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Abstract. We consider the fundamental problem of fairly and efficiently allocating T indi-
visible items among n agents with additive preferences. Items become available over a 
sequence of rounds, and every item must be allocated immediately and irrevocably before 
the next one arrives. Previous work shows that when the agents’ valuations for the items 
are drawn from known distributions, it is possible (under mild assumptions) to find alloca-
tions that are envy-free with high probability and Pareto efficient ex post. However, this 
requires that agents accurately report their values to the algorithm, which rarely happens 
in practice. We study a partial-information setting, where true item values are hidden from 
the algorithm and it is only possible to elicit ordinal information in the form of a ranking or 
pairwise comparison relative to prior items. When values are drawn from i.i.d. distribu-
tions, or correlated distributions consisting of a shared common value for each item with 
i.i.d. noise, we give an algorithm that is envy-free and (1 ω)-welfare-maximizing with 
high probability. We provide similar guarantees (envy-freeness and a constant approxima-
tion to welfare with high probability) even with minimally expressive queries that ask for a 
comparison with a single previous item. For independent but nonidentical agents, we 
obtain envy-freeness and a constant approximation to Pareto efficiency with high probabil-
ity. Our results are asymptotically tight. A computational study shows that envy-freeness 
and efficiency can be achieved on practical time-horizons.
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1. Introduction
Motivated by operations in food rescue services, we 
consider the following fundamental fair division prob-
lem. A set of T indivisible items, arriving one at a time, 
must be allocated among a set of n agents with additive 
preferences. The value vi, t that agent i has for the item in 
round t is realized once the item arrives. Each item is 
allocated immediately and irrevocably upon arrival, 
and we ask that the overall allocation is both fair and 
efficient.

As fairness measure, we study envy-freeness, a promi-
nent notion of fairness which requires that every agent 
prefers their allocation over the allocation of any other 
agent. Previous work shows that, despite the uncer-
tainty about future items, one can achieve simultaneous 
fairness and efficiency when agents’ values are stochas-
tic. Specifically, when each vi, t is drawn i.i.d. from a 

distribution D, the simple algorithm that maximizes 
welfare—each item is allocated to the agent with the 
highest value—is envy-free with high probability and 
(obviously) ex post Pareto efficient (Dickerson et al. 
2014, Kurokawa et al. 2016). The same guarantee holds 
for independent and nonidentical agents (where vi, t is 
drawn from an agent-specific distribution Di) for the 
algorithm that maximizes weighted welfare (Bai and 
Gölz 2022). Even when agents’ valuations for an item 
are correlated (but items are independent), Pareto effi-
ciency ex post is compatible with strong fairness guar-
antees (Zeng and Psomas 2020).

Despite the computational simplicity of (most of) the 
aforementioned algorithms, an unappealing aspect, 
especially from a practical perspective, is the require-
ment that agents report an exact numerical value for 
each item. There are rare organizations that are able to 
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elicit such fine-grained valuations: for example, Feeding 
America manages their allocations with a market-based 
mechanism in which recipients bid daily on available 
donations (Prendergast 2022). However, eliciting 
numerical valuations is often deemed too difficult when 
low volume, the unpredictability of donations arriving. 
and the cognitive burden of elicitation may prevent reci-
pients from forming regular habits of reporting valua-
tions, or when it is difficult to compare reports between 
recipients. Furthermore, interpersonal comparisons of 
reported utilities are quite controversial (Robbins 1938). 
Because of this, many real-world settings discussed in 
the literature involve much simpler forms of eliciting 
agents’ interest than reporting cardinal utilities. For 
example, Shi et al. (2021) describes that at 412 Food Res-
cue, based in Pittsburgh, PA, a dispatcher matches a 
donation to a recipient on an ad hoc basis and gives 
them the opportunity to claim it, before continuing to 
the next recipient, if necessary; MEANS database, a non-
profit matching donors to food shelves and soup kitch-
ens in 50 states, announces an available donation and 
assigns it to the first recipient who expresses interest 
(MEANS database 2023). In both cases eliciting values is 
limited to getting a binary signal of interest from a 
potential recipient, a far cry from knowing their exact 
value for the item.

In this paper, we study the power and limits of elicit-
ing ordinal information in dynamic fair division. The 
value vi, t of agent i for item t is drawn from an unknown 
distribution upon arrival. Instead of this value, the algo-
rithm is provided only partial ordinal information about 
the item, for example, its rank relative to a subset of the 
past items allocated to this agent, or even just a pairwise 
comparison with a single previous item (a binary sig-
nal). Does this give up too much in an attempt to sim-
plify elicitation? Or, can we learn the unknown 
distribution sufficiently accurately to simultaneously 
guarantee fairness and efficiency?

1.1. Our Contribution
We start by establishing a separation between the cardi-
nal setting and our ordinal one. Pareto efficiency alone 
is trivial (allocate all goods to the same agent), and in the 
cardinal setting, Pareto efficiency ex post is compatible 
with envy-freeness with high probability as long as 
agents are independent. We prove in Theorem 1 that in 
our setting, even for the case of two i.i.d. agents and any 
known distribution, envy-freeness with high probability 
is incompatible with even a very mild notion of exact 
Pareto efficiency, one-swap-Pareto efficiency, which 
requires that there is no beneficial one-to-one trade of 
items between agents but allows for improvements via 
many-to-many trades of items.

We proceed to give an essentially matching positive 
result. For any number of i.i.d. agents and an unknown 
value distribution D, there exists an algorithm 

(Algorithm 1) that is envy-free with high probability 
and guarantees a (1 ε) approximation to the optimal 
utilitarian social welfare (the sum of utilities), for all 
ε > 0, with high probability (Theorem 2). When an item 
arrives, the algorithm learns for each agent i its relative 
rank compared with a subset of prior items allocated to 
agent i, but otherwise knows nothing about the underly-
ing numerical valuation nor the value distribution. We 
view this lack of additional knowledge as a key feature 
of our algorithm, aligning with the Wilson doctrine 
(Wilson 1985), that mechanisms should not rely on 
agents’ underlying beliefs and value distributions. 
Developing this algorithm requires balancing explora-
tion and exploitation. We need enough reference items 
to “estimate” values accurately but not too many to 
avoid inefficiency. We alternate between these goals 
with carefully timed phases to achieve the desired 
properties.

Given this strong positive result, we explore the limits 
of what we can achieve when further restricting the 
amount of information available. Indeed, even ranking 
an item among arbitrary received ones may be too 
demanding if the reference items were given hundreds 
of time steps ago. What if each agent can remember only 
a single item previously allocated to them, and the fresh 
item is compared with just this one item? That is, the 
algorithm only learns whether the new item is better or 
worse than the item in memory and may, at that time, 
choose to replace the item in memory. Surprisingly, the 
aforementioned positive result can almost be recovered 
even in this very restrictive setting. We prove that there 
exists an algorithm (Algorithm 2) that is envy-free with 
high probability and guarantees a 1 1=e ε�approxi-
mation to the optimal welfare with high probability, for 
all ε > 0 (Theorem 4). It again requires no extra informa-
tion about the underlying numerical values or distribu-
tion, only making use of the elicited comparisons. In 
addition, we give a near-matching lower bound: no 
algorithm with a memory of one item can achieve a 
0.999 approximation to the social welfare with high 
probability (Theorem 3); therefore, a constant approxi-
mation like Algorithm 2 is all we can hope for.

Next, we relax the i.i.d. assumption and show that 
our algorithms are still effective when agents are corre-
lated or nonidentical. First, we consider agents that 
agree on a noisy common valuation of each item, so 
vi, t → vt + ωi, t for vt ~ Dcom, vi, t ~ Dnoise. Algorithm 1 (with 
some small modifications) is enough to guarantee envy- 
freeness and a 1 ω approximation to welfare with high 
probability (Theorem 5). Second, when each agent i’s 
values are drawn from an unknown distribution Di, we 
show that it is impossible to get a 1+

  
5

↑

4 ↓ 0:809 approxi-
mation to Pareto efficiency with probability more than 
2/3, even for two agents and unbounded memory (The-
orem 6). At the same time, Algorithms 1 and 2 are envy- 
free and 1=e approximately Pareto efficient with high 
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probability. Note that, though both algorithms give the 
same formal guarantees for nonidentical agents and 
Algorithm 2 elicits strictly less information, one might 
still prefer to use Algorithm 1 because it has signifi-
cantly shorter exploration phases.

We conclude with a computational study on both 
synthetic and real-world value distributions. Though 
our theoretical results only guarantee that Algorithm 1
is attractive on an infinite time horizon, we find that on 
the vast majority of instances we evaluate, after 1,000 
items, the allocations are envy-free and provide more 
than 90% of the optimal welfare achievable with full 
information. Our results show that more correlated and 
skewed distributions are harder to learn. Finally, we 
consider variants of Algorithm 1 aimed at smoothing 
the relatively long periods of poor performance during 
sampling phases—these perform essentially as well as 
Algorithm 1, as long as the structure of resetting epochs 
is retained.

1.2. Related Work
Motivated by the reality that eliciting cardinal valua-
tions is often impractical and prone to errors, a growing 
body of work in computer science studies what can be 
achieved by algorithms that only elicit preferences of 
limited expressiveness. Procaccia and Rosenschein 
(2006) consider voting rules that receive ordinal infor-
mation as input but are evaluated on the cardinal utili-
ties underlying the ordinal reports. They define the 
notion of distortion to measure the worst-case deteriora-
tion of an aggregate cardinal objective (e.g., utilitarian 
social welfare) because of only having access to ordinal 
information. Recent works prove bounds on the distor-
tion for many problems in social choice, including 
matching (Filos-Ratsikas et al. 2014, Anshelevich and 
Sekar 2016, Abramowitz and Anshelevich 2018, Anshe-
levich and Zhu 2019), voting (Boutilier et al. 2015, Cara-
giannis et al. 2017, Goel et al. 2017, Anshelevich et al. 
2018, Munagala and Wang 2019, Gkatzelis et al. 2020, 
Kempe 2020, Mandal et al. 2020, Kizilkaya and Kempe 
2022, Charikar et al. 2024), and participatory budgeting 
(Benade et al. 2021); see Anshelevich et al. (2021) for a 
recent survey. Beyond ordinal inputs, identical elicita-
tion concerns inspired the study of abstractions, consist-
ing of partial or coarsened information, for computing 
market equilibria in Kroer et al. (2021). We are moti-
vated by the same elicitation constraints but where dis-
tortion measures the worst-case loss over all instances, 
we assume values are stochastic; as a result, we can 
guarantee multiple attractive properties simultaneously 
with high probability.

Several papers study fair division in static settings 
under ordinal preferences, for example, Aziz et al. 
(2015), Bouveret et al. (2010), Baumeister et al. (2017), 
and Nguyen et al. (2017), but often these models do not 
assume an underlying cardinal model and work directly 

on the ordinal preferences. Amanatidis et al. (2016) 
assume underlying cardinal information and, among 
other results, bound the approximation ratio of truthful 
mechanisms that elicit rankings. Closer to our work, 
Halpern and Shah (2021) study rules that have access to 
the ranking of the top-k items of each agent and bound 
the ratio of the social welfare of the allocation returned 
by a rule in the worst case. They also characterize the 
value of k needed to achieve prominent notions of fair-
ness, namely envy-freeness up to one item (EF1) and 
approximate maximin share guarantee (MMS), and 
bound the loss in efficiency incurred because of fairness 
constraints in this setting.

