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Abstract—Sign Language is widely used by over 500
million Deaf and hard of hearing (DHH) individuals in their
daily lives. While prior works made notable efforts to show
the feasibility of recognizing signs with various sensing
modalities both from the wireless and wearable domains,
they recruited sign language learners for validation. Based
on our interactions with native sign language users, we
found that signal diversity hinders the generalization of
users (e.g., users from different backgrounds interpret signs
differently, and native users have complex articulated signs),
thus resulting in recognition difficulty. While multiple solu-
tions (e.g., increasing diversity of data, harvesting virtual
data from sign videos) are possible, we propose ASLRing
that addresses the sign language recognition problem from
a meta-learning perspective by learning an inherent knowl-
edge about diverse spaces of signs for fast adaptation.
ASLRing bypasses expensive data collection process and
avoids the limitation of leveraging virtual data from sign
videos (e.g., occlusions, overexposure, low-resolution). To
validate ASLRing, instead of recruiting learners, we con-
ducted a comprehensive user study with a database with
1080 sentences generated by a vocabulary size of 1057
from 14 native sign language users and achieved a 26.9%
word error rate, and we also validated ASLRing in diverse
settings1.

I. INTRODUCTION

Sign language is a natural language that serves primar-
ily in deaf communities. According to the World Health
Organization (WHO), the population of the Deaf and
Hard of Hearing (DHH) individuals reaches 10 million
in the USA and ≈500 million globally [1], [39]. By 2050,
over 700 million people will suffer from hearing loss [5].
Sign language is their primary means of communication,
while most hearing people with no sign language ex-
perience always have difficulty understanding the sign
language performed by Deaf people. In recent years, it
has been brought to the attention of the entire society that
it is crucial and necessary to bridge the communication
barrier between DHH individuals and hearing people.

Past research in ubiquitous computing and computer
vision communities has explored different ways to facil-
itate communications between Deaf people and hearing
people. There has been much recent work on addressing
sign language recognition (SLR) problems via different
wireless or wearable sensing methods such as WiFi [37],
EMG sensor [56], and motion sensor [33]. Although great

1Project page: https://www.cse.psu.edu/∼mkg31/projects/aslring/

���������	��
����
�


������
�	�������	��
�	����	���
�������	���� ��������	�
�	�	��

Fig. 1: Overall flow of ASLRing. We employ meta-learning training strategies and
propose a simple yet effective output refinement algorithm. In a nutshell, ASLRing
achieves a 26.9% word error rate across 14 native American Sign Language Users.

efforts have been made, simplifications such as reducing
the complexity of sign sentences [33], and only capturing
signs from one hand (both hands are important in sign
languages) [33], [56], in the systems also hinder wide
adoption. Moreover, most of the works evaluated their
systems only on sign learners and students because of
the difficulty of recruiting native ASL signers. Through
our extended interaction with native sign language users,
we reveal several insights on the challenging sign lan-
guage recognition task. Firstly, it is trivial to imagine
that for a visual language, signs from native users will
inevitably be more articulated than beginners, thus im-
posing challenges in recognition. Secondly, like speech
diversity due to regions, sign languages are also diverse
across different, cultures, and communities. In contrast
to these systems, we conducted a comprehensive user
study involving native ASL signers to investigate and
reveal the inherent complexities and difficulties associated
with SLR tasks. Also, while cameras-based methods [13],
[38] can be another alternative to wireless or wearable
sensing, sensors-based methods are robust to lighting and
resolution and have fewer privacy concerns.

To address the challenges, prior works’ solution focuses
on increasing the diversity of the training data (e.g.,
acquiring more data from various users), or harvesting
virtual data from available sources from other domains
(e.g., virtual inertial data from sign videos). While these
solutions can improve recognition performance, collecting
data with native users is expensive, and virtual data in-
evitably inherit issues such as occlusion, and overexposure
from sign videos. In contrast, we adopt the principles of
meta-learning [8], a new learning paradigm that encap-
sulates the idea of training models to rapidly adapt to
new tasks using minimal data. Instead of focusing on
mastering a single task, as in traditional machine learning,
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meta-learning emphasizes acquiring a broader learning
strategy that can be applied across various tasks. Briefly,
we find it a good fit for sign language recognition tasks
with diversity from various factors (e.g., users, signing
styles, dialects). Our key insight is that instead of treating
all data equally like in traditional sign language recog-
nition systems, we define each sign sentence signed by
various users as a task in meta-learning. By doing so, we
build a system that decouples signal variations from users.
Moreover, by developing an inherent ”intuition” across
diverse spaces of sign sentences during training, ASLRing

acquires the ability to generalize on unseen sentences
with learned knowledge of the sentence space.

We also observe a partial correctness behavior. When
a different input signal (e.g., temporal shifted, masked,
noise-injected versions) is given, the deep learning model
only captures partial answers because the model has
learned certain patterns from the input effectively. Still, it
hasn’t completely generalized for the entirety of the inputs
due to highly articulated signals from native users, leading
to inconsistent or fragmented outputs on variations. To
refine the prediction, we propose a simple yet effective
refinement based on N-gram models [12]. In short, we
combine results from diverse input signals and predict
the next word with N-gram models.

Combining together, we propose ASLRing, a meta-
learning-aided system for sign language recognition with
output refinement. Fig. 1 depicts the high-level overview
of the system where wearable sensors are used in ASLRing

to capture signs by native users, and the sensory informa-
tion is processed by our meta-learning framework and the
result is further refined for later usage such as translating
into English for ordering food, asking direction, etc.

An extensive native ASL user study with a group of Deaf
native ASL signers is involved to validate the performance
of ASLRing with a diverse database with 1080 sentences
generated by a vocabulary size of 1057 that covers topics
like sports, life, education, etc, from 14 Deaf users. In a
nutshell, ASLRing achieves 26.9% word error rate (WER)
across users. A more challenging case, unseen sentences,
is also studied and we show ASLRing achieves ≈40%
WER. Furthermore, the accuracy is also consistent across
variations in signing speed, sensor wearing positions, and
dialects/accents, demonstrating robustness.

