted as online with potentially cor-
related stochastic valuations from unknown distribu-
tions, with additional access to the mean of each
distribution. We make much stronger assumptions
about valuations (i.e., they are either independent or
correlated in a specific way) but also have access to less
information about the arriving item. Bogomolnaia et al.
(2022) observe the vector of values in addition to the dis-
tribution means, whereas we observe only ordinal infor-
mation. Beyond stochastic valuations, Benade et al.
(2018) show that it is possible to achieve sublinear envy
by randomly allocating every item when agents’ valua-
tions are adversarially generated (and this is optimal);
however, sublinear envy is incompatible with nontrivial
efficiency even in the cardinal setting (Zeng and Psomas
2020). To the best of our knowledge, we are the first to
study imperfect expressivity in dynamic fair division.

We assume fixed agents and items that arrive over
time; however, other models of online allocation have
also been studied with the dual objectives of fairness and
efficiency. For example, Sinclair et al. (2022) consider a
model with a fixed pool of resources where agents arrive
over time and a core decision is how much to allocate in
this time step versus how much to save for the future.

Further afield, our paper is related to the vast litera-
ture on online learning (surveyed in Hoi et al. 2021). In a
classical setting, there are T days and on each day the
algorithm follows the advice of one of n experts. The
algorithm receives reward equal to the value from the
expert chosen on that day (in the full feedback variant),
and the objective is to minimize the difference in reward



Downloaded from informs.org by [128.210.107.130] on 10 April 2025, at 04:22 . For personal use only, all rights reserved.

Benade, Halpern, and Psomas: Dynamic Fair Division with Partial Information

4

Operations Research, Articles in Advance, pp. 1-21, © 2025 INFORMS

between the algorithm and the best expert in hindsight.
In contrast, we allocate items to agents without knowing
their values and minimize the difference in bundle
values (envy). There are several variants of online learn-
ing with partial information (or bandit algorithms) (see,
e.g., Cesa-Bianchi and Lugosi 2006), but we are not
aware of technical connections. Our setting, where hid-
den values are drawn from unknown distributions, also
reminds of prior-independent auctions (Dhangwatnotai
et al. 2010), where the task is to design mechanisms that
perform well in the worst case even compared with the
tailor-made mechanism which knows the distributions.

2. Preliminaries

A set of T indivisible items/goods, labeled by
G={1,2,...,T}, needs to be allocated to a set of n agents,
labeled by ' ={1,...,n}. Agent i € N assigns a value
v; €[0,1] to item ¢ € G. We assume agents have additive
valuation functions, so v;(S) =) ,.svi+ for SCG. An
allocation A is a partition of the items into bundles
A, ..., Ay, where A; is the set of items assigned to agent
i€ N. Each allocation has an associated utility profile
U(A) = (Ul (Al)/ teey UW(AH))'

Items arrive online, one per round. The agents’ valua-
tions for the item in round f (the t-th item) are realized
when the item arrives. Every item is allocated immedi-
ately and irrevocably before moving on to the next
round. We write G = {1,2,...,t} for the set of items that
arrived in the first f rounds, and A! for the allocation of
agent i after the t-th item was allocated.

We consider three different models which specify
how values are generated. In the i.i.d. model, the value
of agent i for item t is independently drawn from an
unknown distribution D with cumulative distribution
function (CDF) F, thatis, v;; ~ D forallie A/ and t € G.
In the correlated model, the value of agent i for item ¢ is
v+ = 09" + ¢;1, where v{”" ~ D" is a common value
drawn from an unknown value distribution with CDF
F™, and each agent draws independent noise ¢; ; from
an unknown noise distribution D"**. For a given item,
agent values are now correlated, though they are still
independent over time. In the non-ii.d. model, the
value of item ¢ for agent i is independently drawn from
an unknown, agent-dependent distribution D; with
CDF F,, thatis, v; ; ~ D; foralli € N and t € G.

We write V; for a random variable following D;, and
Vi for the random variable representing i’s value for
item t. It is often convenient to work directly with the
quantile of an agent’s value rather than the value itself;
let Q;i=F;i(V;) and Q;; =Fi(Vi,), respectively, be the
random variable denoting the quantile of agent i’s value
for the associated item. Note that all Q; and Q; ; are i.i.d.
and follow a Unif[0,1] distribution. Unless explicitly
stated otherwise, we assume all distributions are contin-
uous (i.e., do not have point masses).

2.1. Ordinal Information

We assume the realizations v;; are not available.
Instead, our algorithms have access to ordinal informa-
tion. Specifically, given current item ¢, the algorithm can
access each agent’s ranking for S={t} UM, Mc G
The size of M, which we will informally refer to as the
memory size, determines the complexity of eliciting infor-
mation from each agent. In one extreme, agent i com-
pares a new item t to a single item they had previously
received, thatis, M C A1, |[M| < 1.In the other extreme,
t is compared with all previous items she received, so
M = A"1. We write 0;(S) for the ranking of agent i for a
subset S of the items, and o; !(S,t) for the position of
item t € S with respect to a subset S according to agent i.
The highest-value item is in position 1 and the lowest in
position |S|. For example, if S = {1,4}, v;1 =1 and v; 4 =
0.1,0:(8)=(1>4),0:7(S,1)=1and 0;1(S,4) = 2.

2.2. Algorithms

An algorithm 4, in each step f, queries each agent for
ordinal information with respect to some subset M and
then makes a (possibly randomized) allocation decision
based on this ordinal information and the history so far.
An instance of our problem is parameterized by the
number of agents 1 and the (unknown) value distribu-
tions Dy, ...,D,. Let Ep(t) be the event that some algo-
rithm satisfies property P (e.g., envy-freeness or Pareto
optimality (PO) or e-welfare) at time t. We are interested
in the probability that an algorithm satisfies certain
properties in the limit, as the number of rounds tends to
infinity, where the randomness is over the random
choices of the algorithm as well as the randomness in
the valuations.

Definition 1. An algorithm satisfies P with high prob-
ability if lim;, Pr[Ep(H)] = 1.

Note that this definition of high probability allows
for dependency on n and the underlying distributions
(i.e., they are treated as constants).

2.3. Efficiency Notions

An allocation A Pareto dominates an allocation A’,
denoted A > A’, when v;(A;) > v;(A}) for all i e N and
there exists j € N with v;(4;) > vj(A]’. ). An allocation A is
Pareto efficient or Pareto optimal (PO) if there is no feasible
(integral) allocation that Pareto dominates it. An alloca-
tion A’ is in the (one) swap-neighborhood of A when it
can be created from A with a single exchange of items
between one pair of agents. Formally, there exist i,j € A
and items z; € A; and z; € A; so that A} = (A;\ {z;}) U
{z}, Al = (Aj\{zj}) U{zi}, and A} =A; for all other
agents k # i,j. An allocation A is one-swap Pareto optimal
(SPO) if it is undominated by any allocation in its swap-
neighborhood. Several notions of approximate Pareto
efficiency exist (see, e.g., Ikeda et al. 2001 and Leung et al.
2015); we use the definition by Ruhe and Fruhwirth
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(1990) according to which an allocation A is a-Pareto effi-
cient when v(A)/« is undominated.

The social welfare of an allocation A is sw(A) =
> ienVi(Aj). Let allocation A™ denote a (social) welfare
optimal allocation for which sw(A") > sw(A) for all fea-
sible allocations A. An allocation A provides an «a
approximation to welfare if sw(A) > a - sw(A"). For the
notion of approximate efficiency we consider, observe
that an @-approximation to welfare implies that the allo-
cation is also a-Pareto efficient.

2.4. Fairness Notions

We focus on a prominent notion of fairness called envy-free-
ness. An allocation A™ = (AT,..., AT) of T items is envy-free
(EF) when v;(A]) 2 v;(A]) for all i,j € N/, and c-strongly
envy-free (c-strong-EF) when v;(A;) > v;(V;) + cT.

3. Ideal Quantile-Based Algorithms

For our analysis, it will be useful to compare our algo-
rithms with ideal algorithms that know exact quantile
values for every item (in fact, several of our lower
bounds apply to these stronger algorithms, too). Given
quantiles, two algorithms of interest are (1) quantile
maximization, which allocates each item to the agent
with the highest quantile value for it, and (2) “g-thresh-
old,” which allocates each item uniformly at random
among agents whose quantile is at least g (and uni-
formly at random over all agents, if all quantile values
are less than g). Threshold algorithms are natural when
the memory length is one, whereas unbounded memory
length allows (approximate) quantile maximization.

In the i.i.d. model, quantile maximization is the same
as value maximization, and thus envy-free with high
probability and ex post welfare optimal. The property
we will use is c-strong envy-freeness, for some
distribution-dependent constant ¢, which we state as
Lemma 1. This was essentially proved by Dickerson
et al. (2014); we provide an alternate proof that also
works, largely unchanged, for the “--threshold algo-
rithm; it can be found in Section EC.1.1 of the Online
Appendix.