Our work contributes to the growing literature in 
dynamic fair division (Kash et al. 2014; Aleksandrov 
et al. 2015; Friedman et al. 2015, 2017; Benade et al. 2018; 
He et al. 2019; Zeng and Psomas 2020; Gkatzelis et al. 
2021; Gorokh et al. 2021; Barman et al. 2022; Vardi et al. 
2022), and we note that the welfare-maximizing algo-
rithms of Dickerson et al. (2014), Kurokawa et al. (2016), 
and Bai and Gölz (2022) work in the dynamic setting, 
even though the their settings are not explicitly 
dynamic. Bogomolnaia et al. (2022) study proportional-
ity and envy-freeness and characterize undominated 
allocation rules for both goods and bads in a model 
which can be interpreted as online with potentially cor-
related stochastic valuations from unknown distribu-
tions, with additional access to the mean of each 
distribution. We make much stronger assumptions 
about valuations (i.e., they are either independent or 
correlated in a specific way) but also have access to less 
information about the arriving item. Bogomolnaia et al. 
(2022) observe the vector of values in addition to the dis-
tribution means, whereas we observe only ordinal infor-
mation. Beyond stochastic valuations, Benade et al. 
(2018) show that it is possible to achieve sublinear envy 
by randomly allocating every item when agents’ valua-
tions are adversarially generated (and this is optimal); 
however, sublinear envy is incompatible with nontrivial 
efficiency even in the cardinal setting (Zeng and Psomas 
2020). To the best of our knowledge, we are the first to 
study imperfect expressivity in dynamic fair division.

We assume fixed agents and items that arrive over 
time; however, other models of online allocation have 
also been studied with the dual objectives of fairness and 
efficiency. For example, Sinclair et al. (2022) consider a 
model with a fixed pool of resources where agents arrive 
over time and a core decision is how much to allocate in 
this time step versus how much to save for the future.

Further afield, our paper is related to the vast litera-
ture on online learning (surveyed in Hoi et al. 2021). In a 
classical setting, there are T days and on each day the 
algorithm follows the advice of one of n experts. The 
algorithm receives reward equal to the value from the 
expert chosen on that day (in the full feedback variant), 
and the objective is to minimize the difference in reward 
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between the algorithm and the best expert in hindsight. 
In contrast, we allocate items to agents without knowing 
their values and minimize the difference in bundle 
values (envy). There are several variants of online learn-
ing with partial information (or bandit algorithms) (see, 
e.g., Cesa-Bianchi and Lugosi 2006), but we are not 
aware of technical connections. Our setting, where hid-
den values are drawn from unknown distributions, also 
reminds of prior-independent auctions (Dhangwatnotai 
et al. 2010), where the task is to design mechanisms that 
perform well in the worst case even compared with the 
tailor-made mechanism which knows the distributions.

2. Preliminaries
A set of T indivisible items/goods, labeled by 
G → {1, 2, : : : , T}, needs to be allocated to a set of n agents, 
labeled by N → {1, : : : , n}. Agent i ↔N assigns a value 
vi, t ↔ [0, 1] to item t ↔ G. We assume agents have additive 
valuation functions, so vi(S) →

P
t↔Svi, t for S ↗ G. An 

allocation A is a partition of the items into bundles 
A1, : : : , An, where Ai is the set of items assigned to agent 
i ↔N . Each allocation has an associated utility profile 
v(A) → (v1(A1), : : : , vn(An)):

Items arrive online, one per round. The agents’ valua-
tions for the item in round t (the t-th item) are realized 
when the item arrives. Every item is allocated immedi-
ately and irrevocably before moving on to the next 
round. We write Gt → {1, 2, : : : , t} for the set of items that 
arrived in the first t rounds, and At

i for the allocation of 
agent i after the t-th item was allocated.

We consider three different models which specify 
how values are generated. In the i.i.d. model, the value 
of agent i for item t is independently drawn from an 
unknown distribution D with cumulative distribution 
function (CDF) F, that is, vi, t ~ D for all i ↔N and t ↔ G. 
In the correlated model, the value of agent i for item t is 
vi, t → vcom

t + εi, t, where vcom
t ~ Dcom is a common value 

drawn from an unknown value distribution with CDF 
Fcom, and each agent draws independent noise εi, t from 
an unknown noise distribution Dnoise. For a given item, 
agent values are now correlated, though they are still 
independent over time. In the non-i.i.d. model, the 
value of item t for agent i is independently drawn from 
an unknown, agent-dependent distribution Di with 
CDF Fi, that is, vi, t ~ Di for all i ↔N and t ↔ G.

We write Vi for a random variable following Di, and 
Vi, t for the random variable representing i’s value for 
item t. It is often convenient to work directly with the 
quantile of an agent’s value rather than the value itself; 
let Qi → Fi(Vi) and Qi, t → Fi(Vi, t), respectively, be the 
random variable denoting the quantile of agent i’s value 
for the associated item. Note that all Qi and Qi, t are i.i.d. 
and follow a Unif[0, 1] distribution. Unless explicitly 
stated otherwise, we assume all distributions are contin-
uous (i.e., do not have point masses).

2.1. Ordinal Information
We assume the realizations vi, t are not available. 
Instead, our algorithms have access to ordinal informa-
tion. Specifically, given current item t, the algorithm can 
access each agent’s ranking for S → {t} ↘ M, M ↗ Gt 1. 
The size of M, which we will informally refer to as the 
memory size, determines the complexity of eliciting infor-
mation from each agent. In one extreme, agent i com-
pares a new item t to a single item they had previously 
received, that is, M ↗ At 1

i , |M | ≃ 1. In the other extreme, 
t is compared with all previous items she received, so 
M → At 1

i : We write σi(S) for the ranking of agent i for a 
subset S of the items, and σ 1

i (S, t) for the position of 
item t ↔ S with respect to a subset S according to agent i. 
The highest-value item is in position 1 and the lowest in 
position |S | . For example, if S → {1, 4}, vi, 1 → 1 and vi, 4 →
0:1, σi(S) → (1 ⇐ 4), σ 1

i (S, 1) → 1 and σ 1
i (S, 4) → 2.

2.2. Algorithms
An algorithm A, in each step t, queries each agent for 
ordinal information with respect to some subset M and 
then makes a (possibly randomized) allocation decision 
based on this ordinal information and the history so far. 
An instance of our problem is parameterized by the 
number of agents n and the (unknown) value distribu-
tions D1, : : : , Dn. Let EP(t) be the event that some algo-
rithm satisfies property P (e.g., envy-freeness or Pareto 
optimality (PO) or ε-welfare) at time t. We are interested 
in the probability that an algorithm satisfies certain 
properties in the limit, as the number of rounds tends to 
infinity, where the randomness is over the random 
choices of the algorithm as well as the randomness in 
the valuations.
Definition 1. An algorithm satisfies P with high prob-
ability if limt⇒⇑Pr[EP(t)] → 1.

Note that this definition of high probability allows 
for dependency on n and the underlying distributions 
(i.e., they are treated as constants).

2.3. Efficiency Notions
An allocation A Pareto dominates an allocation A⇓, 
denoted A ⇐ A⇓, when vi(Ai) ⇔ vi(A⇓

i ) for all i ↔N and 
there exists j ↔N with vj(Aj) > vj(A⇓

j ): An allocation A is 
Pareto efficient or Pareto optimal (PO) if there is no feasible 
(integral) allocation that Pareto dominates it. An alloca-
tion A⇓ is in the (one) swap-neighborhood of A when it 
can be created from A with a single exchange of items 
between one pair of agents. Formally, there exist i, j ↔N 
and items zj ↔ Aj and zi ↔ Ai so that A⇓

i → (Ai \ {zi}) ↘
{zj}, A⇓

j → (Aj \ {zj}) ↘ {zi}, and A⇓
k → Ak for all other 

agents k ≠ i, j. An allocation A is one-swap Pareto optimal 
(SPO) if it is undominated by any allocation in its swap- 
neighborhood. Several notions of approximate Pareto 
efficiency exist (see, e.g., Ikeda et al. 2001 and Leung et al. 
2015); we use the definition by Ruhe and Fruhwirth 
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(1990) according to which an allocation A is α-Pareto effi-
cient when v(A)=α�is undominated.

The social welfare of an allocation A is sw(A) →P
i↔N vi(Ai): Let allocation A↖ denote a (social) welfare 

optimal allocation for which sw(A↖) ⇔ sw(A) for all fea-
sible allocations A. An allocation A provides an α�
approximation to welfare if sw(A) ⇔ α · sw(A↖): For the 
notion of approximate efficiency we consider, observe 
that an α-approximation to welfare implies that the allo-
cation is also α-Pareto efficient.

2.4. Fairness Notions
We focus on a prominent notion of fairness called envy-free-
ness. An allocation AT → (AT

1 , : : : , AT
n ) of T items is envy-free 

(EF) when vi(AT
i ) ⇔ vi(AT

j ) for all i, j ↔N , and c-strongly 
envy-free (c-strong-EF) when vi(Ai) ⇔ vi(Vj) + cT.

3. Ideal Quantile-Based Algorithms
For our analysis, it will be useful to compare our algo-
rithms with ideal algorithms that know exact quantile 
values for every item (in fact, several of our lower 
bounds apply to these stronger algorithms, too). Given 
quantiles, two algorithms of interest are (1) quantile 
maximization, which allocates each item to the agent 
with the highest quantile value for it, and (2) “q-thresh-
old,” which allocates each item uniformly at random 
among agents whose quantile is at least q (and uni-
formly at random over all agents, if all quantile values 
are less than q). Threshold algorithms are natural when 
the memory length is one, whereas unbounded memory 
length allows (approximate) quantile maximization.

In the i.i.d. model, quantile maximization is the same 
as value maximization, and thus envy-free with high 
probability and ex post welfare optimal. The property 
we will use is c-strong envy-freeness, for some 
distribution-dependent constant c, which we state as 
Lemma 1. This was essentially proved by Dickerson 
et al. (2014); we provide an alternate proof that also 
works, largely unchanged, for the n 1

n -threshold algo-
rithm; it can be found in Section EC.1.1 of the Online 
Appendix.
Lemma 1 (Essentially Dickerson et al. 2014). In the i.i.d. 
and non-i.i.d. models, the quantile maximization algorithm 
and the n 1

n -threshold algorithm are c-strongly envy-free, 
with probability 1 exp( !(T)), where the constant 
c → mini↔N (E[Vi |Qi ⇔ 1=2] E[Vi])=(4n).

Note that c is strictly positive because our distribu-
tions are continuous.

Next, we show that in the i.i.d. model, the n 1
n -thresh-

old algorithm gives a 1 1
e ε�approximation to welfare 

(Lemma 2) with high probability. This approximation is 
also obtained by a more general result on single thresh-
old algorithms for prophet inequalities of Ehsani et al. 
(2018), who use the threshold e 1=n. Our setting with 

identical distributions permits a simpler proof, which 
we provide here for the sake of completeness for thresh-
old 1 1=n, which simplifies some later computations.
Lemma 2. In the i.i.d. model, the n 1

n -threshold algorithm 
guarantees a 1 1

e
! "

 ε
! "

approximation to welfare, with 
probability 1 exp( !(T)), for all ε > 0.
Proof. Let F be the CDF of an arbitrary continuous 
distribution. Let τ → F 1 n 1

n
! "

be the value at the n 1
n 

threshold. Note that having Qi ⇔ n 1
n is equivalent to 

having Vi ⇔ τ. We can upper bound the expected max-
imum value by

E[max
i

Vi] ≃ τ+E[(max
i

Vi  τ)+]

≃ τ+
X

i
E[(Vi τ)+] → τ+ n ·E[(V τ)+]

where (s)+ :→ max(s, 0) and V represents a generic draw 
from D.