In summary, we enumerate our contributions below.
� We reveal our insights on sign language recognition
tasks based on our extended interaction with native sign
language users. � We propose a sign language recognition
framework to address the diversity issues in signed lan-
guages by involving meta-learning training strategies. We
define sentences as tasks to learn an inherent knowledge
of diverse spaces of sign sentences. � An extensive study
with 14 native sign language users is conducted and
an average 26.9% word error rate is achieved across
various users. ASLRing is also validated in diverse settings
including signing speed, etc.

II. BACKGROUND

In this section, we briefly introduce the characteristics
of inertial measurement units (IMU) and a broader im-
pression of American Sign Language and American Sign
Language Recognition Task.

A. IMU Data Introduction.

IMU sensors are cheap and widely used in wearable
applications in sports analytics [19], AR/VR [47], human
activity recognition [62], etc. An IMU sensor consists of
three primary sensors: an accelerometer, a gyroscope, and
a magnetometer. An accelerometer sensor measures the
net acceleration including translational acceleration and
the constant gravitational force vector. A magnetometer
sensor measures the spatial orientation of the Earth’s
magnetic field, whereas a gyroscope sensor measures
angular velocity and rotational motion. The accelerometer
measurements can be converted from local frame of ref-
erence to a global frame of reference [61], by computing
the orientation of the sensor. While prior research may
exhibit susceptibility to environmental magnetic interfer-
ence, ASLRing demonstrates immunity to such interfer-
ence. ASLRing employs opportunistic error compensation
techniques derived from A3 [61], to periodically reset
drifts in gyroscope integration and minimize the effects
of magnetic interference and motion artifacts. Though
during data collection, we encountered environmental
magnetic interference from ferromagnetic objects such as
metallic framing, furniture, etc, we do not observe drift
in errors in ASLRing as validated in Sec. VII.

B. Basics of American Sign Language

Sign Languages are visual languages that are composed
of complex gestures and grammar. We begin with a brief
overview of American Sign Language (ASL) to give a
broader impression of sign language.

Signs and Gestures: Like any other sign language that
uses gestures instead of sound for communication, ASL is
also a form of natural language with its own grammar
and lexicon. While approximately 137 sign languages are
used by millions of Deaf people worldwide, ASL benefits
Deaf people who mainly live in the USA and parts of
Canada. In sign languages, most signs are a sequence of
gestures from both hands (with one dominant hand and
fingers involved). Fig. 2a shows the hand poses for finger
spellings - A, S, and L. Fig. 2b and Fig. 2c show hand
motions involved in signing “bike” and “learn”.

(a) ASL Finger-spelling (b) ASL sign: Bike (c) ASL sign: Learn

Fig. 2: Examples of hand gestures and motion in ASL.

As shown in the figures, while the dominant hand
performs a sequence of motion, the other hand (so-called
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TABLE I: ASL sentence vs English sentence

ASL Sentence English Sentence
AGE YOU How old are you?
ME ARRIVE LATE SORRY Sorry, I am late.
ME DRINKalc WINE RED I’m drinking red wine.
LEARN SIGN WANT I want to learn sign language.

non-dominant hand) is used to complement the dominant
hand gestures to make the signs rich and meaningful.
Similarly, facial expressions can also complement the
signs. The entire signing motion including both hands
and/or facial expressions is denoted as gloss in linguistic
terms, which is an intermediate representation between
sign languages and spoken language such as English.
We use gloss to represent the connection between sign
languages and spoken languages, and sign to represent
the actual sequence of hand motion.

ASL Grammar: Sentences are mainly in the following
format: Subject-Verb-Object [9]. The order of glosses can
change when the context of the topic is established first
through topicalization [41], leading to the following for-
mat: Object, Subject-Verb. Table I shows a few examples
of ASL sentences and English translations. Micro-pauses
happen at the end of sentences, which makes segmenting
individual signs complex, especially for those who are
native to the language.

American Sign Language Recognition: To build
a connection between Deaf and hearing communities,
researchers are devoted to developing systems that can
translate signs into glosses. This step is named sign lan-
guage recognition (SLR) as shown in Fig. 3. Furthermore,
based on the complexity of segmenting individual signs
from a sequence of hand motions, the SLR task is further
divided into two problems: Isolated Sign Language Recog-
nition (ISLR) and Continuous Sign Language Recognition
(CSLR). While ISLR requires manually segmented signs,
which requires extreme effort, CSLR only requires glosses
in the form of a sentence. Given that CSLR is more reflec-
tive of everyday communication for the Deaf community,
ASLRing concentrates on CSLR.
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Fig. 3: Illustration of (Continuous) Sign Language Recognition. A recognition
system takes a sequence of signs as input and outputs the corresponding gloss.

III. LEARNING FROM NATIVE ASL USERS

Why is sign language hard to recognize? To answer this
question, we share our interactions with native ASL users,
and summarize the observations that direct ASLRing.

Observation 1: Signs are replaceable with a different sign

and omittable without disturbing the meaning.

It is easy to show that in any spoken language, there are
always alternatives to express the same meaning. This
holds true for sign languages. For example, “I love you”
is semantically the same as “I fall in love with you”. The
corresponding glosses are totally different: “LOVEchest”
and “ME FALL-IN-LOVE YOU”. Fig. 4 demonstrates the
signal difference between these two sentences in the form
of IMU data. Native ASL users sign diversely, given their
ability to interpret a sentence in various ways. However,
when researchers, especially those lacking domain ex-
pertise, design recognition systems, the inconsistency be-
tween signs and labels can lead to systems that might not
adapt well to these variations, which are an inherent part
of communication within the Deaf community. Therefore,
placing emphasis on semantic interpretation rather than
solely focusing on the one-to-one mapping between signs
and labels is crucial to address the challenge.
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Fig. 4: Illustration of Observation 1 where two sentences are interchangeable
to use because of the similar semantic meaning. However, the signals are quite
different, indicating the challenge of recognizing signs.

Observation 2: Sign language users also have “dialect”

due to communities, cultures, styles, etc.

Dialects in sign languages can be as varied and nuanced
as spoken languages. Different regions, cultures, and com-
munities may develop unique signing styles or variations
on common signs due to a variety of factors. As a form
of visual language, dialect in sign languages is mainly
represented by various factors such as signing orders,
hand shapes, and movement paths. As told by our users,
1) Asian Americans often structure their signs differently
than White sign language users when signing for the
same sentence; 2) Some users might use both hands
to perform sign completely, while others tend to finish
sign with only one hand without disturbing the meaning.
Fig. 5 demonstrates such an example of signing by users
with different styles, and it is obvious to see the signals
vary. Moreover, native signers will have more complex co-
articulated signs than sign language learners, imposing
another challenge for the recognition task.

