Invited Paper: HERMES: Homomorphic Encryption over Residual
Number System for Multi-level EvaluationS

Antian Wang
antian.wang@pfw.edu
Purdue University, Fort Wayne
Fort Wayne, Indiana, USA

Keshab K. Parhi
parhi@umn.edu
University of Minnesota
Minneapolis, Minnesota, USA

Abstract

Homomorphic encryption enables computations on the ciphertext
to preserve data privacy. However, its practical deployment has
been hindered by the significant computational overhead compared
to the plaintext computations. In response to this challenge, we
present HERMES, a novel hardware acceleration system designed
to explore the computation flow of the CKKS homomorphic encryp-
tion bootstrapping process. Among the major contributions of our
proposed architecture, we first analyze the properties of the CKKS
computation data flow and propose a new scheduling strategy by
partitioning the computation modules into general-purpose and
special-purpose modular computation modules to allow smaller
resource consumption and flexible scheduling. The computation
modules are also reconfigurable to reduce the memory access over-
head during the intermediate computation. We also optimize the
CKKS computation dataflow to improve the regularity with reduced
control overhead.

CCS Concepts

« Computer systems organization — Architectures; « Security
and privacy — Cryptography.

Keywords
Homomorphic encryption, CKKS scheme, Bootstrapping, FPGA

ACM Reference Format:

Antian Wang, Kaiyuan Zhang, Keshab K. Parhi, and Yingjie Lao. 2024. In-
vited Paper: HERMES: Homomorphic Encryption over Residual Number
System for Multi-level EvaluationS. In Proceedings of International Con-
ference on Computer-Aided Design (ICCAD’24). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3676536.3697124

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3697124

Kaiyuan Zhang
kaiyuan.zhang@tufts.edu
Tufts University
Medford, Massachusetts, USA

Yingjie Lao
yingjie. lao@tufts.edu
Tufts University
Medford, Massachusetts, USA

1 Introduction

With the growing demands for computational privacy and secu-
rity, the development of privacy-preserving technology has be-
come preeminent. Applications involving outsourced data collec-
tion, model inference, and cloud-based deployment are the ones
with the highest urgency in seeking proper technology to face
these challenges. Homomorphic Encryption (HE) [36] is one of the
emerging technologies addressing such a developing need from
potential stakeholders (i.e., private data owners, high-performance
model providers, and efficient cloud-computing servers) when de-
ploying and using cloud computing. The clients can send their
encrypted private data to the server, and receive the evaluation
results from the server without decryption during the evaluation.
The results can only be decrypted by the user using their secret
keys. It holds significant potential for various industries, including
healthcare [31], financial data management [30], and databases [40]
to preserve user privacy. While the HE maintains computation con-
fidentiality on the cloud, the security comes with the expense of
high computation costs over encrypted data. Such computation
overhead This has been a major barrier to the widespread adoption
of HE as a standard solution for secure cloud computing.

Most of the existing HE schemes [13, 15] are designed based
on the Ring-Learning With Errors (R-LWE) problems introduced
in [29], which ensure the post-quantum security by adding noise
to the ciphertext. In this work, we target the CKKS scheme [13]
using the bootstrapping operation proposed in [8, 9, 11, 12, 20]
for hardware acceleration. The scheme supports homomorphic ad-
dition, homomorphic multiplication, and homomorphic rotation
(automorphism). The support of approximated floating point ho-
momorphic arithmetic evaluations boosts CKKS’s popularity for
privacy-preserving computation applications [28, 35].

In this paper, we present HERMES, a hardware acceleration
architecture design for the CKKS scheme. The design focuses on the
evaluations performed on the server side for multi-level evaluations.
The contributions of this paper are summarized below:

e We introduce a novel computational paradigm where the
Inverse Number Theoretic Transform (INTT) is performed
before the Number Theoretic Transform (NTT), extending
prior polynomial multiplication architecture designs. To opti-
mize hardware resource utilization and achieve high through-
put, we unify the butterfly module for a Multi-path Delay

https://doi.org/10.1145/3676536.3697124
https://doi.org/10.1145/3676536.3697124

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

Commutators (MDC) architecture, maximizing efficiency
and performance.

e We leverage the optimized modular multiplication design
with consecutive primes and further empower the computa-
tion modules to support element-wise modular operations
with cascading capabilities. The capability fully leverages
existing processing elements. This approach reduces the
memory access footprint while enhancing performance and
minimizing data transfer overhead.

e Finally, we analyze the CKKS bootstrapping computation
flow and introduce optimizations that reduce the computa-
tional load. The effectiveness of our architecture is demon-
strated under the demanding bootstrapping evaluation.

The rest of the paper is organized as follows. Section 2 briefly
reviews the prior works on hardware acceleration for lattice-based
cryptography, HE implementations, and bootstrapping evaluation.
We present the proposed HERMES, a custom design supporting
CKKS bootstrapping in Section 3. In Section 4, we show the exper-
imental results and compare them with prior works. Finally, Sec-
tion 5 concludes the paper.

