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Abstract

We study person-level differentially private (DP) mean estimation in the case where each person holds
multiple samples. DP here requires the usual notion of distributional stability when all of a person’s datapoints
can be modified. Informally, if n people each have m samples from an unknown d-dimensional distribution with
bounded k-th moments, we show that
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people are necessary and sufficient to estimate the mean up to distance « in £,-norm under e-differential privacy
(and its common relaxations). In the multivariate setting, we give computationally efficient algorithms under
approximate DP and computationally inefficient algorithms under pure DP, and our nearly matching lower
bounds hold for the most permissive case of approximate DP. Our computationally efficient estimators are
based on the standard clip-and-noise framework, but the analysis for our setting requires both new algorithmic
techniques and new analyses. In particular, our new bounds on the tails of sums of independent, vector-valued,
bounded-moments random variables may be of interest.
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1 Introduction

Mean estimation is the following classical statistical task: given a dataset Xj,..., X, of samples drawn i.i.d.
from some unknown distribution D, output an estimate of its mean Ex.p[X]. Without special care, standard
procedures for mean estimation can leak sensitive information about the underlying dataset [HSR*08, DSS*15],
so there is now a line of recent work developing methods for mean estimation under the constraint of differential
privacy (DP) [DMNSO06].

Informally speaking, a DP algorithm is insensitive to any one person’s data, but how we formalize the concept
of one person’s data can depend on the application.! In many applications, we assume that each person’s data
corresponds to a single element of the dataset, and thus we formalize DP as requiring that the algorithm be
insensitive to changes in one sample X;. This modeling protects one sample in the dataset, regardless of whether
or not that captures all of one person’s data, and is often called item-level DP.

However, there are many cases where a person can possess multiple samples, and we want to protect privacy
of all the samples belonging to a single person. In these cases, we want to define datasets to be neighbors if they
differ in exactly one person’s set of samples. For example, systems for federated learning [MMR*17, KMA*21]
adopt this modeling of privacy. More precisely, we study a setting where 1 people each have m samples? drawn
iid. from an unknown distribution 9. In this case, we formalize DP as requiring that the algorithm be insensitive
to changing all m samples belonging to one person; we call this notion of privacy person-level DP. Note that this
generalizes the initial setting, which corresponds to the case m = 1, and also that there are now nm total samples
available.

Our goal is to design an estimator for Ex.p[X], with small error in ¢, distance, subject to person-level
differential privacy. Our work focuses on two primary questions: What algorithms can we use to achieve this
goal, and how many people and samples are required?

1.1 Results and Techniques Our main results are upper and lower bounds on the sample complexity of mean
estimation with person-level differential privacy, for both univariate and multivariate distributions with bounded
moments. Bounded moments are a standard approach for capturing and quantifying what it means for data to
be well behaved, and interpolates between distributions that have heavy tails and distributions that are well
concentrated (e.g. Gaussians). Specifically, a distribution D over R? with mean y has bounded k-th moment if for
all unit vectors v € R4,

k 3

E (I, X - plf < 1.
Note that when d = 1, this is the standard k-th central moment condition, and when d > 1, this condition says
that we can project the distribution onto any line and obtain a distribution with bounded k-th central moment.

In all cases, our lower bounds on sample complexity hold for the most permissive notion of approximate
differential privacy. Our upper bounds on sample complexity hold even for the most restrictive notion of pure
differential privacy. We complement our upper bounds on the sample complexity with a computationally efficient
estimator in low-dimensions, or a computationally efficient estimator in high-dimensions satisfying approximate
differential privacy.

As a starting point, we begin by presenting our estimator for the univariate case so we can introduce and
discuss techniques and new phenomena that arise in the person-level setting.

THEOREM 1.1. (INFORMAL, SEE COROLLARY 3.4) There is a computationally efficient person-level e-DP estimator
such that for every distribution D over R with mean p and bounded k-th moment, the estimator takes m samples per person
from

1 1 1 1
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IThroughout, we use “person” to denote an entity for whom their entire dataset must have privacy preserved as the base level of granularity
in the DP definition, which is often called user-level privacy in the literature. Depending on the application, the entity could naturally be called
a person, individual, user, organization, silo, etc. without changing the underlying definition of privacy.

2We assume both m and n are publicly known. For simplicity, we focus on the case where each person has exactly m samples, though our
general approach applies to heterogeneous cases where individuals have varying amounts of data.

3The choice of 1 on the right-hand side is arbitrary, and can be replaced with any other value by appropriate scaling.
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people* and, with probability at least 2/3,% outputs an estimate i such that | — u| < a.

Observe that the required number 1 of people consists of four terms. As the total number of samples across
all people is nm, the first term corresponds to the classical sample complexity of the problem, sans privacy
constraints. The second and third terms are the most interesting. Loosely speaking, the second term corresponds
to the optimal sample complexity of estimating the mean of a Gaussian in our setting. Since a Gaussian satisfies
bounded k-th moments for every k, this number of samples is a lower bound in our setting. The third term can
be arranged to say that the total number of samples we need is at least 1/a*/(*~D¢, which is the optimal sample
complexity for estimating a k-th moment distribution under item-level privacy [BD14, KSU20], and is also a lower
bound for our setting. The final term comes from a coarse estimation step in the algorithm, whose discussion we
defer to the technical sections. This term is also necessary as any non-trivial DP algorithm requires data from at
least 1/¢ people.

Next, we consider the multivariate case, where we give an efficient estimator that satisfies approximate
differential privacy.®

THEOREM 1.2. (INFORMAL, SEE THEOREM 4.3) There is a computationally efficient (&, 0)-DP estimator such that for
every distribution D over R? with mean u and bounded k-th moment, the estimator takes m samples per person from

d dlog'?(1/6)  dlog'/*(1/6) . dlog'?(1/6) + d/?10g%*(1/6)

n=0
a’m aml/2¢g aklk=Dm e €

people and, with probability at least 2/3, outputs an estimate [i such that ||i — u|l» < a.

Observe that, in the first three terms, the sample complexity matches the sample complexity of the univariate
case, scaled up by a factor of d, and, as we show, all three of these terms are optimal up to polylogarithmic factors.
The final term does not decrease with m, meaning we will require > d/¢ people no matter how many samples
each person has. However, this final term does not depend on a and becomes dominated when « is sufficiently
small, and in this case we provably obtain the optimal sample complexity.

In Section 1.2 we give an overview of the algorithms behind Theorems 1.1 and 1.2 and highlight the main
new technical ideas.

Next, we give an algorithm with improved sample complexity and a guarantee of pure DD, at the cost of
computational efficiency.

THEOREM 1.3. (INFORMAL, SEE THEOREM 5.1) There is a computationally inefficient e-DP estimator such that for
every distribution D over RY with mean ||| < R and bounded k-th moment, the estimator takes m-samples per person from

- dlog(R
=0 d d d N og(R)

2 am e | aM e €
people and, with probability at least 2/3, outputs an estimate [i such that || — u|l» < a.

The first three terms in the sample complexity match those in the approximate DP case (Theorem 1.2). The
fourth term is again the cost of coarse estimation, and is optimal for pure DP via standard packing lower bounds
(see Lemma C.3).

Our pure-DP algorithm for the high-dimensional case employs the framework of Kamath, Singhal, and
Ullman [KSU20], which reduces multivariate mean estimation to a collection of univariate mean testing problems.
We slightly simplify their framework by viewing the set of testing problems as between a candidate mean and
a “local cover” of its neighborhood, bringing it more into line with other works on private estimation [AAK21].
This reduction allows us to appeal to the techniques we developed for proving Theorem 1.1. We comment that,

4For simplicity, throughout this introduction we elide any assumptions that || < R and any dependence on this parameter R, which is
necessary for certain variants of DP but not others.

5The constant 2/3 is arbitrary and can be amplified to any constant via standard techniques, at a cost of a constant factor blowup in sample
complexity.

%We note that a similar algorithm can be designed under the stronger notion of concentrated DP [DR16, BS16], differing primarily in the
coarse estimation step (and the corresponding term in the sample complexity).
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inheriting the deficiencies of [KSU20], this algorithm is not computationally efficient. Indeed, most algorithms for
pure-DP estimation in multivariate settings are computationally inefficient, barring a few recent works which rely
on semidefinite programming and sum-of-squares optimization [HKM22, HKMN23]. However, the amount of
computation and data required by these methods scales poorly as the order of the moment they employ increases.
Since, in general, our algorithms employ higher-order moment information, it is not obvious how to make them
computationally efficient, and we leave this open as an interesting open question for future work.”

Finally, we prove lower bounds on the sample complexity of private mean estimation under (¢, 5)-DP. Since
both pure and concentrated DP imply (¢, 6)-DP, these lower bounds also apply to algorithms satisfying these
variants.

THEOREM 1.4. (INFORMAL, SEE THEOREM 6.1) Suppose thereis an (&, 6)-DP estimator such that for every distribution
D over RY with mean y and bounded k-th moment, the estimator takes m samples per person from n people and, with
probability at least 2/3, outputs ||l — u||2 < a. Then we have that

- log(1/6
n:Qd d d +0g(/).

+
a’m  aml2e  aklk=Dpye €

This lower bound matches our one-dimensional upper bound (Theorem 1.1) in all four terms. It also matches
our multivariate upper bounds (Theorems 1.2 and 1.3) in all terms except the last. As previously mentioned, we
speculate the former upper bound (for approximate DP) is loose in this fourth term. The latter upper bound for
pure DP is necessarily greater in the last term, due to the stronger privacy notion.

The first and third terms follow from a simple reduction from the item-level (m = 1) case: imagine starting
with nm samples, splitting them into n batches of m samples, and feeding them into a person-level DP algorithm.
If this algorithm required too few people, it would violate known lower bounds for the m =1 case. The second
term employs a conversion of Levy et al. [LSA*21], which also reduces from the item-level case to the person-level
case for Gaussian data, based on sufficient statistics. We also give an alternate, direct proof of this term using the
fingerprinting technique [BUV14, KMS22a]. The fourth term is again required for any non-trivial DP algorithm.

1.2 Technical Overview of Theorems 1.1 and 1.2 Our efficient estimators use the following general framework,
following [KSU20]:

1. Reduce to item-level privacy. For each personi = 1,...,n, average their m samples to obtain Y. From
now on, we will design an algorithm that takes YD .., Y™ satisfies item-level privacy, and solves mean
estimation for the distribution of Y. Notice that these random variables now come from the class of averages
of m independent random variables, each with bounded k-th moment, which is more structured than the class of
distributions with bounded k-th moments.

2. Coarse Estimation. Start by obtaining a coarse estimate iy of the mean satisfying ||o — ptll2 < y for some
suitable y to narrow the search space.

3. Clip-and-Noise. Clip each value Y to lie in an é,-ball of radius p centered at g for some suitable p. Then
average these values and add Gaussian noise to this average. Notice that the noise we have to add to ensure
DP will be proportional to the sensitivity of the average, which is bounded by 2p/n because of clipping.

Although the framework is well known, in the rest of this section we will describe the technical challenges
that had to be overcome to apply this general framework in the setting of person-level privacy with data satisfying
bounded-moments conditions.

For now we will ignore the coarse estimation step and suppress exactly what we need from the coarse estimate
u’, so we can focus on the interplay between the first and third steps.

In the Gaussian case, this method is deceptively simple to analyze. In the first step, each value Y is itself a
Gaussian with smaller variance (i.e., scaled down by a factor of m). Then, in the third step, since Gaussians are very
tightly concentrated around their mean, we can clip to a small ball of radius ~ d'/2/m'/? and introduce essentially
no bias because there is only a very small probability that any individual point gets clipped. Formalizing the rest

7In particular, even for item-level DP where m = 1, computationally efficient algorithms with nearly optimal sample complexity are only
known for the cases of k = 2 or for Gaussian data.
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of this analysis is relatively straightforward. The case of bounded k-th moments is more challenging because the
data can have heavy tails, posing a dilemma: either we clip to a relatively small ball and introduce significant
bias, or we clip to a relatively large ball and have to add more noise for privacy, leading to an unavoidable
bias-variance-tradeoff [KMR*23].

To quantify this tradeoff and find the optimal balance of bias and variance, we need to understand the bias
introduced by clipping the random variables Y, as a function of the clipping radius p. The standard approach to
bounding the bias in one-dimension is more or less to integrate the function f(t) = P[|Y — u| > t] over all values
of t > p, and thus we can reduce bounding the bias to computing tail bounds. In [KSU20], which is the case
where m =1 and Y is an arbitrary random variable with bounded k-th moment, the tightest possible bound on
the tails is roughly 1/t*. However, things become more complicated in the person-level setting with 1 > 1.

Technical Challenge 1: Bounding the Bias in One-Dimension. Using the fact that Y is an average of m
independent random variables with k-th moment bounded by 1, we can deduce that Y also has k-th moment
bounded by roughly 1/m*/2, which yields a tail bound of roughly 1/m*/2t*. However, this tail bound is actually
suboptimal in its dependence on m. To see why, observe that as m — oo, Y converges to a Gaussian by the Central
Limit Theorem, which has very thin tails of roughly exp(—m#2). So for large m we’d expect a stronger tail bound
than just what we get from assuming a bounded k-th moment. To make this argument rigorous, we apply a
strong form of the Central Limit Theorem—non-uniform Berry-Esseen [Mic76]—that gives an optimal tail bound
for this class of random variables (see Corollary 3.1). Plugging this tail bound into the standard bias arguments
and then solving for the optimal tradeoff between bias and variance yields Theorem 1.1.

Technical Challenge 2: Tail Bounds in High-Dimensions. The natural way to generalize this approach to
the high-dimensional case involves proving an analogous bound on P[||Y — p||2 > t] for t > p. However, as far as
we are aware, the non-uniform Berry-Esseen theorem does not have a generalization to high-dimensional random
variables. To address this challenge, we use a somewhat-modified proof strategy that succeeds in high-dimensions
and also gives an alternative proof of the optimal tail bound for the one-dimensional case. Roughly, our novel
tail bound states that if Y is an average of m independent random variables with bounded k-th moment in d

dimensions, then
[ _mi\ ke
Viz o PUY —pll > ] < eXP( 7 ) My

(See Theorem 4.1 for a more precise statement.) Intuitively, the result says that the probability of the event
IIY — ull2 > t is, roughly, at most the sum of two different probabilities: (1) The probability that a draw from
N(0, %I]) has norm larger than t, and (2) the probability that a single random variable X with bounded k-th
moment has norm larger than mt. Note that (1) is a lower bound on the tails because Gaussians have bounded
k-th moments for every constant k, so Y — u might be Gaussian. Also, (2) is a lower bound on the tails because Y
is an average of m random variables with bounded k-th moments, and if a single one of these random variables
has norm at least tm then there can be a constant probability that the norm of the average is at least mt. The
theorem says that these are the two most likely ways the norm can be large. We believe that bounds on the tails of
averages of independent random variables with bounded moments are quite natural, and we expect this result
will find further applications.

Technical Challenge 3: Better Bias Bounds in High-Dimensions. The natural approach of integrating the
function f(t) = P[||Y — pll2 > t] for t > p will yield some bound on the bias introduced by clipping to a ball of
radius p. In particular, the integration would give a bound of the form d*/2/(mp)*~'. However, this bound is not
strong enough to prove the sample-complexity bounds in Theorem 1.2. The looseness is because the bound only
uses the fact that the random variables have a bound on the k-th moments of their norms, which, after suitable
rescaling, is a weaker condition than assuming that the k-th moment is bounded in every individual direction.
We give a novel, tighter bound on the bias introduced by clipping that takes into account the fact that we have
control over our random variables in every direction. An interesting feature of our bound is that it depends
heavily on how close the center of the ball used for clipping is to the true mean of the distribution. Specifically, if
Y is a random variable satisfying our assumptions with mean y, and we clip to a ball of radius p around a coarse
estimate o such that ||y — pll2 < y < p, then the bias is at most

4k-1)/2 ( 7/‘11/2)
(mp)et P/
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The bound is a bit tricky to interpret. As a start, assume y = 0, so we are clipping to a ball centered around
the true mean. In this case, the bias improves over the straightforward bound by a factor of d'/?, which is tight
and sufficient for our purposes. We get the same conclusion as long as the ball is only off-center by y < p/d'/2.
However, if the ball is off-center by more than p/d'/? we only get a weaker bias bound, and we can argue that this
is inherent. Understanding the bias introduced by clipping is fundamental, and so we expect this bias bound will
find further applications.

Technical Challenge 4: Iteratively Improving the Coarse Estimate. As the discussion above makes clear, the
accuracy of the coarse estimate plays a significant role in determining the bias introduced by clipping. In order to
say that the coarse estimate is accurate enough, we need it to have sufficiently small error y < p/d/2. In some
regimes, we will want to set p ~ d'/?/m'/2, so we want the coarse estimate to have error roughly y ~ 1/m'/? to
be safe. However, the straightforward way of obtaining a coarse estimate using the approach of [KSU20] will
not produce such an accurate coarse estimate, and the result will be suboptimal sample complexity that is w(d)
overall.

To solve this problem, we use a novel iterative approach, inspired by the private preconditioning technique
from [KLSU19, BDKU20, CKM*20]. First, we use the simple strategy for producing a coarse estimate with
somewhat large error yo. We then run the clip-and-noise algorithm with O(d) people’s data to obtain some new
coarse estimate p1. While pq will not itself have the error a that we desire, we can show that p; is a better estimate
than po. Thus, we can restart the clip-and-noise algorithm with a smaller value y1 and get an even better estimate
2. We can analyze this process and show that by iterating this procedure a small number of times we will obtain
gt such that ||y — ull < 7 ~ 1/m'/2. As we've discussed above, such a coarse estimate y; is always accurate
enough to get a tight bound on the bias of clipping, meaning we can run clip-and-noise a final time to get our last
and most accurate estimate. Combining all these steps yields Theorem 1.2.

1.3 Related Work Mean estimation under differential privacy has been studied extensively, including works
which investigate mean estimation for Gaussians [KV18, BKSW19, KLSU19, BDKU20, DEM*20, CWZ21, HLY21,
HKMN23, BKS22, BDBC*23, ALNP23, AKT*23, AUZ23], distributions with bounded moments [BD14, KSU20,
WXDX20, BGS*21, KLZ22, HKM22, KDH23, BHS23], or both [BS19, LKKO21, LKO22, KMR*23]. Several works
have also focused on the related problem of privately estimating higher-order moments [AAK21, KMS*22b,
AL22, KMV22, KMS22a, Nar23, PH24]. Other works study private mean estimation of arbitrary (bounded)
distributions [BUV14, SU15, DSS*15]. However, all of these works focus on differential privacy in the item-level
setting (i.e., when neighboring datasets differ in exactly one datapoint). This is a special case of the more general
person-level privacy setting we consider, which corresponds to m = 1.