The n 1
n threshold algorithm can also be interpreted 

as follows: pick a random order over the agents and 
give it to the first one whose value is above τ. We will 
lower bound the expected welfare generated by each 
item in this algorithm, ignoring contributions to the 
welfare when no agent is above the threshold. Fix an 
arbitrary ordering of the agents. The probability the 
item is given to the i-th agent is Pr[Vi ⇔ τ ∧ Vi⇓ < τ∀i⇓
< i] → Pr[Vi ⇔ τ]

Q
i⇓ < iPr[Vi⇓ < τ] (because values are 

independent). Conditioned on this event, the value is 
E[Vi |Vi ⇔ τ]. So, the total welfare is

X

i
E[Vi |Vi ⇔ τ]Pr[Vi ⇔ τ]

Y

i⇓ < i
Pr[Vi⇓ < τ]:

Furthermore, E[Vi |Vi ⇔ τ] → τ+E[Vi τ |Vi ⇔ τ]. In 
addition, we can write E[Vi τ |Vi ⇔ τ] · Pr[Vi ⇔ τ] →
E[(Vi τ)+]. Putting this together, we have that the 
welfare is

X

i
(τ · Pr[Vi ⇔ τ] +E[(Vi τ)+])

Y

i⇓ < i
Pr[Vi⇓ < τ]:

Now, Pr[V ⇔ τ] → 1=n for V ~ D, so we can simplify 
this to

(τ=n +E[(V τ)+])
X

i
(1 1=n)i 1

→ (τ=n +E[(V τ)+]) ·
1 (1 1=n)n

1 (1 1=n)
⇔ (τ=n +E[(V τ)+]) · n · (1 1=e)
→ (1 1=e)(τ+ n ·E[(V τ)+])
⇔ (1 1=e)E[max

i
Vi]:

Finally, for any fixed ε > 0, standard Chernoff bounds 
tell us that with probability 1 exp( !(T)), the opti-
mal welfare of T items is at most T · (1 + ε=2)E[maxiVi]
whereas the welfare of the threshold algorithm is at 
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least T · (1 ε=2) 1 1
e

! "
E[maxiVi]. Indeed, the expected 

optimal welfare is equal to T ·E[maxiVi]. The standard 
multiplicative Chernoff bound says that the probability 
of the sum of i.i.d. variables exceeding (1 + ε=2) times its 
expectation µ is at most exp( µε2=12). Plugging in µ →
T ·E[maxiVi], we get the desired statement. The state-
ment about the welfare of the threshold algorithm fol-
lows similarly. Thus, the algorithm is a

1 1
e

# $
· (1 ε=2)=(1+ε=2)⇔ 1 1

e

# $
(1 ε)

⇔ 1 1
e

# $
 ε�

approximation to welfare, with probability 1 
exp( !(T)). w

Next, we prove that both ideal algorithms are approx-
imately efficient. Let P↖ be the following property of an 
allocation: all items such that exactly one agent has 
quantile values at least 1 1=n are in the bundle of this 
agent. Both ideal algorithms (quantile maximization 
and 1 1=n-threshold) satisfy P↖. We prove that, in the 
non-i.i.d. model, P↖ implies an almost 1=e approxima-
tion to efficiency. Our proof uses the fact that there is a 
(roughly) 1=e probability that exactly one agent has the 
high quantile, so the value of an agent’s bundle in an 
algorithm that satisfies P↖ is, with high probability, a 1=e 
approximation to their value for their T/n most valu-
able items. Therefore, when considering an alternate 
allocation A⇓, the agent in A⇓ that gets at most T/n items 
cannot be improved upon by more than a 1=e factor.
Lemma 3. In the non-i.i.d. model, every algorithm whose 
allocations satisfy P↖ is (1=e ε)-Pareto optimal, with high 
probability, for all ε > 0.

Proof. Fix an ε ↔ (0, 1), and choose ε⇓ such that 1 ε⇓
(1+ε⇓)2 ·

1
e >

1
e ε�(using ε⇓ → ε=3 will do). Fix distributions with 

CDFs F1, : : : , Fn for each agent i ↔N , and a time T. 
Suppressing the superscript, for ease of notation, let 
Ai → AT

i be the bundle allocated at time T to each agent 
i by an algorithm that satisfies P↖. Let Atop

i be the set 
of the T/n most valuable items for each agent i. Let 
Ahigh

i → t ↔ GT |Fi(vi, t) ⇔ 1 1+ε⇓
n

% &
be the set of items 

that agent i has “high” value for, in the sense that they 
come from the top 1+ε⇓

n portion of their distribution. 
We show the following 3n events, Eij for i ↔N and 
j ↔ {1, 2, 3}, occur simultaneously with high probabil-
ity (in T). 

1. Ei1: vi(Atop
i ) ≃ vi(Ahigh

i ).
2. Ei2: vi(Ahigh

i ) ≃ T · (1+ε⇓)
2

n EQ~Unif[1 1=n, 1][F 1(Q)].
3. Ei3: vi(Ai) ⇔ T · 1 ε⇓

en EQ~Unif[1 1=n, 1][F 1(Q)].
Each of these individually will follow from a 

straightforward application of Hoeffding’s inequality 
or Chernoff bounds, showing they each individually 
occur with probability exponentially close to one in T. 

This implies that they all occur simultaneously with 
high probability. Finally, we will show that conditioned 
on all 3n occurring, the allocation is (1=e ε)-PO.

Let us begin with Ei1 for each agent i. The event 
occurs when there are at least T/n items t ↔ GT such 
that Fi(vi, t) ⇔ 1 1+ε⇓

n . Each item independently satis-
fies this property (Fi(vi, t) ⇔ 1 1+ε⇓

n ) with probability 
1+ε⇓

n . Hence, the probability this does not occur is at 
most 2 exp( 2ε⇓2T).

Next, consider Ei2 for each agent i. The expected con-
tribution of each item to vi(Ahigh

i ) is

E
Q~Unif[0,1]

F 1
i (Q) · I Q ⇔ 1 1 + ε⇓

n

’ (’ (

→ 1 + ε⇓
n E

Q~Unif[1 1+ε⇓
n , 1]

[F 1
i (Q)]

≃ 1 + ε⇓
n E

Q~Unif[1 1
n, 1]

[F 1
i (Q)]:

We now use the following multiplicative version of 
the Chernoff bound,

Pr
X

i
Vi ⇔ (1 + δ)

X

i
E[Vi]

" #

≃ exp  δ
2

3
X

i
E[Vi]

 !

, 

to conclude that the probability that vi(Ahigh
i ) exceeds 

T · (1+ε⇓)
2

n EQ~Unif[1 1=n, 1][F 1(Q)] ⇔ (1 + ε⇓) ·E[vi(Ahigh
i )] is 

at most exp(( ε⇓2(1 + ε⇓)EQ~Unif[1 1=n, 1][F 1
i (Q)] · T)=3n).

Finally, consider Ei3 for each agent i. We will show 
that the expected contribution of each item to vi(Ai) is 
at least 1

en ·EQ~Unif 1 1
n, 1[ ][F

 1
i (Q)]. Indeed, consider an 

item such that the quantile for agent i is Qi > 1 1=n 
whereas Qj < 1 1=n for all agents j ≠ i. This occurs 
with probability 1

n · 1 1
n

! "n 1 ⇔ 1=en, and when this 
occurs, because the algorithm satisfies P↖, it must allo-
cate the item to i. Further, when this does occur, the 
expected value of such an item is EQ~Unif 1 1

n, 1[ ][F
 1
i (Q)], 

because it is independent of the other agent’s values. 
Hence, the expectation is at least 1

enEQ~Unif[1 1
n, 1][F 1

i (Q)]. 
Finally, we again use a multiplicative Chernoff bound to 
show that

Pr
"

vi(Ai) ≃ (1 ε⇓) · T
en E

Q~Unif 1 1
n, 1[ ]

[F 1
i (Q)]

#

≃ exp  
ε⇓2EQ~Unif 1 1

n, 1[ ][F
 1
i (Q)]

2en · T
 !

:

Now, suppose that Eij hold for all i ↔N and 
j ↔ {1, 2, 3}. We show that this implies the allocation 
A1, : : : , An is (1=e ε)-PO. Fix an arbitrary allocation 
A⇓

1, : : : , A⇓
n. We show there exists an agent i ↔N such 

that vi(A⇓
i ) < vi(Ai)

1=e ε. First, there must be some agent i 
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such that |A⇓
i | ≃ T=n. Because A⇓

i can be at most as 
valuable as the most valuable T/n items, we have

vi(A⇓
i ) ≃ vi(Atop

i )
≃ (Ei1) vi(Ahigh

i )

≃ (Ei2) T · (1 + ε⇓)2

n E
Q~Unif[1 1=n, 1]

[F 1(Q)]

≃ (Ei3) · (1 + ε⇓)2

(1 ε⇓)(1=e)vi(Ai)

<
1

1=e εvi(Ai), 

as needed. w

4. Unbounded Memory in the i.i.d. Model
We explore some fundamental limits of our setting. Effi-
ciency by itself is easy: allocate all items to the same agent. 
However, in contrast to the cardinal setting, we find one- 
swap Pareto efficiency is incompatible with envy- 
freeness with high probability, even for two i.i.d. agents, 
and even when the underlying distribution is known.
Theorem 1. In the i.i.d. model, even for n → 2 agents, there 
does not exist an algorithm A which is one-swap Pareto 
efficient and envy-free with high probability, even when 
values are sampled according to D, for any continuous, 
bounded, and known value distribution D.

Proof. Fix an arbitrary, continuous value distribution 
D and an algorithm A.

As the agents are a priori identical, we can assume 
without loss of generality that A gives the first item to 
agent 1. We will show that, with a positive probabil-
ity, this decision becomes an irrevocable “mistake,” in 
the sense that agent 2 really liked the item and agent 1 
did not. This mistake will make envy-freeness and 
one-swap PO incompatible.

First, we find values to make this mistake suffi-
ciently bad. Let g : [0, 1]⇒ [0, 1] be the function 
g(q) → E[V |V ≃ F 1(q)]=E[V], which maps a quantile 
q to the ratio of the expected value of an item below 
quantile q to the expected value of an arbitrary item. g 
is a continuous increasing function with g(1) → 1, so 
there is some quantile q̂ < 1 such that g(q̂) ⇔ 0:9. Let 
q↖2 → max(q̂, 0:9). Because g is increasing, g(q↖2) ⇔ g(q̂) ⇔ 0:9. 
Let q↖1 → 0:1, v↖1 → F 1(q↖1), and v↖2 → F 1(q↖2). Let Emistake 

be the event that V1, 1 < v↖1 and V2, 1 > v↖2. Define c :→
Pr[Emistake] → (1 q↖2) · q↖1 to be the probability that 
Emistake occurs. D is continuous, so c > 0. Our lower 
bound on the probability that the allocation at step t 
violates either envy-freeness or one-swap PO will 
only depend on c.

Let Ej be the event that for item j we have that both 
V1, j ⇔ v↖1 and V2, j ≃ v↖2. Notice that under Ej, though 
agent 1 has higher expected quantile than agent 2, 
agent 2 still has higher actual quantile for the item 

with constant probability. If Emistake occurs, the only 
way to maintain one-swap Pareto efficiency is to allo-
cate item j to agent 1 every time Ej occurs; otherwise, 
swapping items 1 and j between the two agents yields 
a Pareto improvement. This constraint will make envy- 
freeness unlikely because, conditioned on Emistake, Ej will 
occur for a large majority of items, leading to a large dis-
crepancy in bundle sizes.

Let Emanyhigh(t) be the event 
Pt

j→2 V2, j · I[Ej] ⇔ (t 1)
·0:7 ·E[V]. In other words, Emanyhigh(t) occurs when 
agent 2 has a high value for items j, 2 ≃ j ≃ t, for 
which Ej occurs (i.e., the items that must be given to 
agent 1 in order to satisfy one-swap PO). Let 
Enormalval(t) denote the event that 

Pt
j→2 V2, j ≃ (t 1) ·

1:1 ·E[V]. We first show that for sufficiently large t, 
the probability that both Emanyhigh(t) and Enormalval(t)
occur is at least 1/2. To do so, we prove each event 
occurs with probability at least 3/4, and then apply a 
union bound.