2 Background
2.1 Hardware Architectures for Lattice-based

Cryptography

Most of the HE schemes are based on lattice-based cryptography,
which includes various modular addition/subtraction, modular mul-
tiplication and polynomial multiplications. Modular multiplication
and polynomial multiplication are the primary research focuses
in the literature [47]. Barrett reduction [6] has been adopted for
both Post-quantum cryptography [5, 26, 43, 49] and HE [14, 32, 39]
hardware implementations for modular multiplication. To reduce
the computation resource overhead in modular multiplication, the
costly multiplication can be replaced by shifting and additions con-
sidering the special structure of the selected moduli [27, 41]. The
NTT-based approaches are mainly used in lattice-based cryptog-
raphy for prime moduli [42, 48] due to the log-linear complexity
in polynomial multiplications compared with quadratic complex-
ity in non-NTT approach [44]. Prior architecture designs of FFT
butterfly operation using Single-Delay-Feedback (SDF) [21, 34] and
Multi-path-Delay-Commuter (MDC) [3, 18, 33, 42] show the capa-
bility in supporting high throughput architecture design. These
FFT butterfly module designs can be seamlessly transferred to the
NTT/INTT butterfly module. Additionally, NTT and INTT can be
integrated into a unified module to increase hardware resource uti-
lization [17, 52]. Twiddle factor storage can be halved by examining
access patterns [7, 19]. These prior designs provide building blocks
for efficient HE hardware acceleration.

2.2 HE Implementations

SEAL [10], and OpenFHE [4] are two representative open-source
libraries used for developing and benchmarking various HE de-
signs. However, these software libraries have limited support for
custom architectures, which constrains their capability to handle
computation-intensive applications like neural network inference.

Wang et al.

To this end, custom designs over ASIC, FPGA, and GPU micro-
architecture have been extended to fulfill the needs for specific
computations with superior performance than the CPU [1, 22, 24,
25, 37, 38, 51]. FHE ASIC designs [2, 16, 24, 37, 38] primarily target
reducing memory consumption and alleviating data transfer bot-
tlenecks, aiming for scalability and high throughput with superior
performance compared to CPU implementations. However, these
designs often lack the flexibility needed to adapt to new computa-
tional patterns in evolving HE algorithms. In contrast, FPGA acceler-
ation presents a promising alternative, offering greater adaptability
to the continuous advancements in HE algorithm development.

The early work in [45] leveraged the AWS cloud FPGA to im-
plement a non-bootstrappable BFV with dedicated modules for
the evaluation steps. However, it had limitations in adapting new
computational intensive steps, like bootstrapping. Bootstrapping is
the challenging part of the HE design, with most of the works in
supporting bootstrapping implemented over ASIC given its uncon-
strained computation and memory resources to handle the massive
modular operations [16, 24, 37, 38]. F1 [37] supports bootstrapping
for the BGV/BFV scheme while it is designed for computation with
small size rather than private deep neural networks inference. A
wide range of CKKS-based hardware designs focusing on enhanc-
ing performance and bootstrapping acceleration with huge on-chip
memory requirements [24, 38]. In the meantime, a 36-bit FHE accel-
erator with hierarchical micro-architecture is proposed to achieve
high performance with a smaller functional block area, compact on-
chip memory and lower power consumption [23]. The work in [16]
explores the acceleration of inner-product operation and optimizes
the NTT and BConv operations through algorithmic derivation. It
minimizes the on-chip bandwidth requirements and provides high
performance. Apart from that, a chiplet-based HE accelerator is
proposed in [2] to preserve monolithic chip design’s advance while
meeting the emerging demand for privacy-preserving computing.

Only a few works have been proposed to support bootstrapping
in FPGA [1] and GPU [22]. The work in [1] improved the algo-
rithm computation flow and memory architecture. It focuses on
optimizing the key-switching computation flow to maximize the
reuse of ciphertexts, considering the limited on-chip BRAM/URAM
resources. However, its design mainly focused on memory-centric
optimization. In contrast, our work also explores low-level compu-
tation module designs to improve performance and scheduling for
HE.

2.3 CKKS Scheme and Bootstrapping

CKKS is a leveled HE for efficient arithmetic operations on en-
crypted data [13] in real or complex numbers using approximate
arithmetic. Due to the inherent noise in HE, iterative evaluations
over ciphertexts can lead to increased noise levels, raising the risk of
decryption errors. While the original leveled-HE algorithm supports
a limited number of computations over a single ciphertext, fully
homomorphic encryption (FHE) extends this capability by enabling
unlimited computations through a process known as bootstrapping.
Bootstrapping effectively refreshes the ciphertext by reducing ac-
cumulated noise. Instead of performing additional homomorphic
evaluations with the risk of decryption errors, bootstrapping ho-
momorphically decrypts the ciphertext while keeping it encrypted.

Invited Paper: HERMES: Homomorphic Encryption over Residual Number System for Multi-level EvaluationS

The result is a new ciphertext with significantly reduced noise,
allowing further computations without compromising the accuracy
of decryption.

