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ABSTRACT

Large matrices arise in many machine learning and data analy-
sis applications, including as representations of datasets, graphs,
model weights, and first and second-order derivatives. Random-
ized Numerical Linear Algebra (RandNLA) is an area which uses
randomness to develop improved algorithms for ubiquitous matrix
problems. The area has reached a certain level of maturity; but
recent hardware trends, efforts to incorporate RandNLA algorithms
into core numerical libraries, and advances in machine learning,
statistics, and random matrix theory, have lead to new theoreti-
cal and practical challenges. This article provides a self-contained
overview of RandNLA, in light of these developments.

CCS CONCEPTS

- Computing methodologies — Machine learning algorithms;
« Theory of computation — Design and analysis of algorithms;
+ Mathematics of computing — Probability and statistics.

KEYWORDS

Matrix computations, Randomization, Optimization, Statistics

ACM Reference Format:

Michat Derezinski and Michael W. Mahoney. 2024. Recent and Upcoming De-
velopments in Randomized Numerical Linear Algebra for Machine Learning.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD °24), August 25-29, 2024, Barcelona, Spain. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3637528.3671461

1 INTRODUCTION

Matrices provide a natural structure with which to model data.
For example, a matrix A € R™*" can encode information about m
objects, each of which is described by n features. Alternatively, a pos-
itive definite matrix A € R™" can encode correlations/similarities
between all pairs of n objects. Motivated by large-scale data prob-
lems, recent years have witnessed many exciting developments in
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the theory and practice of matrix algorithms. Particularly remark-
able is the use of randomization. Historically, in statistics, machine
learning (ML), and domain sciences, randomization has been as-
sumed to be a property of the input data, e.g., due to noise in the
data generation mechanisms. In this more recent work on random-
ization, it is used as an algorithmic or computational resource.

Randomized Numerical Linear Algebra (RandNLA) is an interdis-
ciplinary research area that exploits randomization as a compu-
tational resource to develop improved algorithms for large-scale
linear algebra problems. From a foundational perspective, it has
roots in theoretical computer science (TCS), deep connections with
convex analysis, probability theory, and metric embedding theory,
etc., as well as strong connections with scientific computing, signal
processing, and numerical linear algebra (NLA). From an imple-
mentational perspective, well-engineered RandNLA algorithms beat
highly-optimized software libraries for ubiquitous problems such
as very over-determined least-squares, they scale well to paral-
lel/distributed environments, and they beat state-of-the-art for a
wide range of low-rank matrix approximation problems. From a
data analysis perspective, RandNLA has strong connections with ML
and statistics and many “non-methodological” applications of data
analysis. More generally, of course, it is of continued importance
since there is a growing interest in providing an algorithmic and
statistical foundation for modern large-scale data analysis.

The area of RandNLA has achieved a certain level of matu-
rity. As such, there are multiple reviews of the area from multiple
different perspectives: introductory overviews (light on prerequi-
sites) [29, 30]; broad and proof-heavy resources [60, 88, 89]; per-
spectives on interdisciplinary theory (light on proofs) [21, 59]; deep
investigations of specific disciplinary topics [45, 50, 62, 63]; and
approaches to high-quality software implementations [69]. Par-
ticularly notable is the current effort of incorporating RandNLA
algorithms into the core numerical libraries (e.g., RandLAPACK
and RandBLAS; see [69]) that lie at the foundation of virtually all
computational tools in ML (and scientific computing and beyond).

This level of maturity, as well as recent demands by the ML com-
munity and recent trends in hardware, lead to new theoretical and
practical challenges that did not exist a decade ago. For example:
developing RandLAPACK and RandBLAS leads to new algorithmic
and theoretical abstractions, different than those present in TCS
or NLA, and different than those common in statistics and ML;
recent developments in neural network training highlight impor-
tant trade-offs between communication and computation, between
forward accuracy and parameter stability, etc.; and recent develop-
ments in hardware have led to new trade-offs between latency and
throughput, both at the model training and model inference stage.
To complement these challenges, recent theoretical developments
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in Random Matrix Theory (RMT) have provided finer quantitative
performance analysis than was possible with traditional RandNLA
analysis tools. These theoretical developments come from RMT as
well as from RandNLA itself, and they permit both finer analysis of
existing methods as well as the possibility to develop novel methods
that better bridge the theory-practice gap.

In this survey, we will provide a self-contained review/overview
of RandNLA, in light of these recent developments, describing and
highlighting upcoming and future trends. We will introduce the
foundations of RandNLA and matrix sketching, with a particular
focus on applications in ML and stochastic optimization, followed
by an overview of recent developments in using sketching methods
to gain stronger control on the convergence and generalization
properties of stochastic algorithms. We will cover both the theoret-
ical aspects of these techniques, as well as their applications in the
context of important ML and data science research topics. Thus, our
discussion will be relevant not only to theoretical researchers who
wish to learn the latest advances in RandNLA, but also to a general
audience of ML and data science researchers and practitioners, who
want to incorporate RandNLA into large-scale data problems.

2 FOUNDATIONS OF “CLASSICAL” RANDNLA

In this section, we will describe the foundations of RandNLA theory,
at least up until a few years ago. The basic idea is to construct a
sketch (either data-aware or more commonly data-oblivious) that
has parameters chosen basically to preserve the geometry of an
entire low-dimensional subspace. This sketch can be interpreted in
one of several complementary ways; and it can be used in one of
several complementary ways. Understanding the details of these
complementary approaches is crucial for understanding recent
advances and upcoming developments in RandNLA for modern ML.