Recently, there have been several works focusing on estimation under person-level privacy. Some
focus on mean estimation, but for distributions which are bounded or satisfy certain strong concentration
properties [LSA™21, GDD22]. These encompass (sub-)Gaussian distributions, but not those with heavier tails
that we consider in our work. [NME22] also study mean estimation under a bounded-moment condition,
but a qualitatively different type of condition than what we consider, and only with a bound on the second
moment. Consequently, their work does not capture the rich tradeoff that we do as one varies the number
m of samples per person and the number k of moments bounded. [CEMT22] focuses on mean estimation in
a slightly different setting, where rather than people receiving samples from the distribution of interest, they
instead have a latent sample from said distribution and receive several samples from the Bernoulli with that
parameter. [GRST24] study mean estimation of Bernoullis under continual observation [HCSS10, DNPR10]. A
line of works focuses on generic transformations from algorithms for item-level privacy to algorithms for person-
level privacy [BGH"23, GKK*23b]. Even in the one-dimensional case, their results (combined with item-level
algorithms of [KSU20]) are unable to recover our results for a couple reasons. First, their transformation only
saves a factor of 1/+/m in the private sample complexity, whereas in several parameter regimes, we save a factor
of 1/m. Based on details of our analysis, we believe a black-box technique that recovers our result from the
item-level case seems unlikely. Furthermore, in general, their transformations are not computationally efficient.
Finally, other works study adjacent learning tasks, such as learning discrete distributions [LSY*20, CS23, ALS23],
PAC learning [GKM21], and convex optimization [GKK*23a, BS23, LA24].

Numerous other statistical estimation tasks have been studied under item-level differential privacy, including
learning mixtures of Gaussians [KSSU19, AAL21, AAL23, AAL24], discrete distributions [DHS15], graphical
models [ZKKW20], random graph models [BCS15, BCSZ18, SU19, CDd*24], and median estimation [AMB19,
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TVGZ20]. For more coverage of the literature on private statistics, see [KU20].

1.3.1 Independent work of Zhao et al. In May 2024, an initial version of this paper and a simultaneous and
independent work of Zhao et al. [ZLS*24] were posted on arXiv. Both works study mean estimation under person-
level privacy, though considering slightly different notions of what it means for moments to be bounded. We
consider a directional bound (Definition 2.4), which roughly says that the moment is bounded in every univariate
projection. On the other hand, they consider a non-directional bound, which bounds the moment of the ¢,-norm of
the random vector, i.e., Ex.p [||X - y||’2‘].

It is not hard to see that a non-directional bound of 1 on the k-th moment implies a directional bound of 1 on
the k-th moment. Similarly, one can show that a directional bound of 1 implies a non-directional bound of d*/2 on
the k-th moment. Thus, the two moment conditions are polynomially related to each other, and, by rescaling the
data, upper and lower bounds for each case have implications for the other.

Using the latter implication that a directional bound implies a non-directional bound, one can employ
algorithms for the non-directional setting in the directional setting. If one uses the algorithm in Theorem 3
of [ZLS*24], and looks at the implications for the setting with directional moment bounds, one achieves a sample
complexity comparable to Theorem 4.1 in the original May 2024 version of this paper. This sample complexity is
roughly that of Theorem 1.2, albeit with an extra dimension-dependent factor in the third term. However, by
working directly with the directional moment bound as we do, one can achieve the improved sample complexity
in Theorem 1.2, which was done subsequent to the initial posting of our two papers. While our algorithms under
our directional bound imply algorithms under their non-directional bound, the resulting sample complexities are
loose by dimension-dependent factors.

Their work only considers algorithms, and not lower bounds. There may be implications of our lower bound
arguments to show lower bounds for their non-directional moment bound setting.

2 Preliminaries

2.1 Privacy Preliminaries We say that two datasets X and X’ are neighboring datasets if they differ in at most one
datapoint, i.e. dg(X, X’) < 1 where dg denotes the Hamming distance. We introduce the definition of differential
privacy (which is also referred to as item-level differential privacy).

DEFINITION 2.1. (ITEM-LEVEL DIFFERENTIAL PRIVACY [DMNSO06]) Let A : X" — Y. We say that A satisfies
item-level (&, 6)-differential privacy (DP) if, for all neighborhing datasets X, X’ € X" and forall Y € Y,

PI[A(X) € Y] < e* P[A(X') € Y] + 6.

It is reasonable to consider ¢, 6 € [0, 1]. We remark that (¢, 0)-DP is commonly referred to as pure differential privacy,
and (¢, 6)-DP is commonly referred to as approximate differential privacy. In this paper, we focus on a generalized
definition of differential privacy known as person-level differential privacy. For this definition, we consider datasets
in U" where U = X™. We call each X() = (Xil), ..., XY € U a person and call each X;l) € X a sample (since in all
our results these points will be chosen as independent samples from a probability distribution). In the definition
of person-level differential privacy, we say that two datasets X, X’ € U" are neighboring datasets if they differ in at
most one one person’s samples—that is, if dg(X, X’) = 37, 1 (X® £ x"0) < 1.

DEFINITION 2.2. (PERSON-LEVEL DIFFERENTIAL PRIVACY) Let U = X™, and let A : U" — Y. We say that A
satisfies person-level (&, 6)-differential privacy (DP) if, for all neighboring datasets X, X" € U" and forall Y € Y,

PIA(X) € Y] < ef P[A(X') € Y] + 6.

We now introduce some standard lemmas for differentially private algorithms.® We first introduce a lemma
surrounding a property known as post-processing.

LEMMA 2.1. (POST-PROCESSING) Let A : X" — Y be a person-level (&,0)-DP algorithm. Let B : Y — Z. The
mechanism B o A satisfies person-level (&, 6)-DP.

8The specific formulations of some of these lemmas are inspired by those of [KSU20].
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The next two lemmas deal with a property called composition. For these lemmas, we define A4, ..., A to be a
sequence of mechanisms: Ay : X" — Y and, forallt € {2,...,k}, Ay : X" X Y1 X --- X Y1 — Y. For proofs of
these lemmas, see, e.g. [DR14].

LEMMA 2.2. (BASIC COMPOSITION) Suppose Ay satisfies person-level (&1, 61)-DP. Similarly, for each t € {2, ..., k},
suppose that, under every fixed y1 € M1, ..., yi—1 € Y1, A, y1, . . ., yi—1) satisfies person-level (&, 6;)-DP. It follows

that the mechanism Ay which runs each of Ay, ..., Ax—1 in sequence satisfies person-level (Zl 1€ Z 0 ) -DP.

LEMMA 2.3. (ADVANCED COMPOSITION) Suppose A1, ..., A are person-level (g9, 01), . . ., (€0, Ok)-DP respectively
for some ey < 1. Then, for all 59 > 0, the mechanism Ay whzch runs each of A1, ..., Ax_1 in sequence satisfies person-level

(e,0)-DP for € = £9+/6klog(1/60) and 6 = 6o + thl

We now state a few definitions and lemmas related to standard private mechanisms.

DEFINITION 2.3. Let f : U" — R be a function, where U = X™. The person-level &-sensitivity (denoted A ) is
defined as

Afp = pax If(X) = fF(X)]l2.
dn(X,X)<1

LEMMA 2.4. (GAUSSIAN MECHANISM) Let f : U" — R? be a function with b-sensitivity Ag ,, where U = X™. Let

S eU", and let
2
Af o2 ln(Z/(S)) ﬂ
- “ldxd |-

W~ N| 0,(
€

Then the mechanism
MX)=fX)+W

satisfies person-level (&, 6)-DP.
For a proof of Lemma 2.4, see e.g. [DR14].

LEMMA 2.5. (PRIVATE HISTOGRAMS) Let (S1, ..., Su) be samples in some data universe Q, and let U = {hy }ycq be a
collection of disjoint histogram buckets over (). Then, we have person-level e-DP and (e, 0)-DP histogram algorithms with
the following quarantees.

o ¢-DP: ¥y error —=——= | with probability at least 1 — B, run time poly(n, lo & ,
DP: ¢ O (8B with probability at least 1 ime poly(n, log([U|/(¢p)))

® (&,0)-DP: Ly error O (M) with probability at least 1 — B; run time poly(n, log(|U|/(&p))).

LEMMA 2.6. (EXPONENTIAL MECHANISM [MTO07]) The exponential mechanism Mg s score(X) takes a dataset X €

X", computes a score (Score : X" x S — R) for each p € S with respect to X, and outputs p € S with probability
e-Score(X,p)

o v ), where:

proportional to exp(

Ascore1 = I?Ssxxmx'a)i\’ |Score(X, p) — Score(X’, p)|.

It satisfies the following properties:
1. M is person-level e-differentially private.
2. Let OPTseore(X) = masx{Score(X ,p)}. Then
pe

2Ascor
P|Score(X, My s score(X)) < OPTscore(X) — S“’“(l (1S +1)| <
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2.2 Bounded Moments

DEFINITION 2.4. Let D be a distribution over R with mean . The k-th moment ox(D) of D is defined as
D)= E [x-u]"
ou(D) = E [Ix-ul|".
For D over R* with mean p, o(D) is defined as

@)= sp E [(x-poyf]"
Ok = 1:5151 < | U, )] .

LEMMA 2.7. Let D be a distribution over R with mean yand o (D) < 1. Let X1,..., Xy ~ D. Let X = %(Xl + e+ Xo).

It follows that
E[IX — 7" = o(—“k@)).

\m

Throughout this paper, we will treat k as a constant. We define the following notation to denote that the
inequality holds up to multiplicative factors that depend only on k.

DEFINITION 2.5. (HIDING k: <x) We write f(x) < g(x), if and only if there exists a function h(k) > 0 such that

f(x) < h(k)g(x).

3 Private Mean Estimation in One Dimension

In this section, we describe an efficient algorithm for estimating means of univariate distributions with bounded
k-th moments under person-level differential privacy. The algorithm is based on the Clip-and-Noise framework
and consists of two phases:

1. Coarse Estimation: Find a coarse estimate of the mean with only a few samples.
2. Fine Estimation: Given a coarse estimate of the mean, produce an estimate to the mean with error a.

The fine-estimation step is where we see clip-and-noise come into play: First, for each person i € [n], compute the
mean S of their m samples. Then, clip each S to a radius around the coarse estimate to obtain some value Z(").
Finally, output the average of Z(, ..., Z(") with additional noise for privacy.

In Section 3.2, we prove Theorem 3.1 which gives a statement on the final error a of applying the clip-and-
noise paradigm to general distributions. In Section 3.3, we prove Theorem 3.2 which analyzes the error and sample
complexity of the coarse-estimation subroutine when the samples come from a distribution with bounded k-th
moment. Finally, in Section 3.4, we piece together Theorem 3.1 and Theorem 3.2 in order to achieve Theorem 1.1.

3.1 Preliminaries We will make use of the Laplace mechanism which uses additive noise. We use the following
tail bound on the Laplace distribution to bound the noise term.

LEMMA 3.1. (LAPLACE DISTRIBUTION TAIL BOUND) For a Laplace distribution L with parameter b, and for any
t>0,
P[|L()| > tb] < exp(-t).

In order to reduce sensitivity we use a truncation operation defined as follows.

DEFINITION 3.1. (CLIPPING OPERATION Truncy,.) For two numbers { < r € R we define the clipping operation to be

r oxzr
Truncy (x) =491 x <.
X 0.w.
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In the analysis of the algorithm, we use the following fact about truncated random variables. (See Appendix A for
the proof.)

LEMMA 3.2. Suppose X is a random variable in R and Z = Truncy (X), where Truncy , is the truncation operation. Then
[E[|Z - [E[Z]lz] < [E[|x - [E[X]|2].

Finally, in our analysis we will use the non-uniform Berry-Esseen tail bound for the average of m i.i.d. samples
from a distribution with bounded k-th moments to bound the bias caused by truncation. See Appendix D for
discussion and proof.

COROLLARY 3.1. (TAIL BOUND FOR AVERAGES OF BOUNDED-MOMENTS VARIABLES [MIC76]) Let k > 3. As-
sume X is a distribution with mean 0 and k-th moment bounded by 1, and X;’s are m i.i.d. copies of X. Then,

(k—1)logm 1 © 1
>y ——2—, P|=)» Xi>t|<O[—|.
Vt >4/ — P m;Xl H <Ol

3.2 Generic Clip and Noise Theorem In this section, we create a generic theorem that applies the clip-and-
noise framework for private mean estimation, given access to tail bounds for a univariate distribution, a coarse
estimate of its mean, and an upper bound on its variance. The algorithm is as follows: take 7 i.i.d. samples from
the distribution, take their average, clip the average, and add Laplace noise in order to output an ¢-DP mean
estimation. Lemma 3.3 bounds the error caused by the clipping operation. Lemma 3.4 bounds the error caused by
the addition of Laplace noise and the sampling error from the truncated distribution. Finally, putting together the
clipping bias, sampling bias, and noise term guarantees, Theorem 3.1 gives a guarantee on the accuracy of the
clip-and-noise framework, given distributions with arbitrary tail bounds.

LEMMA 3.3. (CLIPPING BIAS) Let X € R be a random variable with finite mean. For two numbers | < r, let
Z = Trunc; ,(X). Then, we have:

1 +00
|[E[X] - E[Z]] € / LeftTail(x)dx+/RightTail(x) dx,
—00 r

where RightTail(x) := P[X > x] and LeftTail(x) := P[X < x].

Proof. We observe that Z = {1{X < {} + X1{f < X < r} +r1{X > r}. Using the above, as well as a combination of
the triangle inequality and Jensen’s inequality for the function ¢(x) = |x|, the clipping bias can be upper-bounded
by:

[E[Z] = E[X]] = [E[(¢€ - X)1{X

O+ E[(r - X)1{X = r}]|
< E[(€ - X)1{X >

O+ E[(X —r)i{X > r}].

We note now that the individual terms in the above sum involve non-negative random variables, so we have:

<
<

+00 +00

IE[Z] - E[X]]| < / P[(¢ - X)1{X < ¢} > x]dx +/ PI(X - 1)1{X > r} > x]dx
0 0

=/P[X<€—x]dx+/ﬂ>[X>r+x]dx
0 0

14 +00
= / P[X < x]dx+/ P[X > x]dx,
—00 r
where the last equality relies on the changes of variables x — { — x, and x — x — r, respectively. a
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Often the form of the tail bounds we have on distributions are of the form P[X < py—f] < -+, or
P[X > u+t] < ---, where u is the mean of X. The following corollary adapts Lemma 3.3 to this setting
where we have access to a coarse estimate of the mean.

COROLLARY 3.2. (CLIPPING BIAS GIVEN COARSE ESTIMATE) In Lemma 3.3 suppose that we are given access to a
coarse estimate U coarse SUCh that |llcoarse — | < u, and we set £ = [lcoarse — P, 7 = Pcoarse + p. Then

+00
|[E[X] - E[Z]] < / PlIX — p| > t]dt.
p—u
Proof. For the first term we have
Hcoarse—pP Hcoarse =P H—P'*'M +00
LeftTail(x)dx = / P[X < x]dx < / [P[Xéx]dxz/[P[X<y—p+u—t]dt
—00 —00 —00 0
+00
=/[P[X—y< —(p—u+t)dt.
0
Similarly,
+00 +0o
/ RightTail(x) dx < / PIX—-u>p—-u+t]dt.
Hcoarse+p 0

Putting these together finishes the proof. a

Next, let’s analyze the sampling bias for the truncated distribution and the error induced by the additive
Laplace noise.

LEMMA 3.4. (SAMPLING BIAS AND NOISE TERM) Suppose € > 0, and a random variable Z supported on [{,r] is
given, with variance Y[Z]. Suppose n i.i.d. copies of Z, Z;’s are given. Let 2p =r — €. and I = % + L(i—i), where L
is the Laplace distribution. Then

P

A= E1Z11> O[5 + T

wm+pbgum”<ﬁ

Proof. Note that fi — E[Z] = 222 — [[Z] + L(:£). From Chebyshev’s inequality we know

V[Z]

Vi>0: P .
nt?

2t| <

i+ ...Zy —[E[Z]
n

From tail bounds for the Laplace distribution (Lemma 3.1)

2
Vt>0: [PHL(—p) >t < exp(—tn—g).
ne 2‘0
Therefore,
... 2
Pla-E[Z]| > t] <P # ~E[Z]| > t/2| +P ‘L(n_Z) > t/2
4V|[Z tne
< TUE exp- ).
nt 4p
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Therefore,

[P[m gz s YA, 4p10g(2/ﬁ)l <

np ne
O

Together Lemma 3.4 and Corollary 3.2 give us a recipe for estimating the mean for arbitrary distributions
with known tail bounds, and variances.

THEOREM 3.1. (COARSE TO FINE ESTIMATE) Suppose X is a distribution with variance V[X]. Suppose a coarse
estimate of E[X], the true mean is given with accuracy u. Then truncation to a radius of p/2 around this coarse estimate
gives an e-DP estimate of p with success probability 1 — B, and accuracy

V[X] + plog(l/ﬁ)) + / PIX — u| > t]dt.

np ne

=0

p—u

Proof. Putting together Lemma 3.4, and Corollary 3.2, and noting that variance decreases after truncation by
Lemma 3.2. d

3.3 Coarse Estimation In this section we give an algorithm for obtaining a coarse estimate of the mean up to
accuracy O(1/+/m), under both pure and approximate differential privacy, given access to 1 people, each taking
m samples.

Algorithm 1 One-Dimensional Range Estimator

Input: Samples X = {X @

} where each X(,i) € R. Parameters ¢, 6,7, R.
I Jieln], je[m] J

Output: ficoarse € R

: procedure RANGEESTIMATOR(X;; ¢, 6,7, R)

Foreachi € [n],do S; = %(Xil) +oeet X,

Divide [-R — 2r, R + 2r) into buckets of width r: [-R —=27,-R —7),...,[-7,0),[0,7),...,[R +7,R + 2r).

If 6 = 0, run &-DP Histogram, and if 6 > 0, run (¢, 0)-DP Histogram from Lemma 2.5 using samples
(51,...,S,) over the buckets defined above.

