
Replication: “When to Use and When Not to Use BBR”
Soumyadeep Datta

sdatta@nyu.edu
New York University

Brooklyn, New York, USA

Fraida Fund
ffund@nyu.edu

New York University
Brooklyn, New York, USA

ABSTRACT
We replicate the paper, "When to Use andWhen Not to Use BBR: An
Empirical Analysis and Evaluation Study" by Cao et al, published
in IMC 2019 [2], with a focus on the relative goodput of TCP BBR
and TCP CUBIC for a range of bottleneck buffer sizes, bandwidths,
and delays. We replicate the experiments performed by the orig-
inal authors on two large-scale open-access testbeds, to validate
the conclusions of the paper. We further extend the experiments
to BBRv2. We package the experiment artifacts and make them
publicly available so that others can repeat and build on this work.

CCS CONCEPTS
• Networks→ Data path algorithms; Network control algorithms;
Transport protocols.

KEYWORDS
TCP Protocol Evaluation, BBR, CUBIC, Testbeds

ACM Reference Format:
Soumyadeep Datta and Fraida Fund. 2023. Replication: “When to Use and
When Not to Use BBR”. In Proceedings of the 2023 ACM Internet Measurement
Conference (IMC ’23), October 24–26, 2023, Montreal, QC, Canada. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3618257.3624837

1 ORIGINAL PAPER AND MOTIVATION FOR
REPLICATION

In [2], Cao et al compare the performance of TCP BBR [3] and
TCP CUBIC [6] in 640 different emulated network scenarios (with
different bandwidth, bottleneck buffer size, and RTT).

They find that:
• For shallow buffers, BBR significantly outperforms CUBIC
in terms of goodput, especially in the high bandwidth-delay
product (BDP) regime, despite a higher number of retrans-
missions, as shown in Figure 5(a) of the original paper.

• For deep buffers, CUBIC slightly outperforms BBR in terms
of goodput, except for an extremely high bandwidth-delay
product (BDP) regime, as shown in Figure 5(b) of the paper.

Since the paper was published in 2019, however, BBR has grown
in popularity, to the extent that a recent census found that it makes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00
https://doi.org/10.1145/3618257.3624837

up almost 40% of all Internet traffic [9]. It is therefore crucial to re-
examine the conclusions of [2]. We are also interested in extending
the evaluation to BBRv2 [4], which differs from the original BBR in
many implementation details. Our focus in this paper is to replicate
the results of the original paper independently. Therefore, rather
than contacting the authors of the original paper, we implemented
scripts to replicate the experiments ourselves. Cao et. al. provide a
detailed description of the system specifications (such as the specific
Linux OS and kernel version), network settings (such as buffer
sizes, bandwidths, and delays), and other implementation details
in the original paper [2], which we used to realize a comparable
experimental setting.

To independently verify the claims in this paper, users of the
CloudLab [5] or FABRIC [1] platforms can use the artifacts and
instructions in our repository 1 to reserve testbed resources, run
the experiments, and visualize the results.

2 EXPERIMENT METHODOLOGY
In this section we describe the details of our experiment methodol-
ogy, including the experimental platforms, topology, network sce-
narios, flow generation, socket buffer configuration, Linux kernel
versions, and validation of the experiment setting. Where relevant,
we compare our choices to those in the original paper [2].

Experimental platforms: The comparable experiments per-
formed byCao et al in [2] were conducted their own LAN testbed. To
support easy sharing of experiment artifacts for further replications
and extensions of this work, we replicate these results on Cloud-
lab [5], a shared testbed facility that provides bare metal servers,
and on FABRIC [1], which provides virtual machines connected by
high-speed links.

h1
(TCP

sender)

tbf
(bottleneck

router)

h3
(TCP

receiver)

Figure 1: Network topology and direction of data flow.

