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Abstract— In stochastic and dynamic environments, the abil-
ity to infer an accurate model of the underlying dynamical
system is crucial for ensuring objectives such as responsiveness,
performance, or reliability. We present a novel approach to
update predictive models of discrete-time, stochastic, dynamical
systems in an online fashion. Our approach is based in
physics-informed conditional distribution embeddings, a non-
parametric machine learning technique that approximates an
integral operator to assess the most likely distribution. We
propose an efficient numerical method to update the predictive
model as new data is gathered, employing low-rank updates.
We validate our approach on examples of varying complexity,
including an F-16 ground collision avoidance scenario.

I. INTRODUCTION

For autonomous systems to operate in complex, dynamic,

real-world environments, it is important for them to be

responsive to events and effects that can alter the underlying

dynamics and stochasticity. External disturbances (i.e., wind

gusts), system failures (i.e., faulty sensors, engine failure,

or other malfunctioning elements), and other adverse events

(misclassification in perception or control, unexpected human

input or interaction) can all impact the accuracy of a priori

dynamical system models. Mathematical models can capture

a great deal of autonomous system behaviors, but may

be suspect in environments with significant disturbances.

Physics-informed learning approaches, in which data-driven

methods augment mathematical models, can provide respon-

sivity to changes in the dynamics or the environment, without

ignoring the important knowledge gained from mathematical

models. However, most of these approaches presume data

gathered a priori, and are not responsive to the needs of near

run-time implementation.

Online dynamical learning frameworks seek to address

this problem through a variety of approaches. The Koopman

operator uses a recursive variant of the canonical dynamic

mode decomposition [1, 2], and has shown promise in online

system identification and control of dynamical systems [3, 4].
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Online Gaussian Process (GP) methods have been explored

for their adaptive capabilities in dynamic environments,

including UAV systems and robotic applications [5]–[8]. We

choose to utilize kernel distribution embeddings for their

ability to efficiently incorporate online updates, lack of as-

sumptions on the underlying distribution, and nonparametric

flexibility.

In this paper, we propose a method for near run-time up-

dates to physics-informed kernel embeddings. Kernel embed-

dings of distributions are a class of nonparametric machine

learning techniques that allow the reprsentation of integral

operators and computation of expectations as inner products

in a high-dimensional space of functions known as a repro-

ducing kernel Hilbert space (RKHS). Originally presented

in [9, 10], kernel embeddings have been shown to be useful

for solving approximate reformulations of stochastic opti-

mal control problems, including dynamic programming and

chance-constrained control [11]–[13]. These techniques have

also been applied to Markov models [14]–[16], state filtering

and estimation [10, 17], and policy synthesis [11, 12, 18].

Our main contribution is a method that enables online

updates to data-driven predictive models via kernel embed-

dings of distributions through low-rank updates to the kernel

embedding. Using kernel distribution embeddings to learn

the stochastic kernel that describes the system dynamics

and uncertainty, we develop an efficient update method for

the kernel embedding by exploiting the structure of the

empirical kernel embedding estimate that can be computed

as low rank matrix updates. We presume a moving window

of observations, and seek efficient computational methods

to update the embedding that exploits the similarity of the

data at each time step. Our approach involves use of rank-

one updates to account for adding the most recent sample,

and removing the oldest sample. Our approach functions

similarly to those based in Cholesky decomposition and QR

decomposition, broadening the suite of numerical methods

that could be employed for run-time updates for kernel

embeddings.

The rest of the paper is organized as follows: In section

II we present the mathematical preliminaries on our system

model and physics informed kernel embeddings, followed

by our problem formulation. In section III we provide our

proposed approach and algorithms for the addition and

removal of data of the kernel based predictive model. In

Section IV we provide a comprehensive analysis of accuracy,

scalability, and computational efficiency, followed by a prac-

tical application of our method on an F-16 aircraft model. We



provide some concluding remarks and future work directions

in Section V.

II. PRELIMINARIES & PROBLEM FORMULATION

Notation: We denote the sets of real numbers as R, and

natural numbers as N. Given a space E and N ∈ N we

denote the Cartesian product EN ∆
= E × · · · ×E (N times).

We denote the Borel σ-algebra on a topological space X by

BX , and the expectation operator with respect to Q as EQ.

A. System Model

Let X ⊆ R
n be the state space of the system

xt+1 = f(xt, wt), (1)

where xt ∈ X is the state at time t, and ω = (ωt)t∈N is a

stochastic process characterizing a disturbance on the system.

The system (1) evolves from an initial condition x0 ∈ X ,

which may be drawn from an initial distribution P0 over a

finite time horizon t = 0, 1, . . . , N for N ∈ N. As shown

in [19], the system dynamics in (1) can equivalently be

represented using a stochastic kernel Q : BX × X → [0, 1],
which is a Borel-measurable function that maps a probability

measure Q(· | x) to every x ∈ X on the measurable space

(X ,BX ).
We presume that the system dynamics (1) are unknown,

meaning that we do not have direct knowledge of the

dynamics themselves nor their uncertainty. Consequently,

the stochastic kernel Q is likewise unknown. However, we

assume that we do have knowledge of an approximation of

the dynamics,

x̄t+1 = f̃(x̄t). (2)

and knowledge of the last M observations of (1), in which

an observation consists of pairs that describe the state at a

given time, and the observed state at the next time step. That

is, we define the sample set St = {(xi, yi)}
t−1
i=t−M−1, with

yi ∼ Q(·|xi−1) as the set consisting of M observations.