Lemma 1 (Essentially Dickerson et al. 2014). In the i.i.d.
and non-i.i.d. models, the quantile maximization algorithm
and the "“L-threshold algorithm are c-strongly envy-free,
with probability 1 —exp(—CQ(T)), where the constant
¢ = miny (E[V;] Qs > 1/2] — B[Vi])/(4n).

Note that ¢ is strictly positive because our distribu-
tions are continuous.

Next, we show that in the i.i.d. model, the “~1-thresh-
old algorithm gives a 1 — 1 — & approximation to welfare
(Lemma 2) with high probability. This approximation is
also obtained by a more general result on single thresh-
old algorithms for prophet inequalities of Ehsani et al.
(2018), who use the threshold e~!/". Our setting with

identical distributions permits a simpler proof, which
we provide here for the sake of completeness for thresh-
old 1 — 1/n, which simplifies some later computations.

Lemma 2. In the ii.d. model, the "“\-threshold algorithm
guarantees a ((1—1) — &) approximation to welfare, with
probability 1 — exp(—C(T)), for all € > 0.

Proof. Let F be the CDF of an arbitrary continuous
distribution. Let 7= F~!(*-1) be the value at the =
threshold. Note that having Q; > is equivalent to
having V; > 7. We can upper bound the expected max-
imum value by

E[maxV;] < 1+ E[(max V; —1),]
1 1

< T+ZE[(V1*—T)+]=T+Tl-E[(V—T)+]

where (s), := max(s,0) and V represents a generic draw
from D.

The "L threshold algorithm can also be interpreted
as follows: pick a random order over the agents and
give it to the first one whose value is above 7. We will
lower bound the expected welfare generated by each
item in this algorithm, ignoring contributions to the
welfare when no agent is above the threshold. Fix an
arbitrary ordering of the agents. The probability the
item is given to the i-th agent is Pr[V; > 7 A V; < TV/’
< il =Pr[V; = ][], . Pr[Vy < 7] (because values are
independent). Conditioned on this event, the value is
E[V;|V; > 1]. So, the total welfare is

> B[V Vi tlPr[V; 2 7] [ Pr[Vi < 7).
i i
Furthermore, E[V;|V;>1]=1+E[V;,—1|V;>1]. In
addition, we can write E[V; —1|V;> 1] -Pr[V;>1] =
E[(V; —1),]. Putting this together, we have that the
welfare is

> (- PrlVi= ] + E[(Vi = 1) D] [ Pr[Vi < 7).

i i’ <i

Now, Pr[V >1]=1/n for V ~D, so we can simplify
this to

(t/n+E[(V - T)J)Z (1=1/n)""

= (x/n+BIV =)

>(t/n+E[(V-1),])-n-(1-1/e)
=1 =1/e)(t+n-E[(V—1),])
>(1—-1/e)E[max V;].
Finally, for any fixed ¢ > 0, standard Chernoff bounds
tell us that with probability 1 —exp(—€X(T)), the opti-

mal welfare of T items is at most T - (1 + ¢/2)E[max;V;]
whereas the welfare of the threshold algorithm is at
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least T (1 — ¢/2)(1 — })E[max;V;]. Indeed, the expected
optimal welfare is equal to T - E[max;V;]. The standard
multiplicative Chernoff bound says that the probability
of the sum of i.i.d. variables exceeding (1 + ¢/2) times its
expectation y is at most exp(—ue?/12). Plugging in u =
T-E[max;V;], we get the desired statement. The state-
ment about the welfare of the threshold algorithm fol-
lows similarly. Thus, the algorithm is a

(1——) (1-2/2)/(1+2/2)2 (1——)(1—e)

(12)-

approximation to welfare, with probability 1-
exp(—Q(T)). O

Next, we prove that both ideal algorithms are approx-
imately efficient. Let P* be the following property of an
allocation: all items such that exactly one agent has
quantile values at least 1 — 1/n are in the bundle of this
agent. Both ideal algorithms (quantile maximization
and 1 — 1/n-threshold) satisfy P*. We prove that, in the
non-iid. model, P* implies an almost 1/e approxima-
tion to efficiency. Our proof uses the fact that there is a
(roughly) 1/e probability that exactly one agent has the
high quantile, so the value of an agent’s bundle in an
algorithm that satisfies P* is, with high probability,a 1/e
approximation to their value for their T/n most valu-
able items. Therefore, when considering an alternate
allocation A’, the agent in A’ that gets at most T/n items
cannot be improved upon by more than a 1/e factor.

Lemma 3. In the non-i.i.d. model, every algorithm whose
allocations satisfy P is (1/e — &)-Pareto optimal, with high
probability, for all € > 0.

Proof. Fix an ¢ € (0,1), and choose ¢’ such that - fre ,)
1>1_ ¢ (using ¢’ = ¢/3 will do). Fix distributions with
CDFs Fi,...,F, for each agent ieN, and a time T.
Suppressmg the superscript, for ease of notation, let
A; = AT be the bundle allocated at time T to each agent
i by an algorithm that satisfies P*. Let A;" be the set
of the T/n most valuable items for each agent i. Let

hlgh = {teG"|Fi(vi;) =1 £} be the set of items
that agent i has “high” value for, in the sense that they
come from the top £ portion of their distribution.
We show the followmg 3n events, &; for ie N and
j€{1,2,3}, occur simultaneously with high probabil-
ity (in 7).

L €:0(A) < 0(A]"),

2. EaioA™) < T2 B pmpr-m Q)

3. Enivi(A)) 2T _]EQ Uniff1-1/n,11[F 1 (Q)]-

Each of these individually will follow from a
straightforward application of Hoeffding’s inequality
or Chernoff bounds, showing they each individually
occur with probability exponentially close to one in T.

This implies that they all occur simultaneously with
high probability. Finally, we will show that conditioned
on all 31 occurring, the allocation is (1/e — ¢€)-PO.

Let us begin with £ for each agent i. The event
occurs when there are at least T/n items t € G such
that Fi(v;;)>1— 1“ . Each item independently satis-
fies this property (F i(v;,1) > 1 — 1) with probability
1+ Hence, the probability this does not occur is at
most 2 exp(—2¢"2T).

Next, consider £, for each agent i. The expected con-

tribution of each item to v; (A?igh) is

,1 1+¢
oy @ 1[0z 1
-8 R

Q~Unif[1- 1/, 1]
<Y EQ)

n Q-Unif[1-1,1]

We now use the following multiplicative version of
the Chernoff bound,

Pr(> Viz(1+06)) E[Vi]

52
< exp <— 3 Z IE[Vi]) ,

to conclude that the probability that vi(A?igh) exceeds
T- BB gt/ [ FHQ)] = (1+ ) E[o(A]™")] s
atmost exp((—&*(1 + & )Eq-uniff1-1/s,1)[F; 1 (Q)] - T)/3n).

Finally, consider &3 for each agent i. We will show
that the expected contribution of each item to v;(4;) is
at least ;.- E_ ~unif[1-1, 1] LF7 1(Q)]. Indeed, consider an
item such that the quantile for agent i is Q;>1—1/n
whereas Q; < 1— 1 /n for all agents j #i. This occurs
with probability 1-(1 %)" >1/en, and when this
occurs, because the algorithm satisfies P*, it must allo-
cate the item to i. Further, when this does occur, the
expected value of such an item is EQ~UM[17%,1] [F71(Q)],
because it is independent of the other agent’s values.
Hence, the expectation is at least éE@Umf[lf%/l] [F71(Q)].
Finally, we again use a multiplicative Chernoff bound to
show that

Pr Ui(Ai) < (1 — g’) -;QNUmfI%l 1][F11(Q)]‘|
/ZE i 1 FTl
< exp ( ¢ QNUmf[;e;:][ i Q)] . T) .

Now, suppose that &; hold for all ieN and
j€{1,2,3}. We show that this implies the allocation
Aq,...,Ay is (1/e —¢)-PO. Fix an arbitrary allocation
Al, ..., Al. We show there exists an agent i € N/ such

that v; (A’) < i”/iAz First, there must be some agent i
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such that |A]| < T/n. Because A} can be at most as
valuable as the most valuable T/#n items, we have
vi(A]) < v,(AP)
<€)y, (Ahlgh)
(1+¢)?
n Q~ Umf[l 1/n,1]
< (En) . (1+ g’)

(1—¢)(1/e)

1
< mvi(Ai)r

asneeded. O

<@, [F Q)]

vi(A)

4. Unbounded Memory in the i.i.d. Model
We explore some fundamental limits of our setting. Effi-
ciency by itself is easy: allocate all items to the same agent.
However, in contrast to the cardinal setting, we find one-
swap Pareto efficiency is incompatible with envy-
freeness with high probability, even for two i.i.d. agents,
and even when the underlying distribution is known.

Theorem 1. In the i.i.d. model, even for n = 2 agents, there
does not exist an algorithm A which is one-swap Pareto
efficient and envy-free with high probability, even when
values are sampled according to D, for any continuous,
bounded, and known value distribution D.