Topology:We replicate the topology proposed by the authors
in the original paper [2], with one host (denoted as h1) sending
data to another host (denoted as h3) via an intermediate router
(denoted as tbf) as shown in Figure 1. All nodes in the topology

1Experiment artifacts: https://github.com/sdatta97/imcbbrrepro

30

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

https://orcid.org/0000-0003-1631-9991
https://orcid.org/0000-0002-9897-9282
https://doi.org/10.1145/3618257.3624837
https://doi.org/10.1145/3618257.3624837
https://github.com/sdatta97/imcbbrrepro
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618257.3624837&domain=pdf&date_stamp=2023-10-24

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Soumyadeep Datta and Fraida Fund

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0 0 0 0 0 0 -1 0

0 0 0 0 -1 -1 -2 -3

-5 -3 -1 -1 0 2 4 -1

-12 -1 0 3 6 7 14 21

0 2 6 11 13 23 60 91

6 8 12 13 22 30 90 115

6 9 14 14 16 28 25 18

0 4 12 16 13 23 14 11

Original result

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

-0 -1 -2 -2 -2 -2 -4 -3

-1 -1 -2 -2 -2 -2 -3 1

-1 -2 -2 -2 1 7 15 21

-2 -2 -0 10 18 25 32 37

5 8 23 64 53 75 103 186

42 58 124 147 250 203 300 525

93 122 241 341 380 419 553 868

138 181 334 487 535 569 779 1693

4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

-0 -1 -1 -2 -2 -3 -3 -3

-1 -1 -1 -2 -2 -2 -1 3

-2 -2 -2 -2 2 9 16 22

-2 -2 -1 8 14 21 28 33

3 7 14 45 40 70 96 172

16 28 78 110 187 202 322 617

47 72 173 249 313 339 698 1170

71 113 275 453 595 824 1131 2172

5.13.12 kernel (extension)

100

75

50

25

0

25

50

75

100

Goodput gain for BBR vs CUBIC, 100KB buffer

(a) (A positive value indicates an advantage to BBR over CUBIC.) Compared to the original result, which found that the relative advantage
of BBR vs. CUBIC was on the order of 10x in high-BDP scenarios, we observed an advantage on the order of 100x or 1000x, for both BBRv1
(replication) and BBRv2 (extension).

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

96 96 96 96 95 95 95 94

96 96 96 95 95 95 93 89

96 96 96 95 91 85 78 73

96 96 94 84 78 72 67 64

90 87 75 56 60 51 44 30

66 59 41 37 26 29 22 14

48 42 27 21 19 17 13 9

39 33 21 15 14 13 10 5

CUBIC, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

96 95 94 94 93 93 91 91

95 94 94 93 93 92 91 90

94 94 94 93 92 91 90 88

94 94 94 92 92 90 89 87

94 94 93 91 91 90 88 86

94 93 92 91 90 89 88 86

93 93 92 91 90 89 88 85

93 93 92 91 90 89 87 84

BBR, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

95 95 95 94 93 92 92 91

95 95 94 93 93 93 92 92

94 94 94 93 93 93 90 88

94 94 93 91 89 88 86 85

92 93 86 84 84 84 83 82

78 77 80 81 83 82 81 79

77 76 80 81 81 80 78 77

74 76 79 80 79 78 77 77

BBR2, 5.13.12 kernel (extension)

0

20

40

60

80

100

Link utilization (%), 100KB buffer

(b) From the link utilization, we find that the relative advantage of BBR over CUBIC in our experiment is mainly driven by the severe
underutilization of CUBIC in high-BDP scenarios with a very shallow bottleneck buffer. The utilization of BBR is generally good in these
scenarios, although slightly lower in BBRv2.

Figure 2: Original result, replication, and extension to a newer BBR protocol version with a shallow buffer (100KB). The top
right corner of each figure is of interest, showing the network scenarios with a high BDP.

are implemented in Linux servers. (On FABRIC, where resources
are virtualized and not bare metal servers, we use VMs with 4 cores
and 16 GB RAM.)

Network scenarios: The router (tbf) uses a token bucket filter
(TBF) mechanism on its egress interface towards the host h3 to limit
the bottleneck bandwidth and buffer size using the Linux tc-htb
utility. The router also applies the tc-netem utility on its ingress
interfaces towards the host h1 to emulate network delays (with
a sufficiently large netem buffer size to ensure that no ACKs are
dropped due to delay emulation). Following the original paper, we
consider these network conditions on the intermediate router:

• Round trip times (ms): 5, 10, 25, 50, 75, 100, 150, 200
• Bottleneck bandwidths (Mbps): 10, 20, 50, 100, 250, 500, 750,
1000

• Bottleneck buffer sizes: 100 KB, 10 MB

Flow generation: For each of the network configurations above,
we generate a single TCP flow using the iperf3 utility for 60 sec-
onds, and record the goodput reported by the receiver and the
number of retransmissions reported by the sender. We repeat each
experiment 5 times and use the average of the 5 trials.