First, because each V1, j and V2, j are independent, 
Pr[Ej] ⇔ 0:9 · 0:9 → 0:81, and E[V2, j |Ej] → E[V2, j |V2, j ≃ v↖2]. 
Also, from the definition of g(q̂) and the choice of 
q↖2, E[V2, j |V2, j ≃ v↖2] ⇔ 0:9 ·E[V]. It follows that E[V2, j ·
I[Ej]] → E[V2, j |Ej] · Pr[Ej] ⇔ 0:729 ·E[V]. A straightfor-
ward Chernoff bound establishes that Pr[Emanyhigh(t)]
⇔ 3=4 for t at least 6

E[V].
Let Yj → V2, j · I[Ej] for all j. Then, E[Yj] ⇔ 0:729 ·

E[V], and E[PT
j→2 Yj] ⇔ (t 1) · 0:729 ·E[V]. We are 

interested in the probability that 
Pt

j→2 Yj is at least 
(t 1) · 0:7 ·E[V], that is, the probability that 

Pt
j→2 Yj is 

at least 0:7
0:729 its expectation.

We use the following Chernoff bound: Let Y1, : : : , 
Yn be independent random variables that take values 
in [0, 1], and let Y be their sum. Then, for all δ ↔ [0, 1), 
Pr[Y ≃ (1 δ)E[Y]] ≃ e E[Y]δ2=2.

Continuing our derivation:

Pr
Xt

j→2
Yj ⇔ (t 1) · 0:7 · E[V]

2

4

3

5

→ Pr
Xt

j→2
Yj ⇔

0:7
0:79E

Xt

j→2
Yj

2

4

3

5

2

4

3

5

→ 1 Pr
Xt

j→2
Yj <

0:7
0:79E

Xt

j→2
Yj

2

4

3

5

2

4

3

5

⇔ 1 Pr
Xt

j→2
Yj ≃ 0:89E

Xt

j→2
Yj

2

4

3

5

2

4

3

5

⇔ 1 exp  
E[Pt

j→2 Yj](0:89)2

2

 !

, 

which is at least 3/4 when E[Pt
j→2 Yj](0:89)2=2 is at least 
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ln(4), or, equivalently, if t ⇔ 1 + 2 ln(4)=(0:7 · (0:89)2·
E[V]). Because 2 ln(4)=(0:7 · 0:892) < 5 and E[V] < 1, 
so t ⇔ 6=E[V] suffices. Pr[Enormalval(t)] ⇔ 3=4 follows 
similarly.

Next, observe that Emanyhigh(t) ↙ Enormalval(t) is indepen-
dent of Emistake, because the two events depend on dis-
joint sets of independent random variables. Therefore, 
Pr[Emistake ↙ Emanyhigh(t) ↙ Enormalval(t)] → Pr[Emistake] · Pr 
[Emanyhigh(t) ↙ Enormalval(t)] ⇔ c · 1=2 for t ⇔ 6=E[V].

Let ESPO(t) and EEF(t) be the events that the allocation 
at step t is one-swap PO, and envy-free, respectively. 
When Emistake ↙ Emanyhigh(t) ↙ Enormalval(t) occur, the allo-
cation cannot be both one-swap PO and envy-free, that 
is, Pr[ESPO(t) ↙ EEF(t) |Emistake ↙ Emanyhigh(t) ↙ Enormalval(t)] → 1. 
To see this, notice that first, because of Emistake, the only 
way to remain one-swap PO is to give each item j to 
agent 1 every time Ej occurs. Second, Emanyhigh(t) ensures 
that agent 2’s value for these items, and hence agent 2’s 
value for agent 1’s bundle, is at least 0:7 · (t 1) ·E[V]
+v2, 1. Third, Enormalval(t) ensures that agent 2’s value for 
all items is at most 1:1 · (t 1) ·E[V] + v2, 1, which is 
strictly less than twice her value for agent 1’s bundle. 
We conclude that the allocation at step t cannot be pro-
portional, and is hence not envy-free. Overall, we have

Pr[ESPO(t)]+Pr[EEF(t)]
⇔ Pr[ESPO(t)↘EEF(t)]
→ Pr[ESPO(t)↙EEF(t)]
⇔ Pr[ESPO(t)↙EEF(t)↙Emistake↙Emanyhigh(t)↙Enormalval(t)]
→ Pr[ESPO(t)↙EEF(t) |Emistake↙Emanyhigh(t)↙Enormalval(t)]
· Pr[Emistake↙Emanyhigh(t)↙Enormalval(t)]
⇔ c=2:

Therefore, for t ⇔ 6=E[V], at least one of Pr[ESPO(t)]
and Pr[EEF(t)] is at least c=4.We conclude that no algo-
rithm can be both envy-free and one-swap PO with 
high probability. w

Theorem 1 implies that when we have access to only 
ordinal information, we need to settle for some approxi-
mation to envy-freeness and efficiency. Our main posi-
tive result for this section is an algorithm that essentially 
matches the aforementioned lower bound (noting that 
an allocation satisfying a (1 ε) approximation to wel-
fare is also (1 ε)-PO).
Theorem 2. In the i.i.d. model, Algorithm 1 achieves envy- 
freeness and a (1 ε) approximation to welfare, with proba-
bility 1 exp( !(T1=10)), for all ε > 0.

Algorithm 1 works in epochs: each epoch k has 
an exploration/sampling phase, where each agent i 
receives a predetermined set of items, denoted Gk

i , irre-
spective of their valuation. This is followed by an 
exploitation/ranking phase, where each item is given to 

the agent with the highest empirical quantile (with 
respect to items received in the preceding exploration 
phase, i.e. Gk

i ).

Algorithm 1 (EF ! (1 ε)-Welfare)
for epoch k → 1: : : do

Sampling Phase: (n · k4 items)
Give the j-th item in this phase to agent j(mod n).
Ranking Phase: (k8 items)
for each item g in this phase do

Elicit σ 1
i (Gk

i ↘ {g}, g) for all i ↔N .
Allocate g to an agent j ↔ arg mini↔Nσ 1

i (Gk
i ↘ {g}, g).

We start with a technical lemma, which gives us a 
bound on the length of the exploration period we need 
in each epoch. The following definition will be useful.
Definition 2. A sample of n · m items (where each 
agent is allocated exactly m items) is ε-accurate if, 
with probability at least 1 ε, the relative rank of a 
fresh item (with respect to the sample) is highest for 
the agent with highest quantile value.
Lemma 4. If ε,δ ↔ (0, 1), and m ↔ Z+ are such that 
ε > 2n

             
ln(2n=δ)

2m

q
, then giving m samples to each agent is 

ε-accurate with probability at least 1 δ.
Proof. We will use the Dvoretzky-Kiefer-Wolfowitz 
(DKW) inequality (Dvoretzky et al. 1956, Massart 
1990) to show the empirical CDF of sampled quantiles 
is reasonably close to a uniform distribution with 
probability 1 δ. We then show this is sufficient to 
guarantee ε-accuracy for the chosen ε. Let F̂i be the 
empirical CDF of the sampled quantiles for agent i, 
that is, F̂i(q) for q ↔ [0, 1] is a random variable that 
describes the proportion of sampled items with quan-
tile at most q. Note that F̂i exactly captures agent i’s 
ranking for a new item: If a fresh item has quantile qi 
for agent i and qj for agent j, then i ranks it higher than 
j exactly when F̂i(qi) > F̂j(qj).

Noting that the CDF for the actual quantile distribu-
tion (i.e., the uniform distribution) is the identity on 
[0, 1], the DKW inequality states that for all γ > 0, 
Pr[supq↔[0, 1] | F̂i(q) q | > γ] ≃ 2e 2mγ2 . We want this 
condition to hold for all n agents, simultaneously, 
with probability at least 1 δ, so we pick γ�such that 
2e 2mγ2 ≃ δ=n and apply a union bound; it suffices to 
choose γ →

                          
ln(2n=δ)=2m

p
.

We now show that the DKW condition (supq↔[0, 1]
| F̂i(q) q | ≃ γ) being satisfied for all agents i is 
sufficient to guarantee ε-accuracy. Consider sampling 
quantiles Q1, : : : , Qn for a fresh item. Let imax ↔
arg maxi↔N Qi be a quantile-maximizing agent (techni-
cally a random variable). Our goal is to show that 
with probability at least 1 ε�(with respect to the sam-
ples of Q1, : : : , Qn) F̂imax(Qimax) > F̂j(Qj) for all j ≠ imax. 
This ensures that imax has the highest empirical rank, 
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and hence receives the item. Let Q(1), : : : , Q(n) be the 
respective order statistics. A key observation is that 
Q(n) Q(n 1) ~ Beta[1, n] (Gentle 2009). The probability 
density function (PDF) of a Beta[1, n] distribution is 
f (x) → nxn 1 for x ↔ [0, 1]. Because f (x) ≃ n, Pr[Q(n) 
Q(n 1) < ρ] < nρ�for all ρ > 0. Plugging in ρ → 2γ, we 
have Pr[Q(n) Q(n 1) ≃ 2γ] < 2nγ. We will show that 
as long as ε > 2nγ, ε-accuracy holds. First, we have 
Pr[Q(n) Q(n 1) > 2γ] > 1 ε. Conditioned on Q(n) 
Q(n 1) > 2γ, the item is given to imax. To see why, 
observe Qimax → Q(n) and Qj ≃ Q(n 1) for all j ≠ imax, by 
definition. Using the DKW inequality condition, it fol-
lows that F̂imax(Qimax) ⇔ Qimax  γ > Qj + γ ⇔ F̂j(Qj). We 
conclude that for ε > 2n

                          
ln(2n=δ)=2m

p
, ε-accuracy is 

satisfied with probability at least 1 δ. w

Using Lemma 4, we can get, for each epoch, a bound 
on the number of decisions where Algorithm 1 differs 
from the quantile maximization algorithm.

Lemma 5. The allocation of Algorithm 1 differs from that 
of the quantile maximization algorithm after T steps by at 
most f(T) items with probability 1 exp( !(T1=10)), 
where f (T) ↔ O(T15=16).
Proof. We start by bounding the accuracy of Algo-
rithm 1 in each epoch k. In epoch k, each agent 
receives k4 items during the sampling phase. We claim 
that the sample in epoch k for k ⇔ 3n is εk-accurate for 
εk :→ 3n=k3=2 with probability at least 1 δk, for 
δk :→ 2n=e2k. Indeed, first note that by the choice of k, 
we have that εk,δk ↔ (0, 1). Hence, we just need to 
show that these values satisfy the inequality of 
Lemma 4. We have that

εk →
3n
k3=2 >

2n
k3=2 → 2n

     
1
k3

r
→ 2n

             
ln(e2k)

2k4

r
→ 2n

                    
ln(2n=δk)

2k4

r
:

Next, fix a time T. Slightly abusing notation, let k(t) →
min{K ↔ N |PK

k→1 nk4 + k8 ⇔ t} be the function that 
given an item t returns the epoch item t is in. Notice 
that T ⇔Pk(T) 1

k→1 nk4 + k8 ⇔ (k(T) 1)8, and therefore 
k(T) ≃ 2T1=8. In any run of the algorithm, we can clas-
sify every item t ≃ T into at least one of the following 
five categories. 

1. Item t was allocated in one of the first 3n 1 
epochs, that is, k(t) < 3n.

2. Item t was allocated in one of the first ∝T1=10′
epochs, that is, k(t) ≃ ∝T1=10′.

3. Item t was allocated in the sampling phase of 
epoch k(t) ⇔ 3n.

4. Item t was allocated in the ranking phase of epoch 
k(t) ⇔ 3n; the epoch was εk(t)-accurate.

5. Item t was allocated in the ranking phase of epoch 
k(t) ⇔ ∝T1=10′+ 1; the epoch was not εk(t)-accurate.

We say an item t was a mistake if it was given to an 
agent with a nonmaximum quantile for it. We show 

that the numbers of mistakes in each category are 
bounded by 310n9, T1=2n + T9=10, 2nT5=8, 9nT15=16, and 
0, with probabilities 1, 1, 1, 1 exp( !(T7=8)), and 
1 exp( !(T1=10)), respectively. This implies that the 
total number of mistakes is at most the sum of these 
quantities, which, via a union bound, is O(T15=16) with 
probability 1 exp( !(T1=10)), via a union bound.