In CKKS, encoded plaintext pti/, i’ € {0,1} is encrypted by public
keys pko, pki as

(ct! ety = (pkos -l 4 e+ ptT phrs el 4 el .
cto.cty) = (pkoi-eq; +ey; +pt . pkii-eg;+ey;), (1)

where eéil., eii, egi are error terms that follow the individual dis-
tribution using cryptographic secure sample generation over g;.
Xoor,.i denotes a discrete Gaussian distribution over g; with stan-
dard deviation o¢, U; is an uniform distribution over g;, and ZO;
is an distribution over q; with sample value € {-1,0, 1} with 0.5
probability for +1, and with 0.5 probability for 0. For the CKKS
scheme, e;:,,o ~ ZO0;, el’.':l, ef:Z ~ Xoormi- The evaluated ciphertext

P
(ctg

R

ctii) is decrypted using secret key sk;:

Pleval,i =ty +cty; - ski, (2)

From Equation (2), decryption operation is essentially a modular
reduction of ctéji + ct{ji - sk; over g;j.

To enable recryption over ciphertext, an evaluation key for boot-
strapping using sk; is generated. Then, a modular reduction over
qi is evaluated homomorphically in the ciphertext domain, which
is essentially a periodic function of g;. The function can be approx-
imated with the following scaled sin function [12]:

P2 i 3
[pteval,i]qi =5 Sln(_(Ct()i +cty;- ski)) +O(e” - qi) (3)
21 qi ’ ’

where [pteyailg; < € - gi. Equation (3) provides high-level insights
into the bootstrapping process, with the following works finding dif-
ferent approximations of the modular reduction function [8, 9, 20].
Bootstrapping is a special type of evaluation step and is more
computationally intensive than homomorphic multiplication, as
it approximates a high-degree polynomial while maintaining low
decryption error. Although scheduling strategies to reduce compu-
tational overhead have been studied [46], further optimization of
the low-level bootstrapping computations is necessary to accelerate
the process. In this work, we analyze the computation flow graph
of CKKS bootstrapping to reduce operation overhead.

3 HERMES Architecture

3.1 Scaling Operation for Multi-Level
Evaluation

As the leveled CKKS homomorphic evaluation progresses, the ci-
phertext modulus diminishes, eventually becoming insufficient to
support further computations without errors. To this end, the pro-
cess of so-called rescaling in the Residue Number System (RNS)
is needed to reduce the noise level in the ciphertext, thereby min-
imizing the likelihood of decryption errors. Rescaling operation
essentially drops the last modulus of current / moduli, and then
scale the g;_; to the remaining ciphertext as ct’ = [ql__l1 - ct] mod
(Hf;g qi), decreasing the number of ¢; from [to [— 1, as shown in

the high-level computation flow is presented in Fig. 1. This leads to
two important insights:

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

Drop & scale ct
1)
Ele.-wise Ele.-wise .
No_ Mod Compute. L Mod Compute.
Shuffling o
is Needed | & : b ct 3
o = T
N S v | s
Ele.-wise Ele.-wise '
ct INTT I > Mod Compute. P| NTT | > Mod Compute.
qi1 qQi2 1-2
91

Figure 1: Drop and scale operation computation flow with ct
with moduli qo, ... q;_; as the input ciphertext, and ct’ with
moduli g, . .. g;_, as the output ciphertext.

o — — —

ﬂ q13 I q12 I 11 I Q10 n Jo~do
I Q12 I 11 I Q10 “ Qo~do
: , After 4 Mult.
\durlng evaluation.

Figure 2: High-level moduli computation profile example for
multi-level homomorphic evaluation.

| Fresh Ct.

| After 1 Mult.

Moduli dropped

—Comp. Fl

e Not all g; are used for all homomorphic evaluations. Some
of the g; will be discarded to constrain the noise level for the
computation, as demonstrated in Fig. 2.

o The rescaling operations are performed over the coefficient
domain between consecutive polynomial multiplication over
the evaluation domain.

The first insight suggests that deriving the computation profile
for g; allows for more efficient scheduling of operations across dif-
ferent types of modular computation modules. Excessive resources
are required to perform all modular computations using a dedicated
module with low utilization for individual q;. However, by group-
ing q;, we can reduce the need to schedule computations on less
efficient general-purpose modules and explore resource reduction.
Fig. 3 shows a detailed moduli computation profile for the CKKS
bootstrapping process. We can observe the non-uniform computa-
tion over different moduli for the actual bootstrapping evaluation.
We grouped these moduli into Custom Moduli and General Moduli
based on their computation frequency, which balances the workload
and reduces resource consumption.

The second insight encourages reconsidering the sequence of
modular operations. Rather than following the computation flow
in the prior designs, i.e., from NTT — element-wise operation —
INTT. Instead, we propose to use the computation from INTT —
element-wise operations — NTT as shown in Fig. 1. It eliminates the
shuffling operations needed as in NTT — element-wise operation
— INTT paradigm. Switching the computation flow also unlocks
new possibilities for designing high-throughput modular computation
modules.