Socket buffer configuration: In the original paper, the authors
report that they used sysctl to set the TCP read and write memory
to 231 − 1 bytes, the maximum allowed value, to avoid having the
socket buffer size be a limiting factor. We set the same at the system
level. However, they did not specify the socket buffer size configured
at the application level by the iperf3 “window size” parameter.
Following what we understand to be the intent of the original
paper, we use 100 MB as the socket buffer size, and confirmed by
experiment (using the ss utility) that this was sufficient to avoid
limiting the connection by socket buffer size.

31

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

Replication: “When to Use and When Not to Use BBR” IMC ’23, October 24–26, 2023, Montreal, QC, Canada

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1

0.2 0.2 0.2 0.2 0.09 0.1 0.1 0.1

0.5 0.4 0.2 0.1 0.1 0.1 0.2 0.2

1 0.8 0.3 0.2 0.2 0.2 0.2 0.2

4 1 0.4 0.3 0.3 0.2 0.2 0.2

3 1 0.4 0.3 0.3 0.3 0.3 0.3

3 1 0.5 0.4 0.4 0.2 0.4 0.2

3 1 0.5 0.5 0.5 0.5 0.3 0.4

CUBIC, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0 0 0 0 1 1 1 2

0 0 0 2 2 3 3 4

0 3 10 9 10 7 11 11

28 19 15 24 23 23 25 25

156 123 87 79 77 71 73 68

299 314 223 180 177 161 149 142

423 338 267 250 241 227 218 220

561 437 342 324 317 294 298 302

BBR, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

0 0 0 1 1 2 2 3

0 0 1 2 2 3 4 5

1 1 3 4 5 7 10 13

1 5 5 7 11 14 19 25

6 7 7 11 16 21 28 36

8 8 8 14 21 28 37 49

BBR2, 5.13.12 kernel (extension)

10 2

10 1

100

101

102

103

Retransmissions (thousands of segments), 100KB buffer

Figure 3: (Colors in log scale.) As in the original, we find that a 60 second BBR flow may experience hundreds of thousands of
retransmitted segments, but that CUBIC has far fewer retransmissions. Beyond the original result, we observe that the newer
BBRv2 protocol version has an order of magnitude fewer retransmissions.

Linux kernel versions:The original result [2] is based on the
TCP congestion control implementations in Linux kernel 4.15. We
use the same kernel (in Ubuntu 18.04), and also consider the new
BBRv2 protocol implementation in kernel version 5.13 (in Ubuntu
20.04).

Validation of experiment setting: To validate that the under-
lying host and network capabilities on the testbed platform is not
a limiting factor, after instantiating resources on each testbed we
confirmed using iperf3 and ping that the bandwidth between h1
and h3was close to 10 Gbps, and the round trip time (RTT) was less
than 1 ms. This is substantially better network performance than
the maximum bandwidth in our experiment, which is 200 Mbps, or
the minimum RTT, which is 5 ms. (On CloudLab, a variety of differ-
ent bare metal servers are available - to ensure that the experiment
is valid, we select server types that have at least 10 Gbps Ethernet
NICs.)

3 EXPERIMENT RESULTS
In this section, we describe the results of our replication and of
our extension to newer TCP implementations. To evaluate the per-
formance improvement of TCP BBR over TCP CUBIC in terms of
goodput, we use the goodput gain (GpGain) metric, defined in the
original paper [2] as follows:

GpGainBBRCUBIC =
goodput|BBR − goodput|CUBIC

goodput|CUBIC
× 100. (1)

We also report the number of retransmitted segments per 60 second
flow. We organize these results according to the two key findings
that we seek to replicate, one from the experiment with a shallow
buffer (100 KB) and one from the experiment with a deeper buffer
(10 MB).