Proof. Fix an arbitrary, continuous value distribution
D and an algorithm A.

As the agents are a priori identical, we can assume
without loss of generality that A gives the first item to
agent 1. We will show that, with a positive probabil-
ity, this decision becomes an irrevocable “mistake,” in
the sense that agent 2 really liked the item and agent 1
did not. This mistake will make envy-freeness and
one-swap PO incompatible.

First, we find values to make this mistake suffi-
ciently bad. Let g:[0,1] —[0,1] be the function
¢(q) =E[V|V < F~1(9)]/E[V], which maps a quantile
g to the ratio of the expected value of an item below
quantile g to the expected value of an arbitrary item. g
is a continuous increasing function with g(1) =1, so
there is some quantile § < 1 such that g(4) > 0.9. Let
g5 = max(4,0.9). Because g is increasing, g(q5) > ¢(4) > 0.9.
Let g, =0.1, v} = F1(q}), and v} = F!(g;). Let &mstake
be the event that Vi1 < v] and V51 > v;. Define ¢ :=
Pr[e™sek¢] = (1 —g3)-q; to be the probability that
gmistake ocurs. D is continuous, so ¢ > 0. Our lower
bound on the probability that the allocation at step ¢
violates either envy-freeness or one-swap PO will
only depend on c.

Let &; be the event that for item j we have that both
Vy,; 20} and V;; < 0;. Notice that under &;, though
agent 1 has higher expected quantile than agent 2,
agent 2 still has higher actual quantile for the item

with constant probability. If £™¢ occurs, the only

way to maintain one-swap Pareto efficiency is to allo-
cate item j to agent 1 every time €j occurs; otherwise,
swapping items 1 and j between the two agents yields
a Pareto improvement. This constraint will make envy-
freeness unlikely because, conditioned on £™%7e, & i will
occur for a large majority of items, leading to a large dis-
crepancy in bundle sizes.

Let EmaWhish(1) be the event Z]t-:z Vo,i-I[E] > (t=1)
-0.7-E[V]. In other words, £™WN8M (1) occurs when
agent 2 has a high value for items j, 2 <j < t, for
which &; occurs (i.e., the items that must be given to
agent 1 in order to satisfy one-swap PO). Let
gromalval(1) denote the event that thez Vyi < (t—=1)-
1.1-E[V]. We first show that for sufficiently large ¢,
the probability that both £m™Whish(t) and grormalval(y)
occur is at least 1/2. To do so, we prove each event
occurs with probability at least 3/4, and then apply a
union bound.

First, because each V;; and V;; are independent,
Pr[£;]20.9-0.9=0.81, and E[Vy,;|£] = E[ V2| V2 < v3].
Also, from the definition of g(§) and the choice of
73, E[V2,j|Va,; < v5]120.9-E[V]. It follows that E[V5;-
I[EN] = E[Vo;1&]- Pr[&;] 2 0.729 - E[V]. A straightfor-
ward Chernoff bound establishes that Pr[£™hish(£)]
> 3/4 for t at least gy,

Let Y;=V,;-I[&] for all j. Then, E[Y;]>0.729-

E[V], and E[Z] ,Yil>(t—1)-0.729-E[V]. We are
interested in the probability that Z_ZY is at least
(t—1)-0.7-E[V], that is, the probablhty that Z - Yjis
at least 575 its expectation.

We use the following Chernoff bound: Let Y3, ...,
Y, be independent random variables that take values
in [0,1], and let Y be their sum. Then, for all 6 € [0,1),
Pr[Y < (1-8)E[Y]] < e EDI&/2,

Continuing our derivation:

Pr [iyj >(t—1)-0.7-E[V]

=2

ofire [zy |
romfin ]

t t
>1-Pr ZY,- < 0.89E [ZY,”
j=2 j=2

t 2
>1— exp (— GDBE. )2/]-](0.89) )

which is at least 3/4 when E[Y"/_, 1@](0.89)2 /2 is at least
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In(4), or, equivalently, if t>1+2In(4)/(0.7-(0.89)*
E[V]). Because 21In(4)/(0.7-0.89%)< 5 and E[V]<]1,
so t>6/E[V] suffices. Pr[£°™aVal()]>3/4 follows
similarly.

Next, observe that £mawhish () n gnormalval () jg indepen-
dent of £ because the two events depend on dis-
joint sets of independent random variables. Therefore,
PI‘[ gmistake N gmanyhigh(t) N gnormalval (f)] — PI‘[ gmistake] -Pr
[gmanyhigh p) o gnomalval()] > ¢. 1 /2 for t > 6/E[V].

Let Espo(t) and Egp(t) be the events that the allocation
at step t is one-swap PO, and envy-free, respectively.
When gmistake  gmanyhigh 4y  gnomalval () goeyr the allo-
cation cannot be both one-swap PO and envy-free, that
is, Pr[Espo(t) N Epp(t) |Emstake  gmanyhigh ) r gnommalval py] — 9
To see this, notice that first, because of £™7k¢  the only
way to remain one-swap PO is to give each item j to
agent 1 every time &; occurs. Second, gmanyhigh (1) ensures
that agent 2’s value for these items, and hence agent 2’s
value for agent 1’s bundle, is at least 0.7 - (f —1) - E[V]
+ vy 1. Third, gromalval ) ensures that agent 2’s value for
all items is at most 1.1-(t —1)-E[V]+v,1, which is
strictly less than twice her value for agent 1’s bundle.
We conclude that the allocation at step t cannot be pro-
portional, and is hence not envy-free. Overall, we have

Pr[€spo(t)] +Pr[Err(H)]
> Pr[Espo () U Err(1)]
= Pr[Espo(t) N Exr(t)]
> Pr[Espo (D) N Exn(E) N EMRke [ gmanyhighp) ( gnomalval (7)1
= Pr[Espo (t) N Epp(t) | €7 N £maNe (1) n gromatval ()]
. Pr[gmistake ( gmanyhigh (p) y gnomalval ()1
>c/2.

Therefore, for t > 6/E[V], at least one of Pr[Espo(t)]
and Pr[€gr(t)] is at least ¢/4.We conclude that no algo-
rithm can be both envy-free and one-swap PO with
high probability. O

Theorem 1 implies that when we have access to only
ordinal information, we need to settle for some approxi-
mation to envy-freeness and efficiency. Our main posi-
tive result for this section is an algorithm that essentially
matches the aforementioned lower bound (noting that
an allocation satisfying a (1 — ¢) approximation to wel-
fare is also (1 — ¢)-PO).

Theorem 2. In the i.i.d. model, Algorithm 1 achieves envy-
freeness and a (1 — &) approximation to welfare, with proba-
bility 1 — exp(—Q(TY1%)), for all & > 0.

Algorithm 1 works in epochs: each epoch k has
an exploration/sampling phase, where each agent i
receives a predetermined set of items, denoted Gﬁ-‘, irre-
spective of their valuation. This is followed by an

exploitation/ranking phase, where each item is given to

the agent with the highest empirical quantile (with
respect to items received in the preceding exploration
phase, i.e. GF).

Algorithm 1 (EF + (1 — ¢)-Welfare)
forepochk=1... do
Sampling Phase: (11 - k* items)
Give the j-th item in this phase to agent j(mod n).
Ranking Phase: (k® items)
for each item g in this phase do
Elicit 0;1(GF U {g},¢) for allie \.
Allocate g to an agent; € arg min;\c0; 1(GF U {g},9).

We start with a technical lemma, which gives us a
bound on the length of the exploration period we need
in each epoch. The following definition will be useful.

Definition 2. A sample of n-m items (where each
agent is allocated exactly m items) is e-accurate if,
with probability at least 1 — ¢, the relative rank of a
fresh item (with respect to the sample) is highest for
the agent with highest quantile value.

Lemma 4. If ¢,6€(0,1), and meZ* are such that

£>2n4/ %, then giving m samples to each agent is
e-accurate with probability at least 1 — 6.

Proof. We will use the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality (Dvoretzky et al. 1956, Massart
1990) to show the empirical CDF of sampled quantiles
is reasonably close to a uniform distribution with
probability 1 —06. We then show this is sufficient to
guarantee ¢-accuracy for the chosen ¢. Let F; be the
empirical CDF of the sampled quantiles for agent i,
that is, ﬁi(q) for g€[0,1] is a random variable that
describes the proportion of sampled items with quan-
tile at most g. Note that F; exactly captures agent i’s
ranking for a new item: If a fresh item has quantile g;
for agent i and g; for agent j, then i ranks it higher than
j exactly when Fi(q;) > F;(q;).

Noting that the CDF for the actual quantile distribu-
tion (i.e., the uniform distribution) is the identity on
[0,1], the DKW inequality states that for all y >0,
Pr[supqe[oll] |1:"i(q) —ql>y] < 22" We want this
condition to hold for all n agents, simultaneously,
with probability at least 1 — 6, so we pick y such that
2¢2"* < §/n and apply a union bound; it suffices to
choose y = /In(2n/0)/2m.