3.2 Custom and General Modular Operations

As discussed in Section 3.1, not all g; are used along the homo-
morphic evaluation as shown in Fig. 2, Some of the g; are dropped
along the evaluation process. Therefore, it is possible to improve
the overall performance by developing both custom and general

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

Butterfly Operations

Balanced Workload

Wang et al.

Element-wise Operations

I

Figure 3: Moduli computation profile for the CKKS bootstrapping implemented in this work.

modules to separate different modular operations. While support-
ing all moduli in a single module simplifies the computation flow,
it leads to excessive resource consumption and low efficiency. On
the other hand, a custom module tailored to support specific g;
may suffer from under-utilization. Balancing custom and general
modular computation modules is a key design objective of the
proposed HERMES.

In our proposed architecture, the custom modular computation
modules are designed to support all modular computations over
a set of g; used throughout the homomorphic evaluation. This
approach reduces the need for extensive configuration logic that
would otherwise be necessary to support a broader range of g;
compared to the general-purpose modular computation modules. In
this design, we group all g; used for the entire bootstrapping process
to be computed over these custom modular modules. Meanwhile,
the general modular computation modules will support all the
remaining q; that are dropped before the end of the bootstrapping
evaluation.

y2q o
" - Splitter |
A e i '
y o
m ———{ X)X > c
. = | |

Figure 4: Highly reconfigurable modular multiplier using
Barrett reduction module.

Algorithm 1 Modular multiplication with Barrett Reduction.

Input: aand b € Zg, m = [25/q|, k = 2 - [log, q]
Output: y=a-b mod g

cz=a-b

t=(z-m)>>k

cy=y—(t-q

. if y > q then

y=z—-q

: end if

[B N e

For the CKKS multi-level evaluations, the g; values are typically
selected starting from the largest possible g; for the desired secu-
rity level, gradually decreasing to smaller values until the desired
computation level is reached. These selected q; values are closely
spaced, which facilitates optimization for both custom and general
modular computation modules. For Barrett reduction shown in
steps 2 and 3 of Algorithm 1, it requires a multiple of g and | 2%/,

which also allows the g and |25 /g only differ in a small range of
bits. The observation enables us to partially decompose the costly
multiplication to shift-add operations of partial multiplication re-
sults. These two steps are indicated using a dashed line multiplier
on the left of Fig. 4 with a splitter to split the constants into multiple
separate parts (2 parts as an example shown on the right of Fig. 4).
The specific shift-add configuration depends on the values of the
q and |2%/q|. This design can effectively reduce the amount of
needed DSP for modular multiplications.

3.3 MDC-based Bi-directional Reconfigurable
Butterfly Module Design

MDC for NTT/INTT hardware implementation is highly suitable for
custom HE hardware design with high throughput [3, 18, 33, 42]. It
offers promising scalability for larger HE hardware systems. Unlike
traditional memory-based methods that require two dedicated mem-
ory blocks to facilitate ping-pong operations during NTT/INTT
computation—thus limiting the number of concurrent butterfly op-
erations due to constraints on onboard memory bandwidth and
depth—the MDC-based approach utilizes a chain of Delay-Switch-
Delay (DSD) modules. This configuration, as illustrated in the top
left of Fig. 5, supports full streaming operations with minimal mem-
ory overhead, effectively eliminating the need for extensive memory
blocks.

NTT

T _o o &)
N W i L ooy SO
Uni. But, Uni. But; {#0s0)"5((Uni. Buts
t £

©ROM, ©ROM, ©ROM, ©ROM,

Figure 5: Unified Bi-directional reconfigurable MDC-based
butterfly module design for n = 8.

A significant limitation of the original MDC approach is its lack
of flexibility in utilizing a unified butterfly design [52], as shown
in the top right of Fig. 5. The number of registers required varies
between NTT and INTT stages, complicating the design. To address
this issue, we propose a unified bi-directional reconfigurable MDC-
based butterfly module for HERMES. An example with degree-8 is
depicted at the bottom of Fig. 5. Given that the size of the registers
within the DSD is only related to the polynomial degree n and
parallel level of the butterfly operation, the reconfiguration enables
the configuring of the unified butterfly computation modules to
support both NTT and INTT. Twiddle factors are stored in the
ROM, which is directly connected to the corresponding butterfly

Invited Paper: HERMES: Homomorphic Encryption over Residual Number System for Multi-level EvaluationS

operation module for the individual stages. Given that the w2,
is the 2n-th root of unity, satisfying wgz mod g = 1, then by the
definition of 2n-th root of unity, 0} mod q = —1, thus wz_r: mod g =
wz_n’ +(-1) - w0y, modq = —a)gn_i mod g. The unified butterfly at
stage-i needs twiddle factor from a)2<nzlog2 T a)z<nzlog2 e
for both NTT and INTT computation, where < - > represents bit-
reverse operation for log, n-bit. The twiddle factor of INTT can be
derived from the twiddle factor ROM stored for NTT. Overall, the

proposed architecture can achieve high speed and high throughput.