Return ficoarse = #, where [a, b] is the bucket with the largest count.
end procedure

L

ISANRSY

THEOREM 3.2. (PERSON-LEVEL COARSE ESTIMATION) For all people i € [n] and number j € [m] of samples per
person, let X = {X;i)}i,,u Let v > 0. Then forall ¢ > 0, 6 € [0, 1), the algorithm RangeEstimator(X;-,-,-,-) satisfies
person-level (&, 0)-DP. In addition, let P be a distribution over R with mean |u| < R for some R > 0 and k-th moment
bounded by 1. Suppose each X;i) ~Piid. Forall e >0, €(0,1), and 16"/¥/+/m < r < R, there exists

_ o( log(1/p) N IOg(R/(rﬁ)))
log(+/mr) €

such that, for all n > ny, Ucoarse < RangeEstimator(X; e,0, r, R) satisfies
|[J - ,Ucoarse| <2r

with probability at least 1 — . Moreover, forall e > 0,6 € (0,1), 8 € (0,1), and 161/"/\/% < r < R, there exists

_ O( log(1/p) 10g(1/(6ﬁ)))
log(+/mr) €
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such that, for all n > n1, Ycoarse < RangeEstimator(X; e, 6,1, R) satisfies

|.u - [Jcoarse| <2r
with probability at least 1 — p.

In the proof of Theorem 3.2, we use the following Chernoff bound:

THEOREM 3.3. (CHERNOFF) Let Yy,...,Y, be 0-1 random variables. Let Y = Y1 + ...+ Y, and let y = E[Y]. Then for
allt > 1,

We now prove Theorem 3.2.

Proof. Privacy follows by running the (¢, 6)-DP Histogram (Lemma 2.5) and by post-processing (Lemma 2.1). We
focus on analyzing the accuracy.

Let [a, b] be the bucket such that tcoarse € [4, 0] (that is, [4, b] is the bucket with the largest noisy count). To
show that |4 — flcoarse| < 27, it suffices to show that max(|a — ul, |b — u|) < 2r, or equivalently, the bucket with
the largest count resides within y + 2r. In proving this, we show that the each of the following two events hold
with probability at least 1 — §/2: (1) A large fraction of the samples resides within u + 2r, and (2) no bucket will
have too large a magnitude of additive Laplace or Gaussian noise.

We start by showing (1). In particular, we show that, with probability at least 1 — /2, a (1 - f—é)—fraction of
the samples will lie within u + v. Forall i € [n],letY; = I(|X; — u| > 7),letp =P[Y; =1],and letY = Y1 +... + Y,.
Note that E[Y] = np and

k

1

= P[|X; — u| > r] = P[|X; - ">’<<( )
p=PlXi—ul >r]=PlIXi —pu|" > "] it

where the inequality follows from Markov’s inequality and Lemma 2.7. To show (1), we want to bound P [Y > 1"—6] .

To do this, we can assume that p is as maximal as possible (i.e. when p = (1/(vm: r))k) as this maximizes P [Y > 1”—6] .
Thus,

UD[Y>1n—6] =P[Y>M]

16
_( 16 )Q((\Mr)k[E[Y]/m)

(Vmr)k
16 Q(n/16)
((Wr)")
16 \los(™)/ log((Vmn) /16))
Z(w%r)k)
1 Q(logp™)
)
<B/2.

Note that there are at most 3 buckets which satisfy max(|a — p|, |[b — p|) < 2r. Thus, the largest of these 3 buckets
must have at least (151 /16)/3 = 5n/16 points with probability at least 1 — 3/2.

To show (2), we can directly apply Lemma 2.5. If ng = O (log(R/(rB))/¢), then the {w-error induced by the
Laplace noise is at most 1/16 with probability at least 1 — /2. Similarly, If n; = O (log(1/B06)/¢), then the fo-error
induced by the Gaussian noise is at most 1 /16 with probability at least 1 — /2. Thus, by a union bound,

[PHIJ - l'lcoarsel > 27’] < ﬁ/z +ﬁ/2 < ,3

(by Theorem 3.3)
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3.4 Applying Clip and Noise to Distributions with Bounded k-th Moments In this section, we use non-

uniform Berry-Esseen and a coarse estimate of the mean to find a fine estimate of the mean. We assume §m isa
random variable corresponding to the mean of m samples, and apply Berry-Esseen to obtain tail bounds for this
distribution and then use Theorem 3.1.

LEMMA 3.5. (COARSE TO FINE FOR BOUNDED k-TH MOMENTS) Assume p > u + /S=21%B™  Guppose X is a

distribution with mean u and k-th moment bounded by 1. Let S, be the random variable corresponding to the mean
of m i.i.d. samples from X. Suppose we have access to a coarse estimate of the mean with accuracy u. Then there exists
an e-DP estimator of the mean that takes samples from the sample mean distribution, truncates them within a radius of p
around the coarse estimate, and outputs an estimate of the mean with success probability 1 — B and accuracy

1 plog(1/p) = 4 ks

Proof. We aim to apply Theorem 3.1, and note that by Corollary 3.1 we have that for all ¢ >

a=0

(k-1)logm
m 7

U3H§m - y( > t] < mFHEE

Therefore, since p —u > %, we have that
+00 +oo
/ [PHEm - y' > t] dt < / m 7k dt
p—u p—u
+o00
= m < / tkdt
p—u
., —k+1 t_kﬂ +eo
=m R
-k+1 p—u
—k+1
— m—k+1 (P B ”) k*
k-1

Finally, note that since the k-th moment of X is bounded by 1, its variance is bounded by 1 as well. Therefore,

V[S,.] < 1/m, and hence
1 plog(1/p) —k+1 —k+1
k|4 {mnﬁ + e +m (p—u) .

Before presenting the main theorem of the section, we state a corollary that is related to the contribution of
the bias term in the error rate given in the previous lemma.

a=0

O

COROLLARY 3.3. Suppose X is a distribution with mean y and k-th moment bounded by 1. Let S, be the random variable
corresponding to the mean of m i.i.d. samples from X. Suppose that we are given access to a coarse estimate [ oarse

such that |llcoarse — p| < u, and that Z is the result of truncating S, in the interval [ttcoarse = P Hcoarse + pl, where

p—uU =4 W. Then, the bias induced by this truncation operation satisfies:

—k+1 (p B u)_k+1

E[Z] - E[X]| < 1 22

Thus, if we want the bias to be at most a, we need to take p > u + 11

ak-1m
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We now conclude by presenting the main result of this section.

THEOREM 3.4. (MEAN ESTIMATION FOR BOUNDED k-TH MOMENT DISTRIBUTIONS) Suppose X is a distribution
over R with mean |u| < R for some R > 0 and k-th moment bounded by 1. Then there exists a person-level e-DP mean
estimation algorithm that takes

(L1 log(/p) _ log(1/p) _ log(Rm/p)
a*mp  a\me aFime €

and outputs an estimate of the mean with failure probability p and accuracy a. Moreover Oy, hides multiplicative factors
that only depend on k and lower order logarithmic factors in m.

Proof. Suppose we have access to a coarse estimate of the mean with accuracy 164/1/m. Then by Lemma 3.5 we

have that there exists an ¢-DP estimator of the mean that takes samples from the the sample mean distribution
truncates them within a radius of p around the coarse estimate, and outputs an estimate of the mean with success

probability f and accuracy
/ 1 plog(/B) i k41
a <k - + e +m (p—u)™",

Z o\ Lk
where u = 164/1/m. Take p = @( (k-Dlogm (logr(,lé/ﬁ)) : mlll/k ), hiding a sufficiently large constant to ensure

m

that p —u > 4/ (k_l?ﬂﬂ. Therefore, we have that

L log1/p)ylogm (log(l/ﬁ))l‘”k

mnp \Vmne mne

Rearranging the terms and using the coarse estimation sample complexity from Theorem 3.2, with 7 = 16+/1/m
we conclude that there exists a person-level e-DP mean-estimation algorithm that takes

nzék( 1 +1og(1//3)+logk(1/ﬁ)+log(R@/ﬁ)),

almp  ayme arime €

many samples and outputs an estimate of the mean with success probability g and accuracy a. Moreover Oy
hides multiplicative factors that only depend on k and lower order logarithmic factors in m. a

4 Mean Estimation in High Dimensions with Approximate-DP

In this section, we introduce Algorithm 4, an algorithm for privately and efficiently estimating the mean of
distributions with bounded k-th moments.

Using Clip-and-Noise in d dimensions. As in the univariate case, our algorithm for computing an estimate
of the mean of a multivariate distribution is as follows: (1) compute a coarse estimate to the mean via private
histograms, and (2) apply the clip-and-noise framework, clipping around the coarse estimate. As in the univariate
case, our overall error is proportional to the bias induced by clipping and also the noise added to ensure privacy.
To ensure overall error o, we set the clipping radius p to be as small as possible while still ensuring that the
bias is < a. Under this fixed p, we can guarantee that the noise is also < a so long as the number # of people is
sufficiently large.

Main technical obstacles in d dimensions. In one dimension, we used a corollary of the Non-Uniform
Berry-Esseen Theorem (Corollary 3.1) from [Mic76] in order to bound the bias due to clipping. Unfortunately,
this bound does not apply to distributions over R? for d > 1, and moreover the proof introduced by [Mic76] does
not readily extend to higher dimensions. In this section, we prove an analogous concentration bound in high
dimensions.
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THEOREM 4.1. Let k > 2, and let D have mean 0 and o (D) < 1. There exists t1 = O(wldlo%) such that, forall t > t1,

dk/Z

PlIX|l2 > t] = O(W

+ e—mt2 / d)

We use this concentration inequality in order to bound the bias due to Clip-and-Noise. As discussed in
Section 1, the techniques used to bound the bias in the univariate case do not give tight results in the multivariate
case. In this section, we introduce Theorem 4.2 whose proof circumvents this issue.

THEOREM 4.2. Let D be a distribution over R? with mean y and ox(D) < 1. Suppose that X; ~ D for all j € [m], and
let X =1 Z;"zl Xj. Letu € R%, p>0,and y = |lu — pllo. If p > t1 for some t; = O(\/dl?fm), and if y < |, then,

a5 dz
k=1 pk=1 (1 Ty ?))

Main algorithmic obstacle in d dimensions. Even equipped with a high-dimensional tail bound (The-
orem 4.1) and bound on the bias (Theorem 4.2), there is an inherent algorithmic obstacle that exists in the
multivariate case that does not exist in the univariate case.

Recall that the error of Clip-and-Noise is proportional to both the bias induced by the clipping and the noise
added to ensure privacy. Thus, if the overall error is «, then each of the bias and the noise must be < a. As seen
in Theorem 4.2, the bias is proportional to the error y of the coarse estimate. In order for the bias to be < «, the
clipping radius p must be large enough to offset the error y. However, enlarging p also enlarges the sensitivity
and thus the noise! The only way to then decrease the sensitivity is to increase the number of available people in
the data set. Unfortunately, the y produced by the coarse estimate is too large, ultimately requiring # to be larger
than optimal.

To get around this problem, instead of forcing the optimal error @ and settling for a sub-optimal n, we instead
enforce the optimal 7 and observe a different error y” > a. In our parameter setting, while y” is not smaller than
a, it is smaller than y; thus, we can actually interpret the clip-and-noise algorithm as boosting the error of the
coarse estimate. The insight is that this process is repeatable. In particular, we will run a process called Threaded
Clip-and-Noise which does exactly this, and is able to drive the error of the coarse estimate down to optimal.’
Then, with the optimal coarse estimate, we can do one last application of Clip-and-Noise in order to achieve error
a with the optimal sample complexity.

In this section, we work towards introducing Algorithm 4, an algorithm which composes the processes
described above. The guarantees of Algorithm 4 are described in the following theorem.

4.1) ||y - [E[clipp/u(X)] H2 e

THEOREM 4.3. Let D be a distribution over R? with mean u, and let o (D) < 1 for some k > 2. Forall €,6 > 0,
Algorithm 4 satisfies person-level (e, 6)-DP. Furthermore, Algorithm 4 is efficient, and for all €, 6, a € (0, 1), there exists

. dlog2(1/6) dlog'*(1/6) dlog'2(1/5) d/?log¥3(1/s
4.2) no = O, -4 Aog(1/0)  dlog (1/6)  dlog (1/0) d'log™(1/5)

a?m am/2¢ akl/ k=D e € €
such that, if n > ny, then, with probability at least 2/3, Algorithm 4 outputs fi € R? such that
6= wll2 < .

Organization of Section 4. The remainder of this section is organized as follows. In Section 4.1, we prove
Theorem 4.1 and Theorem 4.2. In Section 4.2, we discuss Threaded Clip-and-Noise. In Section 4.3 we give the full
algorithm and prove Theorem 4.3.

4.1 Technical Lemmata: Bounding the Bias In this section, we prove a concentration bound for distributions
in d dimensions with bounded kth moments. Using this concentration bound, we analyze the bias induced by
Clip-and-Noise.

9We can get the optimal coarse estimate for free!
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41.1 Theorem 4.1: Proof Overview and Core Lemmata Let D be a distribution over R?, let X1, ..., X, iid D,

and let X = L 31" X;. We introduce the following theorem which is central in the analysis of the bias:
THEOREM 4.4. Let k > 2, and let D have mean 0 and o1 (D) < 1. There exists t1 = O(\/%) such that, forall t > t1,

dk/2

PlIX]l2 > t] = O(W

yemt?/ d).
This theorem is a direct corollary of the following two theorems:

THEOREM 4.5. Let k > 2, and let D have mean 0 and ox(D) < 1. There exists t| = O(\/dlo%) and tp; =

Q(\/Elogk%lz m) such that, for all t € [t1, 2],

THEOREM 4.6. Let k > 2, and let D have mean 0 and o (D) < 1. There exists t3 = O(\/Elogl/k m) such that, for all

t>ts,
[ dk/2
HMMNFO( ).

mk-1¢k

In this subsection, we give a proof overview of both Theorem 4.5 and Theorem 4.6 (wWhose combination yields
Theorem 4.1). As we give the overview, we will also develop some high-level lemmas that will be used in both
analyses. Building on these lemmas, we will give the full proofs of the theorems in the following subsections.

As notation, we say that a random variable Z € R has a t-deviation if || Z||2 > t. In Theorem 4.5, we analyze

the probability that X has a t-deviation for all \/d/m <t < Vd (we call all ¢ in this range small t). In Theorem 4.6,

we analyze the probability that X has a t-deviation for all t > Vd (we call all t in this range large t). The analyses
of the small-t event and the large-t event closely follow the same blueprint, which we describe in this subsection.

To start, let r1, 7, > 0 such that rq < rp. We call a sample X; light if || X;||> < r1. We call a sample X; moderate if
| Xill2 € [r1, 2). We call a sample X; heavy if || X;||2 > r2. We can group together the light, moderate, and heavy
samples as follows:

1 m
Ar=— 3 Xi- W1 Xill2 < r1)

i=1

1 &
Ay = EZ;}Q I < || X2 < 12)
P

1 m
&=%2&mwm>m
1=

We can use these groupings to expand the probability that X has a t-deviation:

t t t
(4.3) Pl X]l2 > t] < P|[|A1ll2 > 3t PlllAzll2 > 3t PlllAs]l2 > 3|

The proofs of Theorem 4.5 and Theorem 4.6 focus on bounding the probabilities that each of A, Ay, and Az have
(t/3)-deviations.
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In order to bound these events, we must take care to set ¥ and r, appropriately as functions of t. In particular,
for both the small-t regime and the large-t regime, we will always set 1, = 3121gtm ~ mt. That is, we should think
of r; as being a global variable for both the small-t regime and the large-t regime. On the other hand, we should
think of r; as being a local variable which is set differently depending on whether ¢ is small or large (this is
actually why we divide ¢ into small ¢ and large ¢ in the first place). In the small-t regime, we set r; = d/t. In the
large-t regime, we set r1 = t/3.

As it turns out, the proof bounding the deviation of the heavy samples is agnostic to whether f is small or
large. On the other hand, the proofs bounding the deviation of the light samples will necessarily be different for
small ¢ and large t. The proofs bounding the deviation of the moderate samples are largely similar for small ¢
and large t. We focus for now on proving bounds for the deviations of just the heavy and moderate samples. (In
ensuing subsections, we bound the probability that A; has a (t/3)-deviation separately for small ¢ and for large t.)

Throughout the proof, we make extensive use of the following lemma:

LEMMA 4.1. (TAIL BOUND FOR THE NORM OF BOUNDED k-TH MOMENT DISTRIBUTION [Z]S22]) Assume p has
its k-th moment bounded by 1 for k > 2. Then for all t > 0,

P[lIX|l2 > t] < d*/2¢7F,

Bounding the deviation of the heavy samples. We begin by introducing Lemma 4.2, which bounds the
probability that A3 has a (t/3)-deviation. This is the easiest step in the analysis and is used in both the small-t and

large-t regimes. As mentioned earlier, we set 1, = SIng .

LEMMA 4.2. (DEVIATION OF HEAVY SAMPLES) Let k > 2, and let the distribution D over R? have mean 0 and k-th
moment bounded by 1. Then forall t > 0,
. k/2
< O(d—).

t
(44 U’[||A3||z S

Proof. Note that

t 1 t
45 PllI4sllz > 5 | =Pl x| >3
(45) [||3||z3 mZ i, >3
1Xill2>72
mt
<Pl D, IXila> =
1
L[ Xi|l2>72
<P| >, IXil2>r
-||Xi||z2>”2
= P[3i such that || X;]|2 = 2]
(4.6) <mP[||IX1ll2 > 2],

where the last line follows from the Union Bound. We now use Lemma 4.1 to bound the probability of the norm
of one sample having an r,-deviation:

kakj2 [ A2
4.7) PlIX1ll2 = r2] < ;¥ d"/ =o( kk),
m~*t

which combined with (4.6) completes the proof. O
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Bounding the deviation of the moderate samples. We give an overview of how to bound the probability of
the moderate samples deviating for both small ¢ and large t. This is the most interesting part of the analysis.

We begin by partitioning the moderate samples further. WLOG assume that r,/r1 is a power of two, and for
all integers ¢ € {1, ...,log(r2/r1)} we define the interval

Be={i: 27" ry <|IXilla <27 - 1p}.

Note that, as ¢ gets larger, the interval By shrinks in width and also covers a smaller range of values. Consider the
following remark about these intervals.

REMARK 4.1. Iflog(r2/r1) < logm and Ay has a (t/3)-deviation, then there exists { € {1, .. ,log(rz/rl)} such that
|Be| = 201,

Proof. Suppose for contradiction that V¢ : |Bg| < 2/~1. Then,

1
|Az]l2 = ”Z Z Xi”2
HXillzel[h,rz)
1
<o), Xl
1Xill2€0r1,72)
1 log(r2/r1)
- Z DXl
= i€By
1 log(r2/r1)
< a Z 2571 . (27€+l . ’,2)
=1
48) _ 1og(1f’2ﬂ/r1)r2.

