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ABSTRACT
We replicate the paper, "When to Use andWhen Not to Use BBR: An
Empirical Analysis and Evaluation Study" by Cao et al, published
in IMC 2019 [2], with a focus on the relative goodput of TCP BBR
and TCP CUBIC for a range of bottleneck buffer sizes, bandwidths,
and delays. We replicate the experiments performed by the orig-
inal authors on two large-scale open-access testbeds, to validate
the conclusions of the paper. We further extend the experiments
to BBRv2. We package the experiment artifacts and make them
publicly available so that others can repeat and build on this work.
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1 ORIGINAL PAPER AND MOTIVATION FOR
REPLICATION

In [2], Cao et al compare the performance of TCP BBR [3] and
TCP CUBIC [6] in 640 different emulated network scenarios (with
different bandwidth, bottleneck buffer size, and RTT).

They find that:
• For shallow buffers, BBR significantly outperforms CUBIC
in terms of goodput, especially in the high bandwidth-delay
product (BDP) regime, despite a higher number of retrans-
missions, as shown in Figure 5(a) of the original paper.

• For deep buffers, CUBIC slightly outperforms BBR in terms
of goodput, except for an extremely high bandwidth-delay
product (BDP) regime, as shown in Figure 5(b) of the paper.

Since the paper was published in 2019, however, BBR has grown
in popularity, to the extent that a recent census found that it makes
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up almost 40% of all Internet traffic [9]. It is therefore crucial to re-
examine the conclusions of [2]. We are also interested in extending
the evaluation to BBRv2 [4], which differs from the original BBR in
many implementation details. Our focus in this paper is to replicate
the results of the original paper independently. Therefore, rather
than contacting the authors of the original paper, we implemented
scripts to replicate the experiments ourselves. Cao et. al. provide a
detailed description of the system specifications (such as the specific
Linux OS and kernel version), network settings (such as buffer
sizes, bandwidths, and delays), and other implementation details
in the original paper [2], which we used to realize a comparable
experimental setting.

To independently verify the claims in this paper, users of the
CloudLab [5] or FABRIC [1] platforms can use the artifacts and
instructions in our repository 1 to reserve testbed resources, run
the experiments, and visualize the results.

2 EXPERIMENT METHODOLOGY
In this section we describe the details of our experiment methodol-
ogy, including the experimental platforms, topology, network sce-
narios, flow generation, socket buffer configuration, Linux kernel
versions, and validation of the experiment setting. Where relevant,
we compare our choices to those in the original paper [2].

Experimental platforms: The comparable experiments per-
formed byCao et al in [2] were conducted their own LAN testbed. To
support easy sharing of experiment artifacts for further replications
and extensions of this work, we replicate these results on Cloud-
lab [5], a shared testbed facility that provides bare metal servers,
and on FABRIC [1], which provides virtual machines connected by
high-speed links.

h1
(TCP 

sender)

tbf
(bottleneck

router)

h3
(TCP 

receiver)

Figure 1: Network topology and direction of data flow.

Topology:We replicate the topology proposed by the authors
in the original paper [2], with one host (denoted as h1) sending
data to another host (denoted as h3) via an intermediate router
(denoted as tbf) as shown in Figure 1. All nodes in the topology

1Experiment artifacts: https://github.com/sdatta97/imcbbrrepro
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(a) (A positive value indicates an advantage to BBR over CUBIC.) Compared to the original result, which found that the relative advantage
of BBR vs. CUBIC was on the order of 10x in high-BDP scenarios, we observed an advantage on the order of 100x or 1000x, for both BBRv1
(replication) and BBRv2 (extension).
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(b) From the link utilization, we find that the relative advantage of BBR over CUBIC in our experiment is mainly driven by the severe
underutilization of CUBIC in high-BDP scenarios with a very shallow bottleneck buffer. The utilization of BBR is generally good in these
scenarios, although slightly lower in BBRv2.

Figure 2: Original result, replication, and extension to a newer BBR protocol version with a shallow buffer (100KB). The top
right corner of each figure is of interest, showing the network scenarios with a high BDP.

are implemented in Linux servers. (On FABRIC, where resources
are virtualized and not bare metal servers, we use VMs with 4 cores
and 16 GB RAM.)