3.1 Shallow buffer result
In the original paper [2] Figure 5a (first panel of Figure 2a here)
shows that with a 100 KB bottleneck buffer and a high BDP, BBR

significantly outperforms CUBIC in terms of goodput. Our experi-
ment results, shown in Figure 2a, validate this overall conclusion
with respect to goodput gain. However, where the original result
finds that the advantage of BBR vs. CUBIC is about 10x in most
high-BDP scenarios, in our experiments we measured an advantage
for BBR on the order of 100x or 1000x, for both the original version
of BBR and for the more recent BBRv2 protocol version. To explain
this result, we also show the link utilization of all three protocol
versions - CUBIC, BBR, and BBRv2 - in Figure 2b. We observe that
in our experiments, CUBIC severely underutilizes the link on high-
BDP paths, with link utilization less than 10% in the most extreme
case.

It is difficult to attribute a specific reason to the difference in
magnitude between our result and the original, since in the original,
only the goodput gain is reported and not the individual congestion
control variants’ goodput or link utilization. However, we observe
that under some experimental settings that were not specified ex-
plicitly in the original paper, BBR had much worse link utilization.
For example, the authors did not specify if they changed the iperf3
socket buffer size from the default value, under which we observed
that the TCP flow could be limited by socket buffer size. Similarly,
the authors did not report whether they increased the default buffer
size limit in netem to ensure that no ACKs were dropped. Under
the default settings for iperf3 socket buffer size and netem buffer
limit, the BBR link utilization for the highest BDP path (1000 Mbps
bandwidth, 200 ms delay) was only 12%, rather than the 84% we
report in Figure 2b.

The original paper [2] further clarifies in Figure 5c and 5d that
BBR’s goodput advantage comes at the cost of many more retrans-
missions, with a 60 second flow having hundreds of thousands of
retransmitted segments in BBR and far fewer in CUBIC. Our ex-
periments validate this conclusion as well, with results shown in
Figure 3. As in the original, we see that the BBR flows experience
hundreds of thousands of retransmissions over high-BDP paths,

32

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Soumyadeep Datta and Fraida Fund

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

2 -25 -30 8 -9 35 0 -34

-4 4 0 -4 -7 -19 -33 -19

3 6 -8 -7 -6 -7 -10 -7

2 12 0 -6 -8 -6 -8 -7

32 -5 -4 -4 -5 -6 -8 -8

3 -2 -3 -4 -5 -6 -8 13

-2 -2 -3 -4 -5 -6 15 8

0 4 14 17 13 24 17 13

Original result

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

-8 -9 -1 -7 -4 -5 -6 -9

-6 -4 -7 -6 -7 -6 -9 -8

-4 -4 -4 -4 -5 -5 -6 -6

-3 -3 -3 -3 -3 -4 -5 -5

-2 -2 -2 -3 -3 -4 -4 -5

-2 -2 -2 -3 -3 -3 -4 -5

-2 -2 -2 -2 -3 -3 -4 -5

-2 -2 -2 -2 -3 -4 -4 -5

4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

-10 -10 -1 -7 -4 -6 -5 -10

-6 -4 -7 -5 -7 -5 -8 -8

-4 -4 -4 -4 -4 -4 -4 -4

-3 -3 -3 -3 -3 -3 -3 -3

-3 -2 -3 -3 -3 -2 -2 -3

-2 -2 -2 -3 -3 -2 -2 -4

-2 -2 -2 -2 -2 -2 -3 -4

-2 -2 -2 -2 -2 -3 -3 -4

5.13.12 kernel (extension)

100

75

50

25

0

25

50

75

100

Goodput gain for BBR vs CUBIC, 10MB buffer

(a) (A positive value indicates an advantage to BBR over CUBIC.) The original result suggests an advantage of about 10x for BBR in high BDP
regimes (top right of each panel) and a similar advantage for CUBIC in low-bandwidth scenarios (bottom of each panel) with deep buffers. In
contrast, in our experiments we consistently see a very small advantage for CUBIC.