2.1 Matrix Multiplication

A core primitive in RandNLA is that of approximating the product
of two matrices [27]. The basic problem is the following: given an
m X n matrix A and an n X q matrix B, approximate the product A- B.
A key conceptual insight is that this problem can be expressed as
approximating the sum of n rank-one matrices:

n
A-B:Z Al ( B ).
k=1

Given this, a natural (random sampling) algorithm suggests itself:
1: Fix a set of probabilities p;, i = 1, ..., n, summing up to 1.
2. fort=1,...,sdo
3 Set j; = i according to P[j; = i] = p;.
4: end for (Randomly pick s terms of the sum according to p;’s.)
5. Approximate AB by summing the s terms, after scaling.
If we let S be an s X n matrix whose " row (¢t = 1, ..., s) has one
non-zero, St j, = 1/+/spj,, then we can use a “sampling matrix”
formalism [27] (a type of “sketching operator”) to express this as:
AB ~ 1Zs:ia< bT = (AS")-(SB) = C-R
s & pj, It ’
where aj, and b} are corresponding columns of A and rows of B.
Now, if we use probabilities p; o« ||a;||2]|b;||2 (row-norm sampling
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[27]), then we can minimize a very natural Frobenius norm error:

E[|[AB - CRI[r] = E[||AB - (AST)(SB)|IF] < ‘/%IIAIIFIIBIIF (1)

Here, by setting s = 1/€2, we obtain a Frobenius norm error that is
bounded above by ¢, in the additive scale defined by ||A||r||Bl|F-

This Frobenius norm bound given in (1) is used in many places
in RandNLA. However, “better” spectral norm bounds of the form
[|AB — CR||2 < €l|Allz||B|l2 are possible (after adjusting the sample
size s; see [12]) via matrix versions of Chernoff/Bernstein concen-
tration inequalities [88].

Within RandNLA, the main “use case” for approximate matrix
multiplication arises when it is applied not directly to the matrices
themselves, but rather to the “subspaces” that they define, giving
rise to subspace embeddings [59, 89].

DEFINITION 1. Let A be an n X d matrix, and let U consist of
orthonormal columns that are the basis of the column subspace of A.
Then, an s X n matrix S is a subspace embedding for A if

IUTU = (SU)" SUl2 = I = (SU)" SU[l2 < e.

Here, for a sampling matrix S, the “correct” sampling probabilities
pi to use are proportional to the squared row norms ||Us||Z, ak.a.
the leverage scores of A. These are expensive to compute exactly,
but they are fast to approximate—explicitly or implicitly—in one of
many ways [2, 11, 28, 65, 75].

Subspace embeddings are an extremely important concept in
Classical RandNLA theory. They were introduced and first used
implicitly in RandNLA by [31, 32], who relied on leverage score
sampling [28], which can be viewed as a type of data-aware sketch-
ing. The first explicit definition of subspace embeddings was given
by [33, 85], who focused on data-oblivious sketching; and these data-
oblivious methods were popularized by [89]. Many constructions
(random sampling and projection methods, deterministic construc-
tions, hashing functions, etc.) satisfy this condition [89].

There are several complementary interpretations of a subspace
embedding. Within NLA, it is an acute perturbation [86], meaning
in particular that distances and angles are perturbed, but rank is
not lost. Within TCS, it is a Euclidean space analogue of Johnson-
Lindenstrauss (JL) lemma [64], meaning in particular that distances
are approximately preserved for the infinite number of points on a
unit ball in the low-dimensional space. More generally, the subspace
embedding guarantee can be used to produce a spectral approxima-
tion of the matrix product AT A, in terms of the Loewner ordering
of positive semi-definite (PSD) matrices, which provides a strong
control on all the associated eigenvectors and eigenvalues. To be
more precise, let A be an m X n matrix and € € [0, 1/2]. If matrix S
is an €/2 subspace embedding for the subspace defined by A; then
ATSTSA is a spectral approximation of A"A, i.e.,

L ATA<ATSTSA < (1+€)ATA, (2)

1+e

where < is the PSD Loewner ordering. (We use ATSTSA ~ ATA
as a shorthand for (2) throughout.) The property A'S"SA ~. ATA
implies that any ith eigenvalue of the sketch A"S"SA is an € ap-
proximation of the corresponding eigenvalue of the data matrix
AT A (and similarly for the singular values of SA). It also extends
to the control of various matrix functions of A" A, including the
inverse, i.e., (ATSTSA)_1 e (ATA)_l, square root, trace, quadratic
form, and more.
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This subspace embedding property is a “must must have” for the
worst-case style of analysis provided by TCS. For everyone else, it
provides a guiding principle, but (strictly speaking) it’s optional.
For example, if one is interested in providing good numerical imple-
mentations, then losing rank can still give a good preconditioner
[3, 4]; and if one is interested in statistics and ML, then losing rank
introduces a bit of bias that can be compensated for by greatly
reducing variance [57, 58, 78]. This leads to a theory-practice gap.
As we will describe in Sec. 3, this is the key technical place where
Classical RandNLA theory and Modern RandNLA theory differ, and
why recent developments in Modern RandNLA theory open up the
door for so many other use cases and applications of RandNLA ideas.

2.2 Least-squares Approximation

We can use ideas from Sec. 2.1 for RandNLA methods for approxi-
mate matrix multiplication as a foundation to develop RandNLA
methods for least-squares (LS) regression. Given m X n matrix A
and m-dimensional vector b, the basic LS problem is to solve

x* = argmin ||Ax — b|,.
x€R”

If m > n, then the problem is called overdetermined or overcon-
strained; and if m < n, then the problem is called underdetermined
or underconstrained (or, especially in ML, overparameterized). In
the overdetermined case, one can compute the solution in O(mn?)
time (in RAM model), e.g., with normal equations, QR decomposi-
tions, or the Singular Value Decomposition (SVD). RandNLA gives
faster algorithms for this ubiquitous problem, which is at the root
of most other advances (including low-rank matrix approximation,
as well as extensions to optimization problems, etc.) in the area.