We now show that the DKW condition (sup,q
|[Fi(9) —q| < y) being satisfied for all agents i is
sufficient to guarantee e-accuracy. Consider sampling
quantiles Q1,...,Q, for a fresh item. Let i™*¢
arg max,Q; be a quantile-maximizing agent (techni-
cally a random variable). Our goal is to show that
with probability at least 1 — ¢ (with respect to the sam-
ples of Q1,...,Qy) Fimn(Quuar) > Fi(Q)) for all j # im.
This ensures that i™* has the highest empirical rank,
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and hence receives the item. Let Q),..., Q) be the
respective order statistics. A key observation is that
Q) — Qu-1) ~ Beta[1, n] (Gentle 2009). The probability
density function (PDF) of a Beta[l,n] distribution is
f(x)=nx""! for x€[0,1]. Because f(x) < n, Pr[Q,) —
Qu-1) < p] < np for all p>0. Plugging in p =2y, we
have Pr[Qu) — Qu-1) < 2y] < 2ny. We will show that
as long as ¢ >2ny, e-accuracy holds. First, we have
Pr[Qm — Qu-1) >2y] >1—¢. Conditioned on Q) —
Qu-1) > 2y, the item is given to i™™. To see why,
observe Qmax = Q) and Q; < Q1) for all j # ™%, by
definition. Using the DKW inequality condition, it fol-
lows that Fjmax(Qimax) > Qimex — y>Qi+y > ﬁj(Qj). We
conclude that for e > 2n+/In(2n/6)/2m, e-accuracy is
satisfied with probability at least 1 — 0. O

Using Lemma 4, we can get, for each epoch, a bound
on the number of decisions where Algorithm 1 differs
from the quantile maximization algorithm.

Lemma 5. The allocation of Algorithm 1 differs from that
of the quantile maximization algorithm after T steps by at
most f(T) items with probability 1—exp(—Q(T'1%)),
where f(T) € O(T'/19),

Proof. We start by bounding the accuracy of Algo-
rithm 1 in each epoch k. In epoch k, each agent
receives k* items during the sampling phase. We claim
that the sample in epoch k for k > 3n is e;-accurate for
ex:=3n/k? with probability at least 1—0, for
O :=2n/e?. Indeed, first note that by the choice of k,
we have that ¢, 6 €(0,1). Hence, we just need to
show that these values satisfy the inequality of
Lemma 4. We have that

3n o \[ \/1n(e2k) \/ln(Zn/ék)
= e W i % 2w’

Next, fix a time T. Slightly abusing notation, let k(t) =
min{K e N|Y 5, nk* +k3 >t} be the function that
given an item f returns the epoch 1tem t is in. Notice
that T > ka Uikt + 18 > (k(T) — 1), and therefore
k(T) < 2T"/8. In any run of the algorithm, we can clas-
sify every item ¢ < T into at least one of the following
five categories.

1. Item t was allocated in one of the first 3n —1
epochs, that is, k(t) < 3n.

2. Ttem t was allocated in one of the first [T%/10]
epochs, that s, k(t) < [ T'/1°].

3. Item t was allocated in the sampling phase of
epoch k(t) > 3n.

4. Item t was allocated in the ranking phase of epoch
k(t) > 3n; the epoch was ¢j-accurate.

5. Item t was allocated in the ranking phase of epoch
k(t) > | TY/1°] + 1; the epoch was not & -accurate.

We say an item t was a mistake if it was given to an
agent with a nonmaximum quantile for it. We show

that the numbers of mistakes in each category are
bounded by 3'°%°, T/2n + T9/10,2nT5/8,9nT1>/16, and
0, with probabilities 1,1,1,1 —exp(—Q(T7/%)), and
1 — exp(—Q(T/10)), respectively. This implies that the
total number of mistakes is at most the sum of these
quantities, which, via a union bound, is O(T"%/1%) with
probability 1 — exp(—Q(T"/1?)), via a union bound.
The number of items in the first category is at most

3n—1

z:k4n+k8 < Z(?m) n+ (3n)®

< (3n)°n+ (Bn)’ < 3'%°.

Hence, the number of mistakes in the first category is
also at most 3'%°.

For the second category, a similar computation
gives a bound of

LTl/l[)J

Z K+ k8
k=1

IA

|_T1/10J A (LT1/10J4n + I_Tl/wJS)

T'2n + 19110,

IA

For the third category, because k(T) < 2T'/%, we have
that the total number of items in the sampling phase
is (with probability one) upper bounded by

k(T)
> nk* < nk(T)> < 2nT°/%,
k=1

Each item ¢ in the fourth category has probability ¢, of
being a mistake. The expected number of mistakes is
therefore at most -5 &k = M) 3uk13/2 < 3uk(T)"/?
< 8nT"/1°. Using Hoeffding’s inequality, we get that
the number of mistakes is at most (81 + 1)T'%/1¢, because
a deviation of T'/1® occurs with probability at most
exp(—2T"/8T) = exp(—2T7/8).

For the fifth category, we will union bound over the
probability that any epoch k > T'/'% is not &;-accurate.
This probability is at most

i O = f: 2n/e*

k= TV/10 |41 k= TV/10 |41

1
<2 _oTV/0y ___—
< 2nexp( ) -1/

< Bnexp(—2T"19).

Hence, with probability at least 1 — 3nexp(—2T"/10),
there will be zero items in this category. O

Finally, we can prove Theorem 2 as a relatively
straightforward consequence of Lemma 5, because the
ideal quantile maximization algorithm satisfies nice
properties (e.g., Lemma 1).

Proof of Theorem 2. Fix a distribution D with CDF F
and let V be a random variable with distribution D.
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Fix some ¢ to be (1 — ¢)-welfare-maximizing. Let £ be
the event that the maximum social welfare at time T is

at least 1/2-E[V]- T, let £1 be the event that quantile
21/2]-E[V])
4n 4

and let &) be the event that Algorithm 1 differs from
quantile maximization on at most f(T) items from
Lemma 5. We first claim that & N &) N &} occurs with
probability 1 —exp(—Q(T/1?)). Note that Lemmas 1
and 5 tell us £ and &} each occur with probability 1 —
exp(—Q(T)) and 1 — exp(—Q(T'/1%)), respectively. For
&1, the maximum value for each item is in expectation
at least the expected value for a single agent E[V].
Hence, a Chernoff bound tells us £ occurs with prob-
ability at least 1 — exp(—E[V]T/8). The claim holds via
a union bound.

Next, note that for sufficiently large T, because

F(T)eo(T), f(T) < EVIEVIEIZIEVD . T and £(T) < /2
E[V]-T (for any fixed ¢ that does not depend on T).
Fix such a sufficiently large T. We show that, condi-
tioned on £ N &) N &3, both EF and (1 — ¢)-welfare
hold. Let AM = (ASM, ..., AQ) be the allocation of
quantile maximization and A =(4;,...,A;) be the
allocation of Algorithm 1. Beginning with envy-
freeness, we have that for all pairs of agents i and ,

maximization is c-strongly EF for c = EVIHV)

vi(A;) =) v(AM) — £(T)

(E[V|F(V)=1/2]-E[V]))T
4n
(E[V|F(V)>1/2] —E[V])T
4n

> 0,(APY) —f(T) +

>E) 0,(A)) = 2f(T) +

> U[(A]‘),

so the allocation is envy-free. Further, noting that

sw(A?M) is the maximum social welfare, we have the
welfare approximation is at least

sw(A)  sw(AM) — (sw(AM) — sw(A))
sw(AM) sw(AM)
e swa) — £(T)
- sw(AM)
f(T)

sw(AM)

Sehq__ S
= 1/2-E[V]- T
- 1/2-E[V]-T

=1-—g¢,

asneeded. O

5. Bounded Memory in the i.i.d. Model

In this section, we are interested in the more ambitious
problem of designing dynamic algorithms with even
more limited partial information: each agent is allowed
to “remember” only a single item. We first show that, in
this case, we need to settle for constant approximations
of welfare.

Theorem 3. In the i.i.d. model, given a memory of one item
per agent, there is no algorithm A that is 0.999-welfare-
maximizing with high probability for all continuous and
bounded value distributions.

Proof. We prove that this negative result holds even
for an even stronger class of algorithms in which, at
each step t, the algorithm selects quantile thresholds
q4,...,q,€[0,1] for each agent, and once an item
arrives the algorithm observes, for each agent,
whether the quantile of their sampled value Q;; is
above or below the threshold g!. Note that this pro-
vides at least as much information about the fresh
item as comparing it to any single prior item, because
there is some uncertainty about the values and quan-
tiles of all prior items.

We first focus on the algorithm for a single time
step and show there is a distribution of values such
that, regardless of the quantile thresholds selected and
allocations made, it cannot do well.