By assumption on log(r2/r1) < logm, equation (4.8) becomes

1 1
|Az2]l2 < 08(ra/r)r <287 mt < E,
m m  3logm 3

which is a contradiction. O

We will assume log(r2/r1) < logm and use Remark 4.1 to expand the probability that A, has a (t/3)-deviation:

log(rz/r
(by Remark 4.1) [||A2||2 Z [P |Bl| > 2! 1]
=1
log(rg/rl) m 2[71
(by Union Bound) < (25 1) [I1Xill2 > 27 2]
=1
2 -1
1og<rz/r 1 (o k
em \2 2t d
(by Lemma 4.1 and Lemma B.1) [Z; (25 1 ) 72 )
1og(rzzfr (e " - dk/z olk- e+1)2
=1 2
2?71
m - dkI2 . otk=t+1
4.9 < log(rp/r1) - max
(4.9) gr2/n) (’e{l,...,log(rz/rl)}( rs
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Since log(r2/r1) = O(1) and r, = %, then the rest of the proof will reduce to showing

-1

2-3’<e-az'</2.2"<'<1>1og"m)2 B ( dk/? )

10 %{ e T

Showing (4.10) will follow from algebraic calculations. To lighten the notation, we will define the function

-1

dk12 . 9tk=1) 100k 1y 2
mk-1tk ’

fl)=0

where the ®-notation hides the 2 - 3¥¢ term in (4.10). To bound max;, f(£), it helps to observe Lemma 4.3 which
states that f(¢) is convex with respect to ¢ (see Appendix B.1 for the proof).

LEMMA 4.3. Fixanym,d,t > 0and k > 1. Then the function f(¢) is convex with respect to {.

By Lemma 4.3, it follows that
(411) meaxf(f) € {f(Q1), f(log(r2/r1)},
and so it suffices to show that f(1) and f(log(r2/r1)) are bounded. Note that, for both small  and large ¢,

dk/2 . ok 1ogk m)_ ( d 2 )

4.12) f)=0 Y k1K

On the other hand, we must bound f(log(r2/r1)) separately for small ¢ and large ¢, as in each analysis we will set
r1 differently. We leave this subsection and bookmark our progress with the following lemma:

LEMMA 4.4. Iflog(ra/r1) < logm and f(log(ra/r1)) = O(d*/2m=*+1tF), then
5 dk/Z
- O(mkltk )

412 The Small-t Regime: Proving Theorem 4.5 In this section, we prove the following theorem:

t
ﬂmm>§

THEOREM 4.7. Let k > 2, and let D have mean 0 and ox(D) < 1. There exists t1 = O(‘/dlngm) and t, =
Q(\/Elog% m) such that, for all t € [t1, 5],

dk/?.

PlIXIl2 > t] = O(W

+ e—mtz/d)

% = = and let A1, A, and A3 be defined as follows:

Letri =%, = Slog i’

1 m
Ar=— 3 Xi-U(l1Xill2 < 1)

i=1

1 &
Ay = azl}(l (1 < I Xill2 < 72)
i=

1 m
&=%2xmww>m
1=

As discussed earlier, we must bound the probabilities that A, A, and Az have (t/3)-deviations. We have already
bounded the heavy samples by Lemma 4.2. We move on to showing the complete proof of the bound for the
moderate samples in Lemma 4.5:
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LEMMA 4.5. (DEVIATION OF MODERATE SAMPLES IN SMALL-t REGIME) Let k > 2, D have mean 0 and k-th
moment bounded by 1, and t > 0. Then, there exists t; = O(‘,dlngm) and ty, = Q(\/Elogk;flz m) such that, for all

t €[ty t2],

(4.13) u>[||A2||2 > 5] < O(

mk-1¢k

dk/2
; )

Proof. We seek to apply Lemma 4.4 (as described in the previous subsection). Note that there exists t, =
Q(\/Elogk%]z m) such that, for all t < £,

2

_me
3dlogm

log(rz2/r1) = log( ) < logm.

Thus, all that remains is proving that f(log(r2/r1)) = O(d*/2m=**1t=%). We defer the proof of this to Lemma B.6 in
Appendix B.2. 0

We now introduce Lemma 4.6, which shows that the deviation of the light samples is bounded.

LEMMA 4.6. (DEVIATION OF LIGHT SAMPLES IN SMALL-t REGIME) Let k > 2, and let the distribution D over R?
have mean 0 and k-th moment bounded by 1. Then, there exists ty = Q(\/E) such that, for all positive t < t;,

colof)

Lemma 4.6 critically uses a Bernstein Inequality for vectors (see, e.g., Lemma 18 of [KL17]):

t
(4.14) 'P[IIA1||2 >3

LEMMA 4.7. (VECTOR BERNSTEIN INEQUALITY) Let Z1,...,Z,, be independent random vectors in RY such that
E[Zi] =0, E[||1Z|13] < o2 and ||Z;||2 < r for all i. Then forall 0 < t < %/r,

P < P p— -mt? 1
|| Z; 1||2 Zm S exXp 802 + Z .
i=

We now prove Lemma 4.6.

Proof. Foreachi € [m],setY; = X; - 1(||Xi||2 < r1), and Z; = Y; — E[Y;]. We can rewrite the left-hand side of (4.14)
in terms of Z; and E[Y;] as follows:

t 1 t
PliIA >—=|P||— X'”>—
[||1||2 3 mZ i, >3
I1Xill2<r1
mt
ol X x>
L |1 Xilla<r1

SRR

i=1
= ||| > ¥ - e + v, > ’"—t]
i=1

2 3
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= mt
=P Z; + EY; H Z —
H;z+uh :
S t
(by the Triangle Inequality) < [Pl” Z Zi”2 > m(g - ||[E[Yi]||2) .
i=1

We have that ||E[Y;]|l> < t/6 by Lemma B.3, which uses the fact that O has a bounded k-th moment (see
Appendix B.2 for the proof). This gives us

<P .

t
ﬂMM>§

Z mt
4 2 6
i=1

Applying Lemma 4.7 to the expression above—using the parameters 02 = d and r = 2r;—completes the proof.
This is done in detail in Lemma B.4 and Lemma B.5 in Section B.2. In particular, Lemma B.4 checks the constraints
on the Z;’s, and Lemma B.5 performs the necessary algebraic manipulation to complete the proof. O

We now prove Theorem 4.5.

Proof. We have that

t t t
PlIIX]l2 > t] < P|[|A1]l2 > 3[+F |A2]l2 > 3[+P lAs]l2 > 3
5 dk/2 214
(by Lemma 4.6, Lemma 4.5, and Lemma 4.2) <0 (T + et/ )
mk-1¢k

O

4.1.3 The Large-t Regime: Proving Theorem 4.6

THEOREM 4.8. Let k > 2, and let D have mean 0 and o (D) < 1. There exists t3 = O (\/Elogl/k m) such that, for all
t > 13,

5 dk/Z
PlIX|l2 > t] = O(W)

Proof. Letr; =%, 12 = 5 lzgt — and let A1, Ay, and A3 be defined as follows:

1 m
Ar=— 3 Xi-U(Xilla < 1)
i=1
1 m
Ar=— 3 XU < IIXill2 < r2)
i=1
1 m
Az = p” Xi - 1(IXill2 > 7r2).
i=1
We have that
[ t] t t
PlI[X]l2 > t] < P|[|A1]l2 > 3t PlllAzll2 > 3 PlllAs]l2 > 3
—0+P|[Aslla > L] + P Asllp >
- 2112 Z 3 32 Z 3
[ t]  ~f dr?
(by Lemma 4.2) < Pl|Az2]l2 > 3|t O(W)
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To bound P [||A2||2 > é], we seek to apply Lemma 4.4. When ry = t/3,

m

log(ra/11) = log( ) < logm.

log m

Thus, all that remains is proving that f(log(r2/r1)) = O(d*/>m=*+1t~F). Note that

m
2logm

mdk/z( I )k_llo K m
logm 8
)) = ik ik

f(log(loZm

@(dk/zlogm)“’"é’"

5 dk/Z
(since t > t3) < O( )
This completes the proof. 0

As an immediate corollary, we have:

COROLLARY 4.1. Let k > 2, and let D have mean u and o (D) < 1. There exists t; = O(\/dlo%) such that, for all

t2t,
» dk/2
(@15) Pl =l > 1= O )

Proof. Without loss of generality, we can assume that O has arbitrary mean p. Thus, to complete the proof, we
show that the exponential term in Theorem 4.1 is dominated by the polynomial term in Theorem 4.1 for all

t>tg k'ﬁ%m. Sett =c kdl%m for some ¢ > tg. Observe that, for all ¢ > t,

mt?\ o) < <L 1 1
P _T —exp(—c Ogm) = mke? = mkke? = mk2klogc = mkck
1
< —
mk/2-1ck
dk/Z
BT

O

4.1.4 Using Corollary 4.1 to Bound the Bias We now define the operation clip pu+ The operation takes as input
some X € R? and clips X to the ¢, ball centered at u € R? with radius p.

DEFINITION 4.1. (CLIPPING OPERATION) For p > 0and u € RY, the operation clipp,u : R4 — R4 is defined as follows:

llx —ulla<p

XU otherwise

llx=ull2

Clipp,u (x) = {x

u+p-

We now introduce the following theorem, which describes the bias of the statistical estimator that averages m
samples from some distribution ) with bounded k-th moments and applies clip,, , to the average.
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THEOREM 4.9. Let D be a distribution over R? with mean y and (D) < 1. Suppose that Xj ~ D for all j € [m], and
let X =L ;”:1 Xj. Letu € R, p>0,and y = ||u — pllo. If p > t1 for some t1 = O(,/dk;fm),and ify < \/g, then,

ds dz
k1 k1 (1 Ty ?))

. _Ex-7]
EX - Z]Il,

4.1) |P—EFMMAXMt=O

Proof. Define Z = clip o (X), and define

We use v to expand the expression for the bias:
I = ELZ]ll, = [[E[X = Z]|l, = E[{X = Z,v)]

</'Pﬁx—zm>>ma
=0

p/Nd+y 0
(4.16) :/' PKX—Zm>>ﬂM+/m P(X - Z,0) > ¢]dC.
(=0 t=p/Nd+y

Ti= T:=

The rest of the proof is dedicated to bounding T; and T in (4.16).
Bounding T7. Our goal is to bound T; using Corollary 4.1. Be begin by bounding the projection of X — Z onto
v by the {, norm of X — Z:

p/Vd+y p/Vd+y
71:/ PKX—Zm>>ﬂdh§/ PlIX - Z|2 = £]d¢
=0 =0

For ¢ > 0, one can check that || X — Z||; > ¢ implies || X — ull» > { + p — y. (See Lemma B.7 in Appendix B.3 for
details). Thus,

p/Nd+y
T1</ PIIX -l > €+p—-yldl
=0

p/Nd+y
(by assumption on y and p) < /g PIIX —ulla = €+ p/2]d¢
=0
p/Nd+y
(since £ > 0) <L' PIIX = ull2 > p/2]de
=0
p/Nd+y k/2
(by Corollary 4.1 and assumption on p) = 1{12%1+ o @) (m%w) ¢
[ 4T dz

We now focus bounding T>.
Bounding T,. Our goal is to bound T; using Corollary 4.1 for univariate distributions. We start by expanding

(X —p, o)
X-pvy=X-Z+Z-u+u-yu,v)
=(X-Z,0)+{Z—-u,v)+u—u,v)
(4.18) >(X-Z,0)+{Z—-u,v)—y.
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We use (4.18) to expand T:

T2=/ P{(X - Z,0) > ] df
t=p/Nd+y

(by (4.18)) < /gm/\/g PUX —y,v) 2L +(Z—u,v)y—y]dl
=p/Vd+y

Note that X — Z and Z — u are non-negative scalar multiples of each other. Thus, the inequality (X — Z,v) > 0
(implied by (X — Z, v) > {) implies (Z — u,v) > 0. Thus,

T2</ PUX —u,v) > € —y]de

t=p/Vd+y

(by a change of variables) < / P(X —p,v) > ']de’.
v=p/Nd

Let Y = (X, v). Note that E[Y] = E[(X,v)] = {u, v) and also that
1/k 1/k
or(0) = |l ~EIF| T =E[i(x - po)t| T <

by assumption on D. Thus, we can use Corollary 4.1 in the case of univariate distributions:

[ee]

T < / P[(X — p,0) > ¢']de’
U=p/Nd

- / PlY - E[Y] > ¢']d¢
o=p/Nd
< / P[lY - E[Y]] > ¢]d¢’
e=p/Vd
* ~ 1
(by Corollary 4.1 and assumption on p) < / O(—) ds¢’
y y p p v=p/Va mk=1(0)k
k-1
(4.19) <O ﬁ
mp

Combining (4.16), (4.17), and (4.19) completes the proof. a

4.2 Threaded Clip-and-Noise In this section, we introduce the algorithm Threaded Clip-and-Noise (TCN). As
discussed in the introduction of Section 4, Threaded Clip-and-Noise takes as input an initial coarse estimate 1 to
the mean and outputs a new estimate u*. The formal guarantees of Threaded Clip-and-Noise are described in
Theorem 4.10.

THEOREM 4.10. Let S = {Sy,...,S,}, where each S; = {X{i), .. ,Xf,?} and each X]@ € R, Let up € RY. For all
€,0 €(0,1), TCN(S; ¢, 6, up) satisfies person-level (&, 6)-DP. Furthermore, let D be a distribution over RY with mean U
and (D) < 1. Suppose that X;’) ~ D foralli € [n]and j € [m], and suppose that ||ug — |2 < r"%zz. Let u” be the output
of TCN(S; €, 0, ug). There exists ng = O(M), such that, if n > ng, then ||u* — u|| = O(ﬁ) with probability at
least 0.9.

Overview of Threaded Clip-and-Noise. We give a high-level overview of Threaded Clip-and-Noise (see

Algorithm 3 for the full details). The algorithm is composed of a total of T layers. In each layer t € [T], the
algorithm runs an application of the high-dimensional clip-and-noise algorithm ClipAndNoise (Algorithm 2) and
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outputs #; € R?. The name Threaded Clip-and-Noise comes from the fact that the layers are threaded together:
the output u;_1 is fed as input into layer ¢, and it is used as the center of the clipping ball in the application of
ClipAndNoise.

To discuss Threaded Clip-and-Noise in more detail, we introduce the following notation. For each ¢ € [T]

and i € [n], define Z;(t) = chpphuH (X(i)) where each X = % 271:1 X;i) and where p; is a value specified at each
layer t. Let W; be the noise added by ClipAndNoise in layer t. The output of layer ¢ is

1 n
Uy = E lel(t) + W;.
i=

As further notation, let y; = ||u; — pll2. We refer to y; as the error of u;.

Algorithm 2 Clip-and-Noise
Input: S = {X}i)}

where each X € R?, Parameters €,0,p,u.
ie[n],je[m] ]

Output: u’ € R%.
1: procedure CLIPANDNOISE(S;¢,0,p,u)

2: fori € [n] do

3: Z; — clipp’u(% L X;Z)).

4: end for s

s Letw - N(O, () u)
6: Returnu’ =1 y" Z;+ W.

7. end procedure

The iterative refinements of Threaded Clip-and-Noise. The layered/threaded design choices of Threaded
Clip-and-Noise hinge on the following key idea: Each layer ¢ produces an estimate u; that is better than that of
the previous layer; that is, for all ¢ € [T], the algorithm produces y; such that y; < y;_1. In addition, by the time
the algorithm terminates, the final estimate ur will have error < +/1/m (so long as the initial estimate 1y had error
<S Ad/m).

To see why this is true, it is useful to understand how y; evolves with t. We can think of y; as being roughly
equal to the sum of a bias term and a noise term, both of which come from unraveling the details of ClipAndNoise.
In our parameter regime, the bias term will be

dk/z%—l

(4.20) bias(t) ~ mk‘lpf

d+/log(1/6
:

due to Theorem 4.2. When n > ), the noise term will be

noise(t) ~ ﬂ

Notice that both terms are functions of p;, which is a parameter set by the algorithm at each layer. In order to
minimize y;, the algorithm sets p; to be the value that balances bias(t) and noise(t), i.e. setting

11
(ye-1)F1dz
pt = k=1
m k+1
(where we pretend for now that the algorithm knows the value of y;_1). Plugging this value of p; into y; gives the
following evolution of y; with respect to ¢:
1
(yr-1)F1
VWA Tm

mk+1
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If we assume that yo < +/d/m, then it is ideal to set

1 1
,+7
d? 2kl

(421) pr="—

1
_ d2k(k+1)t1

at each round, yielding that y; = = After loglogd layers, it follows that yiog10gd < \/% .

The gross oversimplification above glosses over one important detail: We can only apply Theorem 4.2 in (4.20)
if we assume that p; 2 /d/m. Thus, if the right-hand side of (4.21) ever dips below ~ +/d/m, we must instead
set p; = \/d/_m . We then apply ClipAndNoise one final time and then terminate the algorithm. In this event, the

completion of the terminating layer actually gives a final error of 4/1/m, in which case the algorithm is happy to
terminate.
The rest of the section is dedicated to formalizing the intuition above.

Algorithm 3 Threaded Clip-and-Noise

where each S; = {X(i)}
) jetm]

Input: S = {X(i)}
I Jie[n] jelm]

Output: u* € R,
1: procedure TCN(S;¢,0,u)
2: Ug=u
3: 5, = £ , 6/ = 0
Vloglog d-log((2loglog d)/5) 2loglogd
1

1 y
4: T=max0,maxteZ:M>O(”’UZ)))+1

mi-1/k miz
5: if T > 1 then

and X;i) € R%. Parameters ¢, 5, u.

6: fort=1,...,T—-1do
7 Let S(t) = {SL%J(t—l)*’l""’S[%Jf}

1o 1
8: u; < ClipAndNoise(S(t); €', 0’, pt, us—1), where p; = a’ njﬁ(_kf/lk)t i
9: end for
10: end if

11: S(T) = {SL’T—’J(T—l)Hw-'/Sn}

12: u* « ClipAndNoise(S(T); €', &', pr, ur-1), where pr = 6) (%)
13: Return u*

14: end procedure

Full analysis of Threaded Clip-and-Noise. We decompose y; into noise, sampling error, and bias terms as
follows:

v = |luy — pll2

< [[Well2 +

Wit o D 2i0) - O] + HZ0) -

2

=3 2 - EZ )| +IELZ10)] -
i=1

2
:= noise(t) + sampling(t) + bias(t).

We first introduce Lemma 4.8 which bounds noise(t) and sampling(t). Its proof is deferred to Appendix B.4
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LEMMA 4.8. (NOISE AND SAMPLING) Let D be a distribution over RY with mean y and o (D) < 1. Suppose that, for

d+/log(1/0)
£

alli € [n]and j € [m], X;i) ~ D. There exists ng = O( such that, for all n > ny,

noise(t) + sampling(t) = O(ﬂ)

Vd
with probability at least 1 — 0.1/loglog d,

We can now give guarantees of each of these three terms at any given layer ¢ of Threaded Clip-and-Noise.