The number of items in the first category is at most
X3n 1

k→1
k4n + k8 ≃

X3n

k→1
(3n)4n + (3n)8

≃ (3n)5n + (3n)9 ≃ 310n9:

Hence, the number of mistakes in the first category is 
also at most 310n9.

For the second category, a similar computation 
gives a bound of

X∝T1=10′

k→1
k4n + k8 ≃ ∝T1=10′ · (∝T1=10′4n + ∝T1=10′8)

≃ T1=2n + T9=10:

For the third category, because k(T) ≃ 2T1=8, we have 
that the total number of items in the sampling phase 
is (with probability one) upper bounded by

Xk(T)

k→1
nk4 ≃ nk(T)5 ≃ 2nT5=8:

Each item t in the fourth category has probability εk(t) of 
being a mistake. The expected number of mistakes is 
therefore at most Pk(T)

k→3n εkk8 →Pk(T)
k→3n 3nk13=2 ≃ 3nk(T)15=2 

≃ 8nT15=16: Using Hoeffding’s inequality, we get that 
the number of mistakes is at most (8n + 1)T15=16, because 
a deviation of T15=16 occurs with probability at most 
exp( 2T15=8=T) → exp( 2T7=8).

For the fifth category, we will union bound over the 
probability that any epoch k ⇔ T1=10 is not εk-accurate. 
This probability is at most

X⇑

k→∝T1=10′+1
δk →

X⇑

k→∝T1=10′+1
2n=e2k

≃ 2n exp( 2T1=10) · 1
1 1=e2

≃ 3n exp( 2T1=10):

Hence, with probability at least 1 3n exp( 2T1=10), 
there will be zero items in this category. w

Finally, we can prove Theorem 2 as a relatively 
straightforward consequence of Lemma 5, because the 
ideal quantile maximization algorithm satisfies nice 
properties (e.g., Lemma 1).
Proof of Theorem 2. Fix a distribution D with CDF F 
and let V be a random variable with distribution D. 
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Fix some ε�to be (1 ε)-welfare-maximizing. Let ET
1 be 

the event that the maximum social welfare at time T is 
at least 1=2 ·E[V] · T, let ET

2 be the event that quantile 
maximization is c-strongly EF for c → (E[V |F(V)⇔1=2] E[V])

4n , 
and let ET

3 be the event that Algorithm 1 differs from 
quantile maximization on at most f(T) items from 
Lemma 5. We first claim that ET

1 ↙ ET
2 ↙ ET

3 occurs with 
probability 1 exp( !(T1=10)). Note that Lemmas 1
and 5 tell us ET

2 and ET
3 each occur with probability 1 

exp( !(T)) and 1 exp( !(T1=10)), respectively. For 
ET

1 , the maximum value for each item is in expectation 
at least the expected value for a single agent E[V]. 
Hence, a Chernoff bound tells us ET

1 occurs with prob-
ability at least 1 exp( E[V]T=8). The claim holds via 
a union bound.

Next, note that for sufficiently large T, because 
f (T) ↔ o(T), f (T) ≃ (E[V |F(V)⇔1=2] E[V])

8n · T and f (T) ≃ ε=2 ·
E[V] · T (for any fixed ε�that does not depend on T). 
Fix such a sufficiently large T. We show that, condi-
tioned on ET

1 ↙ ET
2 ↙ ET

3 , both EF and (1 ε)-welfare 
hold. Let AQM → (AQM

1 , : : : , AQM
n ) be the allocation of 

quantile maximization and A → (A1, : : : , An) be the 
allocation of Algorithm 1. Beginning with envy- 
freeness, we have that for all pairs of agents i and j,

vi(Ai)⇔(ET
3 ) vi(AQM

i ) f (T)

⇔(ET
2 ) vi(AQM

j ) f (T) + (E[V | F(V)⇔ 1=2] E[V])T
4n

⇔(ET
3 ) vi(Aj) 2f (T) + (E[V | F(V)⇔ 1=2] E[V])T

4n
⇔ vi(Aj), 

so the allocation is envy-free. Further, noting that 
sw(AQM) is the maximum social welfare, we have the 
welfare approximation is at least

sw(A)
sw(AQM)

→ sw(AQM) (sw(AQM) sw(A))
sw(AQM)

⇔(ET
3 ) sw(AQM) f (T)

sw(AQM)

→ 1 f (T)
sw(AQM)

⇔(ET
1 ) 1 f (T)

1=2 ·E[V] · T

⇔(ET
3 ) 1 ε=2 ·E[V] · T

1=2 ·E[V] · T

→ 1 ε, 

as needed. w

5. Bounded Memory in the i.i.d. Model
In this section, we are interested in the more ambitious 
problem of designing dynamic algorithms with even 
more limited partial information: each agent is allowed 
to “remember” only a single item. We first show that, in 
this case, we need to settle for constant approximations 
of welfare.
Theorem 3. In the i.i.d. model, given a memory of one item 
per agent, there is no algorithm A that is 0.999-welfare- 
maximizing with high probability for all continuous and 
bounded value distributions.

Proof. We prove that this negative result holds even 
for an even stronger class of algorithms in which, at 
each step t, the algorithm selects quantile thresholds 
qt

1, : : : , qt
n ↔ [0, 1] for each agent, and once an item 

arrives the algorithm observes, for each agent, 
whether the quantile of their sampled value Qi, t is 
above or below the threshold qt

i . Note that this pro-
vides at least as much information about the fresh 
item as comparing it to any single prior item, because 
there is some uncertainty about the values and quan-
tiles of all prior items.

We first focus on the algorithm for a single time 
step and show there is a distribution of values such 
that, regardless of the quantile thresholds selected and 
allocations made, it cannot do well.

Fix a number of agents n and assume n ⇔ 3. We han-
dle the special case of n → 2 at the end of this proof, as 
it requires a different distribution. For simplicity we 
consider a distribution that takes values larger than 
one; rescaling (specifically, dividing all values by 
2 + ε) gives a distribution upper bounded by one and 
does not affect any of our arguments. Consider the 
value distribution V, with

V ~ Unif[0,ε] with probability 1 1
n ,

Unif[1, 1 + ε] with probability 2
3n , and

Unif[2, 2 + ε] with probability 1
3n

8
><

>:

for some small ε > 0 to be fixed later. Intuitively, V is a 
continuous version of a discrete distribution which 
takes low value (near zero) with probability 1 1

n, 
medium value (near one) with probability 2

3n, and high 
value (near two) with probability 1

3n. Let FV be its CDF. 
Trivially, the maximum social welfare of T items when 
all agents have this value distribution is at most 
T · (2 + ε).

We show that regardless of what quantile thresh-
olds the algorithm chooses at step t and which deci-
sion it makes given the resulting signals, the expected 
value of the agent receiving item t is at least (1 ε) ·

1
144e away from optimal. To that end, fix arbitrary 
thresholds q1, : : : , qn. First, we partition the agents 
depending on whether their quantile qi is above or 
below 1 2n

3 . We let Nbelow → i ↔ [n] |qi < 1 2n
3

% &
and 
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Nabove → i ↔ [n] | qi ⇔ 1 2n
3

% &
. Either |Nbelow | ⇔ ∞n=2∈

or |Nabove | ⇔ ∞n=2∈; we analyze each case separately. 
Because n ⇔ 3, we have ∞n=2∈ ⇔ 2. 

Case I. |Nbelow | ⇔ ∞n=2∈. In this case, it will be diffi-
cult for the algorithm to distinguish between agents in 
Nbelow with medium value and those with high value. 
Consider the event E that one agent imax ↔ Nbelow has 
quantile Qimax > 1 1

3n, one agent ismax ↔ Nbelow has 
quantile Qismax ↔ (1 2

3n , 1 1
3n), and all other agents i ↔

N \ {imax, ismax} have quantile Qi < 1 1
n. First, we 

show that Pr[E] ⇔ 1
72e, a constant. To compute this prob-

ability, note that there are at least ∞n=2∈ · (∞n=2∈ 1)
choices of imax and ismax. Once these have been selected, 
the probability of E occurring for this pair of agents is

1
3n · 1

3n · 1 1
n

# $n 2
⇔(n⇔3) 1

9n2 1 1
n

# $n 1
⇔ 1

9en2 :

Because ∞n=2∈ · (∞n=2∈ 1) ⇔ n2=8, we can that conclude 
Pr[E] ⇔ 1

72e. Conditioned on E occurring, imax has high 
value, ismax has medium value, and all other agents 
have low value. However, from the perspective of the 
algorithm, two agents (imax and ismax) give a high sig-
nal, and it’s equally likely that each of them is the agent 
with the high value (note that we condition on E). The 
algorithm must therefore allocate the item to an agent 
with at most medium value (upper bounded by 1 + ε) 
with probability at least 1/2, even though an agent 
with value at least two exists. Hence, in this time step, 
the algorithm has an additive error (compared with the 
optimum welfare) of at least (1 ε) with probability at 
least 1

144e.
Case II. |Nabove | ⇔ ∞n=2∈. In this case, it will be diffi-

cult for the algorithm to distinguish between agents in 
Nabove that have medium value and those with low 
value. Consider the event E that one agent imax ↔ Nabove 

has quantile Qimax ↔ 1 1
n , 1 2

3n
! "

and all other agents 
i ↔N \ {imax} have quantile Qi < 1 1

n. First, we show 
that Pr[E] ⇔ 1

6e. Indeed, there are at least n=2 choices for 
imax. For a fixed choice of imax, the probability of E 
occurring is 1

3n · 1 1
n

! "n 1 ⇔ 1
3en, and there are at least 

n=2 choices for imax, so Pr[E] ⇔ 1
6e. Agent imax and the 

other members of Nabove (there is at least one more) are 
indistinguishable to the algorithm as they all have a 
low signal, so the algorithm must give it to an agent 
with value at most ε�with probability at least 1/2 even 
though an agent with value at least one exists. Hence, 
in this time step, the algorithm has an additive error 
(compared with the optimum welfare) of at least (1 ε)
with probability at least 1

12e.
In either case, for every time step, the algorithm has 

an additive error of at least (1 ε) with probability at 
least 1

144e, irrespective of the past allocations. As time 
steps are independent, standard tail bounds give that, 
for sufficiently small ε > 0, the error is at least 1 ε

1,000 T 

with high probability. The optimal social welfare is at 
most (2 + ε) · T; we conclude the algorithm can be no 
more than an 0:999 approximation to welfare.