Fix a number of agents n and assume 1 > 3. We han-
dle the special case of n = 2 at the end of this proof, as
it requires a different distribution. For simplicity we
consider a distribution that takes values larger than
one; rescaling (specifically, dividing all values by
2 +¢) gives a distribution upper bounded by one and
does not affect any of our arguments. Consider the
value distribution V, with

Unif[0, €]
V ~{ Unif[1,1+¢] with probability 2, and
Unif[2,2 + ¢] with probability L

with probability 1 —1,

for some small ¢ > 0 to be fixed later. Intuitively, V is a
continuous version of a discrete distribution which
takes low value (near zero) with probability 1—1,
medium value (near one) with probability 2, and high
value (near two) with probability 5. Let Fy, be its CDF.
Trivially, the maximum social welfare of T items when
all agents have this value distribution is at most
T-(2+e¢).

We show that regardless of what quantile thresh-
olds the algorithm chooses at step t and which deci-
sion it makes given the resulting signals, the expected
value of the agent receiving item ¢t is at least (1 —¢)-
1o away from optimal. To that end, fix arbitrary
thresholds gy, ...,q,. First, we partition the agents
depending on whether their quantile g; is above or
below 1—2 We let N = {i € [n]|g; < 1—-2%} and
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Nebove = fie [n]|g; >1—%}. Either |NPeW|>[n/2]
or |[N@°ve| > [/2]; we analyze each case separately.
Because n > 3, we have [n/2] > 2.

Case L. |[NP¢°W| > [11/2]. In this case, it will be diffi-
cult for the algorithm to distinguish between agents in
NPelow with medium value and those with high value.
Consider the event € that one agent i € Nl hag
quantile Qm»>1—2, one agent ™™ e NPl has
quantile Qmex € (1 — 2,1 —4), and all other agents i €
N\ {ima, s} have quantile Q; < 1—21. First, we
show that Pr[€] > -1, a constant. To compute this prob-
ability, note that there are at least [1/2]-([n/2]—1)
choices of i™®* and *™®*, Once these have been selected,

the probability of £ occurring for this pair of agents is

1 1 1\" 2 1 Nt 1
.. (1== >n=3) = 1—-= >_—
3n 3n ( n) T 9n? n " 9en?

Because [11/2] - ([1n/2] — 1) > n?/8, we can that conclude
Pr[€] > 7. Conditioned on € occurring, i™® has high
value, ™ has medium value, and all other agents
have low value. However, from the perspective of the
algorithm, two agents (i"™® and *™*) give a high sig-
nal, and it’s equally likely that each of them is the agent
with the high value (note that we condition on £). The
algorithm must therefore allocate the item to an agent
with at most medium value (upper bounded by 1 + ¢)
with probability at least 1/2, even though an agent
with value at least two exists. Hence, in this time step,
the algorithm has an additive error (compared with the
optimum welfare) of at least (1 — ¢) with probability at

1
least 35

Case II. |[N*°V¢| > [12/2]. In this case, it will be diffi-
cult for the algorithm to distinguish between agents in
Nabove that have medium value and those with low
value. Consider the event £ that one agent i™* € Nabove
has quantile Qme € (1—1,1—2) and all other agents
i€ N'\ {i™™} have quantile Q; < 1—1. First, we show
that Pr[£] > L. Indeed, there are at least 11/2 choices for
im™, For a fixed choice of i, the probability of £
occurring is 5-- (1 —%)"71 > L and there are at least
n/2 choices for i™™, so Pr[£] > L. Agent i™™ and the
other members of N3*°V¢ (there is at least one more) are
indistinguishable to the algorithm as they all have a
low signal, so the algorithm must give it to an agent
with value at most ¢ with probability at least 1/2 even
though an agent with value at least one exists. Hence,
in this time step, the algorithm has an additive error
(compared with the optimum welfare) of at least (1 — ¢)
with probability at least 3.

In either case, for every time step, the algorithm has
an additive error of at least (1 — ¢) with probability at
least 17, irrespective of the past allocations. As time
steps are independent, standard tail bounds give that,

for sufficiently small ¢ > 0, the error is at least 7555

with high probability. The optimal social welfare is at
most (2+¢) - T; we conclude the algorithm can be no
more than an 0.999 approximation to welfare.

Finally, we handle the case of two agents. Assume
values are drawn from a Unif[0, 1] distribution. Let g4,
> be the quantile thresholds selected by the algorithm
and, without loss of generality, suppose that 0 < gy
< > < 1. At least one of the differences g1 — 0,7, —
g1,1 — g, must be at least 1/3. Suppose g, —q1>1/3
(the other cases are symmetric). We investigate the
event that both agents have Q; € [71,42], so that agent 1
signals high and agent 2 signals low, which occurs with
probability at least 1/9. Conditioned on this event, the
signals do not provide any additional information, so
the algorithm chooses the agent with smaller value at
least half of the time. In this case, the expected differ-
ence between the larger and smaller values is 1/9.
Hence, the expected difference of the value from the
algorithm versus the maximum social welfare is at least
$3-5=1/162 on each item. The maximum social wel-
fare is at most T, and we expect the difference to be at
least T'/1,000 because of concentration, so the algorithm
cannot guarantee more than a 0.999 approximation, as
needed. O

Our positive result matches this lower bound up to a
constant.

Algorithm 2 (Bounded Memory)
for Epochk=1... do
Sampling Phase: (K’ items)

NOTWITHINERROR — A

for trial=1,...,k° do
for i € NOTWITHINERROR do
Allocate the next item to agent i, and
update her memory
Test k® — [NOoTWrTHINERROR| number of items
(for each agent)
for i € NOTWITHINERROR do
if Proportion of test items for agent i is within
*=1/k? of (n — 1)/n then

NOTWITHINERROR «— NOTWITHINERROR \ {7}

Ranking Phase: (k'® items)
for each item g in this phase do
if Some agent i has high signal then
| Give g to a (uniformly) random such agent
else
| Give g to an agent uniformly at random

Theorem 4. In the i.i.d. model, given a memory of one item
per agent, Algorithm 2 achieves envy-freeness and a 1 —
1/e — ¢ approximation to welfare, with probability 1 — exp
(—Q(TV?9)), for all & > 0.

Algorithm 2 works in epochs, similar to Algorithm 1.
In each epoch’s exploration/sampling phase, it tries to
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find an item whose quantile is close to the ~1-threshold
algorithm. Epoch k makes k® such attempts, and each
candidate item is tested against k® fresh items to get an
estimated quantile. If everything is within the error we
can tolerate, the algorithm remembers this item for this
epoch; otherwise, the agent has an arbitrary item in
memory during this epoch. During the exploitation/
ranking phase, Algorithm 2 tries to mimic the
—l_threshold algorithm (instead of the quantile maximi-
zation algorithm as Algorithm 1 did), and, in fact, inher-
its its approximation factor (Lemma 2) exactly.

Our first technical lemma, Lemma 6, gives necessary
bounds on the various variables of Algorithm 2 for a
sample to be e-accurate with respect to the ideal thresh-
old algorithm; see Definition 3. Its proof can be found in
Section EC.1.2 of the Online Appendix.

Definition 3. A set of n items in memory, one for each
agent, is e-accurate with respect to ¢* if with probability
at least 1 — ¢, when a fresh item is sampled, the agents
with true quantile above g are exactly those that value
the fresh item more than their item in memory.

Lemma 6. For all ¢,6 €(0,1), if (1) at least T trials are

done with T > lr;(/z(gfl‘;), and (2) at least € test items are used

per trial for € > 182 1n (42, and (3) the tolerance for accept-
ing an item is &/(3n), then the items in memory are
e-accurate (for all agents, simultaneously) with respect to
q* = "L, with probability at least 1 — .

Though Lemmas 4 and 6 resemble each other (and
are used in analogous ways), the proofs require differ-
ent techniques, as the sampling processes are very dif-
ferent. Next, we prove an analog to Lemma 5: the
number of disagreements between Algorithm 2 and the
ideal threshold algorithm is sublinear. The proofs of
Lemmas 5 and 7 are similar, precisely because Lemma 4
matches Lemma 6. Theorem 4 follows from Lemma 7 as
in the i.i.d. case. The proofs of Lemma 7 and Theorem 4
can be found in Sections EC.1.3 and EC.1.4 of the Online
Appendix, respectively.

Lemma 7. The allocation of Algorithm 2 differs from that
of the "1-threshold algorithm after T steps by at most {T)
items with probability 1 — exp(—Q(TY?)), where f(T) €
O(T19/20)'

6. Agents with Correlated Values

Recall that v;;=v{"" +¢;;, with common value v{"
drawn from a common distribution D*" and agent-
specific noise ¢;; drawn from noise distribution Dose,
This class of valuations was captured in a more general
class considered by Dickerson et al. (2014), who show
that welfare maximization is still EF with high probabil-
ity (and, by definition, a 1 approximation to welfare).
However, it is unclear whether these results carry over

when only given partial information because the corre-
lation can make it harder to “learn” agents’ relative
values during sampling.