In a nutshell, these observations highlight the chal-
lenges faced when trying to recognize the glosses from
diverse signal inputs. While some studies emphasize
the frequency of specific sign occurrences, co-articulated
signs [56]. Various signing styles make directly apply-
ing their methods problematic. Although expanding data
diversity is a plausible solution, the process of gather-

205

Authorized licensed use limited to: Penn State University. Downloaded on April 10,2025 at 14:45:12 UTC from IEEE Xplore.  Restrictions apply. 



����

����� ����� ������ ���� �����

���� ���� ���� ����

�




�
��

�
�
��
�

�




�
��

�
�
��
�

������ ������

�
	

�

��
�


�

�
��
�
��
�
�


�

��������	�
��	�
�	�����

Fig. 5: Illustration of Observation 2 where one sentence is signed by native ASL
users with different signing styles. It clearly notes that signals from the users vary
(e.g., when signing for the same sentence, User 2’s right hand barely moves, while
User 1’s right hand also complements the signs, demonstrating the various signing
habits they developed over years).

ing large-scale sign language data is undoubtedly labor-
intensive. Some researchers [29], [33] have tried sourc-
ing virtual data from existing sign language datasets.
However, virtual IMU data come with their own set of
challenges, including occlusion, motion blur, and overex-
posure. These issues compromise the quality of the virtual
data, affecting the efficacy of systems built on them.

IV. ASLRing

A. Why Use Meta-learning?

Unlike previous approaches, ASLRing circumvents the
costly data acquisition phase and sidesteps the constraints
of using virtual data from sign videos (such as occlu-
sions, overexposure, and low resolution) by incorporating
meta-learning into the process. Why use meta-learning?

We begin with the example of dog classification from
images. A single image can contain various noise fac-
tors: other animals, different backgrounds, multiple dog
poses, or distinct breeds. Each of these elements can
potentially affect the ability to accurately identify a dog.
This situation parallels the challenges faced in the SLR
domain: for a given sentence, diverse signing styles and
interchangeable signs can introduce complexity to IMU
signals, thereby compromising sentence recognition pre-
cision. In ASLRing, we argue that the successful principles
of meta-learning in image classification can similarly be
harnessed for sign language recognition. In contrast to
supervised learning, which trains systems based on di-
rect one-to-one correspondence, meta-learning employs
training techniques that enable the recognition system to
acquire comprehensive knowledge spanning various task
spaces, as illustrated in Fig. 6a. This approach equips
the system with the capability to handle other challenges
such as signal variations (Sec. III) using limited data and
achieving better generalization on unseen samples. Next,
we elaborate on the details of ASLRing on how we define
meta-learning concepts under the hood of sign language
recognition.

B. Learning via Meta-learning

Dataset: Given a dataset of IMU signals, our goal is to
recognize the signals into corresponding glosses. Let D
be the dataset containing pairs of IMU signals and their

corresponding glosses, i.e., D = {(xj
i , yi)}, where x

j
i is

the jth varied IMU signal for sentence i and yi is the
corresponding gloss label.

Task: In the realm of meta-learning applied to sign
language recognition, defining tasks poses a unique chal-
lenge. While in image classification, tasks can be straight-
forwardly categorized (e.g., each class as a distinct task),
the definition is less clear for sign language recognition.
One might consider defining each gloss as a task, but this
demands well-segmented signs, which is a complex task
for native users. In ASLRing, we propose a novel task
formulation by designating sign sentence i (denoted as
xi) as task i. This definition offers dual advantages: 1)
It separates the variations introduced by users in input
signals for a consistent sentence. 2) A model trained at
the sentence level can accumulate wide-ranging semantic
knowledge across all task (sentence) domains, thereby
enhancing its capability to make predictions on unseen
sentences. With such a definition, we can form a set of
tasks T , where each task T ∈ T corresponds to mapping
one sentence (i.e., varied signal inputs due to factors such
as signing styles, replaceable signs) into its corresponding
glosses.

Support Set and Query Set: For each task T , we have
a support set ST and a query set QT . For example, for
sentence i, the corresponding support set ST = {(xs

i , yi)}
and the query set QT = {(xq

i , yi)}. Note that the sum of
s and q denotes the total number of varied IMU signals
(e.g., sentence i was signed by different ASL users) for
sentence i.

Objectives in Meta-learning: � Task-level Learning:
Given a task T , we aim to learn a model (fθ, parame-
terized by θ) that can quickly adapt to new, previously
unseen variations using a small number of IMU signals
from support set ST . In ASLRing, we adopt the classic
Model-Agnostic Meta-Learning (MAML) [8] and the pro-
cess can be represented as:

θ′ = θ − α∇θLST
(fθ), (1)

where α is the learning rate, LST
is the loss on the support

set. � Meta-level Learning: After task-level learning, the
objective is to update the model’s parameters θ′ such that
the model performs well on the query set QT :

min
θ′

LQT
(fθ′), (2)

where LQT
is the loss on the query set. By iterating over

randomly sampled tasks in T , the model fθ learns to
quickly adapt to new sentences (tasks) using only a few
IMU signals.

CTC loss for L: Unlike traditional meta-learning where
cross-entropy loss is widely used, sign language recogni-
tion aligns one sequence (i.e., IMU signals) with another
(i.e., a sequence of glosses). Yet, as mentioned earlier, the
acquisition of exact alignment is difficult. Therefore, we
employ the Connectionist Temporal Classification (CTC)
loss [20] to automatically learn the alignment.
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(a) High-level illustration of SLR in context of
Supervised- and Meta-learning. Colors represent
different sentences (tasks) and shapes denote vari-
ations due to factors such as signing styles.
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(b) An overview of the proposed meta-learning approach for sign language recognition: During
task-level learning, we draw random sentences from our dataset and train several models tailored
to specific sentences (tasks). In contrast, meta-level learning focuses on training a model that covers
the entirety of the sign sentence domain.

Fig. 6: (a) High-level illustration of supervised-learning and meta-learning based sign language recognition. (b) Overflow of ASLRing’s meta-learning framework
where the ultimate goal is to learn a model that comprehends the entire scope of the sign sentence (task) space.