Network scenarios: The router (tbf) uses a token bucket filter
(TBF) mechanism on its egress interface towards the host h3 to limit
the bottleneck bandwidth and buffer size using the Linux tc-htb
utility. The router also applies the tc-netem utility on its ingress
interfaces towards the host h1 to emulate network delays (with
a sufficiently large netem buffer size to ensure that no ACKs are
dropped due to delay emulation). Following the original paper, we
consider these network conditions on the intermediate router:

• Round trip times (ms): 5, 10, 25, 50, 75, 100, 150, 200
• Bottleneck bandwidths (Mbps): 10, 20, 50, 100, 250, 500, 750,
1000

• Bottleneck buffer sizes: 100 KB, 10 MB

Flow generation: For each of the network configurations above,
we generate a single TCP flow using the iperf3 utility for 60 sec-
onds, and record the goodput reported by the receiver and the
number of retransmissions reported by the sender. We repeat each
experiment 5 times and use the average of the 5 trials.

Socket buffer configuration: In the original paper, the authors
report that they used sysctl to set the TCP read and write memory
to 231 − 1 bytes, the maximum allowed value, to avoid having the
socket buffer size be a limiting factor. We set the same at the system
level. However, they did not specify the socket buffer size configured
at the application level by the iperf3 “window size” parameter.
Following what we understand to be the intent of the original
paper, we use 100 MB as the socket buffer size, and confirmed by
experiment (using the ss utility) that this was sufficient to avoid
limiting the connection by socket buffer size.
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Figure 3: (Colors in log scale.) As in the original, we find that a 60 second BBR flow may experience hundreds of thousands of
retransmitted segments, but that CUBIC has far fewer retransmissions. Beyond the original result, we observe that the newer
BBRv2 protocol version has an order of magnitude fewer retransmissions.

Linux kernel versions:The original result [2] is based on the
TCP congestion control implementations in Linux kernel 4.15. We
use the same kernel (in Ubuntu 18.04), and also consider the new
BBRv2 protocol implementation in kernel version 5.13 (in Ubuntu
20.04).

Validation of experiment setting: To validate that the under-
lying host and network capabilities on the testbed platform is not
a limiting factor, after instantiating resources on each testbed we
confirmed using iperf3 and ping that the bandwidth between h1
and h3was close to 10 Gbps, and the round trip time (RTT) was less
than 1 ms. This is substantially better network performance than
the maximum bandwidth in our experiment, which is 200 Mbps, or
the minimum RTT, which is 5 ms. (On CloudLab, a variety of differ-
ent bare metal servers are available - to ensure that the experiment
is valid, we select server types that have at least 10 Gbps Ethernet
NICs.)

3 EXPERIMENT RESULTS
In this section, we describe the results of our replication and of
our extension to newer TCP implementations. To evaluate the per-
formance improvement of TCP BBR over TCP CUBIC in terms of
goodput, we use the goodput gain (GpGain) metric, defined in the
original paper [2] as follows:

GpGainBBRCUBIC =
goodput|BBR − goodput|CUBIC

goodput|CUBIC
× 100. (1)

We also report the number of retransmitted segments per 60 second
flow. We organize these results according to the two key findings
that we seek to replicate, one from the experiment with a shallow
buffer (100 KB) and one from the experiment with a deeper buffer
(10 MB).

3.1 Shallow buffer result
In the original paper [2] Figure 5a (first panel of Figure 2a here)
shows that with a 100 KB bottleneck buffer and a high BDP, BBR

significantly outperforms CUBIC in terms of goodput. Our experi-
ment results, shown in Figure 2a, validate this overall conclusion
with respect to goodput gain. However, where the original result
finds that the advantage of BBR vs. CUBIC is about 10x in most
high-BDP scenarios, in our experiments we measured an advantage
for BBR on the order of 100x or 1000x, for both the original version
of BBR and for the more recent BBRv2 protocol version. To explain
this result, we also show the link utilization of all three protocol
versions - CUBIC, BBR, and BBRv2 - in Figure 2b. We observe that
in our experiments, CUBIC severely underutilizes the link on high-
BDP paths, with link utilization less than 10% in the most extreme
case.