1,1

. 2 =T

LEMMA 4.9. (ERROR OF ITERATION t) For all t, define ry = &
m

. Forall t € [T], let p; and u; be as defined in
Threaded Clip-and-Noise, and let y; = ||uy — pll2. If yi—1 = O(rt_l/x/a), then there exists ng = é(ﬂ) such that

foralln > ny,

Ve = O(Pt/ \/E)
with probability at least 1 — 0.1/log log d.
Proof. We've seen that

Yt < noise(t) + sampling(t) + bias(t).

Note by Lemma 4.8 that the noise(t) + sampling(t) = O (pt / \/E) with probability at least 1 — 0.1/loglog d. Thus,

it suffices to show that bias(t) is also O ( ot/ \/E), which is shown in the following calculation:

. ~ [ d* 2y 4 dk/? 1
(from Theorem 4.2) bias(t) = O T oF + e ‘TR
. 5 dk/2 ri1 dk/2 1
(by assumption on y;_1) =0 mk—lpk R + W ‘7
t t
. 5 dk/Z i1 dk/2 1
1
1 - | d¥/2 4 20T 7t dk/2 o
. _ i1 — L L
(since 7y = rpd 260" =0 o + I
_5 daki2gq 2(k+11)f—1 T
a mk-rk 172
~ rt
= 0L
[
. ~[ Pt
(since py > 14) = O(—)
" Vi

O
LEMMA 4.10. Algorithm 2 satisfies person-level (&, 6)-DP.

Proof. For each user, let S; = {Xii), ... ,X,(,?}. Define each Z; as in Algorithm 2. Consider the function

f(S1,...,S4) = 13", Z;. The b-sensitivity of this function (with respect to person-level privacy) is O(£).
The proof then immediately follows by applying Lemma 2.4. a
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THEOREM 4.11. Let S = {S1,...,S,}, where each S; = {Xii),...,X,(é)} and each X](.i) € R, Let ugp € R%. For all
g,0 €(0,1), TCN(S; ¢, 6, ug) satisfies person-level (e, 6)-DP. Furthermore, let D be a distribution over RY with mean U
and (D) < 1. Suppose that X]@ ~ D foralli € [n]and j € [m], and suppose that ||ug — u||2 < 1/2 Let u* be the output
of TCN(S; ¢, 0, ug). There exists ng = O(M), such that, if n > no, then ||u* — u|l2 = O(#) with probability at
least 0.9.

Proof. We first prove the privacy guarantees of Theorem 4.10. Without loss of generality, we can assume that each
call to ClipAndNoise receives as input the entire dataset X of size n and chooses to only compute on a fraction of
this dataset. By Lemma 4.10, each of the T iterations of ClipAndNoise satisfies person-level (¢’, §')-DP. Thus, by
Lemma 2.3 and the fact that T < loglogd, Threaded Clip-and-Noise satisfies person-level (¢, 6)-DP.

We now prove the accuracy guarantees of u*. Let y* = |lu* — u|o. Our goal will be to show that y* = O ( or/ \/E)
as this implies that y* = o (1/1111/2). We divide T into two cases: (1) when T > 1 and (2) when T = 1.

Case 1 (T > 1): Forallt € [T], let E; be the event that y; = @) (pt/\/ﬁ), and let E; be the negation of this event.

We have that B
P[Er] > P[Eo, Eq,...,Er] =1-P[3t €{0,..., T} : E]

We can make the following realization.
T

(4.22) P[3te{0,..., T} : E] = Z P[E: | Ei-1, ..., Eo] + P[Eo].
t=1

We briefly show that, when T > 1, P[Eo] = O (i.e. Y0 < ro/\/ﬁ). By assumption, yg < %/,22. When T > 1,
O(%) <r = 1’0/\/2, and thus, y < ro/\/ﬁ.
Plugging in P[Eg] = 0, we finish bounding (4.22):

T
P(Er] > 1= ) P[Ei | Eia, ..., Eo]
t=1
T
=1- > P[E | Ei]
t=1
T
(since py =1 forall t < T) =1- Z [P[Et | yi-1= (7’1‘—1/\/3)]
t=1
0.01
> — [
(by Lemma 4.9) 1-T Toglog d
> 0.09,

where the second-to-last line comes from the fact that

1y 1
42" ey d'21og!* m
T= max(O, max(t €Z: —my" > O( n;g/z +1 < loglogd.

Case2 (T =1): WhenT =1,
y1 < noise(1) + sampling(1) + bias(1)
(by Lemma 4.8) =0 (pl/\/ﬁ) + bias(1)
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where the last line holds with probability at least 0.9. Thus it remains to show that bias(1) = 0) (p1 / Vd ), which we

show in the following calculations:

- dki2 k/2
(from Theorem 4.2) bias(1) = O 0 d . L
mk—lpk mk—lpk—l q1/2
1 1
o oo ) 5[ 21 )
y assumption on yg = —_— Pt — -
mk—1p11c mk—lpllc 1 4172
gk )
= O —_— pl
mk—1p11<
~ | dk2
(since p1 > 1) =0 P
m*=try

of3)
0

4.3 Full Algorithm We are now ready to introduce Algorithm 4. The algorithm first runs the high-dimensional
private histogram subroutine CoarseEstimate, which is the natural extension of the one-dimensional coarse
estimate. (The details are deferred to the Appendix B.5.) After running CoarseEstimate, the algorithm then runs
Threaded Clip-and-Noise and finishes by running a final round of ClipAndNoise. In the remainder of this section,

Algorithm 4 Person-Level Approximate-DP High-Dimensional Mean Estimator

Input: S = {X@}
I Vie[n),je[m]

Output: fi € R?.
1: procedure MEANESTIMATION(X; ¢, 0, k)

] Wkl kg3 F
m’ (10g1/6)1/(2k)ml—1/k .

where each X]@ € R?. Parameters ¢, 6,k > 0.

2: Let p* = max(
5 LetY = (ym, : ..,y<n>) - (xﬂ), . .,X<”>)

4 LetP = (p<1>, . .,p<n>) - (X<"+1>, . x(zm)
5 LetV:= (vm, . v<n>) - (X<2"+1>, ., X(3”>)

ug « CoarseEstimate(Y; ¢/2,06/2,16+/d/m).

Let u* « TCN(P; ¢/4,56/4).

Let i « ClipAndNoise(V;¢/4,6/4, p*, u*).
9: Return fi.

10: end procedure

® N

we prove the following theorem:
THEOREM 4.12. Let D be a distribution over R? with mean u, and let ox(D) < 1 for some k > 2. Forall €,0 > 0,
Algorithm 4 satisfies person-level (e, 6)-DP. Furthermore, Algorithm 4 is efficient, and for all €,6, a € (0, 1), there exists

~ dl 1/21 5 dl 1/21 5 dl 1/21 S d1/21 3/21 5
(4.2) po = 6, 4 Aog(1/0) dlog (1/6) dlog (1/6) d'log™(1/5)

a’m aml/2e akl =D e € €
such that, if n > ny, then, with probability at least 2/3, Algorithm 4 outputs fi € R? such that
i = pll2 < a.
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We first state the guarantees of CoarseEstimate.

THEOREM 4.13. (APPROXIMATE DP COARSE ESTIMATION IN HIGH DIMENSIONS) Let n be the number of people,
m be the number of samples per person, and ¢ > 0,6 € (0,1). Assume P is a distribution over R? with k-th moment
bounded by 1. Then there exists an efficient person-level (e, 6)-DP algorithm CoarseEstimate(X; ¢, 6, r) that takes i.i.d.

samples {X](.i)}i,j from P, and outputs an estimate of the mean up to accuracy 16"/%+/d/m < r, with success probability
1, aslong asn > ng, for some

_ ~( log(1/p) {dlog(l/(éﬁ» ‘Jdlog(l/é)log(l/éﬁ)})
ng= O| ———— + min , ’
log(r«/m/d) € €

where O hides lower order logarithmic factors in d.

Finally, we prove the following lemma about the accuracy of the final application of ClipAndNoise.
LEMMA 4.11. Letd, m,n > 2,let €,6 € (0,1), let k > 2, and let p*, u*, and [1 be as defined in Algorithm 4. Suppose D is
a distribution over RY with mean y and ox(D) < 1. IfVl(i), A & D foralli € [n], and if ||u* — ull2 < %, then
there exists

no=O

d dylog1/6  d+[log(1/6)
+ +
ma? mea T Vmae

such that if n > ny, then with probability at least 0.9,
I -l < a.

Proof. Recall that fI is the output of an application of Algorithm 2. Define V; := clip o (% ;":1 V].(i)) and define

W such that
8p*\2 ln(16/6))
ne

2
W ~ N| 0, ( Daxa |-
We begin by expanding {1 — p||2:

R 1y
i —ull2 = |'W+ EZVi —E[V1] + E[V1] — p

i=1

2

1 n
<IWlla+ [ > Vi = EVA]l| + IE[V] = pll,
N—— i=1 5 | —
= T3:=

T:=

By assumption on 7, we can apply Lemma B.9 which says that, with probability at least 0.95,

1 n

- Z Vi—E[Vi1]
i=1

By the properties of Gaussian random variables, it follows that with probability at least 0.95,

ﬁvw%uwj
ne

T =

<0(
X <.

2
2

T =|Wl,=0

When p* = /d/m,

(4.23) n:o(

d+/log(1/96) L@
,\/ﬁng < 4 7
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1_1
. . . . 1k A/kg3—%
by assumption on n and #g. Likewise, when p* = (bg’l/g)l/%,

a
4.24 —,
( ) mne 4

n:otikﬁﬂﬁ)kg

by assumption on 7 and 7ny. By Theorem 4.2 and assumption on u~,

\/E )k—l

mp*

IE[V1] = ull, = O

1.1
When p* = +/d/m, T3 is dominated by Ti. Otherwise, when p* = i ATl T3 and T7 have the same

10g 1/6)1/(2k)m1—1/k ’
asymptotics. Thus,
+

(4.25) -l <T+h+T<2h+Th < =a,

N R

which completes the proof. a

We can now prove Theorem 4.3

Proof. We break the proof into two pieces. First, we prove that Algorithm 4 satisfies person-level (¢, 6)-DP.
Afterwords, we analyze the accuracy of Algorithm 4.

Analysis of privacy. Without loss of generality, we can assume that each of Line 6, Line 7, and Line 8 each
receive as input the entire dataset X and choose to only compute on a third of the dataset. By Theorem 4.13,
CoarseEstimate satisfies person-level (%, g)—DP. By Theorem 4.10, Algorithm 3, is (§, %)-DP. By Lemma 4.10, Line 8
is person-level (%, %)—DP. Thus, by basic composition (Lemma 2.2), Algorithm 4 is person-level (&, §)-DP.

Analysis of accuracy. By Theorem 4.13, the estimate 1 satisfies ||ug — pif|2 < % with probability at least 0.9.
Conditioned on this event, by Theorem 4.10, ||u* — pl|2 < % with probability at least 0.9. Conditioned on this

event, by Lemma 4.11, || — p]l2 < a with probability at least 0.9. Thus, by a union bound, || — |2 < a with
probability at least 0.7. a

5 Mean Estimation in High Dimensions with Pure-DP

The section is split into two parts. The first focuses on fine estimation, whereas the second integrates coarse
estimation to the overall process and presents the full algorithm.

5.1 Pure-DP Fine Estimation The high-level overview of our fine estimation algorithm is the following. We
have a distribution D over R such that U= X[ED[X] and X[ED[KX - y,v>|k] < 1,V||v]|2 = 1. Since we're in the

fine estimation setting, we assume that we have ||i||c < @, where «a is our target error. The idea is to cover the
space of candidate means in a way that, for every candidate, there exists a point in the cover that is at {,-distance
at most o from it. Then, around each point, we construct a “local cover”. The goal of the local cover is to
help us examine whether our point is a good candidate for an estimate of the true mean by performing binary
comparisons. If the “central point” loses a comparison with an element of the local cover, this outcome is treated
as a certificate that the true mean is far from that point. Conversely, if the central point wins all comparisons, this
implies that the point is indeed close to the true mean.

Implementing this privately involves instantiating the exponential mechanism in a way that is tailored to
the above setting. Given that each person is contributing a batch consisting of multiple samples, the score of a
point is the minimum number of batches that need to be altered so that the candidate point loses at least one
comparison with an element of its corresponding local cover. In the rest of this section, the analysis will first
focus on establishing the necessary facts which describe how comparisons behave, and then the focus will shift to
establishing the utility guarantees of the exponential mechanism.
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We start by analyzing how binary comparisons are performed between the central point and the elements
of its local cover. Our algorithm first calculates the empirical mean of each batch, and then projects the result
on the line that connects the two points. Then, the projections are averaged, and, depending on which point the
average is closer to, the outcome of the comparison is determined. Given that this will be used to instantiate the
exponential mechanism, we need to ensure that the extent to which the outcome of the comparison is affected if
one or multiple batches are altered is limited, thus guaranteeing bounded sensitivity of the score function. For
that reason, the mean of each batch is truncated around the point that is the candidate for the true mean that is
under consideration at each stage of the algorithm’s execution.

Analyzing the effect of the truncation is the first step to obtaining our result. To do so, we will need the a
variant of Lemma 5.1 from [KSU20]. The lemma in question quantifies the bias error induced by the truncation,
when the truncation center is far from the true mean.

LEMMA 5.1. Let D be a distribution over R with mean u, and kth moment bounded by 1. Let xo,p € R, with
p = @(\/ (k_l)niOgm +—1 ) For X == (X1,..., Xm) ~ D®", we define Z be the following random variable:

1
ma k-1

. 1 m

xo—p, ify XXi<xo—p
i=1
1 & 1 &
Z = ZZXi/ leZX,'—Xo <p.
i=1 i=1
m

xo+p, if%lei>xo+p
i=

Then, the following hold:

1. Ifxg > u+ 5, we have:

o)}

u-§u+gl, S <lxo-pl <3
E[Z] € 15p] 17p
xX0=p, %0 — 715 |, i lxo—pl> 15

2. Ifxg < p — &, we have:
' . 17,
p-foptgl  fE<xo-pl<T

E[Z] € 15p . 17p .
Xo+ g5 Xo+p|, iflxo—pl > 55

Proof. Without loss of generality, we assume that xo > pu, since the other case is symmetric. We define

a = max{xg — p,u + fz} and b = xo + p. The previous implies that u < a < b. To help us bound the
m

a2 Xi—u
i=1

> a — u|. For the upper bound, we have:

value of E[Z], we also consider the probability g := [P[

1 m 1 m
[E[Z]:[E[]I{EZ;XZ-—# <a—y}Z +E H{EZ;XZ-—H >a—y}Z
1= 1=
1 m 1 m
=(1-¢)E|Z EZXi—y <a-pu|+qE|Z EZXi—y >a—4
i=1 i=1

<(A-g)a+qgb
(5.26) =a+((b-a)g,
where we used the property of conditional expectation that E[X1{X € A}] = P[X € A]E[X|X € A].

m
Indeed, when the event % ‘21 Xi—u
i=

m m
>a-us (% Zl X; > a) \Y (% ‘21 Xi <2u-— a) is realized, the value
1= 1=

m
of Z is maximized when one assumes that = 3} X; > xo + p = b holds with probability . Similarly, when
i=1
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m m m
1 ‘21 Xi—yl<a-pe2u-a< i '21 X; < a is realized, the value of Z is maximized when i Zl X; = a happens
1= 1= 1=

with probability 1 — g. Now, we take cases depending on the value of a. If a = p+ £ @ u+ £ >x-p &
Xo—p < % p, (5.26) becomes:

(5.27) E[Z] < u+ 1% +2gp.

Conversely,ifa =xg—p & u+ £ <xo—p & xo— p > 1p, (5.26) yields:

(5.28) E[Z] < xo—p +2pg.

We observe that, in either of the two cases, in order to establish the desired upper bounds, it suffices to establish

(k-1)logm
m

1
ma k-1

that g < 55. Since p = @( - — ), Corollary 3.1 yields:

1 v 1 o
- _ . _ < _ . L
q [P[mléle Ul > a y] [lelélxl H>l6
1
<k—k.
I (f)

Due to our choice of p, we get that g < %, so the desired upper bounds follow from (5.27) and (5.28).

We now turn our attention to establishing the lower bounds. The bound E[Z] > x¢ — p holds trivially because
of the truncation interval considered. Thus, we focus on the case where xo — < #p. Based on a similar reasoning
as the one used in the upper bound, we get:

15
ELZ1> (1= )Cu-a) +q(xo—p) = (1 =)= L) + a0 = p) = = £+ q(xo - ) - S22
s, P
z U g,

where we used that xo — 4 > 0 and g < 3. O

The next step in the analysis involves reasoning about the sampling error. In particular, we have to consider
how much the truncated sample mean of a batch deviates from the true mean of the truncated distribution.

LEMMA 5.2. Let D be a distribution over R with mean u, and kth moment bounded by 1. Assume we are given
1 1 . . .
nz O(%) independently-drawn batches of size m, i.e., X = (Xil), e, X,(,?) ~ D®" Vi e [n]. For xq, p € R, we

define the random variables Z; as in Lemma 5.1.1° We denote the mean of the above random variables by .. Now, let
k= @(log(%)), so that > #32. Fori=1,...,k, we define Yl = (Z(i_l)%ﬂ, .. Zi’—k’)/ and let . ; be the empirical
mean of Y'. Then, for ji := Median(uir1, . . ., tir k), we will have:

PIg - pel > al < B.
In particular, at least 90% of (U1, - - - , P k) Will be at most a-far from [i, except with probability p.

Proof. First, we note that Jensen’s inequality implies:

2
r
<1

. 2 , k
[E“X; - 4 } < [E“X]% - 4|

10y, p do not need to be the same as in that lemma.
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Additionally, looking at the second moment of the sample mean of each batch, we get:

2

1 — 1 _
El|— E X]. U | == El [E“X]. u
j:

|2

By Lemma 3.2, we get that:
2

E[|1Z; - E[Z:]] ZX(’) < %

10

By Chebyshev’s inequality and our assumption that § > —"~, we have that:

P[ler,i — pee] > @] < 0.1
Then, by a direct application of the median trick, we amplify the probability of success to get the desired high

1

probability guarantee, leading to the bound n > O(%). 0

Having established the above two lemmas which account for the effect of various sources of error, we now
proceed to perform a step-by-step analysis of our algorithm. This involves working in a bottom-up fashion,
meaning that we will start by focusing on the binary comparison between one individual candidate mean and an
element of its local cover. We consider two cases based on whether we're truncating around a point that’s close to
the true mean or not. For the first case, we have a lemma that establishes that, if we’re truncating around a point
p that’s “close” to the true mean, p will win the comparison against any point g that’s far from the true mean with
high probability, and there will be a lower bound on the number of batches that would have to be changed in
order to alter the result of the comparison.