Given an input IMU signal x (for simplicity, we denote
x to be x

j
i ) of length N and a target gloss sequence y of

length G (G ≤ N), the CTC loss computes the probability
p(y|x) by summing over all possible alignments between
x and y.

Let π be an alignment, which is a sequence of labels of
length G, including the CTC blank symbol. The probability
of π given x is:

p(π|x) =
N∏

t=1

ytπt
, (3)

where ytπt
is the probability of label πt at time t in the

output of a softmax layer. The total probability p(y|x) is
the sum of probabilities of all possible alignments π that
can be collapsed to y:

p(y|x) =
∑

π:B(π)=y

p(π|x), (4)

where B(π) is the function that collapses the sequence
π by removing repeated labels and the blank symbol.
Overall, the CTC loss is now as follows:

LCTC(x, y) = − log p(y|x). (5)

IMU Encoder: To encode IMU signals, we employ
Transformers [49] architecture because of its efficiency
in capturing long dependencies. We detail the trans-
former structure and discuss the hyperparameter setting
in Sec. V-B.

C. Refining Output with N-Gram Models

After a model is trained using meta-learning training
strategies and during the testing phase, we observed
that for a different input signal (e.g., temporal shifted,

TABLE II: With varied signal inputs (e.g., temporal shifted, masked, noise-
injected versions), the model captures partial glosses of the sentence. However,
this partial robustness behavior can be improved with the proposed N-Gram models
based refinement algorithm (i.e., Algorithm 1). Note that the target for this
example is “POSS1 DOG LIKE BALL MOUTH GRAB”.

Prediction WER (%)

1 GRAB POSS1 DOG 83.3

2 POSS1 MOUTH BALL MOUTH 50.0

3 DOG MOUTH DOG MOUTH 66.6

4 LIKE THROW BALL 75.0

Refinement DOG LIKE BALL MOUTH GRAB 16.6

masked, noise-injected versions), the model still can cap-
ture multiple valid glosses of the sentence as shown in
Table II. We call this behavior as partial correctness of
the model because the model has learned certain patterns
from the input effectively, but it hasn’t completely general-
ized for the entirety of the input, leading to inconsistent or
fragmented outputs on variations. To improve the partial

correctness behavior, we propose a simple yet effective
output refinement method based on N-Gram models [12].
As depicted in Algorithm 1, our main idea is to leverage
this partial correctness behavior: Based on trained model
fθ, we generate a bunch of partially correct sentences,
from which we form a bag of glosses S. Since most
sentences are partially correct, we argue that the target
sentence should share the max number of the glosses with
S. To quantify this, we calculate the Intersection over
Union (IoU) [42] between a newly generated sentence
(from pre-calculated N-Gram model N ) and S. Finally, we
output the sentence with the max IoU score. Note that we
empirically set N to be a combination of several N-gram
models where N varies and the rationale is to increase the
flexibility in capturing context. We validate our proposed
refinement method in Sec. VII.
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Algorithm 1 N-Gram Refinement from Partial Outputs

1: Input: A set of seen sequences of glosses G, Unseen input
x, Model fθ

2: Build a Dynamic N-Gram model N from G.
� We set N = {1,2,3} empirically

3: V = Variations of x � e.g., masked
4: for each v in V do
5: Sv = fθ(v) � Output glosses
6: end for
7: S = Union of all Sv � A bag of glosses
8: for each word w in S do
9: Generate a sentence g using N

s.t. length is bounded by |S|
10: Add g to GS

11: end for
12: best score = -1
13: for each sentence g in GS do
14: score = IoU(g, S) � Overlap ratio as score
15: if score > best score then
16: best sentence = g
17: best score = score
18: end if
19: end for
20: Output: best sentence

(a) Overview of our sensing platform (b) Communication Architecture

Fig. 7: ASLRing’s sensing platform in forms of IMU rings on fingers. BLE is used
for communication purposes.

V. IMPLEMENTATION

A. ASLRing Sensing Platform

The Choice of Sensing Modality: Our goal is to employ
a discreet, easily portable, low-cost cost and energy-
efficient sensor device, capable of tracking patterns of
natural movements of fingers without restriction while
being worn throughout the day and night. Encouraged
by recent promising work [35], [58], we exploited the
Inertial Measurement Unit (IMU) sensors as the sensing
method. In comparison to depth cameras [2], [4], IMU
sensors are much more robust to lighting, background,
and resolution. In addition, IMU sensors have lower
power consumption, compact and lightweight form factor,
and lower cost.

The Choice of Form Factor: Fig. 7a shows the sensing
platform we used in ASLRing. We aim to design an un-
obtrusive, portable, and comfortable devices. Prior works
such as sensor gloves [3], impede natural finger motion.
EMG armbands [36] require substantial calibration and
training datasets. Single ring platform is convenient but
is limited in capturing comprehensive data from all fin-
gers [59]. In contrast, ASLRing borrows from [60] for its
flexibility. The device is designed to emphasize continuous
recognition of ASL in entirely natural, unconstrained, and

arbitrary signing expressions. Fig. 7b depicts the archi-
tecture of the platform. The device consists of five IMU
sensors attached to each finger as rings, along with an
extra IMU sensor located on the wrist within a smartwatch
form factor. The sensing platform’s sampling is at 100 Hz.
The weight of the platform is 21.2g, contributing to a
lightweight form factor and offering comfort to users. A
3.7V, 500mAh LiPo battery is used to supply power with
power consumption of 32mA for data streaming, offering
battery life about 16 hours.

B. ASLRing Software Implementation

ASLRing’s software is implemented on a combination
of desktop and smartphone devices. Our ML models are
implemented with Pytorch [40] library and the training
is performed on a desktop with Intel i7-8700K CPU,
16GB RAM memory, and an NVIDIA Quadro RTX 8000
GPU. We use the Adam optimizer [31] with the L2
regularization [11] with a parameter of 0.05 to avoid
overfitting issues that may happen in the training process.
The learning rate for task-level and meta-level learning is
set to 0.007 and 0.003 respectively. Our IMU encoder is
based on widely-used transformers [49], and we set the
number of attention heads, the number of layers, and the
feed-forward dimension to 16, 3, and 256 respectively.
We also add dropout [50] with a parameter of 0.4. For
the proposed N-gram model based refinement, we set N
= {1, 2, 3} considering the tradeoff between accuracy
and computation. Note that we opt for the parameters
based on simple grid search methods. Once a model
is generated from training, the inference is done on a
smartphone device using Pytorch Lite [17] on Samsung
S20 and OnePlus 9 Pro smartphones.