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

100 100 96 100 97 98 98 100

100 98 100 99 100 98 100 99

98 98 98 98 97 97 96 96

97 97 96 96 96 95 95 94

96 96 96 95 95 95 94 93

96 96 96 95 95 94 93 93

96 95 95 95 95 94 93 92

96 96 95 95 95 94 93 92

CUBIC, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

96 95 94 94 93 93 91 91

95 94 94 93 93 93 91 91

94 94 94 93 93 92 91 90

94 94 94 93 93 92 91 89

94 94 94 93 92 92 90 88

94 94 93 93 92 91 90 88

94 94 93 93 92 91 90 88

94 94 93 92 92 91 89 87

BBR, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

95 95 94 94 93 93 93 92

95 94 94 94 94 93 93 92

94 94 94 94 93 93 92 91

94 94 93 93 93 93 92 91

94 94 93 93 92 93 92 90

94 94 93 93 92 92 92 89

93 94 93 93 92 92 90 89

93 93 93 93 92 92 90 88

BBR2, 5.13.12 kernel (extension)

0

20

40

60

80

100

Link utilization (%), 10MB buffer

(b) In our experiments, CUBIC, BBR, and BBRv2 generally have good link utilization, so none of these congestion control variants has a
substantial goodput advantage over any other.

Figure 4: Original result, replication, and extension to a newer BBR protocol version for a deep buffer (10MB).

while CUBIC flows experience far fewer. We also consider the ex-
tended result to BBRv2, where we see an order of magnitude fewer
retransmissions than the original BBR protocol version.

This difference between BBR a BBRv2 is briefly explained as
follows. In BBR and BBRv2, the sending rate may be limited either
by the pacing rate (which is determined by BBR’s estimate of the
bottleneck bandwidth) or by CWND (which is set as a multiple of
the BDP, so it is determined by BBR’s estimate of the bottleneck
bandwidth and minimum RTT of the path). In our experiments,
when the sender is limited by pacing rate, as with deep buffer
or low-BDP paths, BBR’s estimate of the bottleneck bandwidth
and minimum RTT (as observed using the ss utility) is similar
in the original and in BBRv2. Thus, in these settings, both pro-
tocol versions achieve similar (high) link utilization and minimal
retransmissions. However, when the sender is CWND limited, as
in shallow buffer high-BDP paths, the behavior is very different
because the CWND in BBRv2 is set much lower by design [4]. For

example, in the networkwith 200ms RTT and 1000Mbps bottleneck
bandwidth, the median CWND of the BBR flow is approximately
400 Mbits, while the median CWND of the BBRv2 flow is only
157 Mbits. BBRv2 is also less aggressive in bandwidth probing, with
the explicit goal of reducing loss rate in shallow buffers [4], so in
high-loss scenarios it also estimates a smaller bottleneck bandwidth
- 881 Mbps median bottleneck bandwidth estimate for BBRv2 vs.
992 Mbps bottleneck bandwidth estimate for the original BBR in the
network with 200 ms RTT and 1000 Mbps bottleneck bandwidth.
We elaborate further on the differences between BBR and BBRv2
in Section 4.

Summary: We validate the overall findings of the original, al-
though the magnitude of the result is different. We also extend
the result and show that for high-BDP paths with shallow buffers,
BBRv2 has lower goodput but fewer retransmissions than the origi-
nal BBR.

33

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

Replication: “When to Use and When Not to Use BBR” IMC ’23, October 24–26, 2023, Montreal, QC, Canada

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

4 7 6 6 3 5 5 5

4 4 4 3 4 4 4 5

1 2 2 2 2 2 1 2

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.8

0.5 0.5 0.6 0.7 0.7 0.7 0.9 1

0.5 0.5 0.6 0.7 0.8 0.8 1 1

0.5 0.5 0.6 0.8 0.8 0.9 1 5

CUBIC, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2

0 0 0 0 0 2 10 48

0 0 0 0 4 11 88 106

0 0 0 2 11 104 135 148

BBR, 4.15.0 kernel (replication)

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3

0 0 0 0 0 3 11 19

0 0 0 0 5 11 23 35

0 0 0 3 11 19 34 49

BBR2, 5.13.12 kernel (extension)

10 2

10 1

100

101

102

103

Retransmissions (thousands of segments), 10MB buffer

Figure 5: (Colors in log scale.) The original paper, while not reporting specific values, states that in the deep buffer scenario
there are far fewer retransmissions for both CUBIC and BBR than in the shallow buffer scenario. We confirm this finding for
BBR, but not necessarily for CUBIC.

3.2 Deep buffer result
In the original paper [2] Figure 5b (the first panel of Figure 4a)
shows that with a 10MB bottleneck buffer, CUBIC outperforms BBR,
except for very high BDP regimes, where BBR has an advantage. In
our experiments, however, we find a consistent but small advantage
for CUBIC over both BBR and BBRv2. Furthermore, the utilization
of all three congestion control protocols (Figure 4b) is generally
very close to 100%, although all three have slightly lower utilization
when the BDP is large.