Importantly, depending on the domain, “faster” can mean one
of several different things: within TCS, “faster” is in terms of low-
precision asymptotic worst-case theory; within NLA, “faster” is
in terms of high-precision wall-clock time; and in large-scale im-
plementations, one can compute (in Spark/MPI/etc.) low, medium,
and high precision solutions on up to terabyte-sized data, and here
“faster” depends mostly on communication.

Meta-algorithm for LS regression. Here is a meta-algorithm for
solving LS regression problems with RandNLA methods.
1: Randomly sample a small number of constraints according to
A’s leverage score sampling probabilities {p;}1,.

2: Solve the LS regression problem on the resulting subproblem.

A naive version of this meta-algorithm is not promising: it gives a 1+€
relative-error approximation (since it approximates the solution
using only a subset of constraints), that fails with probability §
(comparable to flipping a fair coin “heads,” say, 30 times in a row),
in roughly O(mn?) time, i.e., as long as the exact deterministic
method (since, as stated, it computes the leverage scores exactly).

On the other hand, a non-naive version of this meta-algorithm is
very promising: it gives the best worst-case algorithm in RAM [28,
33, 85] (using Sketch-and-Solve, described below); it beats LAPACK
for high precision in wall-clock time [3, 66, 81] (using Sketch-and-
Precondition, described below); it leads to super-terabyte-scale
implementations in parallel/distributed environments [38, 92]; and
it gives the foundation for low-rank approximations and the rest of
RandNLA [30-32, 59].
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Figure 1: Three algorithmic paradigms for RandNLA meth-
ods: “Classical” (subspace embedding based) RandNLA the-
ory is most appropriate for low precision (with Sketch-and-
Solve) and high precision (with Sketch-and-Precondition);
while “Modern” (RMT-based) RandNLA theory is well-
suited for moderate precision (with Iterative Sketching),
which is of increasing interest in modern ML applications.

Fundamental structural result. For LS approximation, here is
the fundamental structural result that is at the heart of RandNLA-
based methods [33, 59]. (This is a deterministic result that holds for
any matrix S, and it is central to RandNLA theory by choosing S to
be an appropriate sketching operator.) Consider the “sketched” LS
approximation problem:

X = argmin, [|S(Ax — b)||2,
where S is any matrix. If S satisfies the two basic conditions:

1) 62, (SUa) = 1/V2 and 2) [UFSTSb |2 < e/2||Ax* — b,

min
where bt =b— UaU A and Uy is the orthonormal basis of A, then:
lAx - bll < (1+e)llAx™ = bll.

Importantly, each of the two basic conditions can be viewed as
approximate matrix-matrix multiplication [30, 59].

RandNLA provides a plethora of sketching methods (random
sampling and projection methods, deterministic constructions, hash-
ing functions, etc.) for S so as to satisfy these two basic conditions.
As described in the many reviews of RandNLA, the choice of which
method one uses typically depends on one’s goals: to provide TCS-
style worst-case theory; to provide NLA-style implementations; to
use in large-scale and/or ML settings; etc.

Three algorithmic paradigms for RandNLA methods. If we
want to use RandNLA methods more generally, then there are three
general paradigms—that apply both to LS methods as well as more
broadly than LS (e.g., to low-rank matrix approximation).

(1) Sketch-and-Solve: Here [28, 33, 85], we randomly construct
a smaller LS problem, and then solve it using a traditional
NLA method. This is the simplest approach to highlight the
structure of RandNLA theory; it is most convenient for TCS-
style theory; it leads to low-precision estimates, e.g., € = 0.1.
Iterative Sketching: Here [43, 76, 91], we repeatedly sketch
or sub-sample the problem randomly, and then iteratively
refine the estimate using a convex optimization method. This
includes Preconditioned Weighted SGD, Sketch-and-Project,
and Newton Sketch; it is the most convenient for ML-style
stochastic optimization; and it leads to moderate-precision
estimates, e.g., € = 1073,

—
S
~
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(3) Sketch-and-Precondition: Here [3, 66, 81], we randomly con-
struct an equivalent but well-conditioned problem, and then

solve it using a traditional deterministic NLA iterative method.

This is the best (usually) for high-quality numerical solutions;
it is most convenient for NLA-style implementations; and it
leads to high-precision solutions, e.g., € = 10710,

See Fig. 1 for an illustration of these three algorithmic paradigms.
The first and the third have received the greatest amount of atten-
tion within RandNLA, in part due to the (TCS and NLA based) style
of theory used in Classical RandNLA. The new theoretical devel-
opments in Modern RandNLA (described in Sec. 3) are particularly
well-suited to the second (and for ML based theory).

2.3 Low-rank approximation

We can use the ideas from Sec. 2.2 to develop RandNLA methods
for low-rank (LR) approximation. Many details change, e.g., for
LS problems the matrix is usually tall, while for LR problems both
dimensions may be large, in which case there is a rank parameter.
This is described in more detail in the full technical report [22].