VI. USER STUDY AND DATASET

A. Dataset Preparation

At the beginning of the project, we recruited two native
ASL users as interns to create a database with 1080
sentences (English and corresponding glosses) that cover
topics such as sports, personal care, arts, and food. For
each sentence, a sign video was made by one of the
interns for the incoming user study as depicted next.

B. User Study
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Fig. 8: Example of user study setups: users were seated in front of the monitor
and our team members were seated in the opposite. Since we are not fluent in
ASL, we prepared instructions and cardboard for communication purposes.

In our user study, 14 Deaf users (9 females, 5 males)
with native ASL fluency were recruited. The users are
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aged between 20-50 and weigh from 50 to 90 kg and the
IRB committee has approved the study. Note that because
of the difficulty of recruiting native ASL users, our user
study is not in one go. Instead, we schedule the study
multiple times for different users, thus the actual user
study is across three months. Fig 8 depicted our user study
setup in a conference room.

The study procedure is as follows. Pre-made sign videos
will be played and users need to understand and re-sign
the same content from the sign videos while they wear
ASLRing’s sensing device on both hands with the sensors
snugly fit on fingers as depicted in Fig. 7a. Each user
may take 3 or more breaks (per user’s desire) and each
break is at least 3 minutes. The sensing device will be
removed and remounted for breaks and the total study
time for each user is two hours. Due to different cultural
backgrounds, communities, etc., we do not ask users to
follow the exact signs as long as similar content is guaran-
teed. Although this demonstrates our respect for the ASL
community and allows users to freely express themselves,
it also brings challenges (e.g., complex articulation, and
signing styles) as in Sec. III.

C. Dataset Summary

Unlike prior works [33], [56] that simplify glosses or
capture only parts of finger motions, we keep the original
glosses created by the ASL interns and capture all finger
motions for comprehensiveness. After simple data clean-
ing to remove bad data due to hardware issues, a total
number of 4828 sentences from 14 users were acquired.
Among these data, we have 1018 unique sentences with
a maximal length of 16 glosses of daily conversation that
cover topics in sports, personal care, arts, food, etc., and
the vocabulary size is 1057. On average, each unique
sentence is signed by 5-6 users. And each user signs
around 200 distinct sentences in two hours. Table III
depicts a comparison between ASLRing and prior works.
Evidently, our dataset is comprehensive and more realistic
with native ASL users.

TABLE III: ASLRing is more comprehensive than prior systems.

System
No. of Native

ASL Users (Test)
Vocabulary

Size
Distinct Sentence
Signed Per User

DeepASL [18] 0 56 100
MyoSign [55] 0 16 48
SignSpeaker [23] 0 103 73
FinGTraC [35] 0 90 50
DeepSLR [52] 0 51 60
SonicASL [28] 0 42 30
WearSign [56] 0 100 16
SignRing [33] 2 934 15
ASLRing 14 1057 200

VII. PERFORMANCE EVALUATION

We present the evaluation results for ASLRing and
the organization is as follows. � We first elaborate on
training and testing data. � Then, we briefly introduce the
evaluation metric that is widely used in the sign language
recognition task. � Overall performance (e.g., on individ-
ual users) of ASLRing is presented. � A robustness study
is conducted to verify that ASLRing works across various

situations such as users’ age, various signing speeds, and
different environments. � An ablation study is conducted
to verify the design choice of ASLRing. � A challenging
case (unseen sentences) is studied along with our insights.
� We present qualitative results to demonstrate ASLRing’s
performance. � And lastly, we evaluate ASLRing on smart-
phones for the power consumption details.

A. Training Data and Testing Data

Training Data: As described in Sec. IV, we employed
meta-learning as our main framework, in which we de-
fined each unique sentence as a task. Therefore, during
the training process, we randomly sample tasks (sen-
tences) at each iteration, and for each task, we further
divide IMU signals into support and query sets for task-
level and meta-level learning respectively. We randomly
sample 10% and 70% in a task for support and query set,
and the rest 20% for testing purposes.

Testing Data: After the model is trained on different
tasks, we acquired the model that can generalize well
on the same task with various inputs or different tasks.
Correspondingly, we have two types of testing data: �

Unseen users: sentences from unseen users are the sen-
tences that are signed by a different user who is not seen
in the training. � Unseen sentences: the sentences are
not available in the training process. Note that our results
presented next are based on unseen users, and we present
the results for unseen sentences separately.

B. Metrics

To evaluate ASLRing’s performance, like the prior
works [33], [56], we employ word error rate (WER).
WER is a standard metric utilized in the field of speech
and language processing to assess the performance of
automatic speech recognition (ASR) systems. The formula
for WER is derived by considering the number of sub-
stitutions (S), insertions (I), and deletions (D) required
to match the system’s output to a reference transcript.
It’s computed relative to the number of words in the
reference (N): WER = S+I+D

N
The metric offers a holistic

measure of a system’s accuracy, as it takes into account
all possible discrepancies between the predicted output
and the actual reference. Note that lower WER indicates
better performance of the system.

C. Overall Performance

As depicted in Sec. III, we observed several challenging
cases. One of them is user diversity, which includes diver-
sities from different cultural backgrounds, signing habits,
etc. This imposes difficulties in creating a generalized
model well on all the other unseen users as also reported
by prior works [27], [30]. Therefore, to incorporate these
diversities, ASLRing, similar to other systems, also needs
an additional fine-tuning process for unseen users (after
the leave-one-user-out training process). The amount of
data needed for fine-tuning is set to 15% (≈ 30 sentences)

209

Authorized licensed use limited to: Penn State University. Downloaded on April 10,2025 at 14:45:12 UTC from IEEE Xplore.  Restrictions apply. 