It is difficult to attribute a specific reason to the difference in
magnitude between our result and the original, since in the original,
only the goodput gain is reported and not the individual congestion
control variants’ goodput or link utilization. However, we observe
that under some experimental settings that were not specified ex-
plicitly in the original paper, BBR had much worse link utilization.
For example, the authors did not specify if they changed the iperf3
socket buffer size from the default value, under which we observed
that the TCP flow could be limited by socket buffer size. Similarly,
the authors did not report whether they increased the default buffer
size limit in netem to ensure that no ACKs were dropped. Under
the default settings for iperf3 socket buffer size and netem buffer
limit, the BBR link utilization for the highest BDP path (1000 Mbps
bandwidth, 200 ms delay) was only 12%, rather than the 84% we
report in Figure 2b.

The original paper [2] further clarifies in Figure 5c and 5d that
BBR’s goodput advantage comes at the cost of many more retrans-
missions, with a 60 second flow having hundreds of thousands of
retransmitted segments in BBR and far fewer in CUBIC. Our ex-
periments validate this conclusion as well, with results shown in
Figure 3. As in the original, we see that the BBR flows experience
hundreds of thousands of retransmissions over high-BDP paths,
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(a) (A positive value indicates an advantage to BBR over CUBIC.) The original result suggests an advantage of about 10x for BBR in high BDP
regimes (top right of each panel) and a similar advantage for CUBIC in low-bandwidth scenarios (bottom of each panel) with deep buffers. In
contrast, in our experiments we consistently see a very small advantage for CUBIC.
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(b) In our experiments, CUBIC, BBR, and BBRv2 generally have good link utilization, so none of these congestion control variants has a
substantial goodput advantage over any other.

Figure 4: Original result, replication, and extension to a newer BBR protocol version for a deep buffer (10MB).

while CUBIC flows experience far fewer. We also consider the ex-
tended result to BBRv2, where we see an order of magnitude fewer
retransmissions than the original BBR protocol version.

This difference between BBR a BBRv2 is briefly explained as
follows. In BBR and BBRv2, the sending rate may be limited either
by the pacing rate (which is determined by BBR’s estimate of the
bottleneck bandwidth) or by CWND (which is set as a multiple of
the BDP, so it is determined by BBR’s estimate of the bottleneck
bandwidth and minimum RTT of the path). In our experiments,
when the sender is limited by pacing rate, as with deep buffer
or low-BDP paths, BBR’s estimate of the bottleneck bandwidth
and minimum RTT (as observed using the ss utility) is similar
in the original and in BBRv2. Thus, in these settings, both pro-
tocol versions achieve similar (high) link utilization and minimal
retransmissions. However, when the sender is CWND limited, as
in shallow buffer high-BDP paths, the behavior is very different
because the CWND in BBRv2 is set much lower by design [4]. For

example, in the networkwith 200ms RTT and 1000Mbps bottleneck
bandwidth, the median CWND of the BBR flow is approximately
400 Mbits, while the median CWND of the BBRv2 flow is only
157 Mbits. BBRv2 is also less aggressive in bandwidth probing, with
the explicit goal of reducing loss rate in shallow buffers [4], so in
high-loss scenarios it also estimates a smaller bottleneck bandwidth
- 881 Mbps median bottleneck bandwidth estimate for BBRv2 vs.
992 Mbps bottleneck bandwidth estimate for the original BBR in the
network with 200 ms RTT and 1000 Mbps bottleneck bandwidth.
We elaborate further on the differences between BBR and BBRv2
in Section 4.

Summary: We validate the overall findings of the original, al-
though the magnitude of the result is different. We also extend
the result and show that for high-BDP paths with shallow buffers,
BBRv2 has lower goodput but fewer retransmissions than the origi-
nal BBR.
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Figure 5: (Colors in log scale.) The original paper, while not reporting specific values, states that in the deep buffer scenario
there are far fewer retransmissions for both CUBIC and BBR than in the shallow buffer scenario. We confirm this finding for
BBR, but not necessarily for CUBIC.

3.2 Deep buffer result
In the original paper [2] Figure 5b (the first panel of Figure 4a)
shows that with a 10MB bottleneck buffer, CUBIC outperforms BBR,
except for very high BDP regimes, where BBR has an advantage. In
our experiments, however, we find a consistent but small advantage
for CUBIC over both BBR and BBRv2. Furthermore, the utilization
of all three congestion control protocols (Figure 4b) is generally
very close to 100%, although all three have slightly lower utilization
when the BDP is large.