Finally, we handle the case of two agents. Assume 
values are drawn from a Unif[0, 1] distribution. Let q1, 
q2 be the quantile thresholds selected by the algorithm 
and, without loss of generality, suppose that 0 ≃ q1 
≃ q2 ≃ 1. At least one of the differences q1 0, q2 
q1, 1 q2 must be at least 1/3. Suppose q2 q1 ⇔ 1=3 
(the other cases are symmetric). We investigate the 
event that both agents have Qi ↔ [q1, q2], so that agent 1 
signals high and agent 2 signals low, which occurs with 
probability at least 1/9. Conditioned on this event, the 
signals do not provide any additional information, so 
the algorithm chooses the agent with smaller value at 
least half of the time. In this case, the expected differ-
ence between the larger and smaller values is 1/9. 
Hence, the expected difference of the value from the 
algorithm versus the maximum social welfare is at least 
1
9 · 1

2 · 1
9 → 1=162 on each item. The maximum social wel-

fare is at most T, and we expect the difference to be at 
least T=1, 000 because of concentration, so the algorithm 
cannot guarantee more than a 0.999 approximation, as 
needed. w

Our positive result matches this lower bound up to a 
constant.
Algorithm 2 (Bounded Memory)

for Epoch k → 1: : : do
Sampling Phase: (k9 items)
NOTWITHINERROR ∋ N 

for trial → 1, : : : , k3 do
for i ↔ NOTWITHINERROR do

Allocate the next item to agent i, and 
update her memory

Test k6 |NOTWITHINERROR | number of items 
(for each agent)
for i ↔ NOTWITHINERROR do

if Proportion of test items for agent i is within 
61=k2 of (n 1)=n then
NOTWITHINERROR ∋ NOTWITHINERROR \ {i}

Ranking Phase: (k18 items)
for each item g in this phase do

if Some agent i has high signal then
Give g to a (uniformly) random such agent

else
Give g to an agent uniformly at random

Theorem 4. In the i.i.d. model, given a memory of one item 
per agent, Algorithm 2 achieves envy-freeness and a 1 
1=e ε�approximation to welfare, with probability 1 exp 
( !(T1=20)), for all ε > 0.

Algorithm 2 works in epochs, similar to Algorithm 1. 
In each epoch’s exploration/sampling phase, it tries to 
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find an item whose quantile is close to the n 1
n -threshold 

algorithm. Epoch k makes k3 such attempts, and each 
candidate item is tested against k6 fresh items to get an 
estimated quantile. If everything is within the error we 
can tolerate, the algorithm remembers this item for this 
epoch; otherwise, the agent has an arbitrary item in 
memory during this epoch. During the exploitation/ 
ranking phase, Algorithm 2 tries to mimic the 
n 1

n -threshold algorithm (instead of the quantile maximi-
zation algorithm as Algorithm 1 did), and, in fact, inher-
its its approximation factor (Lemma 2) exactly.

Our first technical lemma, Lemma 6, gives necessary 
bounds on the various variables of Algorithm 2 for a 
sample to be ε-accurate with respect to the ideal thresh-
old algorithm; see Definition 3. Its proof can be found in 
Section EC.1.2 of the Online Appendix.
Definition 3. A set of n items in memory, one for each 
agent, is ε-accurate with respect to q↖ if with probability 
at least 1 ε, when a fresh item is sampled, the agents 
with true quantile above q↖ are exactly those that value 
the fresh item more than their item in memory.

Lemma 6. For all ε,δ ↔ (0, 1), if (1) at least τ�trials are 
done with τ ⇔ ln(2n=δ)

ε=(3n) , and (2) at least (�test items are used 
per trial for ( ⇔ 18n2

ε2 ln 4τn
δ

! "
, and (3) the tolerance for accept-

ing an item is ε=(3n), then the items in memory are 
ε-accurate (for all agents, simultaneously) with respect to 
q↖ → n 1

n , with probability at least 1 δ.

Though Lemmas 4 and 6 resemble each other (and 
are used in analogous ways), the proofs require differ-
ent techniques, as the sampling processes are very dif-
ferent. Next, we prove an analog to Lemma 5: the 
number of disagreements between Algorithm 2 and the 
ideal threshold algorithm is sublinear. The proofs of 
Lemmas 5 and 7 are similar, precisely because Lemma 4
matches Lemma 6. Theorem 4 follows from Lemma 7 as 
in the i.i.d. case. The proofs of Lemma 7 and Theorem 4
can be found in Sections EC.1.3 and EC.1.4 of the Online 
Appendix, respectively.
Lemma 7. The allocation of Algorithm 2 differs from that 
of the n 1

n -threshold algorithm after T steps by at most f(T) 
items with probability 1 exp( !(T1=20)), where f (T) ↔
O(T19=20).

6. Agents with Correlated Values
Recall that vi, t → vcom

t + εi, t, with common value vcom
t 

drawn from a common distribution Dcom and agent- 
specific noise εi, t drawn from noise distribution Dnoise. 
This class of valuations was captured in a more general 
class considered by Dickerson et al. (2014), who show 
that welfare maximization is still EF with high probabil-
ity (and, by definition, a 1 approximation to welfare). 
However, it is unclear whether these results carry over 

when only given partial information because the corre-
lation can make it harder to “learn” agents’ relative 
values during sampling.

In this section we show that, at least under mild restric-
tions on Dcom and Dnoise, we can still devise algorithms 
that are able to well approximate the ideal welfare- 
maximizing algorithm. The restrictions are as follows: (i) 
Interval support: the support of each of these distributions 
is some intervals [acom, bcom] and [anoise, bnoise]. (ii) PDF- 
boundedness: there are constants 0 < p ≃ q such that the 
probability density functions of Dcom and Dnoise are 
bounded between p and q on their support. These 
assumptions are required only in this section and are 
quite common in the distributional fair division 
literature—they are the exact assumptions of Bai and 
Gölz (2022) and weaker than those of Manurangsi and 
Suksompong (2021), who also require the support to be 
[0, 1]. We call this method of generating values the com-
mon-noise model and establish the following.
Theorem 5. In the common-noise model, running Algorithm 1
with sampling phases per agent of length k6 and exploiting 
phases of length k12 achieves envy-freeness and a (1 ε) approx-
imation to welfare with probability 1 exp( !(T1=14)), for 
all ε > 0.

The proof of this theorem is similar to that of Theorem 
2. The main difference is that Lemma 4 is not valid for 
correlated values. Nonetheless, using new techniques, 
we show the following analog.

Lemma 8. For all (p, q)-bounded common and noise distri-
butions Dcom and Dnoise supported on [acom, bcom] and 
[anoise, bnoise], if ε,δ ↔ (0, 1) and m ↔ Z+ are such that

ε >
2nq

min bcom acom

bnoise anoise, 1
! "

· p
· ln(2n=δ)

2m

# $1=4
, 

then giving m samples to each agent is ε-accurate with proba-
bility at least 1 δ.
Proof. It is without loss of generality to assume that 
the supports of Dcom and Dnoise are translated to start 
at zero, that is, are of the form [0, bcom acom] and 
[0, bnoise anoise]. Indeed, translating the values does 
not change whether an item goes to the correct agent. 
For convenience we assume the supports are [0, bcom]
and [0, bnoise] throughout the proof, then translate the 
distributions back for the final bound by replacing 
bcom by bcom acom and bnoise by bnoise anoise:

Let Dsum be the distribution obtained by adding 
independent samples from Dcom and Dnoise. Note that 
Dsum is the marginal distribution of agent values. Let 
Fcom, Fnoise, and Fsum and f com, f noise, and fsum be the 
CDFs and PDFs of the distributions Dcom, Dnoise, and 
Dsum, respectively. Additionally, because Dsum is the 
sum of independent samples of Dcom and Dnoise, it is 
well known that f sum(x) →

R⇑
 ⇑ f com(t)f noise(x t)dt, the 
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convolution of the summand densities. Let F̂i be the 
empirical CDF of agent i’s values after m samples. 
(Note that unlike in Lemma 4, we are working with 
values instead of quantiles.) Using the DKW inequal-
ity, it is still the case that for all γ > 0, Pr[supv | F̂i(v)
 Fsum(v) | > γ] ≃ 2e 2mγ2 , and specifically for γ →                          

ln(2n=δ)=2m
p

, this holds for all n agents simulta-
neously with probability 1 δ.

We again condition on the DKW event, that 
supv | F̂i(v) Fsum(v) | > γ�for all agents i. Let Vcom and 
Vnoise

1 , : : : , Vnoise
n be fresh samples of common and noise 

values. Let Vi → Vcom + Vnoise
i be the total value of each 

agent i. We would like to show that if imax is the agent 
with the highest value, then F̂imax(Vimax) > F̂j(Vj) for all 
j ≠ imax. This ensures that imax receives the item. A suf-
ficient condition for this to occur is that Fsum(Vimax) 
Fsum(Vj) > 2γ�for all j ≠ imax, because of the DKW 
condition.

To get a handle on conditions to ensure this differ-
ence in quantiles is sufficiently large, we will begin by 
proving the following inequality.

Lemma 9. For all v2 ⇔ v1 ↔ [0, bcom + bnoise] such that 
v2 v1 ≃ bnoise,

Fsum(v2) Fsum(v1)⇔ min bcom

bnoise ,1
# $

p(v2 v1)
# $2

=2: (1) 

Proof of Lemma 9. Fix such a v1 and v2. Writing this 
out more explicitly, we have that

Fsum(v2) Fsum(v1) →
Z v2

v1

f sum(x) dx:

To lower bound this integral, we will first lower 
bound f sum(x). Fix an x in the support of Dcom, so 
x ↔ [0, bcom + bnoise]. We have that

f sum(x)→
Z ⇑

 ⇑
f com(t)f noise(x t)dt

⇔
Z ⇑

 ⇑
(p · I[t↔ [0,bcom]]) · (p · I[x t↔ [0,bnoise]])dt

→
Z ⇑

 ⇑
(p · I[t↔ [0,bcom]]) · (p · I[t ↔ [x bnoise,x]])dt

→ p2
Z ⇑

 ⇑
I[t↔ [0,bcom] ∧ t↔ [x bnoise,x]]dt:

Because 0 ≃ x ≃ bcom + bnoise, rearranging shows that 
x bnoise ≃ bcom, and (trivially), x ⇔ 0. Therefore, t ↔ [0, 
bcom] ∧ t ↔ [x bnoise, x] reduces to t ↔ [max(0, x bnoise), 
min(bcom, x)], and hence

Z ⇑

 ⇑
I[t ↔ [0, bcom] ∧ t ↔ [x bnoise, x]]dt

→ min(bcom, x) max(0, x bnoise)
→ min(bcom, x) + min(0, bnoise x)
→ min(bcom, bnoise, x, (bnoise + bcom) x):

Putting this together, we have that for x ↔ supp(Dsum),
f sum(x) ⇔ p2min(bcom, bnoise, x, (bnoise + bcom) x):

Let g(x) → p2min(bcom, bnoise, x, (bnoise + bcom) x) and let 
us now consider the shape of g(x). A plot of g(x) can 
be found in Figure 1. It increases linearly (with a slope 
of p2) from zero until min(bcom, bnoise), stays constant 
until max(bcom, bnoise), and then decreases (with a slope 
of  p2) until bcom + bnoise. Note that both the noncon-
stant intervals are of length min(bcom, bnoise). For our 
purposes, the shape of g(x) means that integrating 
over any interval [c, d] ↗ [0, bcom + bnoise] of length ( :→
d c is at least as large as integrating [0, (], that is, R d

c g(x)dx ⇔
R (

0 g(x)dx. Further, as long as ( ≃ min(bcom, 
bnoise), the area under the curve of g(x) on this interval 
is simply a triangle, and it has area p2(2=2. These facts 
together imply that as long as v2 v1 ≃ min(bcom, 
bnoise), then

Fsum(v2) Fsum(v1) ⇔ (p(v2 v1))2=2: (2) 
To extend this to the case needed for Inequality (1) 
with the only constraint being v2 v1 ≃ bnoise, let 
v⇓2 → v1 + (v2 v1) · min bcom

bnoise , 1
! "

. Note that v⇓2 ≃ v2, and, 
in addition,

v⇓2 v1 ≃ min bcom

bnoise , 1
# $

(v2 v1) ≃ min(bcom, bnoise):

It follows from Inequality (2), v⇓2 ≃ v2, and the defini-
tion of v⇓2 that, as required,
Fsum(v2) Fsum(v1) ⇔ Fsum(v⇓2) Fsum(v1)

⇔ p2(v⇓2 v1)2=2

→ min bcom

bnoise , 1
# $

p(v2 v1)
# $2

=2: w 

Having established Lemma 9, we continue with the 
proof of Lemma 8 and now consider what constraints 
on Vimax and Vj ensure that Fsum(Vimax) Fsum(Vj) ⇔ 2γ�for 
all j ≠ imax. Because Vimax and Vj can differ by at most 
bnoise, we immediately get that Fsum(Vimax) Fsum(Vj)
⇔ min bcom

bnoise , 1
! "

p(Vimax  Vj)
! "2

=2. A sufficient condition 
for this to be at least 2γ�is that

(Vimax  Vj)2 ⇔ 4γ
min bcom

bnoise, 1
! "

p
! "2 , 

and, equivalently,

Vimax  Vj ⇔
2    
γ

↑

min bcom

bnoise, 1
! "

p
:

Recall that Vimax → Vcom + Vnoise
imax and Vj → Vcom + Vnoise

j , so 
Vimax  Vj → Vnoise

imax  Vnoise
j . Additionally, because f noise is 

upper bounded by q,

Fnoise(Vnoise
imax ) Fnoise(Vnoise

j ) →
Z Vnoise

imax

Vnoise
j

f noise(x)dx

≃ q(Vnoise
imax  Vnoise

j ):
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Hence, as long as Fnoise(Vnoise
imax ) Fnoise(Vnoise

j ) ⇔ 2q   
γ

↑

min bcom
bnoise, 1

! "
p
, 

then Vnoise
imax  Vnoise

j ⇔ 2   
γ

↑

min bcom
bnoise, 1

! "
p
.