In this section we show that, at least under mild restric-
tions on D" and D"*, we can still devise algorithms
that are able to well approximate the ideal welfare-
maximizing algorithm. The restrictions are as follows: (i)
Interval support: the support of each of these distributions
is some intervals [a®",b®"] and [a™%,b""*]. (i) PDF-
boundedness: there are constants 0 < p < g such that the
probability density functions of D" and D" are
bounded between p and g on their support. These
assumptions are required only in this section and are
quite common in the distributional fair division
literature—they are the exact assumptions of Bai and
Golz (2022) and weaker than those of Manurangsi and
Suksompong (2021), who also require the support to be
[0,1]. We call this method of generating values the com-
mon-noise model and establish the following.

Theorem 5. In the common-noise model, running Algorithm 1
with sampling phases per agent of length k° and exploiting
phases of length k'? achieves envy-freeness and a (1 — &) approx-
imation to welfare with probability 1 — exp(—Q(T/14)), for
alle > 0.

The proof of this theorem is similar to that of Theorem
2. The main difference is that Lemma 4 is not valid for
correlated values. Nonetheless, using new techniques,
we show the following analog.

Lemma 8. For all (p, q)-bounded common and noise distri-
butions D™ and D" supported on [a®™,b®"] and
(a0, prise] if €,6 € (0,1) and m € Z* are such that

2ng 5 p. <ln(2n/6))1/4/

com __ acont
b a 2m

£>—
min (2=,

then giving m samples to each agent is e-accurate with proba-
bility at least 1 — 0.

Proof. It is without loss of generality to assume that
the supports of D" and D" are translated to start
at zero, that is, are of the form [0,b%" —a®"] and
[0, b™se — gnoise] Indeed, translating the values does
not change whether an item goes to the correct agent.
For convenience we assume the supports are [0, °"]
and [0,b"*] throughout the proof, then translate the
distributions back for the final bound by replacing
peom by peom _ geom qnd bnoz‘se by bnoise _ anoise.

Let D™ be the distribution obtained by adding
independent samples from D" and D"*. Note that
D" is the marginal distribution of agent values. Let
Feom  proise and P and foom, froise and £ be the
CDFs and PDFs of the distributions D™, D"*¢, and
D™™, respectively. Additionally, because D" is the
sum of independent samples of D" and D", it is
well known that f5(x) = [_fOm(t)f"5(x — t)dt, the
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convolution of the summand densities. Let E; be the
empirical CDF of agent i's values after m samples.
(Note that unlike in Lemma 4, we are working with
values instead of quantiles.) Using the DKW inequal-
ity, it is still the case that for all y >0, Pr[supv|F (v)

—F""(p)| >y] < 2e2™°, and specifically for y =
v In(2n/6)/2m, this holds for all n agents simulta-
neously with probability 1 — 6.

We again condition on the DKW event, that
supv|F (v) — F**"(v)| >y for all agents i. Let V" and
yhoise ., V1% be fresh samples of common and noise
Values Let V yeom 4 ynoise pe the total value of each
agent i. We would like to show that if i"** is the agent
with the highest value, then Emax(Vimar) > F j(Vj) for all
j # "™ This ensures that /""" receives the item. A suf-
ficient condition for this to occur is that F¥*"(Vmux) —
Fm(Vy) > 2y for all j+#i", because of the DKW
condition.

To get a handle on conditions to ensure this differ-
ence in quantiles is sufficiently large, we will begin by
proving the following inequality.

Lemma 9. For all v, >v; € [0, + "] such that
Uy — 1 < bnoise’

Fsum(vz) _Fsum(vl) > (min <bb;:::e >p(Z)2 — 01)> /2. (1)

Proof of Lemma 9. Fix such a v; and v,. Writing this
out more explicitly, we have that

FSMW!(,UZ) _ FSllm(,Ul) — /vzfsum(x) dx.

To lower bound this integral, we will first lower
bound f*"(x). Fix an x in the support of D", so
x € [0, + b5¢]. We have that

Ry
> [:(P-H[t € [0,6]) - (p-T[x — t € [0, 57 ]) dt
_ [ :(P.]I[te 10,5 - (p-T[t € [ — B ]} e
=p? /_ :H[te [0,5°] At € [x — b x]] dt.

Because 0 < x < b 41", rearranging shows that
x — b < pem and (trivially), x > 0. Therefore, t € [0,
b At € [x — b"*, x] reduces to t € [max(0,x — b""¢),
min(b®™, x)], and hence

/ I[t € [0,6°™] A t € [x — b"™¢, x]] dt
= min(b*", x) — max(0, x — b"*)
=min(b®", x) + min(0, b — x)

— min(bm’", bnoisel X, (bnoise + bcom) o x).

Putting this together, we have that for x € supp(D*""),
fsum (X) > pzmin(bcom’ bnoise’ X, (bnoise + bCOH’l) o X).

Let g(x) = p?min(b™, b5, x, ("¢ + p™) — x) and let
us now consider the shape of g(x). A plot of g(x) can
be found in Figure 1. It increases linearly (with a slope
of pz) from zero until min(b™,b"o5), stays constant
until max(b™",b""¢), and then decreases (with a slope
of —p?) until b + b=, Note that both the noncon-
stant intervals are of length min(b™,b"¢). For our
purposes, the shape of g(x) means that integrating
over any interval [c,d] C [0,b%" + 1] of length ¢ :=
d—cis at least as large as integrating [0,(], that is,
f g(x)dx > fo g(x)dx. Further, as long as ¢ < min(b*",

b"’*¢), the area under the curve of ¢(x) on this interval
is simply a triangle, and it has area p>(?/2. These facts
together imply that as long as v, —v; < min(b™™,
bnoise)’ then

F™(03) = F"(01) 2 (p(v2 — 01))° /2. )

To extend this to the case needed for Inequality (1)

with the only constraint being v, —v; < prose et
bLOI’Il

vy =01 + (v — v1) - min({ez, 1). Note that v < v, and,

in addition,
COm

vy — 01 < min< 1) (vy —v1) < min(b™, b)),

proise”

It follows from Inequality (2), v5 < v, and the defini-
tion of v}, that, as required,

Psum(vz) _ I_"Sllm (,()1) Z I_"Sum (vé) _ Psum (Ul)
> p?(v) —v1)*/2

bcom 2
= (min (bmisg,1>p(vz - 01)) /2. O

Having established Lemma 9, we continue with the
proof of Lemma 8 and now consider what constraints
on Vi and V; ensure that F*" (Vi) — F"(V;) > 2y for
all j # "™ Because Vi and V; can differ by at most
b, we immediately get that P (Vi) — F™(V))
> (min (&, 1) p(Viw: — V; )) /2. A sufficient condltlon
for this to be at least 2y is that

4y
(V jx — V]‘)Z RNV L
(mln (fmise/ 1)p)

and, equivalently,

2
Vimax — V Z %
min (55, 1)p
Recall that Vlmm = Jyonm 4 V;’rl'(x?zlYSE and V yeom 4 V]nolse SO
Vins — V= Ve — Vjose, Adchtlonally, because f"7* is
upper bounded byg,

noise

Fnaise(V?H%SE) _ FnoiSE(V]{'loise) _ / ,-maxfnoise(x) .
noise

S q(VﬁgzlYSE _ V;’IOZSE).
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Figure 1. Plot of Lower Bound g(x)

pZ mdn(bcom7 bmnse)

0 min(bnoise’ bcom)

Hence, as long as F"5(Voise) — F"O"S"(V]’-“”'se) > (2;74‘/—}1),
then V1ose _ 1ymoise > 2vy ) i s * /P
jmax j = min(:,fn%,l)p

F”"is"’(V]’?"ise ) is distributed uniformly on [0,1] for each
i, and these random variables are independent across
agents. P (V1) will be the largest of n such draws.
Hence, we have reduced this to the case handled by
Lemma 4—the Beta[l,n] analysis from that lemma
shows that Pr[Vj "%, F (Vi) — P (V1o%) > p] > 1
—np. Plugging in p = ﬁ, we get that this holds

peont

phoise/

with probability at least 1 —LW). Therefore, as
P

. [ peom
min ( phoise’ 1

poom
prorse/

: 1/4
longas e >— (2 : o <h‘(§fn/ ‘”) , €-accuracy holds. O

We are now in position to prove Theorem 5. The
proof structure is nearly identical to Theorem 2; we give
an overall sketch and describe the differences.

Proof Sketch of Theorem 5. Fix (p, q)-bounded distri-
butions D" and D"** supported on [a®",b®"] and
[a"5¢, poie]. The proof is nearly identical to Theorem
2; we primarily describe the differences here, while
giving an overall sketch.

An analog of Lemma 1 continues to hold, with slightly
different constants that depend on the distribution.
Hence, all we need to show is that running Algorithm 1
with a sampling length of k® per agent and an exploiting
length of k'? differs from value maximization by at most
some sublinear number of items with probability 1—
exp(—Q(T'/14)). We will show there are O(T*/*%) errors;
note the asymptotic notation is hiding constants that
depend on 1 and the common and noise distributions.