3 FOUNDATIONS OF “MODERN” RANDNLA

In this section, we will describe relatively-recent work that provides
a foundation for current and upcoming developments in RandNLA.
One surprising aspect of Classical RandNLA theory, as outlined in
Sec. 2, is that there is actually very little use of randomness. Es-
sentially, all the randomness is “filtered through” the subspace em-
bedding. That is sufficient for many TCS and NLA style objectives
(although with Sketch-and-Solve and Sketch-and-Precondition, the
two areas use that embedding differently), but it is often “overkill”
when RandNLA methods are used in broader (statistical, ML, opti-
mization) pipelines (that typically use some form of Iterative Sketch-
ing). This has applications, in particular, in stochastic optimization
and traditional statistical resampling methods, where the JL-style
guarantees that come with a subspace embedding are sufficient
but not necessary. Modern RandNLA theory basically asks for a
stronger form of “Algorithmic Gaussianization” than the JL Lemma
provides, in the sense that sketches look more Gaussian-like than
what is provided with pair-wise JL-like guarantees. To accomplish
this, we must make connections with ideas from non-asymptotic
RMT, which have proven fruitful across data science and ML.

3.1 Algorithmic Gaussianization via RMT and
LESS Embeddings

To understand the basic issue, let us revisit the subspace embedding,
where for an n X d orthogonal matrix U (a column basis matrix of A)
we seek a matrix S € RS*" such that (SU)"SU ~, UTU = I. Here,
s must be larger than d; but how much larger does it need to be?

The proportional regime. Let us consider the extreme case (which
is in fact the most common) where s ~ d to within a constant fac-
tor, and suppose that S is a scaled i.i.d. Gaussian sketching matrix.
Thanks to the rotation invariance of Gaussian distribution, SU is
also Gaussian, and so we can obtain (up to lower order terms):

omin(SU) ~ 1 - \/g, omax(SU) ~ 1+ \/g ®3)
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This follows from the Marchenko-Pastur (MP) law [5]. Such a Gauss-
ian sketch not only gives us sharp control on subspace embeddings,

but also on most Classical RandNLA tasks, e.g.:
e Sketch-and-Solve: If we solve X = argmin, ||S(Ax — b)||§,
then E||A(x — x*)||§ = S_Z_l ||Ax* — b||§ fors > d+2.
e Sketch-and-Precondition: If we construct R~! from the QR of
SA, then cond(AR™!) < 6, with high probability for s > 2d.
e LR approximation: If we compute Q = orth(AS), then E||A—
QOAIZ < (1+ —K—) - [|A- Ap||2 for s > k +2.
From these results, traditional RandNLA-style guarantees (sum-
marized in Sec. 2) are straightforward to derive. These results are
all relatively easy to show for i.i.d. Gaussian matrices; and results
of this form are common in NLA and scientific computing appli-
cations of RandNLA [45]. The basic question is whether we can
obtain similar results with (faster) non-Gaussian sketches.

Inversion bias. To answer this question, we need a notion of
sketch quality (akin to subspace embedding) that can capture the
“Gaussian-like” behavior—in the proportional regime. Working in
the proportional regime, where the aspect ratio of the matrix is con-
stant, is key here—it is much more realistic, and if the aspect ratio is
not constant then JL-like results are straightforward to derive. One
way to capture this Gaussian-like behavior is through inversion
bias [20, 37]. The basic idea should be obvious: for a real-valued
random variable X, we know that E[X 1] # (B[Xx ])71. A similar
phenomenon occurs for random sketch matrices, A= SA:

E[(ATA) '] # (ATA)"!, eventhough E[ATA]=A"A. (4)

This bias is especially pronounced in the proportional regime, due
to the random singular value fluctuations described by the MP law.

Why focus on the inverse? Let us for a moment consider a statis-
tical perspective on sketching. Here, the sketched covariance matrix
ATSTSA can be viewed as a sample covariance estimator of the “pop-
ulation covariance matrix” ATA € R4 A natural question is: how
does the spectrum differ between the sample and the population
covariance? RMT answers this by looking at the resolvent matrix:

(ATSTSA-zI)"! for zeC\Ry.

The Stieltjes transform (normalized trace of the resolvent, central to
RMT) exhibits an inversion bias, leading to a discrepancy between
the sample and population. In traditional RMT, controlling this in-
version bias lets us characterize the limiting eigenvalue distribution
as s,n,d — co. Recent works [17, 19, 20] have extended this RMT
analysis to the non-asymptotic RandNLA theory, essentially show-
ing that: If we can correct the inversion bias of the sketch A = SA,
then we can recover stronger Gaussian-like sketching performance for
faster sketches across RandNLA tasks.

Correcting the bias (for Gaussian sketches). When A = SA is
an s X d Gaussian sketch, scaled so that E[ATA] = AT A, then there
is a very simple correction for the inversion bias:

E[yATA)™ | =A"A™" for y= 5.
This simple fix does not hold for other (faster) sketching methods
that have been used in RandNLA, e.g., Hadamard-based projections,
sub-Gaussian sketches, very sparse sketches, sampling methods,

etc. The basic reason is that other sketches are not perfectly rota-
tionally symmetric. Thus, among other things, they could lose rank
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(with very small probability) and/or suffer from “coupon collector”
problems. In general, for faster sketching methods, the inversion
bias occurs differently in each direction, and so we cannot correct it
with a single dimensional rescaling factor.

Nearly-unbiased sketches. Going beyond Gaussian sketches mo-
tivates the notion of a nearly-unbiased estimator [20].

DEFINITION 2. A random PSD matrix C is an (e, §)-unbiased
estimator of C if there is an event & that holds with probability 1 —
such that, when conditioned on &,

and C <0(1)-C.