Fnoise(Vnoise
j ) is distributed uniformly on [0, 1] for each 

i, and these random variables are independent across 
agents. Fnoise(Vnoise

imax ) will be the largest of n such draws. 
Hence, we have reduced this to the case handled by 
Lemma 4—the Beta[1, n] analysis from that lemma 
shows that Pr[∀j ≠ imax, Fnoise(Vnoise

imax ) Fnoise(Vnoise
j ) > ρ] ⇔ 1 

 nρ. Plugging in ρ → 2q   
γ

↑

min bcom
bnoise, 1

! "
p
, we get that this holds 

with probability at least 1 2nq   
γ

↑

min bcom
bnoise, 1

! "
p
. Therefore, as 

long as ε > 2nq
min bcom

bnoise, 1
! "

p
· ln(2n=δ)

2m

) *1=4
, ε-accuracy holds. w

We are now in position to prove Theorem 5. The 
proof structure is nearly identical to Theorem 2; we give 
an overall sketch and describe the differences.

Proof Sketch of Theorem 5. Fix (p, q)-bounded distri-
butions Dcom and Dnoise supported on [acom, bcom] and 
[anoise, bnoise]. The proof is nearly identical to Theorem 
2; we primarily describe the differences here, while 
giving an overall sketch.

An analog of Lemma 1 continues to hold, with slightly 
different constants that depend on the distribution. 
Hence, all we need to show is that running Algorithm 1
with a sampling length of k6 per agent and an exploiting 
length of k12 differs from value maximization by at most 
some sublinear number of items with probability 1 
exp( !(T1=14)). We will show there are O(T47=48) errors; 
note the asymptotic notation is hiding constants that 
depend on n and the common and noise distributions.

Let C → 3nq= min bcom acom

bnoise anoise , 1
! "

p
! "

. For each epoch k, 
choose δk → 2n=e2k and set εk → C · k 5=4. Now

εk → C · k 5=4 → C · 2k
2k6

! "1=4 → C · ln(e2k)
2k6

) *1=4

>
2nq

min bcom

bnoise , 1
! "

p
· ln(2n=δk)

2k6

# $1=4
:

The constant C is unimportant; as it does not depend 
on T or k, it will disappear as the time step grows 
large. The primary difference from Theorem 2 is that, 
because of the longer phase lengths (k6 and k12 instead 
of k4 and k8), we need a dependence of k 5=4 for εk 
(rather than k 3=2), and use T1=14 instead of T1=10.

We count the number of items on which Algorithm 
1 differs from the welfare-maximizing algorithm, as in 
Lemma 5, and recall that k(t) is the epoch in which 
item t arrives. Fix a time step T. Because of the differ-
ent sampling lengths, it now holds that k(T) ≃ 2T1=12.

We now count the number in the first ∝T1=14′
instead of ∝T1=10′ and get

Xk(T)

k→1
nk6 + k12 ≃ nT1=2 + T13=14:

The number of items allocated in sampling phases is 
now

Xk(T)

k→1
nk6 ≃ nk(T)7 ≃ 2nT7=12, 

which is still sublinear (with probability one).
The expected number of mistakes in exploit phases 

of εk(t)-accurate epochs is at most

Xk(T)

k→1
εkk12 →

Xk(T)

k→1
Ck43=4 → Ck(T)47=4 → O(T47=48):

Because of Hoeffding’s inequality, a deviation of more 
than T47=48 does not occur with probability 1 exp 
( !(T47=48)), so the number of mistakes here is 
O(T47=48) with the corresponding probability.

Union bounding over the number of items in non- 
εk-accurate exploit phases is again at most

X⇑

k→∝T1=14′+1
δk ≃ 2n

X⇑

k→∝T1=14′+1

2n
e2k → exp( !(T1=14)):

With these modifications, the rest of Theorem 2 goes 
through essentially unchanged. w

Figure 1. Plot of Lower Bound g(x) 
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6.1. Correlated Values with Bounded Memory
One may wonder if these positive results for Algorithm 
1 also carry over using bounded memory; that is, could 
some modification of Algorithm 2 perform well in the 
common-noise noise model? The answer comes down 
to what guarantees we would like.

Achieving envy-freeness is relatively straightfor-
ward. Indeed, any q-threshold algorithm achieves envy- 
freeness as long as, with positive probability, some 
agents are above the threshold and some below: by sym-
metry, all agents have an equal chance of receiving each 
item, and their value conditioned on receiving an item is 
strictly higher than their value conditioned on not 
receiving it. All thresholds satisfy this property assum-
ing interval support on the distributions, and minimal 
modification to the proof of Theorem 4 is required to 
show Algorithm 2 is envy-free.

Getting a welfare guarantee appears to be more chal-
lenging. There exist distributions where the n 1

n -threshold 
algorithm does not achieve a constant approximation. 
For example, consider a common distribution that takes 
value n with probability 2=n and zero otherwise, and a 
noise distribution that takes value n 1 with probability 
1=n and zero otherwise. The n 1

n quantile is at least n. 
However, this implies that whether a value is above the 
threshold is completely determined by the common 
draw. Therefore, either all agents are above the threshold 
or all are below, so items will be given to random agents. 
Random agents have an expected value of at most three. 
On the other hand, the expected maximum of n draws 
from the noise distribution is Θ(n). This example can be 
extended to have continuous distributions (by slightly 
spreading out the mass around the points) and to interval 
support (draw uniformly from [0, n] with some tiny 
probability). Given the connection between threshold 
algorithms and prophet inequalities, we could hope to 
import results from threshold algorithms for correlated 
distributions (for example, from Immorlica et al. 2020). 
Unfortunately, all existing results require knowing the 
distribution (e.g., set a threshold of E[maxiVi]=2). This 
conflicts with a fundamental feature of our algorithms: 
they do not need to know anything about exact values or 
underlying distributions, just ordinal relationships. Of 
course, our setup is not as general as theirs, and hence, 
with new techniques, positive results might be possible. 
We leave this as an interesting direction for future work.

7. The Non-i.i.d. Model
In this section, we study the non-i.i.d. model. We first 
establish a strong lower bound for the non-i.i.d. model. 
The following negative result holds even for algorithms 
that know the associated quantile for every fresh item.
Theorem 6. Even for two nonidentical agents, there is no 
algorithm that is EF and c-PO with probability p, for c >

1+
  
5

↑

4 ↓ 0:809 and p > 2/3, for all continuous and bounded 
value distributions.

Proof. Suppose for contradiction that there is an algo-
rithm A so that for all bounded continuous distributions 
(V1, V2) there exists a T↖ → T↖(V1, V2) where for all t ⇔
T↖, A is envy-free and c-PO with probability p with p >
2/3 for some constant c > 1+

  
5

↑

4 . Hence, there is some ε�
such that p > 2=3 + ε�and 1=c < 4

1+
  
5

↑  ε →
   
5

↑
 1 ε.

Consider two distributions DF and DS; we describe 
these later in the proof. Consider the three instances 
I0 → (DF, DF), I1 → (DS, DF), and I2 → (DF, DS):

Let EA, t
j be the event that A is envy-free and c-PO 

on instance Ij at time t for j ↔ {0, 1, 2}. By construction, 
Pr[EA, t

j ] ⇔ 2=3 + ε�for all j ↔ {0, 1, 2} and t ⇔ T↖.
Let z be a parameter we will fix later in the proof, 

and let Zt
i → I{Qi, t ⇔ 1 z} for i → {1, 2}. Observe that 

Zt
1 · Zt

2 is one with probability z2 and zero otherwise. 
The following events characterize a specific notion of 
a “nice” sample, in which the number of items with 
high quantiles for both agents is near its expectation: 
ET

1 → I{ | 1
T
PT

t→1 Zt
1 · Zt

2 z2 | < δ}, ET
2 → I{| 1

T
PT

t→1 Zt
1 z| < δ}, 

and ET
3 → I{ | 1

T
PT

t→1 Zt
2 z | < δ} for some δ > 0. By 

Hoeffding’s inequality, Pr[E T
1 ] → Pr[ | 1

T
PT

t→1 Zt
1 · Zt

2 
z2 | ⇔ δ] ≃ 2 exp( 2Tδ2): It follows that for T ⇔ log(2=ε)
=(2δ2), Pr[E T

1 ] ≃ ε. Similarly, for T ⇔ log(2=ε)=(2δ2), 
it holds that Pr[E T

2 ] ≃ ε, and Pr[E T
3 ] ≃ ε. Consider 

an arbitrary T > Tmax → max{T0, T1, T2, log(2=ε)=(2δ2)}. 
Applying a union bound,

Pr[EA, T
0 ↘ EA, T

1 ↘ EA, T
2 ↘ E T

1 ↘ E T
2 ↘ E T

3 ]

≃
X2

i→0
Pr[EA, T

i ] +
X3

i→1
Pr[E T

i ] < 3 · 1
3 ε

# $
+ 3ε → 1:

It follows that Pr[EA, T
0 ↙ EA, T

1 ↙ EA, T
2 ↙ ET

1 ↙ ET
2 ↙ ET

3 ] > 0. 
Therefore, there must exist a sequence of T items 
whose quantiles satisfy all of ET

1 , ET
2 , and ET

3 , and, 
because A does not have access to the items’ values, 
there must exist an allocation AT for these T items (in 
the support of A) that is EF and c-PO, no matter which 
of I0, I1, or I2 the values were taken from. Let qT →
{(q1(t), q2(t))}T

t→1 be these items’ quantiles. Let HB → {t ↔
[T] : q1(t) ⇔ 1 z and q2(t) ⇔ 1 z} be the items for 
which Zt

1 · Zt
2 → 1, and H1 → {t ↔ [T] : q1(t) ⇔ 1 z} the 

items for which Zt
1 → 1.

Set distributions DF → Unif[1 w, 1] and DS, under 
which each item is Unif[0, w] with probability z and at 
Unif[1 w, 1] with probability 1 z, for small positive 
w that we fix later in the proof.

We have that some agent receives at most half the 
items in HB; without loss of generality this is agent 2, 
that is, |AT

2 ↙ HB | ⇔ |HB |=2: We show that there exists 
a feasible more than 1=c Pareto improvement under 
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the values in I1. To that end, we compare AT to the 
allocation Â where Â1 → H1 and Â2 → H1.