Algorithm 5 Binary Mean Comparison

Input: A dataset X = (XM,..., X)) ~ (D®™)®", points p, q € RY, target error a, target failure probability f.
Output: True, False.

1: procedure BinMeanCompp,q,a/ﬁ(X)

Let p = @(,/"“11”10%’" T

ma k-1
3: fori € [n] do

N

e

Consider the 1-d projection < ”: ;\I S X(1)>, and, for this projection, define Z; as in Lemma 5.1 with
j=1

truncation center xg := p and truncation radius p.

5: end for
6 Letpo:= <—”;_;H2,p>, and qo := <_\|qq—;fnz"7 >
7: if i< m then > fi is the median of means, as in Lemma 5.2.
8: return True.
9: else
10: return False.
11: end if

12: end procedure

LEMMA 5.3. Let D be a distribution over RY with mean u, and kth moment bounded by 1. Assume we are given

log( 1 . , .
n > O(%) independently-drawn batches of size m, each denoted by X = (X{'), el X,(,?) ~ D" Vi € [n]. Also,
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assume we are given a pair of points p,q € RY such that ||p — ull, < ¢ and ||p — qll, > a. Then, we have for Algorithm 5,
with probability at least 1 — B, the number of batches an adversary needs to change to make p lose the comparison with q is at

na
least @(7).

Proof. Let #0 = <ﬁ, y> be the projection of y along the line connecting p and q. We have that |y — po| <

|l —pll, < §. The mean ug s of the samples Z; satisfies |tto,tr — to| < f¢ (by Corollary 3.3 and our choice of
truncation radlus) whereas we have | — g | < 16, except with probability f (by Lemma 5.2 for a — {¢). By
triangle inequality, we get overall that |[po — il < § + ¢ + 1z = - We note that |po — qo| = [Ilp — qll, > a. Thus,
for g to win the comparison instead of p, we need to shift i by at least £. By Lemma 5.2 we know that, for

an adversary to achieve this, they need to corrupt at least 0.4k = @(log(%)) subsamples in order to shift their
empirical mean by §. Focusing on an individual subsample, corrupting a single batch can shift the mean by at
most 2%, Thus, in each subsample, the adversary needs to corrupt at least g batches, implying at least @( )

batches corrupted overall. d

Our second lemma considers the case of truncating around a point p that’s far from the true mean, whereas
we have a point g that’s close to the true mean. In this case, there are two possible outcomes, depending on how
far the true mean y is from p. If u (and g with it) is very far from p, what might happen is that, due to the effect of
the truncation, the truncated mean might end up being closer to p than 4. If the previous doesn’t happen, we
show that p loses with high probability. Conversely, if it happens, we argue that there exists a set of points 4’ such
that, if we run Algorithm 5 with input p and 4’, p will lose the comparison with high probability.

LEMMA 5.4. Let D be a distribution over R? with mean u, and kth moment bounded by 1. For a < 0(%), we are

m k
log|( 1 . .
given n > ()( Og( )) independently-drawn batches of size m, each denoted by X' := (Xf), e X,(yi)) ~ D®" Vi € [n].

Assume we are given a pair of points p,q € R? such that ||p — ul|, > %“ and ||q — ull, < §. Then, at least one of the
following occurs:

* p loses the comparison to q with probability at least 1 — p.

o Leti=p+5 ”:f ol and let q’ be any point in RY such that ||q’ — [ill, < &. Then, if we run Algorithm 5 with

points p and q as input, p will lose with probability at least 1 — B.

Proof. As in the proof of Lemma 5.3, we have pg = < = p” , y> be the projection of y along the line connecting

p and q. We start by noting that |[p — g||, > a holds because of the triangle inequality. Additionally, we have
|90 — pol < llg = ull, < §. We now need to consider two cases, depending on how |pg — 0| compares with g.

* |po— pol < & (Figure 1). By Corollary 3.3 and our choice of truncation radius, we get that |uo e — to| < £.
Additionally, Lemma 5.2 yields that |ji — uo| < {¢ with probability at least 1—f. Thus, by triangle inequality

weget |[fl—qo| < § <5< M. This implies that p will lose to g, yielding the desired result.

* |po—pol > 5. In this case, the triangle inequality implies that [pg — qo| > § - & > 3p

8 , where the last

inequality follows from the assumption & < O| —= |. Now, we have to consider two cases depending on

m k

how [po — qo| compares with %

When |pg — po| < % (Figure 2), Lemma 5.1 implies |uo — pio | < §. Additionally, we have by Lemma 5.2
that | — po,e| < £ with probability at least 1 — B. The triangle inequality yields that |0 — fi| < § + £ + & =
£+38 < 3‘0 < lp= qHZ . This immediately yields that p loses the comparison to g.
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Figure 1: [|p — pll, > %, [l — ull, < &, and |po — pol < &.

. 17
Figure 2: |po — po| > 5, and |po — wo| < 1—6’).

When [po — po| > _6p e get that [po — o] € ( e p] We note that, by definition, we have gg9 > po, so
g0 —po = llg —pll, > Combining this with the fact that |qo — uo| < §, we get that o — po > —p -g>

0 = py>po = Ho tr > po + 1156p By Lemma 5.2, we have that |ii — po «| < ¢z with probablhty at least
1 - B, implying that i > po + 2(p — @). If |90 — il < 2(p — @), then g wins and p loses. However, if that
does not happen, we have to work differently.

For the case where lgo— il > B(p—a), let 4’ be any point that is at f,-distance at most & from

A=p+ 1 o, Figured)
i o5
~ :
%
¥
Figure 3: |q0 — ii| > £2(p — a).
We project everything along the line that connects p and g, so we get p; = <||‘7q’,—_;||z’P >’%
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<”qq,_—_;”2, q’>,y6 = <”:,_;;”2,y>,and o = <”;,_;;H2,ﬁ>. By triangle inequality, we have |q) — p| = ll9" = pll, >

lg=pll,—llg -, >5-%> %p. Additionally, by triangle similarity, we have:

B0 =yl _ llp —@ll,
luo=pol  Np =l

’ ’ ~ /”p_”” ~ ,|P _1u| ~ ,1_7p 17, - ,
i R e R ‘Po’ﬁ = [fop _p0|? = 3l -ril.
2
where, by the Pythagorean theorem |p)—po| = \/||p — a5 - ||]I— (p + ﬁoﬁ) |2 >

— — — 2 :
\/||p ~a-lE-ql5 = \/||p — 5 - (%)2 = \/(%) - (%)2. As a result of all the previous, we get

tﬂat | o — p(’)| is sufficiently large, so we can work similarly to the previous cases, but p is guaranteed to lose
this time.

O

Assuming that ||u||, < a, our goal is to use the above lemma to analyze the comparisons between a point p
with ||p||,, < @ and the elements of a local cover of the {-ball of radius 2a that is centered around p. We will
remove from the cover all the points that are at {,-distance at most @ from p. Our goal is to plug the above into
the exponential mechanism in order to determine whether a point p is close to the true mean of our distribution.
For that reason, we will need to define a score function, which we do formally below:

DEFINITION 5.1. (Score OF A POINT) Let X = (XW, ..., X") be a dataset consisting of n batches XV € R™*d Vi €
[d], and p be a point in RY, and a > 0. We define Scorex p «(p) of p with respect to a domain D C RY to be the minimum

number of batches of X that need to be changed to get a dataset X so that there exists q € D, such that Algorithm 5 outputs
False. Ifforall g € D\ {p} and all X, Algorithm 5 outputs True, then we define Scorex p o(p) = na. If the context is
clear, we abbreviate the quantity to Scorex (p).

At this point, we recall the following lemma from [KSU20]:
LEMMA 5.5. The Score function satisfies the following:
AScore,l <L

We note that this lemma was established in the setting of item-level privacy, where the score is defined in
terms of points that have to be changed for a point p to lose a comparison, but the result still holds if instead of
individual points we consider batches.

Algorithm 6 implements the above reasoning. The algorithm outputs a value that corresponds to the score of
p, as defined in Definition 5.1. Its performance guarantees will be analyzed by using Lemmas 5.3 and 5.4.

LEMMA 5.6. Let D be a distribution over R with mean ||u||, < a < O(L), and kth moment bounded by 1.

k-1
m k
sl

ma?

Assume we are given n > O( ) independently-drawn batches of size m, each denoted by X = (X{i), ce, X,(,i)) ~

D®" Vi € [n]. Forany p € R such that ||p||., < &, we have:

* Ifllp — pll, < g, we have for Algorithm 6 that, with probability at least 1— B, it will output Scorex j, o(X) > @(%)

o Ifllp — ull, > &, we have for Algorithm 6 that, with probability at least 1 — B, it will output Scorex j,,o(X) = 0.
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Algorithm 6 Test Candidate
Input: A dataset X := (XU,..., X)) ~ (D®™)®", a point p € R?, target error a, target failure probability B.
Output: s € N.

1: procedure TestCan, 4 (X)
2: fori € [d] do

3 Let ], = {pi -2a,p; =20 + ﬁg""/pi +2a - ﬁa,pi +2a}.
4 end for
5. Let], = (@]p,i)\{xeﬂ?d: Ix - pll, < a}.
i€[d]
6: return Scorex j, o(X).

7. end procedure

Proof. The proof follows almost immediately from Lemmas 5.3 and 5.4.
For the first case, the fact that Algorithm 6 constructs ], in a way that ensures that points g considered are at
least a-far from p suffices for us to be able to apply Lemma 5.3. Given that we want to apply the lemma for all

B
(e(va)

least one comparison is upper bounded by f, leading to the bound n > O

points g, we need to set § — Indeed, by a union bound, the probability of getting the wrong result for at

dlog(l%)
ma? |’
For the second case, we note that ], is an ﬁ—cover with respect to the {-distance of the {-ball with

radius 2a that’s centered at p (modulo the $-ball centered around p, which we’ve removed). We want to
argue that there must exist a point q € J, such that ||g — ul|,, < ﬁﬁ' This would follow immediately from the

definition of J,, had the points that lie at the {>-ball of radius «a that’s centered at p not been removed. Thus,

we need to argue that any point ¢ which satisfies ||g — u||, < ﬁa must also satisfy ||p — g||, > . We have that
lg — ulle < ﬁﬁ = |lg - ull, < §. Since ||p — pll, > %”‘, the triangle inequality yields that ||p — gq]|, > %‘" -§=q

leading to the desired result. Additionally, the previous guarantee that the conditions of Lemma 5.4 are satisfied,
d
and setting again § — (@(\/3)) completes the proof. O

We now have all the necessary tools to present the complete algorithm for fine estimation. Algorithm 7
constructs an {w-cover of the set {x € R?: ||x||, < a} that has granularity f—%, and then calculates the score of all

points of the cover and samples from the exponential mechanism.

LEMMA 5.7. Let D be a distribution over RY with mean ||u|l, < a < O(+ , and kth moment bounded by 1.

1
mk
dlog(%) dlog(%)\/log(m) dlog(%)
mal  + Vmae + k

mak-1¢

Assume we are given n > Ok( ) independently-drawn batches of size m, each denoted by

X@ = (Xf), e, X,(fl) ) ~ D®" Ni € [n]. Then, for ¢, > 0, there exists an e-DP mechanism (Algorithm 7) which, given

(X(l), e X(”)) as input, outputs a point 1 such that ||ﬁ - y”z < a with probability at least 1 — B.

Proof. The privacy guarantee is an immediate consequence of the privacy guarantee of the exponential mechanism
(Lemma 2.6), so we focus on the accuracy guarantee. By the definition of the set |, we have that there must exist

a point p € ] such that ||p — pl|, < % = |lp — ull, < a. Thus, what we must do is argue that, thanks to our
choice of parameters, and the guarantees of the exponential mechanism imply that a point with ||p — ||, < a

will be chosen with high probability. First, we note that Algorithm 7 uses Algorithm 6 with target error 8%, and

probability # Due to the number of batches n that we have, as well as the guarantees of Lemma 5.6 we
2(e(vd
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Algorithm 7 Fine Estimation

Input: A dataset X = (XI),...,X") ~ (D®")®" target error a, target failure probability §, privacy
parameter ¢.
Output: [ € R?.

1: procedure FineEst, g, (X)
2 fori € [d] do
3 Let J; = {—a,—a+f—%,...,a—i—%,a}.
4 end for
5 Let] = & Ji.
ield]
6: forp € [ do
7: RunTestCan s, s (X) to calculate Scorex,j,,a(X).
()
8: end for
9: Run the Exponential Mechanism with score function {Scorex j, «(X)}pe; and privacy budget ¢, to get a
point 1.
10:  return [.

11: end procedure

have that, for each point p € J, except with probability g, the score of a point p with ||p — ul|, < § will be @(”—;‘),

whereas the score of a point p with ||p — u|, > a will be 0. We have by Lemma 5.5 that the sensitivity of our score
function is at most 1. Thus, thanks to the guarantees of the exponential mechanism (Lemma 2.6), we have that,

except with probability at least £, we have:

- 2A ore
Score(X, 1) > OPTscore(X) = —==(In(|S]) + )

> @(%) - %(@(dlog(d)) + 1og(§))

>0 2 - %(@(dlog(d)) + log(g))
[ (k=1)logm 4 1 i € ﬁ
" ma k-1

We now need to consider two cases, depending on which term dominates in the denominator. If 4/ (k_l)# <
1

1
ma k-1

, the previous can be lower-bounded by:

@(na%m) - %(@(d log(d)) + 1og(§))

which, by assumption, is greater than 0.
Conversely, if \/ (k_lzi()gm >—1 _ we get the lower bound:

1
ma k=1

[ m 2 2
@(7’10( m) - g(@(d log(d)) + log(E)),

which, by assumption again, is greater than 0.
Thus, except with probability 8, the exponential mechanism will output a point with score greater than 0,
implying that the point will be at distance at most a from the true mean. a
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5.2 Coarse Estimation and the Full Algorithm After focusing on fine estimation in the previous section, we
can reason about coarse estimation, and tie everything together. Our coarse estimator is not a new algorithm: it
consists of a component-wise application of the single-dimensional mean estimator that is implied by Theorem 3.4.
In particular, given sufficiently many samples from a distribution with kth moment bounded by 1 that has mean
1, the estimator of Theorem 3.4 outputs a [ such that | — | < a. Now, given samples from a distribution in d
dimensions with mean u and kth moment bounded by 1, we can apply this algorithm independently for each
coordinate, and obtain an estimate p such that ||ff — || < @. This allows us to reduce to the case where ||]| < @,
which was addressed in Section 5.1. Algorithm 8 presents the full pseudocode that handles both coarse and fine
estimation.

Algorithm 8 Person-Level Pure-DP High-Dimensional Mean Estimation

Input: A dataset X := (X1,..., X)) ~ (D®")**" target error a, target failure probability g, privacy
parameter ¢.
Output: i € RY.
1: procedure PersonLevelMeanEst, g (X)
2: for k € [d] do
3: LetY; = ((X{l))k, ., (X,(é))k) € R",Vi € [n] be the batch consisting of the k-th component of each

element of the i-th batch.

4: Run the algorithm of Theorem 3.4 over (Y1, ..., Y;) with target error «, target failure probability 2%'
and privacy parameter 5, to obtain pcoarse,i-

5: end for

6: Let Hcoarse = (Fcoarse,lr ceey Mcoarse,d)-

7: forie{n+1,...,2n} do

8: Let Z;_,, be the batch that is obtained by subtracting ticcarse from each element of X @,

9: end for

10: LetZ = (Z1,...,2Zy)
11: Let i := FineEst ¢ (Z) + plcoarse-
5

12:  return .
13: end procedure

THEOREM 5.1. Let D be a distribution over R? with mean i such that ||u]l2 < R, and kth moment bounded by 1. Assume
dlog(d) dlog(%) log(rm) N dlog(g) N dlog(dz;m

2 - k
ma?p Vmae ma e

we are given n > Ok( ) ) independently-drawn batches of size m, each denoted

by X® = (X{i), ceey X,(,?) ~ D®" Yi € [n]. Then, for ¢, a, p > 0 with a < O(%), there exists an e-DP mechanism

1
m k
(Algorithm 7) which, given (X(l), e X(”)) as input, outputs a point 1 such that ||ﬁ - y||2 < a with probability at least
1-8.

Proof. We start by establishing the privacy guarantee first. By the privacy guarantee of Theorem 3.4, and basic
composition (Lemma 2.2), we get that we have ¢-DP over the batches (X ORS¢ (”)). The guarantee is not affected
when we later construct picoarse and subtract it from the other datapoints, due to closure under post-processin
(Lemma 2.1). By the privacy guarantee of Lemma 5.7, we are guaranteed ¢-DP for the batches X"+1), ... X @),
The overall privacy guarantee then follows from parallel composition.

Now, it remains to establish the accuracy guarantee. By the guarantees of Theorem 3.4, we get that, except

with probability éi, we will have ||ticoarse — Hllo < a. Thus, by the guarantees of Lemma 5.7, we get that, except

with probability g, we will get a I that satisfies ||‘U —(u - [Jcoarse)“2 = ||(ﬁ + Heoarse) — V”z < a. The desired
accuracy guarantee follows directly from the last inequality and a union bound over failure events. a
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6 Approximate-DP Lower Bounds for Bounded k-th Moments

In this section, we establish lower bounds for private mean estimation of distributions with bounded kth moments
in the person-level setting, under the constraint of (¢, 5)-DP. Our bounds nearly match the upper bounds of
Section 4. We start by stating the main theorem of the section.!!

THEOREM 6.1. Let C1 > 1 be a sufficiently large absolute constant. Fix k > 2, and let C(k) = 2kCO (k) + 1, where
CO)(k) is a constant that is sufficiently large so that [E“N(y, 02)|k] < CO(k)(|u| + o) is satisfied.'? Suppose a, e < 1,

and 6 < min ﬁ(%)cl, O min{ L, — Y& b1 Suppose that M is an (&, 6)-DP mechanism that takes as input

'’ nm., [log(%)

X = (X(l), ... ,X(”)) with X = (Xii),...,Xr(,?) € R™4 Vi € [n]. Let D be any distribution over RY such that
[E[l(D - [E[D],v)lk] < C(k),v € 8471 and assume that X;i) ~iid D, Vi€ [n],j e [m]. If, for any such D, we have that

PIIM(X) - E[D]ll, < a] > 2, it must hold that n > ﬁ(# b L)

mae  mak/k-1lg

The proof of Theorem 6.1 can be split into two parts. The first part involves establishing the first and the last
term of the sample complexity, whereas the second part focuses on the middle term. The former is significantly
simpler since, as we will see, it comes as a direct consequence of a reduction from the item-level setting. In
particular, we recall the following result from [Nar23]:

PROPOSITION 6.1. [Theorem 5.1 from [Nar23]]. Let C1 > 1 be a sufficiently large absolute constant. Fix k > 2, and let
C(k) = 2KCO(k) + 1, where CO)(k) is a constant that is sufficiently large so that [E[|N(y, 02)|k] < COF)(Jul + o)F
is satisfied. Suppose o, ¢ < 1, and 6 < ﬁ(%)cl. Suppose that M is an (&, 0)-DP mechanism that takes as input
X = (X1,...,Xy) with X; € R4, Vi € [n]. Let D be any distribution over R? such that [E[|(Z) - [E[.’D],v)|k] <
C(k),Yv € 8971, and assume that X; ~;;4 D, Vi € [n]. If, for any such D, we have that P[|M(X) - E[D]]|, < a] > %,

it must hold that n > ﬁ(% + 4 )

_k_
ak-l¢

To understand why Proposition 6.1 implies a lower bound for the batch setting, we need the following lemma.
The lemma describes how, given oracle access to a mechanism for the person-level setting, we can construct
a mechanism for the item-level setting. This allows us to reduce instances of the item-level problem to the
person-level. Hence, lower bounds on the number of items in the item-level setting imply lower bounds on the
number of people in the person-level setting.

