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Abstract

Homomorphic encryption enables computations on the ciphertext
to preserve data privacy. However, its practical deployment has
been hindered by the significant computational overhead compared
to the plaintext computations. In response to this challenge, we
present HERMES, a novel hardware acceleration system designed
to explore the computation flow of the CKKS homomorphic encryp-
tion bootstrapping process. Among the major contributions of our
proposed architecture, we first analyze the properties of the CKKS
computation data flow and propose a new scheduling strategy by
partitioning the computation modules into general-purpose and
special-purpose modular computation modules to allow smaller
resource consumption and flexible scheduling. The computation
modules are also reconfigurable to reduce the memory access over-
head during the intermediate computation. We also optimize the
CKKS computation dataflow to improve the regularity with reduced
control overhead.
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1 Introduction

With the growing demands for computational privacy and secu-
rity, the development of privacy-preserving technology has be-
come preeminent. Applications involving outsourced data collec-
tion, model inference, and cloud-based deployment are the ones
with the highest urgency in seeking proper technology to face
these challenges. Homomorphic Encryption (HE) [36] is one of the
emerging technologies addressing such a developing need from
potential stakeholders (i.e., private data owners, high-performance
model providers, and efficient cloud-computing servers) when de-
ploying and using cloud computing. The clients can send their
encrypted private data to the server, and receive the evaluation
results from the server without decryption during the evaluation.
The results can only be decrypted by the user using their secret
keys. It holds significant potential for various industries, including
healthcare [31], financial data management [30], and databases [40]
to preserve user privacy. While the HE maintains computation con-
fidentiality on the cloud, the security comes with the expense of
high computation costs over encrypted data. Such computation
overhead This has been a major barrier to the widespread adoption
of HE as a standard solution for secure cloud computing.

Most of the existing HE schemes [13, 15] are designed based
on the Ring-Learning With Errors (R-LWE) problems introduced
in [29], which ensure the post-quantum security by adding noise
to the ciphertext. In this work, we target the CKKS scheme [13]
using the bootstrapping operation proposed in [8, 9, 11, 12, 20]
for hardware acceleration. The scheme supports homomorphic ad-
dition, homomorphic multiplication, and homomorphic rotation
(automorphism). The support of approximated floating point ho-
momorphic arithmetic evaluations boosts CKKS’s popularity for
privacy-preserving computation applications [28, 35].

In this paper, we present HERMES, a hardware acceleration
architecture design for the CKKS scheme. The design focuses on the
evaluations performed on the server side for multi-level evaluations.
The contributions of this paper are summarized below:

e We introduce a novel computational paradigm where the
Inverse Number Theoretic Transform (INTT) is performed
before the Number Theoretic Transform (NTT), extending
prior polynomial multiplication architecture designs. To opti-
mize hardware resource utilization and achieve high through-
put, we unify the butterfly module for a Multi-path Delay
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Commutators (MDC) architecture, maximizing efficiency
and performance.

e We leverage the optimized modular multiplication design
with consecutive primes and further empower the computa-
tion modules to support element-wise modular operations
with cascading capabilities. The capability fully leverages
existing processing elements. This approach reduces the
memory access footprint while enhancing performance and
minimizing data transfer overhead.

e Finally, we analyze the CKKS bootstrapping computation
flow and introduce optimizations that reduce the computa-
tional load. The effectiveness of our architecture is demon-
strated under the demanding bootstrapping evaluation.

The rest of the paper is organized as follows. Section 2 briefly
reviews the prior works on hardware acceleration for lattice-based
cryptography, HE implementations, and bootstrapping evaluation.
We present the proposed HERMES, a custom design supporting
CKKS bootstrapping in Section 3. In Section 4, we show the exper-
imental results and compare them with prior works. Finally, Sec-
tion 5 concludes the paper.