3.4 Reconfigurable Modular Computation
Module

To further accelerate element-wise modular operations, we pro-
pose a reconfigurable modular computation module, as illustrated
in Fig. 6. The Processing Element (PE) in this module can operate in
two modes: independent mode for element-wise operations, and cas-
cade mode for combined multiplication and addition/subtraction
operations. This reconfigurability minimizes data transfer over-
head between the host and the computation module during boot-
strapping, eliminating the need for dedicated memory as in previ-
ous works [37, 50]. By reducing control overhead associated with
element-wise computations, our design not only improves the ef-
ficiency but also enables the design-space exploration of different
computation patterns within the CKKS scheme.

L&
-5

BasePE Independent Mode Cascade Mode
Q: @O Mod. Adisub @ Wod. Mul

Figure 6: Reconfigurable modular computation module.

Add/Sub-Mul Mode Mul-Add/Sub Mode

In the proposed HERMES, 16 PEs are used for both custom and
general modular computation modules for CKKS bootstrapping
evaluations. It provides diverse connection patterns based on the
target CKKS bootstrapping computation profile, reducing data ac-
cess time. The reconfigurable modular computation modules de-
crease data transfer overhead in the bootstrapping evaluation to
reduce the running time.

3.5 Bootstrapping Computation Flow
Optimization

We further explore the data dependency to remove redundant
NTT/INTT operations and streamline the data transfer process,
reducing workload and accelerating the computation with high-
level concept is shown in Fig. 7. The bootstrapping for CKKS com-
prises 3 major steps [8], namely coefficients to slots, homomorphic
modular reduction, and slots to coefficients. The purpose of coeffi-
cients to slots is to map the ciphertext coefficients in plaintext slots
to evaluate the modular reduction coefficient-wise. The result of
the coefficient to slots is composed of two ciphertexts given each
CKKS ciphertext with polynomial degree n, which can store up to
at most n/2 plaintext values. After the slots to coefficient process,
the bootstrapped ciphertext is restored with a low noise level.

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

In HERMES, we support Chebyshev approximation of sin func-
tion as proposed in [8, 9, 12]. The approximation method has been
shown to reduce bootstrapping overhead and improve efficiency.
We optimize the computation by restructuring the pre-computation
phase of intermediate polynomial evaluation to minimize redun-
dant drop and scale operations for identical polynomial results,
thereby simplifying the computation flow. This pre-computation
strategy decreases butterfly operations by 26% and element-wise
modular operations by 5% compared to the software counterpart.

HERMES

FPGA Acceleration Card &

FPGA Interfaces
|

Comput. Opt.

r
\

Figure 7: Bootstrapping computation schedule optimization
with hardware-software co-design.

4 Experiment

We implement HERMES hardware implementation for homomor-
phic evaluation in Verilog with 300MHz operation clock frequency.
The host CPU code is written in XRT native API for data transfer
and scheduling, and HERMES RTL code is packaged into kernel
code using the Vitis 2023.1 development platform. The kernel code
is compiled and linked into an FPGA executable by the Vitis com-
piler. The performance of the FPGA implementation is detailed
in Table 1.

4.1 HERMES Architecture Design and Step
Profiling

For a fair comparison, we evaluate the operation time as bootstrap-
ping per slot. We observe that our proposed architecture can achieve
better area-time product (ATP) over LUT, FF, and DSP. The gain is
attributed to the grouping of the low-level modular computations
into custom moduli and general moduli, as well as the computation
flow optimization dedicated to the CKKS bootstrapping process.
Besides, we provide the running time breakdown for one round
of CKKS bootstrapping, as summarized in Table 2. We compare
the running time on FPGA with the software implementation in
OpenFHE. The OpenFHE software implementation was running
over Intel(R) Core(TM) i7-14700K in Ubuntu 22.04.4 LTS. A total
4.72% speedup for the entire process is achieved, demonstrating the
effectiveness of the proposed acceleration.

4.2 Scalability Evaluation

HERMES support MDC bi-directional butterfly modules with 8 co-
efficients fed simultaneously and polynomial degree of 4096 for
NTT/INTT butterfly operations, and 16-parallel computation mod-
ules for element-wise modular operations, which include modular
addition/subtraction, and modular multiplication. HERMES can be
generalized to larger polynomial degrees and higher parallelisms.

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

Wang et al.

Table 1: HERMES FPGA performance comparison of HERMES with prior works of CKKS implementations. Area-time product
(ATP) is computed by using the similar metrics as in [25]: (LUT/FF/DSP/BRAM)xBootstrapping Per Slot (us)/(log Q).

. Freq (GHz)
Design logn/logQ Board BootPerSlot (us) KLUT/ATP kFF/ATP DSP/ATP BRAM(36K)/ATP URAM/ATP
HERMES | (12,54 x33) U280 0.3/0.112 466/29.295 462/29.037 3844/0.242 319.5/0.02 36/0.0003
FAB[1] (16,54 x 23) U280 0.3/0.477 899/345.27 2073/796.15 5120/1.966 1920/0.738 960/0.369

Table 2: Running time breakdown in seconds for one round
of CKKS bootstrapping and comparison with software.