LEMMA 6.1. Let D be any distribution over RY. Let €,5,a > 0. Assume that any (&, 6)-DP mechanism M : R'xd 5 R4
which, given X = (X1,..., Xu) ~ D®", outputs M(X) such that P[||M(X) - E[D]|, < a] > % requires at least

n' > ng samples. Then, for any (&, 8)-DP mechanism M : (R™¢)" — R which, given Y = (Y(l), el Y(”)) ~ (D",
outputs M(Y) such that P[||M(Y) - E[D]]l, < a] > %, it must hold that n > 2.

Proof. Let M be an (&, 5)-DP mechanism for the person-level setting that takes 1 batches of size m as input, and
satisfies the desired accuracy guarantee. Given oracle access to this mechanism, we will show how to construct
a mechanism M for the item-level setting which shares the same accuracy guarantees. Assume that we have
a dataset X of size n’ := nm that has been drawn i.i.d. from 9. We partition the dataset into n batches of size
m. This results in a dataset Y of size n, where each datapoint is an i.i.d. sample from D®". As a result, we can
feed Y into M, and the resulting mechanism will be M. M inherits the accuracy and privacy guarantees of M.
Consequently, any lower bound on g on n” also implies a lower bound on 7, yielding the desired result. d

e note that this differs from Theorem 1.4 in that it omits the log(1/6)/ e term. This is a known lower bound for the set of all point-mass
distributions in the item-level case, and observe that the problem is unchanged in the person-level setting (regardless of the value of m).
12t is a standard fact that such a C(O(k) exists.

Copyright © 2025

2861 Copyright for this paper is retained by authors.



Downloaded 04/10/25 to 155.33.130.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

As a direct consequence of Proposition 6.1 and Lemma 6.1, we get the following corollary which accounts for
two out of three terms that appear in the lower bound of Theorem 6.1.

COROLLARY 6.1. Let C1 > 1 be a sufficiently large absolute constant. Fix k > 2, and let C(k) = 2KC©O) (k) + 1, where
CO)(k) is a constant that is sufficiently large so that [E“N(y, 02)|k] < COM%) (|l + o)k is satisfied. Suppose a, ¢ < 1,
and & < Q(%)". Suppose that M is an (¢, 6)-DP mechanism that takes as input X = (X(l), e X(”)) with X =
(XY), e, X,(,i)) € R™4 Vi € [n]. Let D be any distribution over R? such that [E[l(Z) — E[D], Vo) |¥| < C(k),v e 541,

and assume that Xj(.i) ~iid D, Vi€ [n],j e [m]. If, for any such D, we have that P[||M(X) — E[D]||

N —_—

<al >z %, it must

holdthatn>f)(ﬁ+ d )

Kk
mak-1¢

It remains to argue about the term ﬁ that appears in Theorem 6.1. To do so, we need to invoke a result that

is implicit in [LSA*21]. Theorem 6 in that work is concerned with proving a lower bound on the rates of Stochastic
Convex Optimization with person-level privacy. Establishing the result involves reducing from Gaussian mean
estimation under person-level privacy, for which [LSA*21] proves a lower bound in Appendix E.2. We explicitly
state the result here.

PROPOSITION 6.2. Given X ~ (N(u,1)®™)®" with u € [+1)¢, for any a = O(Vd) and any (&, 0)-DP mechanism

M: (R™)" = [£1]7 with ¢,5 € [0,1], and 6 < Q|min{ L, — Y& 1| that satisfies X[EM[HM(X) —ul3] < a? it

nm’
nm [lo. (M
8\ i

holds that n = Q( ‘F:llas).

We note that the result in [LSA*21] comes from a reduction-based approach which works by leveraging the
lower bound for Gaussian mean estimation in the item-level setting that was shown in [KLSU19]. We provide a
direct proof of Proposition 6.2 in Appendix E, which might be of independent interest.

Having said all the above, Theorem 6.1 now follows directly by combining Corollary 6.1 and Proposition 6.2.
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A Missing Proofs from Section 3
LEMMA 3.2. Suppose X is a random variable in R and Z = Truncy (X), where Truncy , is the truncation operation. Then

[E[lZ - [E[Z]lz] < [E[|X - [E[X]F].
Proof. First note that for any random variable Y we have that:
)y - EvIE] = e[y - v,
where Y’ is an independent copy of Y. Now,
[E[|Z - [E[Z]|2] - % [E[lZ - Z’|2] - % [E[lTrunq»,r(X) - Truncm(X')|2] < % [E[lX - X’|2]
= E[1X -E[XIP|,

where the last inequality relies on the fact that the distance between X and X’ cannot increase post-truncation.
O

B Missing Proofs from Section 4
B.1 Missing Proofs from Section 4.1.1
LEMMA B.1. Let m, j be integers satisfying 1 < j < m. It follows that

[ <(5)

<= -

] ]

LEMMA B.2. Let a > 0 and b > 0 be constants. The function (ax")* defined on x > 0 is convex.

Proof. Note that

d2 byx byx b 2 b
ﬁ(ax ) = (ax”) (ln(ax )+ b) + o =0
when a,x > 0, b > 0, completing the proof. O

For the next lemma, recall that the function f(¢) is defined as

fl)=0

2{’—1
dk/2 . ptk=1) logk m
mk-1tk ’

LEMMA 4.3. Fixanym,d,t > 0and k > 1. Then the function f({) is convex with respect to {.

1/2 gk /4 1ok /2
Proof. Set x = 2t a = %, and b = kz;l Observe that a,b, x > 0. Thus,
2¢-1
md*1226=1) Jogk 1
0) =
1/2 7k /4 1ok /2 2
_[m d*'*log"“m ot(551)
mkI2gk/2

= (ax")",

which we know by Lemma B.2 is convex with respect to x > 0, and thus is convex with respect to ¢. O
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B.2 Missing Proofs from Section 4.1.2

LEMMA B.3. Let k > 2and t > 0. Let X; be a random vector in R? with E[X;] = 0 and k-th moment bounded by 1. Let
7= %. LetY; = X; - [||Xi|l2 < r1]. There exists tp = Q(\/E) such that, for all positive t < t,,

L[t d
IEY: < min( . 7).

Proof. Since E[X;] = 0, we have that
E[X:] = E[X; - 1[I Xill2 < ra]] + E[Xi - 1[I Xill2 > r]]
which implies that

NE[Y; ]Iz = IE[X; - 1[I Xi]l2 < r1]]1l2
= [E[X;] = E[X; - 1[I Xi]l2 > r1]]l]2
= [|E[X; - I[[| X;ll2 = r1]]ll2

So now,
IE[X; - 0[IXill2 = r1]]ll2
< E[IIX;ll2 - I[1| Xill2 = 71]]
= [ PR 0l > ) > 2] dx
X—rl
- / BIXill - O[IXill2 > r1] > x] dx
x=0
b [ Rl I > 1] > 21dn
xX=rq
1 o)
=/ P[IIXiIIz>r1]dx+/ P[IIX;ll2 > x] dx
x=0 x=r1
st d1/2 k 00 d1/2 k
emma 4. = | dx+ 2 ) dx
by L 41) /( )d/( )d
x=0\ 71 x=r X
dk/? dk/2
= +
k-1 k-1
r " (k-1)
k/2
(since k > 2) < 25}{
r -1
1
2tk_1
TR

To finish the proof, note that

24k-1 £\t
= <ul—=] <=3,
e <2 <

which uses the assumption that ¢t < £, for some t; < 1275 Vd. Also note that

otk=1 otk g 4
dki2-1 S gkj2 t ot
which uses the assumption that ¢t < f; for some t; < 2-1/k+/d. O
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LEMMA B.4. Let k > 2 and t > 0. Let X; be a random vector in R? with E[X;] = 0 and k-th moment bounded by 1. Let
r = %. Let Y; = X; - [|| Xill2 < r1]. Let Z; = Y; — E[Y;]. There exists tp = Q(\/_) d) such that, for all positive t < t,

(B.1) E[Z;] =0,
(B.2) E[I1Zil13] < d, and
(B.3) I Zill2 < 2r1.

Proof. Note that (B.1) is satisfied by design of the Z;’s. We now show that (B.2) holds. Note that
E[1Zil13] = E[IIY: - EViIE] < E[IYi13] < E[IX:113],
where the first inequality above comes from the fact that setting y = E[Y;] minimizes [E[||Yi — ]/||§] Observe that

d d

d
(B.4) E[IXiI3] = £ > (Xi,ep?| = D E[(Xi,ep?] < Y E[(Xi,ep)] <d
=1

=1 =1

where the last inequality comes from the assumption that, for every u with ||u|], =1, [E[(Xi, u)k ] < 1. Thus,
[E[||Zi||%] < d and so (B.2) is satisfied.
Now we show that the last constraint, (B.3), also holds. We start by expanding ||Z;||> for some i.

1Zill2 = 1X; - 1[I Xill2 < 1] = E[Yi]ll2

< IXi - 1[I1Xill2 < rll2 + NE[Y:]1l2
<+ |E[Yi]ll2
<

(by Lemma B.3) 2r1.

O

LEMMA B.5. Let k > 2 and t > 0. Let X; be a random vector in R? with E[X;] = 0 and k-th moment bounded by 1. Let
= %. Let Y; = X; - W[|| Xill2 < r1]. Let Z; = Y; — E[Y;]. There exists t, = Q(\/E) such that, for all positive t < t,

521 ol )| <o o)

Proof. We apply the Vectorized Bernstein’s Inequality (i.e. Lemma 4.7) by setting t' = t /3 — ||E[Y;]||2, r = 271, and
0% = d. One can check using Lemma B.3 that 0 < ' < ¢2/r is satisfied for all 0 < t < Vd/12. Thus,

P[Hi}zjt > m(t/3 - [E[¥]I)| = P Hil z, > mt
(by Lemma 4.7) < exp(_ (g 6)22 4)
( (3 ||tE[m||2)2 . 4)
(by Lemma B.3) eXp( 3-tf6p /3_t /6)2 4)
<o~ @("”2))
0
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For the next lemma, recall that the function f(¢) is defined as

2¢-1

fl)=0

dk/2 . ptk-=1) logk m
mk—ltk

m

LEMMA B.6. Let m,d,t > 0and k > 2. Let r, = mt/(3logm) and let r1 = d/t. There exists t; = O( legm) and

tr = Q(\/Elogk%12 m) such that, for all t € [t1,t2],

dk/Z
mk=1¢k )

fog(ra/r1)) = O(

Proof. Define g(t) = f (10g(%)). Note that

- dk/2 51
el (mk—ltk)_ (mk—l)'

Thus, it suffices to show that

- 1
B.5 t)<O :
9 éﬂii‘z]g( ) (mk‘l)

We break the proof into two parts. First, we show that

(B.6) max]g(t) € {g(t1), g(t2)}.

telty,

Second, we show that

(B7) gt 96 < O ).

To show (B.6), it suffices to show that g(¢) is convex with respect to ¢ for ¢ > 0. Note that

mt?

k-1 &dlogm
mdk/z(adrﬁfgzm) loghm |
g(t)=© e
d—k/2+1tk—210gm #’;m
- ®( 3k-1 )
mt2
t2 % 6dlogm
= 0|l — .
Note that
2 % #[;m 1 6d1m 7 £
t ogm og 1 k=2, _ m
® ]ogm(g) ) - (( di ) (tZ) 2 6dlogm) — (leb)x,
7

m
log m 6dlogm _ . . .
forx =t2,a = (dkgEZ ) and b = % . 6d{ggm. Since a,b,x > 0, then by Lemma B.2, (ax?)* is convex with

respect to x, and so g is also convex for ¢ > 0. Thus, (B.6) holds.
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cdlogm
m

12(

We move on to showing (B.7). Let t; = for some ¢ > % Whent =14,

mt%

t2 7z 6dTogm
gt1)) =0 logm(gl)
logm\'%*
=0 logm( ogm) )
m
~ 1
=0
(m(kgzg))
~f 1
=0l)

Vdlog2
Lett, = #. When t = tp,

O

B.3 Missing Proofs from Section 4.1.4
LEMMA B.7. Let £ > 0. Let ||u — pll2 < p. It follows that

X = pll2 > IX =clip, ,(X)ll2+ p = [l = ull2.

Proof. Letr = [|u — ||, and let B(u, r) be the ¢, ball in d dimensions of radius r that is centered at u. Note that,
by assumption, r < p, and so it follows that u € B¥(u,r) € B(u, p). Let

y* = argmin|| X — ¢||>.
weB (u,r)

One can check that u* is a point on the surface of B%(u, r), and also that u, u, clip p,M(X), and X are collinear

and arranged sequentially on the line in that order. We use these facts to relate the quantities || X — pll2 and
1X — clip, , (X)]]2:

IX = all2 > 11X = "l
= 11X~ ulla ~ " — ullz
= IX = dlip, , (O)ll2 + liclip,,,(X) = ull2 = [l = ul>
(B.5) > [1X = dlip, ,(X)ll2 + p — Il — ull2

Note that || X —clip, ,(X)[l2 > ¢ thus implies || X — ull2 > € + p — [|u — ull2, completing the proof. O
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B.4 Missing Proofs from Section 4.3 To prove Lemma 4.8, we use the following lemma about Gaussian random
variables:

LEMMA B.8. (LAURENT AND MASSART [LMO00]) Let d € N. Consider the random vector W ~ N(0, 61;). Then, for
every s = 0,

[P[||W||§ > az(d +2dvs + 2ds)] < exp (—sd).
We also use Lemma B.9 which gives an analysis of the error incurred due to the sampling process.

LEMMA B.9. Suppose D over RY satisfies ox(D) < 1. Forall i € [n] and j € [m], let X](.i) ilg D, and for some p > 0,

u e R let
m

_dip |2 0
Zi=dip, , = Zl“ X]. .
]:

Let a, B > 0. There exists ng = O(md ) such that for all n > ng and for all p and u,

pa?
%i;a—mijiz
p

i=1
Proof. Let Y = L 37, X;i) € R?, and let Y?(¢) € R be the ¢th coordinate of Y. We begin by expanding the
following expression of expectation:

(B.9) P >al <p.

2

1w 1 < ?
Bl 2 zi-E| 5 2.2
i=1 i=1 2
1 1l ?
= S E[| )z~ ElZi)
L i=1 2
1 [ n
< E[ ) IZi-ElZi]I3
Li=1
1 2
= —E[1Z - E[Za]II5]
2
1 1 (1) 1 (1)
< m}:& E }:&
j=1 j=1 2

E 2

- el o -epealy]
L¢

Sl revo-epovaly]

< —.

Il
|-

Where the last line follows from the assumption that ox(D) < 1. By Chebyshev’s Inequality,

1< 1 d
Pll= Y z-F|=> Z|ll =al= < B.
n; l n; l 2 4 O(mnaz) ’
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LEMMA 4.8. (NOISE AND SAMPLING) Let D be a distribution over RY with mean y and o (D) < 1. Suppose that, for

d+/log(1/0)
£

alli € [n]and j € [m], X;i) ~ D. There exists ng = O( such that, for all n > ny,

noise(t) + sampling(t) = O(%)

with probability at least 1 — 0.1/loglog d,

Proof. Recall from ClipAndNoise that W; ~ N(0,02l;) with ¢ = O(p;/(ne’)). Using Lemma B.8, let s =
w. With probability at least 1 — 0.05/(loglog d),

noise(t) = ||[Wi|l2 = O

ne’

Vdp )

Vlog(1/6)

. ~(d
Thus, there exists ng = O -

1-0.05/(loglogd),

), such that, for n > nyp, it follows that with probability at least

Wi < L.

4Vd

In order to bound sampling(t), we apply Lemma B.9 directly, setting o =
if

P
2Vd

dloglogd S dloglogd 4d S d
005 = 005m p2~ mpa’

and B = 0.05/loglog d. In particular,

=

then sampling(t) > % with probability at most logi%Sg 7
B.5 Coarse Estimation In this subsection, we provide an algorithm to obtain a coarse estimate of the mean, up

to accuracy O(+/d/m) in high dimensions under approximate differential privacy, using 1-dimensional estimates
(Theorem 3.2).

THEOREM B.1. (APPROXIMATE DP COARSE ESTIMATION IN HIGH DIMENSIONS) Let n be the number of people, m
be the number of samples per person, and ¢ > 0,6 € (0,1). Assume P is a distribution over R? with k-th moment bounded
by 1. Then there exists an efficient person-level (&, 0)-DP algorithm CoarseEstimate(X; €, 6, ) that takes i.i.d. samples

{X](,i)}i,j from P, and outputs an estimate of the mean up to accuracy 16Y/¥\/d /m < r, with success probability 1 — B, as
long as n > ny, for some

TIOZO

log(1/p)  _ [dlog(1/(op) log(1/3)log(1/3p)
log(r+/m/d) € ’ € !

where O hides lower order logarithmic factors in d.

Proof. Run d instances of Algorithm 1 with v’ = r/Nd, ¢ = e/ Jd log(1/6),0" = 0/d, on each coordinate of the
dataset X, and output the coordinate-wise estimate of the mean. By Theorem 3.2 (one dimensional coarse
estimation), and Lemma 2.3 (advanced composition), we know that this output will be person-level (O(¢), O(0))-
DP. Moreover, the output will have accuracy r, with probability 1 — §, as long as n > n1, for some

log(d/p)  Vd\log(1/0) log(d*/0p)
log(r/m/d) € .
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Alternatively, using basic composition (Lemma 2.2), and applying Algorithm 1 with ' = r/Vd, ¢’ = ¢/d, o’ = 6/d,
on each coordinate of X, and outputting the coordinate-wise estimate of the mean, we obtain a person-level
(e, 0)-DP algorithm that has accuracy r, with success probability 1 — 8, as long as n > ny, for some

log(d/p) +d10g(d2/f5ﬁ) '

log(r+/m/d) €

ad

C Lower Bounds Under Pure Differential Privacy

Suppose D is a distribution over R? with k-th moment bounded from above by 1. Assume 1 people each take m
samples from the distribution D. In this section we show lower bounds against the number of people required
to estimate the mean of the distribution D up to accuracy a with success probability 1 — 8, under person-level
e-differential privacy.