The original paper [2] does not report specific values for retrans-
missions in the deep buffer scenario, but does say that far fewer
retransmissions occur for both CUBIC and BBR. In our observa-
tion (Figure 5), BBR indeed has many fewer retransmissions, with
zero retransmissions in all but the highest-BDP paths. For CUBIC,
however, we observe more retransmissions in the deep buffer case
when either the BDP is high or the link bandwidth is small.

Summary: While the original finding suggests a goodput ad-
vantage for BBR in high-BDP paths and a goodput advantage for
CUBIC in low-bandwidth paths, we observe a slight advantage for
CUBIC in all of the deep buffer scenarios. We also have mixed find-
ings relative to the original for number of retransmissions in the
deep buffer scenarios.

4 DISCUSSION
Understanding the results with respect to other published
work: The results of our replication are largely in line with other
related work. For example, [8] shows that for a single flow, TCP
CUBIC requires a buffer size at least 0.4 BDP to achieve full link
utilization. In fact, we see in Figure 2b and Figure 6a that CUBIC
utilization is degraded when the bottleneck buffer size is smaller
than 0.4 BDP. Similarly, our results in Figure 3, Figure 6a, Figure 5,
and Figure 6b agree with the previous finding that to avoid ex-
cessive retransmission in BBR, the buffer size should be at least
1 BDP [7]. We see zero retransmissions for BBR when the buffer
size is sufficiently large relative to the BDP.

Understanding the effect of experiment and environment
settings: In some cases, our results were not necessarily in line
with the original paper [2], with either a difference in magnitude or
a difference in trend. However, we observe in our experiments that
many experiment settings can interact with the congestion control
protocol, including:

• The socket buffer size setting in the application, which if too
small may limit the sending rate (instead of CWND or other
congestion control parameters),

• The setting of the queues that were not explicitly specified,
e.g. the default egress queue at the sending host,

• The speed of the network hardware (the original authors
used 1 Gbps NICs, in our experiments the NICs were at least
10 Gbps) - even if the maximum bottleneck bandwidth in the
experiment does not exceed the NIC rate, the burst behavior
is affected,

• The maximum segment size - whether it is an Ethernet link
with 1500 B MTU or one that supports jumbo frames with
9000 B MTU. Also, the segment offload setting on the NIC
can change the “effective” MTU,

• The behavior of the operating system with respect to loss de-
tection and retransmission, which is known to have changed
in recent Linux kernels with the implementation of RACK [10].

Our experience highlights the importance of validating experiments
to be sure that the expected environment is realized, and the benefit
of sharing experiment artifacts so that others can easily replicate
the work and identify differences.

Understanding the results in light of changes to BBR in
BBRv2: In addition to replicating the original result, we extended
this study to consider BBRv2. Unlike the original BBR protocol ver-
sion, which does not consider loss rate at all, BBRv2 has a target loss
rate that it tries not to exceed. It keeps track of bounds on estimated
bandwidth and number of bytes in flight, with consideration only
of samples where a packet loss threshold was not exceeded, and
uses these to limit CWND [4]. In our experiments, we observe that
BBRv2 has slightly lower utilization but much less retransmission

34

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Soumyadeep Datta and Fraida Fund

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

16 8 3.2 1.6 1.1 0.8 0.53 0.4

8 4 1.6 0.8 0.53 0.4 0.27 0.2

3.2 1.6 0.64 0.32 0.21 0.16 0.11 0.08

1.6 0.8 0.32 0.16 0.11 0.08 0.053 0.04

0.64 0.32 0.13 0.064 0.043 0.032 0.021 0.016

0.32 0.16 0.064 0.032 0.021 0.016 0.011 0.008

0.21 0.11 0.043 0.021 0.014 0.011 0.0071 0.0053

0.16 0.08 0.032 0.016 0.011 0.008 0.0053 0.004

Buffer size/BDP, 100KB buffer

10 3

10 2

10 1

100

101

102

103

(a) The “shallow” buffer scenario.