Eg[Cl=e C

Let S be an s X n random matrix such that 4/s S has i.i.d. O(1)-sub-
Gaussian entries with mean zero and unit variance (i.e., a direct
extension of a Gaussian sketch). Building on the Stieltjes transform
analysis, it is possible to show that for this sketching matrix we
can nearly correct inversion bias, in the sense that (ﬁATSTSA)_1

is an (¢, §)-unbiased estimator of (ATA)™! for € = O(\/Ta) and § =
e’ (Proposition 4 in [20]). In other words, conditioned on a high
probability event &, we have

Eg[(=5A7S"SA) | ~e (A4, for e=0(¥). (5)
Let us compare/contrast this notion of an (¢, §)-unbiased estimator
with JL / subspace embeddings in Def. 1. For a subspace embedding,

we have that
Subspace embedding: (ATSTSA)™! ~y ATA)7t, p= @)(\/g)

Thus, we see that the average-case analysis in (5) is sharper than
what is possible to recover with the high-probability subspace em-
bedding analysis, by at least a +/s factor.

Averaging RandNLA estimators. Implications of this Modern
RMT-style analysis for RandNLA are discussed in later sections.
However, as an immediate consequence, we can establish various
“model averaging” schemes for RandNLA-based estimators, that can
be used in statistical/ML/optimization pipelines.

The premise behind model averaging is that if we can produce
a bias-corrected estimator %, i.e., Bias?(¥) < Var(%), then we can
boost its accuracy by averaging multiple independent copies of this
estimator. When the estimator relies on some linear functional of
the inverse matrix (ATSTSA)™!, as in sketched LS [37] and a number
of other RandNLA algorithms [17], then this follows (with some
small additional effort) from (5). For example, for q independent
sub-Gaussian sketches S; of size s > O(d + q), if we average the LS
estimates X; = argmin,, ||S;(Ax —b)||2, then the aggregate estimator
x = % Z?:l X; satisfies [37]:

E||A% — blz < (1 + €)|Ax* = blz, for e=0(%).

qs
Extending RMT-style analysis to fast sketching. Compared
to classical JL or subspace embedding approaches, most RMT for
sketching requires different “Gaussianization” assumptions and
different parameter regimes (e.g., the proportional regime). Most
out-of-the-box theory applies only to (expensive) dense Gaussian
or (still expensive) dense sub-Gaussian sketching matrices. Given
the widespread interest in fast sketching methods, the question
is: Can we extend this line of work to fast sketches, e.g., sparse or
structured?
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Several recent results have provided an affirmative answer to this
question [10, 15, 20, 26, 52], including: non-asymptotic RMT-style
analysis for sparse sketches based on Leverage Score Sparsification
(LESS) [10, 15, 20] and asymptotic RMT-style analysis for structured
sketches based on randomized Hadamard transforms [26, 52]. These
results essentially show that certain fast sketching operators are
“close” in a strong enough sense to sub-Gaussian matrices, typically
by relying on two structural conditions which are needed for S to
ensure small inversion bias:

(1) Subspace embedding: this is the standard guarantee from
Def. 1; using Modern RMT [9], sharp MP-style subspace
embedding guarantees as in (3) can be recovered for fast
sketching operators such as LESS [10].

(2) Restricted Bai-Silverstein inequality: this is the key novelty
that provides a variance bound for random quadratic forms
[20]; and it is related to the Hanson-Wright inequality [84].

Based on these ideas, we can reduce the cost of applying sub-
Gaussian sketches down from O(nds), while still recovering (5),
i.e., we can construct more efficient sketches for which it is possi-
ble to correct inversion bias and recover other Gaussian RandNLA
guarantees. For example, given a tall n X d matrix A, we can com-
pute an s X d sketch SA (LESS embedding) in near-linear time
O(nd + sd?) such that (ﬁATSTSA)_1 is an (€, §)-unbiased esti-

mator of (ATA)™! with € = O(\/Tg), matching the guarantee for
sub-Gaussian sketches (Theorem 8 in [20]).

3.2 RMT for Sampling via DPPs

The astute reader may wonder whether the developments described
in Sec. 3.1 that hold for data-oblivious sketching methods also hold
for data-aware sampling methods. After all, they are based on RMT-
based sketching in the proportional regime, and in some sense
sampling is inherently “non-RMT. For example, it involves coor-
dinate axes and coordinate-aligned subspaces, and lower bounds
arise that are due to the Coupon Collector problem. Yet, using De-
terminantal Point Processes (DPPs), one can show that very similar
RMT results hold for certain data-aware sampling methods [21].
This is described in more details in the full technical report [22].

4 ADVANCES IN RANDNLA FOR
OPTIMIZATION

In stochastic optimization, the goal is to minimize (or maximize) an
objective function, when one or more of the input parameters is sub-
ject to randomness. It arises in many areas, most prominently with
stochastic gradient descent (SGD) based methods for training ML
models [8]. Leveraging Modern RandNLA techniques and theory
(from Sec. 3) within the framework of stochastic optimization leads
to the Iterative Sketching paradigm (of Fig. 1). This has manifested
itself in many ways, including: PW-SGD [91], a variant of SGD
which is preconditioned and weighted using RandNLA techniques;
Subsampled Newton [35, 82, 90] and Newton Sketch [77], which
apply the Sketch-and-Solve paradigm to Hessian estimation; and
Sketch-and-Project [24, 25, 43], a modern extension of the classical
Kaczmarz method [49], which uses sketching to achieve implicit pre-
conditioning in stochastic methods. Recent advances in RandNLA
(described in Sec. 3.1) have proven fruitful in obtaining theory for
stochastic optimization algorithms based on Iterative Sketching,
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which comes with much smaller theory-practice gap compared to
traditional approaches.
Consider the following standard finite-sum optimization task:

Minimize flx) = % Z Vi(x), (6)
i=1

where x is a parameter (or weight) vector, and where each ;(x)
corresponds to the loss for a single data point. In optimization, we
generally approach this problem by iteratively refining a sequence
of estimates xg, x1, x2, ..., relying on local information about the
objective function. We can divide optimization methods into first-
order methods, which use gradient (first derivative) information
of f at x;, e.g., gradient descent; and second-order methods, which
additionally rely on Hessian (second derivative) information.