We next bound the utilities of each agent under AT 

and Â. Beginning with agent 1, we have

u1(Â1) → u1(H1) ⇔ |H1 | · (1 w)

⇔(ET
1 ) T · (z δ)(1 w)

→ T(z δ zw + δw)

⇔ T(z δ w)

and

u1(A1) ≃ w · |A1 ↙ H1 | + 1 · |A1 ↙ H1 |

≃ T · w + |H1 |  |A2 ↙ H1 |

≃ T · w + |H1 |  |A2 ↙ HB |

≃ (ET
2 ) T · w + T(z + δ) |A2 ↙ HB |

≃ T · w + T(z + δ) |HB |=2

≃ (ET
1 ) T · w + T(z + δ) T(z2 δ)=2

→ T(z z2=2 + w + 3δ=2):

Together, these imply

u1(Â1)
u1(AT

1 )
⇔ z δ w

z z2=2 + w + 3δ=2 →
2z 2δ 2w

2z z2 + 2w + 3δ :

Next, we consider agent 2. We have

u2(Â2) → u2(H1)

⇔ (1 w) |H1 |

→ (1 w)(T  |H1 | )

⇔(ET
2 ) (1 w)T · (1 (z + δ))

→ T(1 z δ w + wz + wδ)

⇔ T(1 z δ w):

By EA
0 , AT is envy-free on I0. It follows that |AT

1 | ⇔
(1 w) |AT

2 | . Because |AT
1 | + |AT

2 | → T, we have that 
|AT

2 | ≃ 1
2 w T. Hence, u2(AT

2 ) ≃ |AT
2 | ≃ 1

2 w T. Combin-
ing these, we have

u2(Â2)
u2(AT

2 )
→ 1 z δ w

1
2 w

→ 2 2z 2δ 2w w + wz + wδ+ w2

⇔ 2 2z 2δ 3w:

Choose z → 3 
  
5

↑

2 . Note that z2 → 7 3
  
5

↑

2 . Choose δ, w < ε=25. 
We then have

u1(Â1)
u1(AT

1 )
>

3 
   
5

↑
 ε=5

(
   
5

↑
 1)=2 + ε=5

→ 3 
   
5

↑

(
   
5

↑
 1)=2 + ε=5

 ε=5
(

   
5

↑
 1)=2 + ε=5

>
3 

   
5

↑

(
   
5

↑
 1)=2 + ε=5

 2ε
5

   
5

↑
 1
2 + ε5 > 1=2

 !

>
3 

   
5

↑

(
   
5

↑
 1)=2 · (1 + 2ε=5)

 2ε
5 (

   
5

↑
 1 > 1)

→ (
   
5

↑
 1) · 1

1 + 2ε=5 
2ε
5

> (
   
5

↑
 1) · (1 2ε=5) 2ε

5
> (

   
5

↑
 1) ε=2 2ε

5 ((
   
5

↑
 1) · 2=5 < 1=2)

>
   
5

↑
 1 ε

> 1=c 

and

u2(Â2)
u2(AT

2 )
> 2 (3 

   
5

↑
) ε=5 >

   
5

↑
 1 ε > 1=c, 

so this is more than a 1=c Pareto improvement. w

Algorithms 1 and 2 are envy-free with high probabil-
ity, even in the non-i.i.d. model, because envy-freeness 
is not an “interagent” property. Our last result shows 
that they also give a constant approximation to Pareto 
efficiency, by combining Lemma 3 with Lemmas 5 and 
7. The proof of Theorem 7 can be found in Section 
EC.1.5 of the Online Appendix.
Theorem 7. In the non-i.i.d. model, both Algorithm 1
(unbounded memory) and Algorithm 2 (one-item memory) are 
EF and (1=e ε)-PO, with probability 1 exp( !(T1=10))
and 1 exp( !(T1=10)), respectively, for all ε > 0.

Although the formal guarantees in Theorem 7 are 
similar for the two algorithms despite Algorithm 2
using a memory size of one, Algorithm 1 has the benefit 
of much shorter epoch lengths (and better guarantees in 
the i.i.d. case).

8. Computational Study
The purpose of this section is twofold. First, although 
our theoretical results ensure that algorithms such as 
Algorithm 1 satisfy desirable properties, these guaran-
tees are in the only limit, so a priori it is possible that it 
may take an extremely long time for them to kick in. 
With this in mind, we verify that these properties are 
satisfied on a variety of generated values, as well as 
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compare how qualitative shifts in the value distribu-
tions affect these convergence rates. Second, although 
Algorithm 1 was designed to be amenable for theoreti-
cal analysis, we compare it with variations that may per-
form better or be preferable for practical reasons.

8.1. Setup
The experiments are conducted as follows. For each 
setting, we sample 100,000 item values for five agents. 
We run our algorithms on this sample with either two 
random agents or all five. We repeat this 100 times for 
each setting so as to get reasonable statistics about the 
performance.

We generate agent values both from distributions 
and from real-world data. From distributions, we first 
consider several instances of the beta distribution. The 
first set are of the form β(1, x) and β(x, 1) for different 
values of x. Recall that β(1, 1) is the uniform distribution 
over [0, 1] and, as x grows larger, the distribution skews 
left or right. This allows us to understand the effect of 
skew (are there a few items that are extremely valuable, 
or are most valuable except for a few duds?) on perfor-
mance. The next set are of the form β(x, x) for increasing 
values of x. As x increases, the distribution becomes 
more peaked while remaining centered around 1/2. 
The density functions of these distributions are visual-
ized in Figure 2.

Next, we investigate the effect of correlation on per-
formance. We generate uniform common values vt ~ 
U(0, 1) and agent-specific values εit ~ U(0, 1) for each 
agent i and item t. We then set the agent value to 
vit → α · vt + (1 α)εit. Note that α�→ 0 corresponds to 
independent U(0, 1) values, α�→ 1 corresponds to fully 
correlated identical values, and increasing α�increases 
the correlation.

Finally, we test on values bid by real food banks on 
actual donations using artificial currency over the course 
of a year, similar to part of what is analyzed in Prender-
gast (2017, 2022) and Altmann (2023). We interpret these 
bids as a proxy for correlated values for each donation. 
To generate an instance, we first restrict to sets of five 

food banks that bid together on at least 20 distinct dona-
tions. We sample such a set of five, treat their bids on a 
common donation as a correlated value distribution, 
and draw all item values from this distribution. A small 
number of bids (under 4%) are negative, which, in the 
original context, meant that the organization expected to 
receive artificial currency to accept the donation; in our 
context we interpret these as zero-valued.

8.2. Results
All plots that appear in the main body are for experi-
ments run with two agents. Additional plots with five 
agents can be found in Online Appendix EC.2 and are 
qualitatively similar.

We begin with an analysis on how quickly Algorithm 
1 becomes envy-free. The corresponding plots for Algo-
rithm 1, alongside the ideal welfare-maximizing algo-
rithm with full information, can be found in Figure 3. 
The main takeaways we find are that the more left- 
skewed distributions tended to have faster convergence 
than more right-skewed ones, less peaked distributions 
tended to converge faster than more-peaked ones, and 
increasing the correlation, of course, made the problem 
more difficult. The performance on the real data is very 
much in line with what is observed for the simpler 
(small α) correlated distributions, where envy-freeness 
takes roughly 1,000 time steps to establish. In general, 
Algorithm 1 kept pace reasonably well alongside its 
“ideal” counterpart, and did not converge much slower. 
Instances where Algorithm 1 performed worse exactly 
corresponded to those where welfare/quantile maximi-
zation also struggled.

Next, we visualize the approximation to welfare in 
Figure 4. Here we find a complete reversal. Left-skewed 
distributions had worse approximations than right- 
skewed ones, less peaked distributions had worse 
approximations, and increasing correlation led to better 
approximations. One possible explanation is that these 
trends exactly correspond to the ratio between the 
expected value of these distributions and the expected 
maximum of several draws. When this ratio is large (the 

Figure 2. (Color online) Density Functions of the Beta Distributions on Which We Test 

Note. The skewed distributions are on the left, peaked distributions on the right.

Benadè, Halpern, and Psomas: Dynamic Fair Division with Partial Information 
Operations Research, Articles in Advance, pp. 1–21, © 2025 INFORMS 17 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.2

10
.1

07
.1

30
] o

n 
10

 A
pr

il 
20

25
, a

t 0
4:

22
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



expectation is quite close to the expected maximum), it 
means that giving an item to the “wrong” agent does 
not have too big of an effect on the welfare approxima-
tion. The one exception to this is for extremely corre-
lated distributions (α → 0:8), where this improvement is 
counteracted by the fact that additional correlation 
makes it more difficult to learn agents’ values.

Finally, we compare Algorithm 1 to three variants in 
Figure 5. We first try an algorithm with shorter epochs: 
Rather than sampling phases of length k4 and exploiting 
phases of length k8, we try lengths of k2 and k4, respec-
tively. The result is similar performance overall with 
additional smoothing: The alternation between degraded 
performance (during sampling) and good performance 
(during exploiting) is now more frequent. Next, we try 

not ending the sampling phase after just k4 steps. Now 
items given during the exploit phase are still added to the 
sample, which should give the algorithm additional 
information for the rest of the epoch. This leads to a mar-
ginal boost in performance. Finally, we try running the 
algorithm without resetting the sampled items at the end 
of every epoch. Namely, at first agents were given 20 
items each, and then all future items were simply added 
to this sample for comparison. This algorithm performed 
significantly worse and unfortunately seems to have an 
asymptote. When the initial 20-item sample is “good,” 
then the overall run may perform reasonably well, but if 
we are unlucky and the initial sample is not great, then 
there is no chance for a later reset. Hence, in many set-
tings, we see that only about half of the runs would lead 

Figure 3. (Color online) Proportion of Envy-Free Runs 

(a) Skewed beta distributions (b) Peaked beta distributions

(c) Correlated uniform distributions (d) Real data

Note. For each data set, the left graph shows the results for Algorithm 1, whereas the right graph shows the performance of the “ideal” welfare- 
maximizing algorithm (or quantile-maximizing in the case of real data where the underlying value distributions are heterogenous).

Figure 4. (Color online) Ninety-Fifth Percentile Welfare Approximations 

(a) Skewed distributions (b) Peaked distributions (c) Correlated distributions

Note. If at time step 1,000 the algorithm has ε → 0:02, then on 95% of runs, at the 1,000th time step, the algorithm achieved at least 98% of the opti-
mal welfare.
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to EF allocations and welfare appears to cap out well 
below 99% of optimal without hope of further improve-
ments from additional items.

9. Conclusion
To conclude, we have analyzed the online fair division 
problem when agents only reveal partial information. 
In multiple settings, we show that ordinal information 
is enough to obtain strong fairness and efficiency guar-
antees, even when given as little as binary signals 
about agent preferences. For food rescue services who 
are already constrained to eliciting binary preferences, 
this is good news, though we see that the asymptoti-
cally optimal algorithms require repeated sampling 
phases during which items are (purposefully) allo-
cated suboptimally.

Building on this work, there are many other forms of 
partial information that may be practical to elicit in spe-
cific contexts and which may enable different guaran-
tees. For example, if agents can compare small subsets 
of items, rather than single items, it may be possible to 
achieve stronger results such as arbitrarily good approxi-
mations to PO even in the non-i.i.d. setting. Another 
interesting direction is to ask what guarantees are possi-
ble given a limited time horizon or sample budget. Now 
convergence rate matters, and, for example, there is a rea-
son to prefer Algorithm 1 over Algorithm 2 in the non- 
i.i.d. setting. We assume throughout agents are truthful; 
we leave the study of strategic agents to future work. 
Finally, we assume that agents provide ordinal informa-
tion while having underlying cardinal utilities. One 
could, instead, explore fairness notions like stochastic 

dominance (SD) envy-freeness which are defined directly 
on ordinal preferences. Positive results in this setting 
may be more challenging and, for example, require that 
the number of items is divisible by the number of agents.
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