2 Background
2.1 Hardware Architectures for Lattice-based

Cryptography

Most of the HE schemes are based on lattice-based cryptography,
which includes various modular addition/subtraction, modular mul-
tiplication and polynomial multiplications. Modular multiplication
and polynomial multiplication are the primary research focuses
in the literature [47]. Barrett reduction [6] has been adopted for
both Post-quantum cryptography [5, 26, 43, 49] and HE [14, 32, 39]
hardware implementations for modular multiplication. To reduce
the computation resource overhead in modular multiplication, the
costly multiplication can be replaced by shifting and additions con-
sidering the special structure of the selected moduli [27, 41]. The
NTT-based approaches are mainly used in lattice-based cryptog-
raphy for prime moduli [42, 48] due to the log-linear complexity
in polynomial multiplications compared with quadratic complex-
ity in non-NTT approach [44]. Prior architecture designs of FFT
butterfly operation using Single-Delay-Feedback (SDF) [21, 34] and
Multi-path-Delay-Commuter (MDC) [3, 18, 33, 42] show the capa-
bility in supporting high throughput architecture design. These
FFT butterfly module designs can be seamlessly transferred to the
NTT/INTT butterfly module. Additionally, NTT and INTT can be
integrated into a unified module to increase hardware resource uti-
lization [17, 52]. Twiddle factor storage can be halved by examining
access patterns [7, 19]. These prior designs provide building blocks
for efficient HE hardware acceleration.

2.2 HE Implementations

SEAL [10], and OpenFHE [4] are two representative open-source
libraries used for developing and benchmarking various HE de-
signs. However, these software libraries have limited support for
custom architectures, which constrains their capability to handle
computation-intensive applications like neural network inference.
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To this end, custom designs over ASIC, FPGA, and GPU micro-
architecture have been extended to fulfill the needs for specific
computations with superior performance than the CPU [1, 22, 24,
25, 37, 38, 51]. FHE ASIC designs [2, 16, 24, 37, 38] primarily target
reducing memory consumption and alleviating data transfer bot-
tlenecks, aiming for scalability and high throughput with superior
performance compared to CPU implementations. However, these
designs often lack the flexibility needed to adapt to new computa-
tional patterns in evolving HE algorithms. In contrast, FPGA acceler-
ation presents a promising alternative, offering greater adaptability
to the continuous advancements in HE algorithm development.

The early work in [45] leveraged the AWS cloud FPGA to im-
plement a non-bootstrappable BFV with dedicated modules for
the evaluation steps. However, it had limitations in adapting new
computational intensive steps, like bootstrapping. Bootstrapping is
the challenging part of the HE design, with most of the works in
supporting bootstrapping implemented over ASIC given its uncon-
strained computation and memory resources to handle the massive
modular operations [16, 24, 37, 38]. F1 [37] supports bootstrapping
for the BGV/BFV scheme while it is designed for computation with
small size rather than private deep neural networks inference. A
wide range of CKKS-based hardware designs focusing on enhanc-
ing performance and bootstrapping acceleration with huge on-chip
memory requirements [24, 38]. In the meantime, a 36-bit FHE accel-
erator with hierarchical micro-architecture is proposed to achieve
high performance with a smaller functional block area, compact on-
chip memory and lower power consumption [23]. The work in [16]
explores the acceleration of inner-product operation and optimizes
the NTT and BConv operations through algorithmic derivation. It
minimizes the on-chip bandwidth requirements and provides high
performance. Apart from that, a chiplet-based HE accelerator is
proposed in [2] to preserve monolithic chip design’s advance while
meeting the emerging demand for privacy-preserving computing.

Only a few works have been proposed to support bootstrapping
in FPGA [1] and GPU [22]. The work in [1] improved the algo-
rithm computation flow and memory architecture. It focuses on
optimizing the key-switching computation flow to maximize the
reuse of ciphertexts, considering the limited on-chip BRAM/URAM
resources. However, its design mainly focused on memory-centric
optimization. In contrast, our work also explores low-level compu-
tation module designs to improve performance and scheduling for
HE.

2.3 CKKS Scheme and Bootstrapping

CKKS is a leveled HE for efficient arithmetic operations on en-
crypted data [13] in real or complex numbers using approximate
arithmetic. Due to the inherent noise in HE, iterative evaluations
over ciphertexts can lead to increased noise levels, raising the risk of
decryption errors. While the original leveled-HE algorithm supports
a limited number of computations over a single ciphertext, fully
homomorphic encryption (FHE) extends this capability by enabling
unlimited computations through a process known as bootstrapping.
Bootstrapping effectively refreshes the ciphertext by reducing ac-
cumulated noise. Instead of performing additional homomorphic
evaluations with the risk of decryption errors, bootstrapping ho-
momorphically decrypts the ciphertext while keeping it encrypted.
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The result is a new ciphertext with significantly reduced noise,
allowing further computations without compromising the accuracy
of decryption.