Although introducing randomization in optimization algorithms
has proven very effective in ML, with variants of SGD (AdaGrad,
Adam, SVRG, etc.) being widely-used in practice, SGD-based meth-
ods still often suffer from instability, large variances, and extreme
sensitivity to hyperparameter choice [48, 94]. In this context, ran-
domized algorithms based on Modern RandNLA theory can be used
to provide better stability, to inject better curvature information,
and to reduce communication and computation costs.

4.1 Gradient Sketch

With SGD, we estimate the first-order (gradient) information by
subsampling the components ¢/; of the objective, and using those
to construct an unbiased estimate g;:

Xt+1 = Xt — Nt Gt where E[§:] = Vf(xt).

Despite its popularity, SGD has a number of limitations, e.g., large
variance E[Hg} - gt||2], which slows the convergence near the
optimum, as well as sensitivity to hyper-parameters (such as step
size, mini-batch size, etc.). RandNLA offers a number of techniques
for addressing these limitations, such as using weighted gradient
sampling based on leverage scores or other importance scores, as
well as using a sketching-based preconditioner.

Preconditioned Weighted SGD. Consider the Preconditioned
Weighted SGD (PW-SGD) method (which is shown here for the LS
problem, f(x) = %HAx — b||?, but which is applicable far beyond
this setting [1, 14, 34, 39]):

1: Compute SA with some sketching operator S

2: Compute R such that SA = QR™! for orthogonal Q

3: Compute leverage score estimates I; for A

4: fort=0toT —1do

5 Compute g; « % >3 £ngIi(xt), Pr(I;) o< i[i.

=17,

6: Compute x;4+1 < x; —ntRR"g;

7. end for
This algorithm uses a sketching operator S to construct the R, which
is the preconditioner of the problem, since its spectrum approxi-
mates the spectrum of (the inverse of) A. Moreover, the algorithm
uses leverage score estimates of A, which are used for subsampling
the gradients (but this can be replaced by other sketching/sub-
sampling schemes).

Thanks to a combination of preconditioning and importance
sampling, this version of PW-SGD can completely avoid any condi-
tion number dependence in its convergence rate [10]. In particular,
suppose that the leverage score estimates satisfy: I; > 1;(A)/a for
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all i. Then, letting n; := H’ﬁ";t/s for g = kﬂid’ this version of
PW-SGD satisfies:
. (xo)
Blf )~ f6) < 100y,

T 1+ st/(cad)

The key advantage here is that the resulting iteration complexity
t = O(d/se) is entirely independent of the number of data points
n or of the condition number x of matrix A [10], whereas classical
SGD may require as many as O(ni?/se) iterations. For reaching a
moderate precision solution (the regime of greatest interest in ML
and data science applications), the computational cost comparison
shows that this method is faster than Sketch-and-Solve or Sketch-
and-Precondition [10].

Other RandNLA-based approaches for sketching the gradient
information of the objective include: in non-finite-sum settings,
e.g., Sega [47]; for distributed/federated learning, e.g., FetchSGD
[83]; methods inspired by randomized coordinate descent [54, 74];
randomized preconditioning for other stochastic gradient methods,
e.g., Preconditioned SVRG and SVRN [14, 39], and more [42, 56].

4.2 Hessian Sketch

RandNLA methods have proven particularly effective at efficiently
extracting second-order information about the optimization objec-
tive [17, 77, 82]. This has led to many sketching-based Newton-type
optimization algorithms. Recall that Newton’s method represents
the paradigmic second-order optimization algorithm, which mini-
mizes a local quadratic approximation of the objective using gradi-
ent g; = Vf(x;) and Hessian H; = V2 f(x;):

Xt41 = Xp + argmin {g;v + %UTHﬂ)} =x; — r]th_lgt.
v

As an example, consider a standard Generalized Linear Model (GLM),
f(x) = % > liafx) + %||x||2, where a] x represents a linear pre-
diction associated with a data point a; € Rd, and loss I; encodes the
prediction error, dependent on a label y;. For instance, in logistic
regression, we have y; = +1 and /;(a; x) = log(1 + e_yi“iTx). Here,
the Hessian at x; is given by:

V2f(xt) = LATD A+, Dy = diag(l] (@] x¢), ..., I}/ (ahxt)),

where the dominant cost is the O(nd?) matrix multiplication ATD;A.
We can reduce this cost with RandNLA sketching or sub-sampling,
by repacing A"D;A with A;At where A; = StD;/ZA for some
sketching matrix S;. One version of this is the Newton Sketch [77]:

Xt+1 = Xt —l]th_lgt, Ht = %AI,ANt+)/I

RandNLA guarantees such as the subspace embedding are sufficient
(but not necessary) to ensure that H; provides a good enough ap-
proximation to enable accelerated local convergence in time O(nd).

These approaches have also been extended to distributed set-
tings via RMT-based model averaging, with applications in en-
semble methods, distributed optimization, and federated learning
[17, 44, 52, 53, 71]. Further RandNLA-based Newton-type methods
include: Subsampled Newton [6, 7, 35, 82]; Hessian approximations
via randomized Taylor expansion [1] and low-rank approxima-
tion [23, 36]; Hessian diagonal/trace estimates via Hutchinson’s
method [67] and Stochastic Lanczos Quadrature, particularly for
non-convex problems, e.g., PyHessian [93], AdaHessian [94]; and
finally Stochastic Quasi-Newton type methods [51, 68].
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4.3 Sketch-and-Project

The Sketch-and-Project framework has gained attention as a power-

ful methodology within the Iterative Sketching paradigm of RandNLA.