The original paper [2] does not report specific values for retrans-
missions in the deep buffer scenario, but does say that far fewer
retransmissions occur for both CUBIC and BBR. In our observa-
tion (Figure 5), BBR indeed has many fewer retransmissions, with
zero retransmissions in all but the highest-BDP paths. For CUBIC,
however, we observe more retransmissions in the deep buffer case
when either the BDP is high or the link bandwidth is small.

Summary: While the original finding suggests a goodput ad-
vantage for BBR in high-BDP paths and a goodput advantage for
CUBIC in low-bandwidth paths, we observe a slight advantage for
CUBIC in all of the deep buffer scenarios. We also have mixed find-
ings relative to the original for number of retransmissions in the
deep buffer scenarios.

4 DISCUSSION
Understanding the results with respect to other published
work: The results of our replication are largely in line with other
related work. For example, [8] shows that for a single flow, TCP
CUBIC requires a buffer size at least 0.4 BDP to achieve full link
utilization. In fact, we see in Figure 2b and Figure 6a that CUBIC
utilization is degraded when the bottleneck buffer size is smaller
than 0.4 BDP. Similarly, our results in Figure 3, Figure 6a, Figure 5,
and Figure 6b agree with the previous finding that to avoid ex-
cessive retransmission in BBR, the buffer size should be at least
1 BDP [7]. We see zero retransmissions for BBR when the buffer
size is sufficiently large relative to the BDP.

Understanding the effect of experiment and environment
settings: In some cases, our results were not necessarily in line
with the original paper [2], with either a difference in magnitude or
a difference in trend. However, we observe in our experiments that
many experiment settings can interact with the congestion control
protocol, including:

• The socket buffer size setting in the application, which if too
small may limit the sending rate (instead of CWND or other
congestion control parameters),

• The setting of the queues that were not explicitly specified,
e.g. the default egress queue at the sending host,

• The speed of the network hardware (the original authors
used 1 Gbps NICs, in our experiments the NICs were at least
10 Gbps) - even if the maximum bottleneck bandwidth in the
experiment does not exceed the NIC rate, the burst behavior
is affected,

• The maximum segment size - whether it is an Ethernet link
with 1500 B MTU or one that supports jumbo frames with
9000 B MTU. Also, the segment offload setting on the NIC
can change the “effective” MTU,

• The behavior of the operating system with respect to loss de-
tection and retransmission, which is known to have changed
in recent Linux kernels with the implementation of RACK [10].

Our experience highlights the importance of validating experiments
to be sure that the expected environment is realized, and the benefit
of sharing experiment artifacts so that others can easily replicate
the work and identify differences.

Understanding the results in light of changes to BBR in
BBRv2: In addition to replicating the original result, we extended
this study to consider BBRv2. Unlike the original BBR protocol ver-
sion, which does not consider loss rate at all, BBRv2 has a target loss
rate that it tries not to exceed. It keeps track of bounds on estimated
bandwidth and number of bytes in flight, with consideration only
of samples where a packet loss threshold was not exceeded, and
uses these to limit CWND [4]. In our experiments, we observe that
BBRv2 has slightly lower utilization but much less retransmission
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(a) The “shallow” buffer scenario.
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(b) The “deep” buffer scenario.

Figure 6: Buffer size expressed as a ratio of buffer size to path BDP. (Colors are in log scale.)

on network paths where the flow is CWND limited, compared to
the original BBR protocol.

5 CONCLUSION
We replicate the experiments to generate Figure 5 in the original
paper [2] by Cao et al on the large-scale CloudLab and FABRIC
testbeds. We were largely able to validate their findings, with some
small differences. We also extend the study to BBRv2, and note
some differences in performance compared to the original BBR, es-
pecially for shallow buffers. Specifically, we observe that BBRv2 has
fewer retransmissions, but also has lower utilization on high-BDP
paths. Our code and other artifacts (documentation, instructions for
instantiating experiments on the testbed facilities, and data analysis
scripts) are available publicly1. We hope that with these materials
future researchers will be able to quickly perform similar studies
at scale, not only for TCP CUBIC and BBR but also for other TCP
variants.
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