In CKKS, encoded plaintext pti/, i’ € {0,1} is encrypted by public
keys pko, pki as

(ct! ety = (pkos -l 4 e+ ptT  phrs el 4 el .
cto.cty ) = (pkoi-eq; +ey; +pt . pkii-eg;+ey;), (1)

where eéil., eii, egi are error terms that follow the individual dis-
tribution using cryptographic secure sample generation over g;.
Xoor,.i denotes a discrete Gaussian distribution over g; with stan-
dard deviation o¢, U; is an uniform distribution over g;, and ZO;
is an distribution over q; with sample value € {-1,0, 1} with 0.5
probability for +1, and with 0.5 probability for 0. For the CKKS
scheme, e;:,,o ~ ZO0;, el’.':l, ef:Z ~ Xoormi- The evaluated ciphertext

P
(ctg

R

ctii) is decrypted using secret key sk;:

Pleval,i =ty +cty; - ski, (2)

From Equation (2), decryption operation is essentially a modular
reduction of ctéji + ct{ji - sk; over g;j.

To enable recryption over ciphertext, an evaluation key for boot-
strapping using sk; is generated. Then, a modular reduction over
qi is evaluated homomorphically in the ciphertext domain, which
is essentially a periodic function of g;. The function can be approx-
imated with the following scaled sin function [12]:

P2 i 3
[pteval,i]qi =5 Sln(_(Ct()i +cty;- ski)) +O(e” - qi)  (3)
21 qi ’ ’

where [pteyailg; < € - gi. Equation (3) provides high-level insights
into the bootstrapping process, with the following works finding dif-
ferent approximations of the modular reduction function [8, 9, 20].
Bootstrapping is a special type of evaluation step and is more
computationally intensive than homomorphic multiplication, as
it approximates a high-degree polynomial while maintaining low
decryption error. Although scheduling strategies to reduce compu-
tational overhead have been studied [46], further optimization of
the low-level bootstrapping computations is necessary to accelerate
the process. In this work, we analyze the computation flow graph
of CKKS bootstrapping to reduce operation overhead.

3 HERMES Architecture

3.1 Scaling Operation for Multi-Level
Evaluation

As the leveled CKKS homomorphic evaluation progresses, the ci-
phertext modulus diminishes, eventually becoming insufficient to
support further computations without errors. To this end, the pro-
cess of so-called rescaling in the Residue Number System (RNS)
is needed to reduce the noise level in the ciphertext, thereby min-
imizing the likelihood of decryption errors. Rescaling operation
essentially drops the last modulus of current / moduli, and then
scale the g;_; to the remaining ciphertext as ct’ = [ql__l1 - ct] mod
(Hf;g qi), decreasing the number of ¢; from [ to [ — 1, as shown in

the high-level computation flow is presented in Fig. 1. This leads to
two important insights:
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Figure 1: Drop and scale operation computation flow with ct
with moduli qo, ... q;_; as the input ciphertext, and ct’ with
moduli g, . .. g;_, as the output ciphertext.
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Figure 2: High-level moduli computation profile example for
multi-level homomorphic evaluation.
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e Not all g; are used for all homomorphic evaluations. Some
of the g; will be discarded to constrain the noise level for the
computation, as demonstrated in Fig. 2.

o The rescaling operations are performed over the coefficient
domain between consecutive polynomial multiplication over
the evaluation domain.

The first insight suggests that deriving the computation profile
for g; allows for more efficient scheduling of operations across dif-
ferent types of modular computation modules. Excessive resources
are required to perform all modular computations using a dedicated
module with low utilization for individual q;. However, by group-
ing q;, we can reduce the need to schedule computations on less
efficient general-purpose modules and explore resource reduction.
Fig. 3 shows a detailed moduli computation profile for the CKKS
bootstrapping process. We can observe the non-uniform computa-
tion over different moduli for the actual bootstrapping evaluation.
We grouped these moduli into Custom Moduli and General Moduli
based on their computation frequency, which balances the workload
and reduces resource consumption.