Let C =3ng/(min (%=, 1)p). For each epoch k,
choose &; = 2n/e? and set ¢, = C-k~5/%. Now

2k6 2k6

2nq . In(2n/6) 1/4
1);7( ) '

Ek = C.k*5/4 =C- (A)1/4 —-C. (1n(€2k)) 1/4

. bmm 6
min (2o, 2k

max(bnOise, bcom)

\ 4

peom 4 bnoise

The constant C is unimportant; as it does not depend
on T or k, it will disappear as the time step grows
large. The primary difference from Theorem 2 is that,
because of the longer phase lengths (k° and k'? instead
of k* and k°), we need a dependence of k=% for ¢
(rather than k=%/2), and use T/ instead of T%/1°,

We count the number of items on which Algorithm
1 differs from the welfare-maximizing algorithm, as in
Lemma 5, and recall that k(t) is the epoch in which
item t arrives. Fix a time step T. Because of the differ-
ent sampling lengths, it now holds that k(T) < 2T/12,

We now count the number in the first |[T%/14]
instead of [ T"/!°] and get

k(T)
Sk +KI2 < TV 4TI,
k=1

The number of items allocated in sampling phases is

now
K1)

> nk® < nk(TY < 2nT7/2,
k=1
which is still sublinear (with probability one).
The expected number of mistakes in exploit phases
of &xy-accurate epochs is at most

k(T) k(T)
Z 8kk12 — Z Ck43/4 — Ck(T)47/4 — O(T47/48)~
k=1 k=1

Because of Hoeffding’s inequality, a deviation of more
than T#/% does not occur with probability 1— exp
(—Q(T¥/*8)), so the number of mistakes here is
O(T*”/*8) with the corresponding probability.

Union bounding over the number of items in non-
ex-accurate exploit phases is again at most

(o)

zoo: Ok < 2n Z

2n
5= exp(—Q(TM).
k=[T1/14|+1 k=[ TV |+1

With these modifications, the rest of Theorem 2 goes
through essentially unchanged. O
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6.1. Correlated Values with Bounded Memory

One may wonder if these positive results for Algorithm
1 also carry over using bounded memory; that is, could
some modification of Algorithm 2 perform well in the
common-noise noise model? The answer comes down
to what guarantees we would like.

Achieving envy-freeness is relatively straightfor-
ward. Indeed, any g-threshold algorithm achieves envy-
freeness as long as, with positive probability, some
agents are above the threshold and some below: by sym-
metry, all agents have an equal chance of receiving each
item, and their value conditioned on receiving an item is
strictly higher than their value conditioned on not
receiving it. All thresholds satisfy this property assum-
ing interval support on the distributions, and minimal
modification to the proof of Theorem 4 is required to
show Algorithm 2 is envy-free.

Getting a welfare guarantee appears to be more chal-
lenging. There exist distributions where the 1-threshold
algorithm does not achieve a constant approximation.
For example, consider a common distribution that takes
value n with probability 2/n and zero otherwise, and a
noise distribution that takes value n — 1 with probability
1/n and zero otherwise. The -1 quantile is at least n.
However, this implies that whether a value is above the
threshold is completely determined by the common
draw. Therefore, either all agents are above the threshold
or all are below, so items will be given to random agents.
Random agents have an expected value of at most three.
On the other hand, the expected maximum of n draws
from the noise distribution is ©(n). This example can be
extended to have continuous distributions (by slightly
spreading out the mass around the points) and to interval
support (draw uniformly from [0,n] with some tiny
probability). Given the connection between threshold
algorithms and prophet inequalities, we could hope to
import results from threshold algorithms for correlated
distributions (for example, from Immorlica et al. 2020).
Unfortunately, all existing results require knowing the
distribution (e.g., set a threshold of E[max;V;]/2). This
conflicts with a fundamental feature of our algorithms:
they do not need to know anything about exact values or
underlying distributions, just ordinal relationships. Of
course, our setup is not as general as theirs, and hence,
with new techniques, positive results might be possible.
We leave this as an interesting direction for future work.

7. The Non-i.i.d. Model

In this section, we study the non-i.i.d. model. We first
establish a strong lower bound for the non-i.i.d. model.
The following negative result holds even for algorithms
that know the associated quantile for every fresh item.

Theorem 6. Even for two nonidentical agents, there is no
algorithm that is EF and c-PO with probability p, for ¢ >

%5 ~ 0.809 and p > 2/3, for all continuous and bounded
value distributions.

Proof. Suppose for contradiction that there is an algo-
rithm A so that for all bounded continuous distributions
(V4, V>) there exists a T* = T*(V,V,) where for all >
T, A is envy-free and ¢-PO with probability p with p >
2/3 for some constant ¢ > 1+4‘/§ Hence, there is some ¢
suchthatp>2/3+eand1/c< —e=vV5-1—c¢.

Consider two distributions Dp and Ds; we describe
these later in the proof. Consider the three instances
Iy = (Df, Df), 11 = (Ds, Df), and I, = (Df, Ds).

Let 8’“ be the event that A is envy-free and ¢-PO
on instance I; at time ¢ for j € {0,1,2}. By construction,
Pr[é’At >2/3+€forall]€{0 1,2}and t > T

Let z be a parameter we will fix later in the proof,
and let Z! =1{Q;; > 1 —z} for i = {1,2}. Observe that
Z! -7, is one with probability z* and zero otherwise.
The following events characterize a specific notion of
a “nice” sample, in which the number of items with
high quantiles for both agents is near its expectation:
=i 20 Zh 22| < 6}, &) ={|+ 32, Zh — 2] < 8},
and & =I{|13],Z} —z| <6} for some 6>0. By
Hoeffding’s inequality, Pr[€]]=Pr[| %ZL zZh-Zh—
2% > 6] < 2exp(—2T6%). It follows that for T > log(2/¢)
/(26%), Pr[E]] < e. Similarly, for T >log(2/¢)/(26%),
it holds that Pr[€]] <&, and Pr[€;] < e. Consider
an arbitrary T > Tyax = max{To, T1, T2, log(2/¢)/ (26%)}).
Applying a union bound,

PrE} T UEMT UE}T UETUET UET]

22: EAT]+ZPr T]<3 (——e>+3e—

i=0 i=1

It follows that Pr(& " n&fT N T nelngln gl >o.
Therefore, there must exist a sequence of T items
whose quantiles satisfy all of & 5§ , and Sg, and,
because A does not have access to the items’ values,
there must exist an allocation A” for these T items (in
the support of A) that is EF and ¢-PO, no matter which
of Iy, I, or Iz the values were taken from. Let q7
{2 ®), qz(t))}t 1 be these items’” quantiles. Let Hg = {t €
[T]:q1(t) 21—z and g2(t) =1 -z} be the items for
which Z!-Z5=1, and Hy ={te€[T]:q1(t) 21—z} the
items for which Z} =1.

Set distributions Dr = Unif[1 — w,1] and Dgs, under
which each item is Unif[0, w] with probability z and at
Unif[1 — w, 1] with probability 1 — z, for small positive
w that we fix later in the proof.

We have that some agent receives at most half the
items in Hp; without loss of generality this is agent 2,
that is, |A N Hg| > |Hg|/2. We show that there exists
a feasible more than 1/c Pareto improvement under
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the values in [;. To that end, we compare AT to the
allocation A where A; = H; and A, = H;.

We next bound the utilities of each agent under AT
and A. Beginning with agent 1, we have

ui(Ar) =ui(Hy) > |Hy| - (1 - w)
>EDT. (z - 6)(1—w)
=T(z — 6 —zw + dw)
>T(z—06—w)

and
ur(A1) < w-|AyNHi|+1- |Ay N H;

<T-w+|Hi| — |Ay N Hi|

< T-w+ |Hy| — |A; N Hg|
<E)T.w+T(z+6)— | A, N Hp|
< T-w+T(z+06)— |Hp|/2
<EDT.w+T(z+06)— T(Z2—05)/2
=T(z—2*/2 +w+36/2).

Together, these imply

1 (Ay) z—0—w _ 2z-20-2w
w(AD) Tz —22/2+w+36/2 2z—-22+2w+36

Next, we consider agent 2. We have
Mz(Az) = up(H1)
> (1 —w)|H|
=1 —w)(T - |Hil)
>E) 1 —w)T-(1—(z+90))
=T(1—z—-0—w+wz+ wd)
>T1—z-06—w).
By &, AT is envy-free on I,. It follows that |AT|>

(1 —w)|AZ|. Because |AT|+|AT|=T, we have that

|AT| < 5L-T. Hence, u(A]) < |A]| < 7L-T. Combin-

ing these, we have

uz(Az)_l—z—é—w

(A

=2-22-20-2w—w+wz+wd+w

>2—2z—26—3w.