Evaluation Type | HERMES OpenFHE | Speedup vs OpenFHE
Coeff2Slots 0.072 0.284 3.94x
Mod Q 0.164 0.941 5.73%
Slots2Coeff 0.046 0.106 2.30x
Total 0.282 1.331 4.72X

Table 3: Resource consumption estimation with the increase
of polynomial degree n for HERMES.

logy(n) | 12 13 14 15 16 17 18 19

kLUT 466 487 508 528 549 570 590 611
kFF 462 479 496 512 529 546 563 579
DSP 3844 4084 4324 4564 4804 5044 5284 5524

Table 4: Resource consumption estimation with increased
parallelism of modular computation modules for HERMES.
Butterfly module size is fixed with a polynomial degree of
4096. Rows colored in gray cannot be accommodated in Xilinx
U280 FPGA Data Center Accelerator Card.

Num. of
Modular Computation Module KLUT kFF - DSP
16 466 462 3844
32 536 508 4804
64 676 599 6724
128 955 782 10564
256 1514 1149 18244

For larger polynomial degrees, the computation resource con-
sumption of the MDC bi-directional butterfly modules increases
proportionally with n. As illustrated in Table 3, HERMES can be
estimated to support polynomial degree up to 217, utilizing MDC
bi-directional butterfly modules with simultaneous processing of
8 coeflicients and 16-parallel computation modules for element-
wise modular operations. These large polynomial degrees would
meet most homomorphic evaluation requirements. Additionally, by
maintaining a polynomial degree of 4096 with the current MDC
bi-directional butterfly module structure and employing up to 64-
parallel modular computation modules, the computations can be
further accelerated within the available FPGA resources. We present
the resource consumption estimation with increased parallelism of
modular computation modules for HERMES in Table 4,

5 Conclusion

This paper presents HERMES, a hardware acceleration system
specifically optimized for the CKKS homomorphic encryption scheme,
supporting operations such as addition, multiplication, and rota-
tion. Our architecture introduces an innovative computation flow
designed to minimize control overhead through high-throughput
butterfly operation modules. We also propose a novel partition-
ing strategy for the underlying computation modules, categorizing
them into general and custom types to optimize scheduling and
reduce computational resource overhead based on the profile of
individual ¢;. Additionally, we analyze data dependencies to further
reduce evaluation clock cycles.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
(NSF) under grant numbers CCF-2243053, CCF-2412357, and SaTC-
2426299.

References

[1] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil,
Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An
FPGA-based accelerator for bootstrappable fully homomorphic encryption. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, IEEE, 882-895.

[2] Aikata Aikata, Ahmet Can Mert, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha
Roy. 2023. REED: Chiplet-based scalable hardware accelerator for fully homo-
morphic encryption. arXiv preprint arXiv:2308.02885 (2023).

[3] Manohar Ayinala, Michael Brown, and Keshab K Parhi. 2011. Pipelined parallel
FFT architectures via folding transformation. IEEE Transactions on Very Large
Scale Integration Systems 20, 6 (2011), 1068-1081.

[4] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo

Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy RV,

Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod

Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homo-

morphic Encryption Library, In Proceedings of the 10th Workshop on Encrypted

Computing & Applied Homomorphic Cryptography. Cryptology ePrint Archive,

53-63.

Utsav Banerjee, Tenzin S Ukyab, and Anantha P Chandrakasan. 2019. Sapphire: A

Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols. JACR

Transactions on Cryptographic Hardware and Embedded Systems (2019), 17-61.

Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman public key

encryption algorithm on a standard digital signal processor. In Conference on the

Theory and Application of Cryptographic Techniques. Springer, 311-323.

Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.

2021. High-speed NTT-based polynomial multiplication accelerator for post-

quantum cryptography. In 2021 IEEE 28th Symposium on Computer Arithmetic

(ARITH). IEEE, 94-101.

[8] Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. 2022.

Bootstrapping for approximate homomorphic encryption with negligible failure-

probability by using sparse-secret encapsulation. In International Conference on

Applied Cryptography and Network Security. Springer, 521-541.

Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved bootstrapping for

approximate homomorphic encryption. In Annual International Conference on

the Theory and Applications of Cryptographic Techniques. Springer, 34-54.

[10] Hao Chen, Kim Laine, and Rachel Player. 2017. Simple encrypted arithmetic

library-SEAL v2. 1. In International Conference on Financial Cryptography and
Data Security. Springer, 3-18.

[5

G

—
=

—
)

Invited Paper: HERMES: Homomorphic Encryption over Residual Number System for Multi-level EvaluationS

[11]

[12

[13

=
it

[15]

[16

[17

[18]

[19

[20

[21]

[22

[23]

[24

[25

[26

[27]

[28]

[29

[30]

[31]

[32]

Jung Hee Cheon, Kyoohyung Han, and Minki Hhan. 2018. Faster homomorphic
discrete fourier transforms and improved fhe bootstrapping. Cryptology ePrint
Archive (2018).