The second insight encourages reconsidering the sequence of
modular operations. Rather than following the computation flow
in the prior designs, i.e., from NTT — element-wise operation —
INTT. Instead, we propose to use the computation from INTT —
element-wise operations — NTT as shown in Fig. 1. It eliminates the
shuffling operations needed as in NTT — element-wise operation
— INTT paradigm. Switching the computation flow also unlocks
new possibilities for designing high-throughput modular computation
modules.

3.2 Custom and General Modular Operations

As discussed in Section 3.1, not all g; are used along the homo-
morphic evaluation as shown in Fig. 2, Some of the g; are dropped
along the evaluation process. Therefore, it is possible to improve
the overall performance by developing both custom and general
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Figure 3: Moduli computation profile for the CKKS bootstrapping implemented in this work.

modules to separate different modular operations. While support-
ing all moduli in a single module simplifies the computation flow,
it leads to excessive resource consumption and low efficiency. On
the other hand, a custom module tailored to support specific g;
may suffer from under-utilization. Balancing custom and general
modular computation modules is a key design objective of the
proposed HERMES.

In our proposed architecture, the custom modular computation
modules are designed to support all modular computations over
a set of g; used throughout the homomorphic evaluation. This
approach reduces the need for extensive configuration logic that
would otherwise be necessary to support a broader range of g;
compared to the general-purpose modular computation modules. In
this design, we group all g; used for the entire bootstrapping process
to be computed over these custom modular modules. Meanwhile,
the general modular computation modules will support all the
remaining q; that are dropped before the end of the bootstrapping
evaluation.

y2q o
" - Splitter |
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m ———{ X)X > c
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Figure 4: Highly reconfigurable modular multiplier using
Barrett reduction module.

Algorithm 1 Modular multiplication with Barrett Reduction.

Input: aand b € Zg, m = [25/q|, k = 2 - [log, q]
Output: y=a-b mod g

cz=a-b

t=(z-m)>>k

cy=y—(t-q

. if y > q then

y=z—-q

: end if

[ B N e

For the CKKS multi-level evaluations, the g; values are typically
selected starting from the largest possible g; for the desired secu-
rity level, gradually decreasing to smaller values until the desired
computation level is reached. These selected q; values are closely
spaced, which facilitates optimization for both custom and general
modular computation modules. For Barrett reduction shown in
steps 2 and 3 of Algorithm 1, it requires a multiple of g and | 2%/,

which also allows the g and |25 /g only differ in a small range of
bits. The observation enables us to partially decompose the costly
multiplication to shift-add operations of partial multiplication re-
sults. These two steps are indicated using a dashed line multiplier
on the left of Fig. 4 with a splitter to split the constants into multiple
separate parts (2 parts as an example shown on the right of Fig. 4).
The specific shift-add configuration depends on the values of the
q and |2%/q|. This design can effectively reduce the amount of
needed DSP for modular multiplications.

3.3 MDC-based Bi-directional Reconfigurable
Butterfly Module Design

MDC for NTT/INTT hardware implementation is highly suitable for
custom HE hardware design with high throughput [3, 18, 33, 42]. It
offers promising scalability for larger HE hardware systems. Unlike
traditional memory-based methods that require two dedicated mem-
ory blocks to facilitate ping-pong operations during NTT/INTT
computation—thus limiting the number of concurrent butterfly op-
erations due to constraints on onboard memory bandwidth and
depth—the MDC-based approach utilizes a chain of Delay-Switch-
Delay (DSD) modules. This configuration, as illustrated in the top
left of Fig. 5, supports full streaming operations with minimal mem-
ory overhead, effectively eliminating the need for extensive memory
blocks.

NTT

T _o o & )
N W i L ooy SO
Uni. But, Uni. But; {#0s0)"5((Uni. Buts
t £

©ROM, ©ROM, ©ROM, ©ROM,

Figure 5: Unified Bi-directional reconfigurable MDC-based
butterfly module design for n = 8.