(a) Performance on unseen users
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Fig. 9: (a) ASLRing performs over 40.1% well on unseen users compared to
supervised learning with the same amount of fine-tuning data. (b) WER distribu-
tion for ASLRing and supervised learning based SLR system. 39.0% and 33.3%
improvement are achieved for the median and 90%-ile accuracy, respectively.

for both ASLRing and its supervised learning counterpart.
And we give more details in Sec.VII-E. Note that for
comparison purposes, we build a supervised learning
counterpart with the same architectures (as ASLRing) but
different training strategies.

As shown in Fig. 9a, ASLRing performs better than its
supervised learning counterpart with a 40.1% boost on av-
erage. The accuracy variation of the individual user could
happen because of the various cultural backgrounds. Our
pre-made sign videos are recorded by our ASL intern who
is a black woman, while some users (e.g., u9) from the
user study have some Asian backgrounds. And since we
are not restricting the users to sign exact signs in our user
study as mentioned in Sec. VI, users tend to sign in their
own styles, resulting in various individual performances
even though the meta-learning training scheme with care-
ful defined tasks was designed to decouple variation from
signals, user styles are worthy to dig deeper. Nevertheless,
we believe ASLRing is stable across unseen users with an
average 26.9% WER.

Fig. 9b, on the other hand, depicted the distribution
of WER on the sentences signed by unseen users. Com-
pared with its supervised learning counterpart, ASLRing

achieved 39.0% and 33.3% improvement for the median
and 90%-ile WER respectively, demonstrating the effec-
tiveness of meta-learning based sign language recognition
system. While the overall performance is reasonable, we
found the span of the performance is large, e.g., WER
ranges from 0% to 60%. We believe one reason is re-
placeable signs or various signing orders that happen in
our user study. This results in the inconsistency between
our labels (although some of them have similar semantic
meanings, the CTC loss cannot accommodate this incon-
sistency) and IMU signals (e.g., one example is shown in
Sec. III), which could be one factor to mislead the learning
process. We leave this deep clean or more advanced signal
processing for future work as discussed in Sec. VIII.

D. Robustness Study

Study for Various Speed: To validate the impact
of signing speeds on sign language recognition ac-
curacy, we categorize users into three classes (i.e.,
≈90 words/minute, ≈120 words/minute, and ≈140
words/minute. ) based on sentence lengths (i.e., the
number of glosses in a sentence) and the corresponding

video lengths. Evidently, as shown in Fig. 10a, ASLRing

can adapt to different signing speeds. We believe this
is due to the transformer architecture we employed, in
which the temporal correlation is learned effectively.

Study for Age Group: In order to study the recognition
accuracy of different age groups, we roughly split our
users (aged from 20 to 50) into three groups, representing
potential variations from living environments. As shown
in Fig. 10a, ASLRing is robust to these variations. Thanks
to the well-considered task definition, we believe the
employed meta-learning based framework can handle
such variations from signals.

Robustness to Sensor Positions and Orientations:
In the study, users can have more than 3 breaks. For
these breaks, we remove and remount the sensing device
from and onto users to validate ASLRing’s robustness to
varied sensor positions/orientations with respect to the
human body. Fig. 10b depicts the accuracy across sessions
(breaks). Evidently, the recognition accuracy doesn’t get
affected and is stable across 4 sessions (3 breaks). We
believe our sensing device can fit snugly onto users’
fingers. Therefore, any minor variation in positions across
breaks is small, leaving a negligible impact on accuracy.
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Fig. 10: (a) ASLRing is adapt to various signing speeds and age groups (b)
ASLRing is robust to various sensor locations when removing and remounting
devices during breaks in the study and is ubiquitous to the environments that
have potential magnetic inferences from refrigerators, cameras, projectors, etc.

Robustness to Environment: Note that the user study
was set up in different environments and each place
has different surroundings (refrigerators, lights, cameras,
projectors, etc.), potentially affecting the orientation esti-
mation for our IMU sensors due to magnetic inferences.
We validate ASLRing’s performance on this variation in
Fig. 10b. Evidently, ASLRing is ubiquitous to any envi-
ronment due to the opportunistic calibration technique
from A3 [61], where the gravity vector and magnetic
north vector are opportunistically determined and used
to reset the drift error in single-integral based gyroscope
orientation estimation.

E. Ablation Study
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Fig. 11: (a) Meta learning based training strategies outperform that of super-
vised learning by a large margin when a varied number of fine-tuning data is
available. (b) Our proposed dynamic N-Gram refinement method is accurate than
any of the other models because of increased flexibility on choosing next word.
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Comparison Between Meta Learning and Supervised
Learning employed in Prior Works: Fig. 11a depicts
the recognition accuracy as a function of the size of fine-
tuning data from an unseen user. When there is no data
(i.e., 0%) from given unseen users, we note that meta-
learning based model still outperforms its supervised
learning counterpart, which has been utilized in prior
works [18] [55] [23] [35]. We conclude the reason is
that with supervised learning, the performance is greatly
dependent on the quality and the diversity of the training
data, so if there is one unseen user whose data are
not drawing from the same distribution of the training
data, supervised learning based systems usually suffer
from generalization problems. In contrast, thanks to the
definition of tasks in meta-learning, ASLRing focuses more
on the variation of input signals for the same sentence and
the generalization on a wide span of sentences (tasks),
thus leading to a sweet spot that works for variations and
all tasks (sentences). We believe this is also the reason
why it can quickly learn with a small amount of fine-
tuning data, achieve convergence, and even outperform
supervised learning when only a small number of fine-
tuning data is available. Based on this result, we use
15% data for ASLRing adapting to new users. Note that
15% of data corresponds to 30 sentences and it roughly
takes 18 minutes to collect according to our user study.
Yet, we believe the amount of time needed for collecting
these 15% data can be much shorter on the user’s end
(without the complex collection procedure in our study).
Even though more fine-tuning data might lead to a more
personalized model, we leave this opportunity for future
work. ASLRing utilizes meta-learning training strategies
and achieves better recognition accuracy compared to its
supervised learning counterpart no matter whether there
is no or a small number of data to finetune.