While this framework has found applications across the stochas-
tic optimization landscape, it originally arose from randomized
algorithms for solving systems of linear equations.

Solving an m X n linear system Ax = b can be viewed as an
instance of the LS problem, i.e., minimizing the objective f(x) =
||Ax—b||§. As discussed in Sec. 2.2, Classical RandNLA has addressed
this problem in the highly over- or under-determined settings (i.e.,
when A is very tall or wide). However, in many applications, par-
ticularly high-dimensional settings that arise in ML, m and n are
(equal or) of comparable size.

For these nearly-square matrix problems, randomization can still
be beneficial, in particular when using Modern RandNLA methods.
For instance, consider the classical Kaczmarz algorithm, which
solves a linear system of m equations a]x = b; via the following
iterative procedure, starting from some xo:

1: fort=1,2,...do

2 Select index I € {1, ...,m}
3: Xr+1 < Project x; onto the solutions of equation a}tx = by,
4: end for

This simple procedure has been known for a long time [49], but
only with the use of randomization are we able to characterize its
convergence [87]: if the Kaczmarz method selects index I; randomly,
with probability proportional to ||ar, ||§, then:

Grzrlin (A)

E ||x; —x*||§ < (1 -
2
1A%

t

) llxco = x* 13-

We can interpret this Randomized Kaczmarz (RK) method as a
Weighted SGD algorithm solving the finite-sum minimization prob-
lem (6) with ¢i(x) = (ajx - b;)? [74], drawing a parallel with
PW-SGD as described in Sec. 4.1.

However, this paradigm becomes quite different from PW-SGD
once we select more than one equation at a time, giving rise to
Sketch-and-Project [43]: Sample a random k X m matrix S = S(t),
and project x; onto the solutions of SAx = Sb:

Xt+1 = argmin ||x; — x||§ subject to  SAx = Sb.
X

We recover RK if the matrix S is chosen to be the indicator vector
of the equation I;. However, this general framework (with Modern
RandNLA tools from Sec. 3) allows for other natural choices, such
as selecting blocks of equations (Block Kaczmarz, e.g., [72, 73, 79])
or sketching the input matrix A using any of the methods described
earlier. The Sketch-and-Project framework has been used to capture
and extend other stochastic optimization methods, including Coor-
dinate Descent [40, 54, 55], and to develop more general purpose
first- and second-order optimization algorithms [41, 46, 51, 95].

Going beyond RK, the convergence analysis of Sketch-and-Project
has proven much more challenging, largely due to the complex inter-
dependence between the distribution of the sketching matrix S and
the spectrum of the input matrix A. However, by using tools from
Modern RandNLA theory [19, 70, 80], we can relate this conver-
gence to the quality of the sketch SA as a low-rank approximation
of the data [24]:
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ko?. (A) ¢

1- min
E||A - APsall%

Here, E||A—APg A||?: is the projection error of the low-rank approxi-
mation of A produced from the sketch SA. This analysis has revealed
new classes of problems (often overlapping with ML domains that
exhibit low-rank structure) for which Sketch-and-Project methods
offer dramatically improved peformance over the more traditional
Sketch-and-Precondition paradigm [18, 25], thanks to the implicit
preconditioning phenomenon that is described by (7).

2 2
Ellx; = x"l; < llxo = x"ll.  (7)

5 ADVANCES IN RANDNLA FOR ML / STATS

So far, we have primarily focused on how RandNLA can be used to
address ML and data science problems from a purely algorithmic
perspective: the data (e.g., matrix A and vector b) is given and deter-
ministic, and our goal is to directly compute or estimate a property
of the data (e.g., the LS solution). With this problem formulation,
randomization has entered solely from the algorithm design per-
spective, and thus it is fully controllable by the practitioner.

However, when we consider the same problems from a statisti-
cal perspective, the data is often assumed to be random itself, e.g.,
coming from some data distribution (which may or may not be
known) and distorted by some random noise (e.g., Gaussian). In
this case, our goal is often to estimate a quantity that may depend
on an unobserved part of the data distribution, in which case we
must account for the generalization error, in addition to the approx-
imation error that was our focus so far. In this section, we delve
into how randomization coming from RandNLA interacts with the
inherent data randomness, and how that affects the design and
implementation of these methods.

5.1 Statistical Learning Approaches

One approach is to adopt a statistical learning theory perspective
on generalization error, which is most traditionally exemplified by
the probably approximately correct (PAC) model of learning. Here,
we often assume very little about the underlying data distribution,
leading to a worst-case view of the generalization error. This forces
our algorithmic approaches to exhibit a certain degree of robustness
to the unobserved data. RandNLA techniques naturally inject such
robustness into ML algorithms, as they are also designed to work
well under worst-case settings.

Robust semi-supervised learning and kernel-based learning pro-
vide two examples of using RandNLA methods with this approach.
This is described in more details in the full technical report [22].