Choose z =352, Note that z2 =7=3¥3, Choose 6,w < ¢/25.
We then have

Ml(Al) S 3— \/5—6/5
ui(A])” (W5-1)/2+¢/5
3-5 /5

T(V5-1)/2+¢/5 (V5—1)/2+¢/5
3-45 2¢e (\/51 € >

T(WB-12+e5 5 2 57

35 2 (V5-1>1)

T (5_1)/2-(1+2¢/5) 5
1 2¢e
=5 s s
2

>(‘/§—1)'(1—26/5)—§

>(«/§—1)—g/2—25—8 (V5-1)-2/5 < 1/2)

>vV5—-1—¢
>1/c
and

Mz(Az)
ur(AY)

>2-3-V5)—¢/5>V5-1—e>1/c,

so this is more than a 1/c Pareto improvement. O

Algorithms 1 and 2 are envy-free with high probabil-
ity, even in the non-i.i.d. model, because envy-freeness
is not an “interagent” property. Our last result shows
that they also give a constant approximation to Pareto
efficiency, by combining Lemma 3 with Lemmas 5 and
7. The proof of Theorem 7 can be found in Section
EC.1.5 of the Online Appendix.

Theorem 7. In the non-iid. model, both Algorithm 1
(unbounded memory) and Algorithm 2 (one-item memory) are
EF and (1/e — €)-PO, with probability 1 — exp(—Q(T'/1%))
and 1 — exp(—Q(T/1°)), respectively, for all e > 0.

Although the formal guarantees in Theorem 7 are
similar for the two algorithms despite Algorithm 2
using a memory size of one, Algorithm 1 has the benefit
of much shorter epoch lengths (and better guarantees in
thei.i.d. case).

8. Computational Study

The purpose of this section is twofold. First, although
our theoretical results ensure that algorithms such as
Algorithm 1 satisfy desirable properties, these guaran-
tees are in the only limit, so a priori it is possible that it
may take an extremely long time for them to kick in.
With this in mind, we verify that these properties are
satisfied on a variety of generated values, as well as
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compare how qualitative shifts in the value distribu-
tions affect these convergence rates. Second, although
Algorithm 1 was designed to be amenable for theoreti-
cal analysis, we compare it with variations that may per-
form better or be preferable for practical reasons.

8.1. Setup

The experiments are conducted as follows. For each
setting, we sample 100,000 item values for five agents.
We run our algorithms on this sample with either two
random agents or all five. We repeat this 100 times for
each setting so as to get reasonable statistics about the
performance.

We generate agent values both from distributions
and from real-world data. From distributions, we first
consider several instances of the beta distribution. The
first set are of the form B(1,x) and B(x,1) for different
values of x. Recall that (1, 1) is the uniform distribution
over [0,1] and, as x grows larger, the distribution skews
left or right. This allows us to understand the effect of
skew (are there a few items that are extremely valuable,
or are most valuable except for a few duds?) on perfor-
mance. The next set are of the form B(x, x) for increasing
values of x. As x increases, the distribution becomes
more peaked while remaining centered around 1/2.
The density functions of these distributions are visual-
ized in Figure 2.

Next, we investigate the effect of correlation on per-
formance. We generate uniform common values v; ~
U(0,1) and agent-specific values ¢; ~ U(0,1) for each
agent i and item t. We then set the agent value to
vy =a v+ (1 —a)ey. Note that @ = 0 corresponds to
independent U(0, 1) values, a = 1 corresponds to fully
correlated identical values, and increasing « increases
the correlation.

Finally, we test on values bid by real food banks on
actual donations using artificial currency over the course
of a year, similar to part of what is analyzed in Prender-
gast (2017, 2022) and Altmann (2023). We interpret these
bids as a proxy for correlated values for each donation.
To generate an instance, we first restrict to sets of five

food banks that bid together on at least 20 distinct dona-
tions. We sample such a set of five, treat their bids on a
common donation as a correlated value distribution,
and draw all item values from this distribution. A small
number of bids (under 4%) are negative, which, in the
original context, meant that the organization expected to
receive artificial currency to accept the donation; in our
context we interpret these as zero-valued.

8.2. Results

All plots that appear in the main body are for experi-
ments run with two agents. Additional plots with five
agents can be found in Online Appendix EC.2 and are
qualitatively similar.

We begin with an analysis on how quickly Algorithm
1 becomes envy-free. The corresponding plots for Algo-
rithm 1, alongside the ideal welfare-maximizing algo-
rithm with full information, can be found in Figure 3.
The main takeaways we find are that the more left-
skewed distributions tended to have faster convergence
than more right-skewed ones, less peaked distributions
tended to converge faster than more-peaked ones, and
increasing the correlation, of course, made the problem
more difficult. The performance on the real data is very
much in line with what is observed for the simpler
(small «r) correlated distributions, where envy-freeness
takes roughly 1,000 time steps to establish. In general,
Algorithm 1 kept pace reasonably well alongside its
“ideal” counterpart, and did not converge much slower.
Instances where Algorithm 1 performed worse exactly
corresponded to those where welfare/quantile maximi-
zation also struggled.

Next, we visualize the approximation to welfare in
Figure 4. Here we find a complete reversal. Left-skewed
distributions had worse approximations than right-
skewed ones, less peaked distributions had worse
approximations, and increasing correlation led to better
approximations. One possible explanation is that these
trends exactly correspond to the ratio between the
expected value of these distributions and the expected
maximum of several draws. When this ratio is large (the

Figure 2. (Color online) Density Functions of the Beta Distributions on Which We Test
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Figure 3. (Color online) Proportion of Envy-Free Runs
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Note. For each data set, the left graph shows the results for Algorithm 1, whereas the right graph shows the performance of the “ideal” welfare-
maximizing algorithm (or quantile-maximizing in the case of real data where the underlying value distributions are heterogenous).

expectation is quite close to the expected maximum), it
means that giving an item to the “wrong” agent does
not have too big of an effect on the welfare approxima-
tion. The one exception to this is for extremely corre-
lated distributions (a = 0.8), where this improvement is
counteracted by the fact that additional correlation
makes it more difficult to learn agents’ values.

Finally, we compare Algorithm 1 to three variants in
Figure 5. We first try an algorithm with shorter epochs:
Rather than sampling phases of length k* and exploiting
phases of length k*, we try lengths of k* and k*, respec-
tively. The result is similar performance overall with
additional smoothing: The alternation between degraded
performance (during sampling) and good performance
(during exploiting) is now more frequent. Next, we try

not ending the sampling phase after just k* steps. Now
items given during the exploit phase are still added to the
sample, which should give the algorithm additional
information for the rest of the epoch. This leads to a mar-
ginal boost in performance. Finally, we try running the
algorithm without resetting the sampled items at the end
of every epoch. Namely, at first agents were given 20
items each, and then all future items were simply added
to this sample for comparison. This algorithm performed
significantly worse and unfortunately seems to have an
asymptote. When the initial 20-item sample is “good,”
then the overall run may perform reasonably well, but if
we are unlucky and the initial sample is not great, then
there is no chance for a later reset. Hence, in many set-
tings, we see that only about half of the runs would lead

Figure 4. (Color online) Ninety-Fifth Percentile Welfare Approximations
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(b) Peaked distributions

(c) Correlated distributions
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Note. If at time step 1,000 the algorithm has ¢ = 0.02, then on 95% of runs, at the 1,000th time step, the algorithm achieved at least 98% of the opti-

mal welfare.
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Figure 5. (Color online) Comparison of Alternative Algorithms in Various Settings
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to EF allocations and welfare appears to cap out well
below 99% of optimal without hope of further improve-
ments from additional items.

9. Conclusion

To conclude, we have analyzed the online fair division
problem when agents only reveal partial information.
In multiple settings, we show that ordinal information
is enough to obtain strong fairness and efficiency guar-
antees, even when given as little as binary signals
about agent preferences. For food rescue services who
are already constrained to eliciting binary preferences,
this is good news, though we see that the asymptoti-
cally optimal algorithms require repeated sampling
phases during which items are (purposefully) allo-
cated suboptimally.

Building on this work, there are many other forms of
partial information that may be practical to elicit in spe-
cific contexts and which may enable different guaran-
tees. For example, if agents can compare small subsets
of items, rather than single items, it may be possible to
achieve stronger results such as arbitrarily good approxi-
mations to PO even in the non-iid. setting. Another
interesting direction is to ask what guarantees are possi-
ble given a limited time horizon or sample budget. Now
convergence rate matters, and, for example, there is a rea-
son to prefer Algorithm 1 over Algorithm 2 in the non-
iid. setting. We assume throughout agents are truthful;
we leave the study of strategic agents to future work.
Finally, we assume that agents provide ordinal informa-
tion while having underlying cardinal utilities. One
could, instead, explore fairness notions like stochastic

10 10° 10! 103 108
Timestep Timestep

dominance (SD) envy-freeness which are defined directly
on ordinal preferences. Positive results in this setting
may be more challenging and, for example, require that
the number of items is divisible by the number of agents.
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