Refining Output with N-Gram Models: Our pro-
posed refinement is based on observation during testing:
when input signals get disturbed (e.g., temporal shifted,
masked), the trained model tends to output partially cor-
rect glosses. To validate the effectiveness of the proposed
refinement method, we conducted an experiment where
we tested N-Gram models when N varied from 0 to 3
and compared the results with our proposed dynamic N-
Gram refinement method. As depicted in Fig. 11b, our
proposed method outperforms other basic models by a
large margin. This is because by combining different N-
gram models (i.e., N={1, 2, 3}), we could capture more
context, thus increasing the flexibility (more options) to
choose the next most reasonable word. Specifically, lower-
order N-grams (like unigrams and bigrams) are more
general and have broader coverage, while higher-order
N-grams can capture more specific and nuanced patterns
in the glosses. Combining them ensures that both general
patterns and specific nuances are taken into account.
However, we stopped at N=3 due to computation effi-
ciency, and left incorporating large language models for
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Fig. 12: (a) ASLRing’s performance on unseen sentences: A median ≈40%
WER is achieved, which is a 39.6% improvement compared to that of supervised
learning. More details are in the text. (b) Power consumption of ASLRing.

refinement to future work as discussed in Sec. VIII.

F. Challenge Case: Performance on Unseen Sentence

Unseen sentences have been a challenging task in sign
language recognition. Prior works [56] [33] tackled this
task by increasing the diversity of datasets or by syn-
thesizing unseen sentences from individual words. Yet,
increasing diversity via data collecting is expensive, and
harvesting virtual data from other sources (e.g., sign
videos) inherits existing issues from the videos (e.g., oc-
clusion, low resolution, overexposure), hindering the per-
formance of downstream tasks. ASLRing takes a different
branch by employing meta-learning training strategies,
in which each sentence is viewed as a task. After being
trained, the model acquires a comprehensive semantic
knowledge spanning the task spaces. As depicted in
Fig. 12a, without fine-tuning, ASLRing achieves a median
WER ≈40%, which is improved by 39.6% compared to
its supervised learning counterpart. We note that the
accuracy of ASLRing on unseen sentences is much lower
than that of ASLRing on unseen users. We conclude that
the reasons are two-fold: � Articulation: as mentioned
in Sec. III, native ASL users have fluent and complex ar-
ticulation patterns and varied styles. This makes learning
the segmentation of individual words hard even though
we employed widely-used CTC loss to automatically learn
the boundaries. Without boundaries between words, a
new sentence is hard to predict. � Single Sentence as
Task: when adopting meta learning training strategies,
ASLRing treats each sentence as a task. While this has
demonstrated a way to decouple variations (e.g., from
signing styles, and environmental factors) from actual
signals to achieve a “neutral style”, the prediction for
an unseen sentence that contains glosses from multiple
other seen sentences (in training), tends to lean toward
one of the seen sentences, resulting in higher word error
rate because the high-level semantic meaning of glosses
is not well-integrated into the learning process. Thus,
considering the semantic meaning of sentences when
splitting them into tasks is a potential solution to improve
the performance of unseen sentences. We leave this for
future work as discussed in Sec. VIII. Nevertheless, we
believe ASLRing demonstrates a reasonable performance
on unseen data with native ASL users.
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G. Power Consumption

The power consumption of the sensor device itself is
discussed in Sec. V-A. Here, we analyze the power con-
sumption of executing ML models in ASLRing by profiling
the power consumption of the models with Batterystats
and Battery Historian [7]. As depicted in Fig. 12b, the
average real-time continuous power discharge rate is
21.5% and 23.8% per hour for Samsung S20 and OnePlus
9 Pro. In real world, the power discharge rate should
be much lower as users do not continuously sign. The
average latency of execution of ML models on the two
mobile devices utilizing CPU is approximately 722 ms and
461 ms respectively. As average lag times of real sign lan-
guage interpreter are 2-3 seconds [10], ASLRing should
be sufficient for real-time applications. For reference, the
idle display-screen on discharge rate is 7.41% and 6.35%
per hour for Samsung S20 and OnePlus 9 Pro. We plan
to optimize our ML models with deep compression [21]
to reduce power consumption.

H. Qualitative Results

Table IV depicts partial recognition results of the unseen
user and unseen sentence. Evidently, ASLRing recognizes
signs and maps them into corresponding glosses accu-
rately because ASLRing employs meta learning based
training strategies to handle various input signals of the
same sentences and proposes an N-Gram models based
refinement method to improve the prediction results.
Overall, we believe the results are encouraging.

VIII. DISCUSSION AND FUTURE WORK

Pitfalls of Single-sentence Task of Meta-Learning
and Potential solution: ASLRing utilized meta learning
strategies to enhance the recognition results from various
user inputs. Although reasonable performance is demon-
strated, we found several challenging cases. Firstly, as
discussed in Sec. III, native ASL users have their own sign-
ing styles and understanding of a sentence. For instance,
users can replace signs with a different sign as long as
the meaning is similar (e.g., sign for “LOVE” and “FALL-
IN-LOVE”). This results in the inconsistency between the
labels (glosses) and IMU signals that mislead the learning
process when recognition systems are greatly based on the
data. Secondly, ASLRing struggles with unseen sentences
and the reasons are 1) unclear boundaries due to highly
articulated signs by native users; 2) due to only a few
words overlapping between unseen sentences and some of
the trained sentences, the prediction of unseen sentences
will base on one of the trained sentences, leading to
a higher word error rate. Based on these challenges,
we realized that when defining tasks, we simply treat
each sentence as a task individually without considering
the external knowledge of the semantic meanings of the
sentences. Thus, to improve ASLRing on these challenging
tasks, we could define a task that has cluster sentences
that share similar meanings. As depicted in Fig. 13,

sentences with similar contents can be grouped in the
embedding space, suggesting that ASLRing can leverage
external semantic knowledge from language models to
build a semantic-aware meta-learning network to address
the above-mentioned challenges.
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Fig. 13: We embed 1080 sign sentences using publicly available language
models, group the embeddings into several clusters via K-Means [22] and project
these clusters onto a 2D plane via PCA [53]. These clusters suggest external
semantic knowledge from language models can be utilized to address challenges
such as unseen sentences, and inconsistency between signs and labels.

Utilizing foundation models to enhance prediction
accuracy: While ASLRing has demonstrated improvement
through the adoption of a simple N-gram-based model
refinement approach, it primarily relies on insights from
our self-collected dataset. In the expansive realm of nat-
ural language processing, foundation models (like Large
Language Models or LLMs) have come to the forefront.
Owing to the prowess of LLMs in comprehending sentence
contexts, emotions, and intricate linguistic subtleties, inte-
grating foundation models can lead to predictions that are
not only more precise but also attuned to context, thanks
to their vast corpus. Even though ASLRing harnesses meta-
learning to interpret results from previously unseen data,
merging it with foundation models might offer superior
accuracy. This is due to the enhanced contextual under-
standing and grasp of linguistic nuances provided by the
foundation models. We seek this opportunity in the future.