A significant limitation of the original MDC approach is its lack
of flexibility in utilizing a unified butterfly design [52], as shown
in the top right of Fig. 5. The number of registers required varies
between NTT and INTT stages, complicating the design. To address
this issue, we propose a unified bi-directional reconfigurable MDC-
based butterfly module for HERMES. An example with degree-8 is
depicted at the bottom of Fig. 5. Given that the size of the registers
within the DSD is only related to the polynomial degree n and
parallel level of the butterfly operation, the reconfiguration enables
the configuring of the unified butterfly computation modules to
support both NTT and INTT. Twiddle factors are stored in the
ROM, which is directly connected to the corresponding butterfly
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operation module for the individual stages. Given that the w2,
is the 2n-th root of unity, satisfying wgz mod g = 1, then by the
definition of 2n-th root of unity, 0} mod q = —1, thus wz_r: mod g =
wz_n’ +(-1) - w0y, modq = —a)gn_i mod g. The unified butterfly at
stage-i needs twiddle factor from a)2<nzlog2 T a)z<nzlog2 e
for both NTT and INTT computation, where < - > represents bit-
reverse operation for log, n-bit. The twiddle factor of INTT can be
derived from the twiddle factor ROM stored for NTT. Overall, the

proposed architecture can achieve high speed and high throughput.

3.4 Reconfigurable Modular Computation
Module

To further accelerate element-wise modular operations, we pro-
pose a reconfigurable modular computation module, as illustrated
in Fig. 6. The Processing Element (PE) in this module can operate in
two modes: independent mode for element-wise operations, and cas-
cade mode for combined multiplication and addition/subtraction
operations. This reconfigurability minimizes data transfer over-
head between the host and the computation module during boot-
strapping, eliminating the need for dedicated memory as in previ-
ous works [37, 50]. By reducing control overhead associated with
element-wise computations, our design not only improves the ef-
ficiency but also enables the design-space exploration of different
computation patterns within the CKKS scheme.

L&
-5

BasePE  Independent Mode Cascade Mode
Q: @O Mod. Adisub @ Wod. Mul

Figure 6: Reconfigurable modular computation module.

Add/Sub-Mul Mode  Mul-Add/Sub Mode

In the proposed HERMES, 16 PEs are used for both custom and
general modular computation modules for CKKS bootstrapping
evaluations. It provides diverse connection patterns based on the
target CKKS bootstrapping computation profile, reducing data ac-
cess time. The reconfigurable modular computation modules de-
crease data transfer overhead in the bootstrapping evaluation to
reduce the running time.

3.5 Bootstrapping Computation Flow
Optimization

We further explore the data dependency to remove redundant
NTT/INTT operations and streamline the data transfer process,
reducing workload and accelerating the computation with high-
level concept is shown in Fig. 7. The bootstrapping for CKKS com-
prises 3 major steps [8], namely coefficients to slots, homomorphic
modular reduction, and slots to coefficients. The purpose of coeffi-
cients to slots is to map the ciphertext coefficients in plaintext slots
to evaluate the modular reduction coefficient-wise. The result of
the coefficient to slots is composed of two ciphertexts given each
CKKS ciphertext with polynomial degree n, which can store up to
at most n/2 plaintext values. After the slots to coefficient process,
the bootstrapped ciphertext is restored with a low noise level.
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In HERMES, we support Chebyshev approximation of sin func-
tion as proposed in [8, 9, 12]. The approximation method has been
shown to reduce bootstrapping overhead and improve efficiency.
We optimize the computation by restructuring the pre-computation
phase of intermediate polynomial evaluation to minimize redun-
dant drop and scale operations for identical polynomial results,
thereby simplifying the computation flow. This pre-computation
strategy decreases butterfly operations by 26% and element-wise
modular operations by 5% compared to the software counterpart.

HERMES

FPGA Acceleration Card &

FPGA Interfaces
|

Comput. Opt.

r
\

Figure 7: Bootstrapping computation schedule optimization
with hardware-software co-design.

4 Experiment

We implement HERMES hardware implementation for homomor-
phic evaluation in Verilog with 300MHz operation clock frequency.
The host CPU code is written in XRT native API for data transfer
and scheduling, and HERMES RTL code is packaged into kernel
code using the Vitis 2023.1 development platform. The kernel code
is compiled and linked into an FPGA executable by the Vitis com-
piler. The performance of the FPGA implementation is detailed
in Table 1.