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for approximate homomorphic encryption. In Advances
in Cryptology-EUROCRYPT 2018: 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
3, 2018 Proceedings, Part I 37. Springer, 360-384.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 409-437.

Sin-Wei Chiu and Keshab K Parhi. 2024. Low-Latency Preprocessing Architecture
for Residue Number System via Flexible Barrett Reduction for Homomorphic
Encryption. IEEE Transactions on Circuits and Systems II: Express Briefs 71, 5
(2024), 2784-2788.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptology ePrint Archive 2012 (2012), 144.

Shengyu Fan, Xianglong Deng, Zhuoyu Tian, Zhicheng Hu, Liang Chang,
Rui Hou, Dan Meng, and Mingzhe Zhang. 2024. Taiyi: A high-performance
CKKS accelerator for Practical Fully Homomorphic Encryption. arXiv preprint
arXiv:2403.10188 (2024).

Yue Geng, Xiao Hu, Minghao Li, and Zhongfeng Wang. 2023. Rethinking Par-
allel Memory Access Pattern in Number Theoretic Transform Design. IEEE
Transactions on Circuits and Systems II: Express Briefs 70, 5 (2023), 1689-1693.
Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy. 2024. Proteus: A Pipelined
NTT Architecture Generator. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 32, 7 (2024), 1228-1238.

Xiao Hu, Jing Tian, Minghao Li, and Zhongfeng Wang. 2022. AC-PM: An area-
efficient and configurable polynomial multiplier for lattice based cryptography.
IEEE Transactions on Circuits and Systems I: Regular Papers 70, 2 (2022), 719-732.
Charanjit S Jutla and Nathan Manohar. 2022. Sine series approximation of the
mod function for bootstrapping of approximate HE. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
491-520.

Hans Kanders, Tobias Mellqvist, Mario Garrido, Kent Palmkvist, and Oscar
Gustafsson. 2019. A 1 million-point FFT on a single FPGA. IEEE Transactions on
Circuits and Systems I: Regular Papers 66, 10 (2019), 3863-3873.

Yuhui Bao Kaustubh Shivdikar, Michael Shen Rashmi Agrawal, Evelio Mora
Gilbert Jonatan, José L Abellan, Alexander Ingare, John Kim Neal Livesay, and
David Kaeli Ajay Joshi. 2023. GME: GPU-based microarchitectural extensions
to accelerate homomorphic encryption, In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO’23, Octo-
ber 28-November 1, 2023, Toronto, ON, Canada, 670-684.

Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim, and
Jung Ho Ahn. 2023. SHARP: A short-word hierarchical accelerator for robust
and practical fully homomorphic encryption. In Proceedings of the 50th Annual
International Symposium on Computer Architecture. 1-15.

Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,
and Jung Ho Ahn. 2022. ARK: Fully homomorphic encryption accelerator with
runtime data generation and inter-operation key reuse. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1237-1254.

Liang Kong, Guojie Qin, and Shuguo Li. 2023. Design an Efficient FPGA-Based
Accelerator for Leveled BFV Homomorphic Encryption. IEEE Transactions on
Circuits and Systems II: Express Briefs 71, 3 (2023), 1381-1385.

Minghao Li, Jing Tian, Xiao Hu, and Zhongfeng Wang. 2023. Reconfigurable
and high-efficiency polynomial multiplication accelerator for CRYSTALS-Kyber.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
42, 8 (2023), 2540-2551.

Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Grofischddl, Howon Kim,
and Ingrid Verbauwhede. 2015. Efficient Ring-LWE encryption on 8-bit AVR
processors. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 663-682.

Qian Lou and Lei Jiang. 2021. HEMET: a homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture. In International confer-
ence on machine learning. 7102-7110.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and
learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1-23.

Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack Crawford, Flavio Berga-
maschi, Maria E Dela Rosa, Caio C Quini, Camila T Alves, Feranda de Souza,
and Deise G Ferreira. 2019. Towards a homomorphic machine learning big data
pipeline for the financial services sector. Cryptology ePrint Archive (2019).
Kundan Munjal and Rekha Bhatia. 2023. A systematic review of homomorphic
encryption and its contributions in healthcare industry. Complex & Intelligent
Systems 9, 4 (2023), 3759-3786.

Kevin Nam, Hyunyoung Oh, Hyungon Moon, and Yunheung Paek. 2022. Accel-
erating n-bit operations over TFHE on commodity CPU-FPGA. In Proceedings of

[33

(34]

[35

&
2

[37

[38

@
20,

[40

[41

[42

=
&

[44

[45

[46

[47

[48

[49

[50

a
=

[52

ICCAD’24, Oct 27-31, 2024, New Jersey, NJ

the 41st IEEE/ACM International Conference on Computer-Aided Design. 1-9.
Keshab K Parhi. 2024. A low-latency FFT-IFFT cascade architecture. In ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 181-185.

Fahad Qureshi, Syed Asad Alam, and Oscar Gustafsson. 2010. 4K-Point FFT
Algorithms based on optimized twiddle factor multiplication for FPGAs. In 2010
Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics
(PrimeAsia). IEEE, 225-228.

Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu, Caiwen
Ding, and Wujie Wen. 2023. SpENCNN: orchestrating encoding and sparsity
for fast homomorphically encrypted neural network inference. In International
Conference on Machine Learning. PMLR, 28718-28728.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On data banks
and privacy homomorphisms. Foundations of secure computation 4, 11 (1978),
169-180.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 238-252.
Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. Craterlake: a hardware accelerator for efficient unbounded com-
putation on encrypted data. In Proceedings of the 49th Annual International Sym-
posium on Computer Architecture. 173-187.

Kaustubh Shivdikar, Gilbert Jonatan, Evelio Mora, Neal Livesay, Rashmi Agrawal,
Ajay Joshi, José L Abellan, John Kim, and David Kaeli. 2022. Accelerating poly-
nomial multiplication for homomorphic encryption on GPUs. In 2022 IEEE Inter-
national Symposium on Secure and Private Execution Environment Design (SEED).
IEEE, 61-72.

Benjamin Hong Meng Tan, Hyung Tae Lee, Huaxiong Wang, Shuqin Ren, and
Khin Mi Mi Aung. 2020. Efficient private comparison queries over encrypted
databases using fully homomorphic encryption with finite fields. IEEE Transac-
tions on Dependable and Secure Computing 18, 6 (2020), 2861-2874.

Weihang Tan, Benjamin M Case, Antian Wang, Shuhong Gao, and Yingjie Lao.
2021. High-speed modular multiplier for lattice-based cryptosystems. IEEE
Transactions on Circuits and Systems II: Express Briefs 68, 8 (2021), 2927-2931.
Weihang Tan, Sin-Wei Chiu, Antian Wang, Yingjie Lao, and Keshab K. Parhi.
2024. PaReNTT: Low-Latency Parallel Residue Number System and NTT-Based
Long Polynomial Modular Multiplication for Homomorphic Encryption. IEEE
Transactions on Information Forensics and Security 19 (2024), 1646-1659.
Weihang Tan, Antian Wang, Yingjie Lao, Xinmiao Zhang, and Keshab K Parhi.
2021. Pipelined High-Throughput NTT Architecture for Lattice-Based Cryptogra-
phy. In 2021 Asian Hardware Oriented Security and Trust Symposium (AsianHOST).
IEEE, 1-4.

Weihang Tan, Antian Wang, Xinmiao Zhang, Yingjie Lao, and Keshab K Parhi.
2023. High-speed VLSI architectures for modular polynomial multiplication via
fast filtering and applications to lattice-based cryptography. IEEE Trans. Comput.
(2023).

Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. 2020. HEAWS: An
accelerator for homomorphic encryption on the Amazon AWS FPGA. IEEE Trans.
Comput. 69, 8 (2020), 1185-1196.

Tommy White, Charles Gouert, Chengmo Yang, and Nektarios Georgios Tsoutsos.
2023. FHE-Booster: Accelerating fully homomorphic execution with fine-tuned
bootstrapping scheduling. In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 293-303.

Jiafeng Xie, Wenfeng Zhao, Hanho Lee, Debapriya Basu Roy, and Xinmiao Zhang.
2024. Hardware Circuits and Systems Design for Post-Quantum Cryptography-A
Tutorial Brief. IEEE Transactions on Circuits and Systems II: Express Briefs 71, 3
(2024), 1670-1676.

Yufei Xing and Shuguo Li. 2019. An efficient implementation of the NewHope-
Simple key exchange on FPGAs. IEEE Transactions on Circuits and Systems I:
Regular Papers 67, 3 (2019), 866-878.

Tianyu Xu, Yijun Cui, Dongsheng Liu, Chenghua Wang, and Weiqiang Liu. 2022.
Lightweight and efficient hardware implementation for Saber using NTT multi-
plication. In 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
IEEE, 601-605.

Yang Yang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna.
2022. Bandwidth Efficient Homomorphic Encrypted Matrix Vector Multiplication
Accelerator on FPGA. In 2022 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 1-9.

Yinghao Yang, Huaizhi Zhang, Shengyu Fan, Hang Lu, Mingzhe Zhang, and
Xiaowei Li. 2023. Poseidon: Practical homomorphic encryption accelerator. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 870-881.

Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo
Liu. 2020. Highly efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems 2020, 2 (2020), 49-72.

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware Architectures for Lattice-based Cryptography
	2.2 HE Implementations
	2.3 CKKS Scheme and Bootstrapping

	3 HERMES Architecture
	3.1 Scaling Operation for Multi-Level Evaluation
	3.2 Custom and General Modular Operations
	3.3 MDC-based Bi-directional Reconfigurable Butterfly Module Design
	3.4 Reconfigurable Modular Computation Module
	3.5 Bootstrapping Computation Flow Optimization

	4 Experiment
	4.1 HERMES Architecture Design and Step Profiling
	4.2 Scalability Evaluation

	5 Conclusion
	References