IX. RELATED WORK

A. Sign Language Recognition

Visions: Recent works [34], [57] use RGB cameras to
recognize sign language. SignBERT [24] and HMA [25]
propose to decode 3D hand key points of sign language
from RGB videos. Ye et al. [54] propose a hybrid 3D
recurrent convolutional neural network (3DRCNN) to
recognize ASL gestures from continuous videos via a
Kinect sensor. Camgoz et al. [16] propose a sequence-
to-sequence learning methodology using a series of spe-
cialized expert systems for sign language recognition.
However, vision-based systems have a critical weakness
in terms of raising privacy concerns and conditional light
environment [15]. In contrast, ASLRing’s solution is re-
silient to environmental variables such as occlusion and
lighting, as well as minimizing privacy concerns.

Wearables: Savur et al. [45] propose an ASL recogni-
tion system using the eight-channel surface Electrocardio-
graphy (sEMG) to recognize alphabet letters, words, and
sentences. However, these recent studies focus on wearing
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TABLE IV: Qualitative recognition results of ASLRing. Note that red denotes missing words from targets and blue denotes extra words from targets. While some
glosses are hard to catch due to factors such as co-articulated signs, we believe the overall recognition result is encouraging.

Unseen
Users

Prediction Target WER (%)

COOKIE TYPE IX FAVORITE WHICH COOKIE TYPE IX FAVORITE WHICH 0.0

COLD SOUP MATCH PERFECT COLD SOUP MATCH PERFECT 0.0

CURIOUS LEARN JAPANrep GESTURE CURIOUS LEARN JAPANrep GESTURE QQ 20.0

DRINKalc DELICIOUS BAR CHARACTERISTIC DRINKalc FOOD DELICIOUS 60.0

Unseen
Sentences

SODA PRICE HOW-MUCH SODA PRICE HOW-MUCH 0.0

READ BOOK LIKE READ BOOK LIKE 0.0

TOPUsym FAVORITE COMMUNITY WHICH POSS2 TOPUsym FAVORITE COMMUNITY WHICH 20.0

EAT NOON POSS DAD BING SALAD EAT NOON WORK ALWAYS 66.6

gloves [6], [32], which hinders users from performing
natural and dexterous activities with fine precision as
investigated in recent work [43]. SignSpeaker [23] recog-
nizes 73 sentences constructed by 103 distinct words via
a smartwatch. WearSign [56] constructs an ASL dataset of
250 sentences from 15 student volunteers. FinGTrAC [35]
shows the feasibility of recognizing the 100 words via
a smart ring and a smartwatch. SignRing [33] synthe-
sizes virtual IMU data based on a two-view triangu-
lation tracking approach. Yet the method still suffers
from inherent drawbacks in videos such as occlusions,
and overexposure. While these systems made efforts for
sign language recognition in terms of increasing data
diversity, some simplifications have been proposed such
as reducing the complexity of sign sentences [33], and
only capturing signs from one hand (both hands are
important in sign languages) [33], [56], hindering the
wide adoption. When validating, most of them can only
recruit ASL learners. In contrast, ASLRing employs a low-
cost, lightweight, and wireless sensing platform to push
the boundary of wearable-based solutions with a database
with 1080 sentences constructed from a vocabulary size
of 1057 from 14 native ASL users.

Radio Frequency (RF) Signals: Recent works combine
wireless channel state information (CSI) and Doppler
shifts to track the motion of the hand and classify dis-
crete gestures [46], [48]. [51] proposes a multi-view
deep neural network, fusing micro-doppler in different
directions, for Chinese sign language (CSL) recognition.
SignFi [37] recognizes sign language using CSI from WiFi
APs. ExASL [44] tracks point clouds computed from the
range-doppler spectrum and angle of arrival spectrum of
mmWave radars, showing the feasibility of classifying up
to 23 discrete ASL gestures via mmWave. In contrast to
prior works only performing predefined sign recognition,
ASLRing recognizes continuous sign language by 14 native
users with an active and more pervasive sensing platform
that closely captures signs without range limitation.

B. Meta learning

The core idea behind meta-learning is to design algo-
rithms that can rapidly adapt to new tasks with minimal
data, leveraging prior knowledge acquired from related
tasks. Finn et al. [8] presented Model-Agnostic Meta-
Learning (MAML), a seminal approach that’s designed

to be applicable across various models and tasks. MAML
initializes a model in such a way that a few gradient steps
on a new task will lead to effective adaptation. While
meta-learning primarily focuses on rapid adaptation, its
principles share common ground with transfer and multi-
task learning. Caruana [14] previously discussed the
value of multi-task learning in improving the gener-
alization of models by sharing representations across
tasks. In the span of sign language recognition, [26]
proposes a contrastive disentangled meta-learning frame
to decouple variations from users to achieve a signer-
independent sign language translation model. Similarly,
[27] leverages meta-learning to minimize the data for
adapting the model to new users. ASLRing embodies the
essence of meta-learning for sign language recognition.
Learning from interactions with native ASL users, ASLRing

distinctly treats sign sentences as distinct tasks, allowing
it to separate variations from input signals. Consequently,
with the acquired knowledge spanning various sentence
spaces, ASLRing is equipped to predict previously unseen
data.

X. CONCLUSION

We propose ASLRing, a meta-learning-based recognition
system that addresses the existing diversity issues in sign
languages. By involving meta learning in SLR, we observe
encouraging results when facing challenge tasks such as
unseen users and unseen sentences. We also discussed
future steps for improving ASLRing on challenging cases
by leveraging semantic knowledge of signs from some ex-
ternal large language models. In contrast to prior works,
ASLRing is evaluated with 14 native ASL users. ASLRing

achieves 26.9% word error rate (WER) across users, and
a ≈40% WER on unseen sentences. Furthermore, the
accuracy is also consistent across variations in signing
speed, sensor wearing positions, and dialects/accents,
demonstrating the robustness of ASLRing.
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