5 10 25 50 75 100 150 200
RTT (ms)

10
20

50
10

0
25

0
50

0
75

01
00

0
Ba

nd
wi

dt
h

(M
bp

s)

1600 800 320 160 106.7 80 53.3 40

800 400 160 80 53.3 40 26.7 20

320 160 64 32 21.3 16 10.7 8

160 80 32 16 10.7 8 5.3 4

64 32 12.8 6.4 4.3 3.2 2.1 1.6

32 16 6.4 3.2 2.1 1.6 1.1 0.8

21.3 10.7 4.3 2.1 1.4 1.1 0.7 0.5

16 8 3.2 1.6 1.1 0.8 0.5 0.4

Buffer size/BDP, 10MB buffer

10 3

10 2

10 1

100

101

102

103

(b) The “deep” buffer scenario.

Figure 6: Buffer size expressed as a ratio of buffer size to path BDP. (Colors are in log scale.)

on network paths where the flow is CWND limited, compared to
the original BBR protocol.

5 CONCLUSION
We replicate the experiments to generate Figure 5 in the original
paper [2] by Cao et al on the large-scale CloudLab and FABRIC
testbeds. We were largely able to validate their findings, with some
small differences. We also extend the study to BBRv2, and note
some differences in performance compared to the original BBR, es-
pecially for shallow buffers. Specifically, we observe that BBRv2 has
fewer retransmissions, but also has lower utilization on high-BDP
paths. Our code and other artifacts (documentation, instructions for
instantiating experiments on the testbed facilities, and data analysis
scripts) are available publicly1. We hope that with these materials
future researchers will be able to quickly perform similar studies
at scale, not only for TCP CUBIC and BBR but also for other TCP
variants.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 2226408.

REFERENCES
[1] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga, Kuang-

Ching Wang, Tom Lehman, Paul Ruth, and Ewa Deelman. 2019. FABRIC: A
National-Scale Programmable Experimental Network Infrastructure. IEEE Internet
Computing 23, 6 (nov 2019), 38–47. https://doi.org/10.1109/MIC.2019.2958545

[2] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi.
2019. When to Use and When Not to Use BBR: An Empirical Analysis and Evalu-
ation Study. In Proceedings of the Internet Measurement Conference (Amsterdam,

Netherlands) (IMC ’19). Association for Computing Machinery, New York, NY,
USA, 130–136. https://doi.org/10.1145/3355369.3355579

[3] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue 14,
September-October (2016), 20 – 53. http://queue.acm.org/detail.cfm?id=3022184

[4] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, and Van
Jacobson. 2023. BBR Congestion Control. Technical Report. https://www.ietf.org/
archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.html

[5] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of Cloudlab. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC ’19).
USENIX Association, USA, 1–14.

[6] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[7] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental evaluation
of BBR congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP). https://doi.org/10.1109/ICNP.2017.8117540

[8] Wolfram Lautenschlaeger and Andrea Francini. 2015. Global synchronization
protection for bandwidth sharing TCP flows in high-speed links. In 2015 IEEE
16th International Conference on High Performance Switching and Routing (HPSR).
1–8. https://doi.org/10.1109/HPSR.2015.7483103

[9] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. 2019. The Great Internet TCP Congestion Control Census. Proc. ACM
Meas. Anal. Comput. Syst. 3, 3, Article 45 (dec 2019), 24 pages. https://doi.org/10.
1145/3366693

[10] Ufuk Usubütün, Fraida Fund, and Shivendra Panwar. 2023. Do Switches Still
Need to Deliver Packets in Sequence?. In 2023 IEEE 24th International Conference
on High Performance Switching and Routing (HPSR). IEEE, 89–95.

ETHICS
This paper does not raise any ethical issues. This paper does not
involve research with human or animal subjects.

35

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 10, 2025.

https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1145/3355369.3355579
http://queue.acm.org/detail.cfm?id=3022184
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.html
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.html
https://doi.org/10.1109/ICNP.2017.8117540
https://doi.org/10.1109/HPSR.2015.7483103
https://doi.org/10.1145/3366693
https://doi.org/10.1145/3366693

	Abstract
	1 Original paper and Motivation for Replication
	2 Experiment methodology
	3 Experiment results
	3.1 Shallow buffer result
	3.2 Deep buffer result

	4 Discussion
	5 Conclusion
	Acknowledgments
	References