4.1 HERMES Architecture Design and Step
Profiling

For a fair comparison, we evaluate the operation time as bootstrap-
ping per slot. We observe that our proposed architecture can achieve
better area-time product (ATP) over LUT, FF, and DSP. The gain is
attributed to the grouping of the low-level modular computations
into custom moduli and general moduli, as well as the computation
flow optimization dedicated to the CKKS bootstrapping process.
Besides, we provide the running time breakdown for one round
of CKKS bootstrapping, as summarized in Table 2. We compare
the running time on FPGA with the software implementation in
OpenFHE. The OpenFHE software implementation was running
over Intel(R) Core(TM) i7-14700K in Ubuntu 22.04.4 LTS. A total
4.72% speedup for the entire process is achieved, demonstrating the
effectiveness of the proposed acceleration.

4.2 Scalability Evaluation

HERMES support MDC bi-directional butterfly modules with 8 co-
efficients fed simultaneously and polynomial degree of 4096 for
NTT/INTT butterfly operations, and 16-parallel computation mod-
ules for element-wise modular operations, which include modular
addition/subtraction, and modular multiplication. HERMES can be
generalized to larger polynomial degrees and higher parallelisms.
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Table 1: HERMES FPGA performance comparison of HERMES with prior works of CKKS implementations. Area-time product
(ATP) is computed by using the similar metrics as in [25]: (LUT/FF/DSP/BRAM)xBootstrapping Per Slot (us)/(log Q).

. Freq (GHz)
Design logn/logQ  Board BootPerSlot (us) KLUT/ATP kFF/ATP DSP/ATP BRAM(36K)/ATP URAM/ATP
HERMES | (12,54 x33) U280 0.3/0.112 466/29.295  462/29.037  3844/0.242 319.5/0.02 36/0.0003
FAB[1] (16,54 x 23) U280 0.3/0.477 899/345.27  2073/796.15 5120/1.966 1920/0.738 960/0.369

Table 2: Running time breakdown in seconds for one round
of CKKS bootstrapping and comparison with software.

Evaluation Type | HERMES OpenFHE | Speedup vs OpenFHE
Coeff2Slots 0.072 0.284 3.94x
Mod Q 0.164 0.941 5.73%
Slots2Coeff 0.046 0.106 2.30x
Total 0.282 1.331 4.72X

Table 3: Resource consumption estimation with the increase
of polynomial degree n for HERMES.

logy(n) | 12 13 14 15 16 17 18 19

kLUT 466 487 508 528 549 570 590 611
kFF 462 479 496 512 529 546 563 579
DSP 3844 4084 4324 4564 4804 5044 5284 5524

Table 4: Resource consumption estimation with increased
parallelism of modular computation modules for HERMES.
Butterfly module size is fixed with a polynomial degree of
4096. Rows colored in gray cannot be accommodated in Xilinx
U280 FPGA Data Center Accelerator Card.

Num. of
Modular Computation Module KLUT  kFF - DSP
16 466 462 3844
32 536 508 4804
64 676 599 6724
128 955 782 10564
256 1514 1149 18244

For larger polynomial degrees, the computation resource con-
sumption of the MDC bi-directional butterfly modules increases
proportionally with n. As illustrated in Table 3, HERMES can be
estimated to support polynomial degree up to 217, utilizing MDC
bi-directional butterfly modules with simultaneous processing of
8 coeflicients and 16-parallel computation modules for element-
wise modular operations. These large polynomial degrees would
meet most homomorphic evaluation requirements. Additionally, by
maintaining a polynomial degree of 4096 with the current MDC
bi-directional butterfly module structure and employing up to 64-
parallel modular computation modules, the computations can be
further accelerated within the available FPGA resources. We present
the resource consumption estimation with increased parallelism of
modular computation modules for HERMES in Table 4,

5 Conclusion

This paper presents HERMES, a hardware acceleration system
specifically optimized for the CKKS homomorphic encryption scheme,
supporting operations such as addition, multiplication, and rota-
tion. Our architecture introduces an innovative computation flow
designed to minimize control overhead through high-throughput
butterfly operation modules. We also propose a novel partition-
ing strategy for the underlying computation modules, categorizing
them into general and custom types to optimize scheduling and
reduce computational resource overhead based on the profile of
individual ¢;. Additionally, we analyze data dependencies to further
reduce evaluation clock cycles.
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