We can describe the problem in an equivalent language: take n samples from the tensorized distribution D®™.
How many samples are required in order to estimate the mean of O up to accuracy a with success probability
1 - B, under item-level ¢ differential privacy?

Technically, we apply packing lower bounds to distributions of the form D®™. Specifically, we repeatedly
apply the following theorem, that shows sample complexity lower bounds against learning a set of distributions
that are all y far from a central distribution and have disjoint parameters that can be learned with probability at
least 1 — . Moreover, we use some facts about Kullback-Leibler divergence in order to analyze the tensorized
distribution.

THEOREM C.1. (THEOREM 7.1 IN [HKM22]) Let P = {P1, ..., Py} be a set of distributions, and Po be a distribution
such that for every P; € P, ||P; — Po|lty < 7. Let G = {G1, ..., Gu} be a collection of disjoint subsets of some set Y. If
there is an e-DP algorithm M such that Px.p:[M(X) € Gi] > 1 for all i € [m], then

log m +log(1
5 of Qe s1D)
y(e* —1)
Note that for the usual regime ¢ < 1, we can replace the e*¢ — 1 in the denominator with e.
We instantiate Theorem C.1 three times in order to prove each term of the lower bound. The first term is the
non-private cost, the second term corresponds to the cost of estimating the mean of a Gaussian, the third term

corresponds to the cost of estimating the mean of point distributions with bounded k-th moment, and the last
term corresponds to the cost of estimating up to a coarse estimate.

THEOREM C.2. (PURE DP LOWER BOUND FOR BOUNDED k-TH MOMENTS) Suppose k > 2, and D is a distri-
bution with k-th moment bounded by 1 and mean u. Moreover, suppose u is in a ball of radius R, where a <
min{ 2R, (1/25)*V/K} and assume ¢ < 1. Any e-DP algorithm that takes n samples from D®" and outputs [i
such that ||y — fil|> < a with probability 1 — p requires

_ o (d+108(/p) d+log(1/p) d+log(l/)  dlog(R/a)+log(1/p)

T a’m avme afime € '

many samples, where Oy hides multiplicative factors that only depend on k.

Proof. The first term is the cost of estimating the mean of a distribution with nm samples without privacy. For the
other terms putting together Corollary C.1, Lemma C.2, and Lemma C.3 finishes the proof. 0

C.1 Preliminaries First, we state some facts about Kullback-Leibler divergence and total variation distance.
In our analysis we intend to analyze the total variation distance of the tensorized distribution D®". However,
analyzing the total variation distance of the tensorized distribution directly, is difficult, as the total variation
distance does not behave well under tensorization. Thereofore, instead we use the Kullback-Leibler divergence to
analyze the total variation distance of the tensorized distribution through Pinkser’s inequality.

We want to analyze the tensorized distribution D®". The following fact states that the Kullback-Leibler
divergence tensorizes well.
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FacT C.1. (TENSORIZATION OF KL DIVERGENCE) Assume {P;}_,, and {Q;}!_, are distributions over X and P =
®in:1Pi and Q = ®?:1Qi. Then

n
KL(P[IQ) = D KL(PilIQ)).
i=1
We apply Pinsker’s inequality to relate Kullback-Leibler divergence and total variation distance.

FAcCT C.2. (PINSKER’S INEQUALITY) Let P and Q be two distributions over X. Then

drv(P,Q) <y “HIQ).

Next, for two arbitrary Gaussians their closed form KL divergence is known, which we use in our analysis.

FAcT C.3. (KL DIVERGENCE OF GAUSSIANS [RWO05]) For two arbitrary Gaussians N (u1,21), N(u2, L2) we have

1
KLON o, 0N Gz, Z2)) = 5 (tr(Z782 = 1) + (pr = o) 25 = o) = log et (22271 ).

Specifically for identity covariance,
llur = pall3
—

Next we state a basic fact about packing number M(©, || - ||, €) and covering number N(O, || - ||, ¢). This fact
shows and upper and lower bound for the packing and covering number of a unit norm ball.

FAacCT C.4. (METRIC ENTROPY OF NORM BALLS [WU16]) Let By(1) be the unit &, ball. Consider N (B(1), ||-||2, €)-
When ¢ 2 1, N(B2(1), ||]l2, €) = 1. When ¢ < 1,

KL(N (w1, DIIN(2, 1)) =

1\ 2\ (3\*
(5] <N, 0 < MeBa), 1,0 < (1+2) < (2]
Hence dlog 2 <log N(Bx(1), |I|l2, €) < log M(B2(1), |I-ll2, €) < dlog 2.

C.2 Proof of Theorem C.2 In this section we prove the lower bounds for each term in Theorem C.2. First we
prove the second term which corresponds to learning a Gaussian.

LEMMA C.1. (PURE DP GAUSSIAN MEAN ESTIMATION LOWER BOUND) Suppose u is in a ball of radius R, where
« < R/4, and suppose ¢ < 1. Any &-DP algorithm that takes n samples from N(u,1;)®" and outputs [I such that
| — fll2 < a with probability 1 — B requires

3 d +log(1/B)
o oz )

many samples.

Proof. We want to use Theorem C.1. Let Po = N(0,14)®™, P; = N(Av;, [3)®", for v; in the unit ball, such that
lvi —vjll2 > 2a/A, and for A to be determined later. We know that a set I such that log|I| > dlog(A/2a) of such
v’s exists from Fact C.4. Let G; = Av; + aBy, for such a set [ and i # j, we will have that G;’s are disjoint. Now,

from Fact C.3, and ||v;||> < 1 we know that KL(N(0, I;)||N(Av;, I;)) < A%/2. Tensorization of KL (Fact C.1) and
Pinsker’s inequality (Fact C.2) imply that

1Po - Pillry < \/KL(PziuPo) < \/m KUNQos I NOLD) o,

Taking A = 4a we obtain
Q(d + log(l/ﬁ))
n = —_—.

ayme
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However, note that the the k-th moment of N(y, 1), is not bounded by 1, but instead it is bounded from above by
(k = 1)!1, where the !! denotes the double factorial that is the product of all numbers from 1 to k — 1 with the same
parity as k — 1. We state the corollary below to extend the lemma above to our setting where the k-th moment is
bounded by 1.

COROLLARY C.1. (PURE DP NORMALIZED GAUSSIAN MEAN ESTIMATION LOWER BOUND) Let a,’j be the k-th
moment of N(0,1). Suppose u is in a ball of radius R, where & < R/4, and suppose ¢ < 1. Any e-DP algorithm

that takes n samples from N(u, 14/07)®™, and outputs {i such that ||u — d|l2 < a with probability 1 — p requires

3 d +log(1/B)
o IR

where Q. hides multiplcative factors that only depend on k. Moreover, N'(u, 1;/ oi)m’ has k-th moment bounded by 1.

Proof. We apply Lemma C.1. Assume there exists an e-DP algorithm that takes n samples from Ny, I/0%)®™, and
outputs an estimate of y up to accuracy «, with probability 1 — f. Now we can take the same algorithm and apply
itto Y;’s where Y; = X; /o and X; ~ N'(uox, I;)®™. Multiplying this estimate by ox would give an agy estimate of
the mean of N(uok, I;). However, we know that such an estimate requires at least Q((d + log(1/p))/(agx\me))
many samples. Since oy is a constant that only depends on k we must have

d +log(1/ﬁ))

n=0Q
k( avme

as desired. 0

Next we prove the third term which we show through constructing point mass distributions that have
bounded k-th moements.

LEMMA C.2. (PURE DP POINT DISTRIBUTION WITH BOUNDED MOMENTS LOWER BOUND) Suppose k > 2, and
D is a distribution with k-th moment bounded by 1 and mean p. Moreover, suppose i is in a ball of radius R, where
a < min{%R, (1/25)k=D/K}, and assume ¢ < 1. Any e-DP algorithm that takes n samples from D®™ and outputs fi such
that ||p — dll2 < a with probability 1 — B requires

. Q(d + lc:g(l/ﬁ))
arime

many samples.

Proof. We want to use Theorem C.1. A set I, with log|I| > dlog(2) of indices and vectors v; in the unit ball exist
such that ||v; — v;||» = 1/2.

Suppose Qo is a distribution with all of the mass on the origin, and Q; is equal to 0 with probability 1 — A,
and is equal to ﬁvi , with probability A, where A = 254%1. Then Er~g[x] = Z—Savi, and for all unit u,
Er~g,[I{x, u) | <a§—f < 1, therefore Q;’s satisfy the moment assumption. Moreover if we take G; = %avi + aB,
then G;’s are disjoint. Let P; = Q¥", then

IPo = Pillry = |Q8" = Q%" ||y < P [x#0®"]=1- P [x=0""]<1-(1-A)" <m4,

X"‘Q?m xNQI@W’

where the last inequality comes from the fact that the function f(y) =1 -my + (1 - x)™, y € [0, 1] is an increasing
function and is minimized at 0, and therefore f(y) > 0,Vy € [0, 1]. Applying Theorem C.1 finishes the proof.
O

Lastly, we prove the last term which corresponds to the cost of finding a coarse estimate. We show this by
choosing a set of point mass distributions over the ball of radius R.
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LEMMA C.3. (PURE DP LOWER BOUND RANGE PARAMETER) Suppose k > 2, and D is a distribution with k-th
moment bounded by 1 and mean p. Moreover, suppose u is in a ball of radius R, where o < R/2, and assume ¢ < 1. Any
e-DP algorithm that takes n samples from D®" and outputs [i such that ||u — [i||2 < a with probability 1 — B requires

_Q dlog(R/a) +log(1/B)

&

many samples.

Proof. We want to use Theorem C.1. Fact C.4 implies that there exists a set I of indices such that log|I| >
dlog(R/2a) and v; in the ball of radius R such that [[v; — vj||2 > 2a, for every i # j € I. Let Qo be the distribution
with all of the mass on the origin, and Q;’s be the distributions with all of the mass on v;, then [|Qo — Qi|ltv =1
foreveryi € I. Let P; = Ql@m, then ||Po — Pi|lty = 1 for every i € I. Let G; = v; + aB, then G;’s are disjoint.
Applying Theorem C.1 finishes the proof. O

D Non Uniform Berry-Esseen
In this section we restate and prove the Non Uniform Berry-Esseen Theorem [Mic76].

THEOREM D.1. ([MIC76]) Let k > 3. Assume X is a distribution with mean 0 and k-th moment bounded by 1 . Then for

any t > +/(k —1)log m, we have
[P[Z Xi/\Vm > t] < mK2H2 Ly [P[X > rml/zt],
wherer = 1/(2(k — 1)k).

Proof. Let Y; be the truncation of X; at rm'/?t, i.e. Y; = min(X;, rm'/t), where r = 1/(2(k — 1)k). Then

[P[Z&/W? t] < 'P[ZY"/‘M> t] +mP[X > rvmt].

Therefore, we need to show that

[P[Z Y;/Nm > t] < m K22k

Let h = m™2t71 . ((k - 2)log m + 2(k — 1)k logt), and f(x) = exp(hm'/?x). f is a non-negative non-decreasing
function. We apply Markov’s inequality.

P[> i/ > ] = B £( 3 vi/vim) > £
_Elf(2Yi/m)]
) £(t)
E[IT £ (Yi/vm)]

f(0)
E[f(vi/vm)]"

f(t)
B [E[exp(th)]m

exp(hm1/2t)

[E[exp(hl/i)]m -exp(—hml/2t)
< Efexp(hYy)]™ - m~*+2 . 42061k

Now we have to bound E [exp(th)] . We use the Taylor expansion of exp, and the fact that Y; < rm'/?t, to get

2y2 131y )3 2y2 31y
Y +h|Y| max exp(hy’)<1+hY+hY +h Yl

hY) <1+hY :
op(hY) <1+ 1Y+ = 6 yormin 2 6

. exp(hrml/zt).
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Taking expectation, and using the fact that [E[Yiz] < [E[Xf] <1,
RE[Y?]  RE[YP]
+ .

Elexp(hY;)| <1+ h|E[Yi]| + L o exp(hrm!/?t)
w2 WE[YP
<1+ hIEY]]+ = + % -exp(hrm!/?t).
Now we bound |E[Y;]| and [E[|Y1-|3]. We bound |E[Y;]| using Lemma 3.3.
|[E[Yl]|</ P[X > x]dx
rmt/2t
< / P[IX| > x]dx
rmt/2t
) E XZ
</ [ 5 ] dx
rmi2 X
1
rml/2t’
In order to bound [E[|Y1-|3], note that [E[|Yi|3] < [E[|X,-|3] < 1. Therefore, since t > 1, we have
h /2T

[E[exp(th)] <1+ + — -exp(hrml/zt)

rml2t 26

h W Kl
_ (k=2)/2(k-1)k
=1+ ot —- t
rml/2¢ 2 6 "
2
<1+ —=+bm™,
p o

where b1 is a constant depending only on k. Therefore,

2
E[exp(hY;)] <1+ % +bim™t <exp(h?/2 +bym™),

and
[E[exp(th)]m < exp(h?m /2 + by).
Note that
om 2 < ((k —=2)logm +2(k — 1)k log t)?
h 212
(k—22log?m (k—2)logm -2(k —1)klogt 4(k —1)2k?log* t
= + +
2t2 t2 2t2
k—2)1 k—2)1 k-1)1 log? t
_ ! t)ZOgm ! ; ogm t)2°gm 2k - 2)klogt + sz 2(k — 12k

5 2logm +2(k = Dklogt + by,

<

where b, is a constant depending only on k. The last inequality follows from the assumption that t >

y/(k —1)log m, and the fact that t > logt. Therefore,
k-2

[E[exp(th)]m < exp( logm + 2(k — 2)klogt + b3),

where b3 is a constant depending only on k. Therefore,

[P[Zl@/\/%? t] < exp(k_2

and we are done. O

log m + 2(k — 2)klog t + bs) - m~*+2 . p=2k=Dk  pyy=k/2+14=2k
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COROLLARY D.1. (NON-UNIFORM TAIL BOUND FOR k-TH MOMENT BOUNDED BY 1 - LARGE t) Let k > 3. As-
sume X is a distribution with mean 0 and k-th moment bounded by 1. Then for any t > +/(k — 1) log m, we have

IP[Z Xi/Nm > t] < mk2Hk

(k=1)logm

and consequently, for any t > —>—, we have
[P[Z Xi/m > t] < mFHER
Proof. Follows from the previous theorem and the fact that P[X > rm1/2t] < r*m=*/27k, 0

E Direct Proof of Proposition 6.2

In this appendix, we focus on proving Proposition 6.2 directly using fingerprinting. To do that, we will use the
general lemma for exponential families from [KMS22a], which we state here (in a slightly simplified form):

PROPOSITION E.1. Let p, be a distribution over S C R? belonging to an exponential family E(T, h) with natural

parameter vector 1 € H C R¥. Also, let nV,n® € H and let I; = [r];,l), nﬁz)],\v’j € [k] be a collection of intervals and

(I
R:=n@ -0, m =1 1);'7 ” be the corresponding width and midpoint vectors, respectively. Assume that (X) I; € H and

jelk]

n~ (LI( X Ij), Moreover, assume that we have a dataset X ~ (p,?”
jelk]

r]) and an independently drawn point X; ~ (py|n) and

X..; denotes the dataset where X; has been replaced with X; . Finally, let M : S" — ® [i%] be an (e, 6)-DP mechanism
jelk]
IRI3

with e € [0,1],6 > 0 and X[EM[HM(X) -(n- m)||§] < a? < 532, Then, for any Ty > 0, it holds that:

(o]

n 26T0+2a€[E[ ||ZT||2]+2[E/[P
n n Xi
To

4t IRII3
IT(Xi) — prll, > ——=|dt| > i
VR TR VE 2

We note now that (i, 1)®" is an exponential family. Indeed, the density of N(y, 1)®" is:

1 -} 2 lw-uld
— e i€[m] ,
(2m) =
which can be written in the form h(x)eTt)=20) for x = (x1,...,x,) € (RY)" with:
1 -3 2l
h(x) - — e ie[m]
(2m) >
m
T(x)= ) i,
i=1
n=p,
m|[n]l3
Z(n) = Tz

At this point, we recall the following lemma from [KMS22a].
LEMMA E.1. [Lemma C.5 from [KMS22a]]. Let X ~ N(u, ). Assuming that Ty > 2d, we have:

[e
X

To

2
( TOZ -2d2—\f2d)

dt < V2nde™ 7 R

t
I1X = pll, > ——
M= o Va
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Using this lemma, we prove the following result.

LEMMA E.2. Let X ~ N(u, 0)®™. Assuming that Ty > 2md, we have:

(7]

dt < V2nde™ B

r t
TO/;I;[HT(X) ~prl>

Proof. We note that we have:

t
/ ;I?[HT(X) —prll, > ﬁ} dt = / xl,_[?,xm

m

ZXi—my

>L dt
2Vd

T T =1 2
—/ P [||X— I, > — }dt
J x-No M= v
0

t
= P X — > —— | dt
/ XNN(M)[H ull > - \/a}

5 2
(%) -242—\@)
< V27mde™ 8d ,
where the last inequality follows directly from Lemma E.1. O

We now prove Proposition 6.2.

Proof. Assume that we have p ~ U([£1]%), and X ~ ((N(y, U)®’”)®"|y). Also, let M : ([Rmx‘i)" — [+1]% be an

(¢, 6)-DP mechanism with:

d IRl
Rl <2< 2 2
XFM[HM(X) “”2] ST T
By Proposition E.1 for batches of Gaussian samples N(y, [)®" with pj € [£1],V] € [d], we get:

5 2
(,}(TT?) 721127\@1)
n| 26Ty + 2V mae + 2V2nde™ B >

[e)J IR W

The rest of the proof follows the same steps as the proof in Appendix C.2 of [KMS22a], so we do not repeat it here

2
in its entirety. The core idea is to show that, for Ty = 2mVd ln(%) + (, lln(%) + \/E) ,and:

Vd

0 < min \}_ , ,
144V2nm 1.+ [ 14432nm
288V2nm ln(T)
we have that: ,
T 2
(WO) -2d2-v2d J
0Ty > 2V2nde™ 8 and 3n0T) <

E.
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