5.2 Statistical Inference Approaches

Another approach is to consider how RandNLA interacts with and
informs statistical inference approaches to modeling and analyzing
data. In statistical inference, it is common to impose strict assump-
tions on the generative model of the data, e.g., that the feature
vectors are coming from a Gaussian or sub-Gaussian distribution,
and that the predicted variable follows some underlying linear
model distorted by noise. This generative modeling approach en-
ables a wide range of inferential tools for designing, optimizing and
evaluating estimators. These tools include cross-validation, feature
selection, reliable confidence intervals, the Bootstrap method, the
Jackknife, etc. This might seem in stark contrast to the RandNLA
approach to data, which has largely been centered on robustness
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Figure 2: Connection between RandNLA and statistical in-
ference. Even though the input matrix A for a RandNLA al-
gorithm is often arbitrary and deterministic, the Algorith-
mic Gaussianization effect of sketching turns this matrix
into a random data sample A (the sketch), which follows a
generative model like those in statistical inference.

to the worst-case and avoiding data assumptions. As we have seen,
a typical framework for RandNLA algorithms is that we are given
an arbitrary input matrix A with no distributional assumptions.

To see that there is a strong connection, however, recall that in-
stead of operating directly on A, we first compute a smaller sketch
A = SA, and then we use that sketch to estimate the target prop-
erties of the data. This means that, even though the input matrix
A is deterministic and arbitrary, the matrix A which we use for the
data analysis follows a well-defined generative model—and one which,
for many sketching operators, is very close to a sub-Gaussian data
model used in statistical inference. See Fig. 2 for an illustration. This
motivates a statistical view of algorithms based on sketching, un-
locking the vast wealth of inferential tools that can be applied to any
approaches based on the Sketch-and-Solve paradigm and beyond.

Bootstrap error estimation for sketching is an example of this
statistical view, and it can also be used to provide a separation
between sketching methods. This is described in more details in the
full technical report [22].

5.3 Connections with Modern RMT

One of the key tools in Modern RandNLA for developing fine-
grained understanding of the performance of RandNLA algorithms,
including those inspired by the above statistical inference view-
point, has been the use of techniques from both asymptotic and
non-asymptotic RMT. These techniques are particularly important
when dealing with matrices with a statistically well-understood
data distribution, where worst-case performance guarantees can
be significantly misleading.

While Classical RandNLA has focused on describing the per-
formance of the algorithms solely in terms of the dimensions of
the input (or possibly also its sparsity), it has been shown that for
many tasks it is the spectral decay profile of the data (i.e, the rate of
descrease of the singular values of a matrix A) that is most informa-
tive about the performance of these algorithms. In fact, for many
ML tasks, the spectral decay profile of the data can often be sharply
characterized, for example, in terms of whether we expect a heavy-
tailed, short-tailed, or spiked profile [61]. This can have a dramatic
effect on the design and performance of RandNLA algorithms.

These tools can be used to characterize multiple-descent in LR
approximation and implicit regularization in sketching. This is de-
scribed in more details in the full technical report [22].
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6 PUTTING RANDOMNESS INTO
NEXT-GENERATION SOFTWARE

One of the promises of RandNLA has been that it will lead to im-
proved implementations in practice. Recent years have seen the
convergence of several unprecedented changes, including formi-
dable new system design constraints and revolutionary levels of
hardware heterogeneity; and, due to these changes, much of the
essential software infrastructure of computational science and engi-
neering is, or will soon be, obsolete. These challenges motivated the
BALLISTIC (“Basic ALgebra LIbraries for Sustainable Technology
with Interdisciplinary Collaboration”) project [13], which aims to
enhance and update BLAS, LAPACK, and ScaLAPACK (“Scalable
Linear Algebra PACKage”) by “incorporating them into a layered
package of software components ... that provides users seamless
access to state-of-the-art solver implementations through familiar
and improved Sca/LAPACK interfaces” As part of the BALLISTIC
project [13], we are introducing the use of RandNLA methods into
BLAS and LAPACK, leading to RandBLAS and RandLAPACK [69].
RandBLAS will be a library that concerns basic sketching for dense
data matrices. RandLAPACK will be a library that concerns algo-
rithms for solving traditional linear algebra problems and advanced
sketching functionality.

The connection with and value of Modern RandNLA for Rand-
BLAS/RandLAPACK (and other such software projects) is subtle
but important: due to the use of RMT-based ideas, in particular Def. 2
of a nearly-unbiased estimator, we can obtain a much smaller theory-
practice gap than was possible with Classical RandNLA, which de-
pended on the notion of a subspace embedding from Def. 1, for a
broad range of implementations [16, 52, 53]. For implementations
in the past, one often used expensive Gaussian random projec-
tions to obtain stronger theory; and then implementations may
or may not have used Gaussian random projections; thus leading
to a potentially-large theory practice gap. However, with Modern
RandNLA, e.g., having stronger control on the inversion bias (5),
one can hope to analyze the distribution being implemented.

Developing software to go beyond BLAS/LAPACK to Rand-
BLAS/RandLAPACK, as well as beyond single-machine shared-
memory is a large topic. This is described in more details in the full
technical report [22]; see also the monograph [69].

7 CONCLUDING THOUGHTS

There are many topics we did not cover: data-driven methods for
learning good sketching operators; RandNLA methods for tensor
decompositions; RandNLA methods in streaming/online environ-
ments; probabilistic numerics; as well as topics such as Hutchinson
and spectral function methods, using randomness deep inside an
algorithm, e.g., for pivot rule decisions, using these methods for the
theory/practice of neural networks, e.g., NTK and Nystromformer,
using these methods for quantization and low-precision computa-
tion, etc. In many of these cases, it is increasingly-important to iden-
tify core linear algebraic structures and build algorithmic/statistical
methods around them (rather than “tacking” them on later as a
“band aid” to fix problems that arise when one ignores key linear
algebraic issues). This will be increasingly-important as heteroge-
neous hardware trends and ML training trends continue to grow. We
expect the “Modern” theoretical tools developed by/for RandNLA
that we have covered will be useful in these and other situations.
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