We distinguish these M samples over this time horizon with

the sample gathered at the (t+ 1)th time step, that is, st =
(xt, yt) for yt ∼ Q(· | xt). For ease of notation, we define the

set with previous and current observations (i.e., with M +1
observations in total), as

S+t = {(xt−M−1, yt−M−1), . . . , (xt−1, yt−1), (xt, yt)}.
(3)

These sets are depicted for clarity in Fig. 1.

B. Physics-Informed Kernel Embeddings for State Prediction

Let k : X × X → R be a symmetric, positive definite

kernel function on X . According to the Moore-Aronszajn

theorem, there exists a corresponding reproducing kernel

Hilbert space H consisting of functions from X to R that

has the following properties:

1) for every x ∈ X , k(x, ·) ∈H , and

2) for every x ∈ X and g ∈ H , g(x) = 〈g, k(x, ·)〉H ,

which is known as the reproducing property.

The reproducing property is key to our approach, since

it allows us to evaluate any function in the RKHS as an

St
st

S+t St+1

time

. . . . . .

Fig. 1: The data St contains M samples, gathered from time

t−M − 1 to time t− 1. Upon observation of the sample st
at time step t, we construct S+

t = St∪ st, then we construct

St+1 = S+
t \st−M−1 as the M samples associated with time

step t+ 1.

inner product. As shown in [10], given a probability measure

Q(· | x), we can represent the expectation operator with

respect to Q(· | x) as an element µ : X →H in an RKHS,

known as the kernel distribution embedding, such that for

any function g ∈ H , the expectation of g with respect to

Q(· | x) can be computed via the reproducing property,

EQ(·|x)[g(x
′)] = 〈g, µ(x)〉H . (4)

However, in practice since the stochatic kernel Q is un-

known, we do not have access to the kernel mean embedding

µ directly. Instead, we can compute an empirical estimate µ̂
of µ using the collected data sample St. As in shown [20],

the empirical estimate µ̂ can be computed as the solution to a

regularized least-squares problem that includes an additional

bias term in order to account for the approximate knowledge

of the system dynamics in (2). Given a sample S and an

estimate f̃ as in (2), the biased regularized least-squares

problem is given by

min
g∈V

1

2λ

M
∑

i=1

‖k(yi, ·)− g(xi)‖
2
H +

1

2
‖g‖2V − 〈g, g0〉H , (5)

where xi denotes the ith state of the system and yi ∼
Q(·|xi−1), λ > 0 is a regularization parameter that is

strictly positive to ensure the problem is well-posed, V is

a vector-valued RKHS consisting of functions from X to

H , and g0(x) = k(f̃(x), ·) is a bias term that encodes prior

knowledge of the dynamics such that for any g ∈H ,

〈g, g0(x)〉H = 〈g, k(f̃(x), ·)〉H = g(f̃(x)). (6)

As shown in [20], the problem in (5) admits a closed-form

solution, given by

µ̂(x) = (Φ> − Φ̃>)WK(x) + k(f̃(x), ·), (7)

where Φ and Φ̃ are feature vectors, with elements Φi =
k(yi, ·) and Φ̃i = k(f̃(xi), ·), W = (G + λI)−1, where

G ∈ R
M×M is a matrix with elements Gij = k(xi, xj),

and K(x) ∈ R
M is a vector that depends on x with

elements Ki(x) = k(xi, x). As discussed in [20], the

empirical estimate µ̂ in (7) has a simple intuitive explanation.

The estimate µ̂ consists of two terms: a data-driven part

(Φ> − Φ̃>)WK(x) that captures the difference between



the approximate dynamics and the data, and a correction

term k(f̃(x), ·) that shifts the learned function such that it is

centered around the bias.

The solution to (7) scales with dimension O(n3) which is

excessive for near run-time implementations.

C. Problem Formulation

We seek a computationally efficient approach to solving

(7), that exploits the fact that with a moving horizon of

samples, many of the encoded data points already exist in

the Hilbert space.

Specifically we seek to solve the following:

Problem 1. Given an embedding µ̂t, which is an evaluation

of (7) based on a set of M prior samples St and on the

approximate dynamics (2), as well as the latest observation

st, we seek to compute

EQ(·|xt)[xt+1], (8)

in a computationally efficient manner that exploits the inter-

section between samples St and St+1, i.e., the overlap due

to the moving horizon.

We seek to avoid the direct computation of a matrix

inversion at each time step. There are a variety of solutions

to Problem 1 that employ methods in linear solvers, such

as Cholesky decomposition [21] or QR methods [22, 23].

We propose here an alternative to these approaches, based in

block matrix partitions, because it exploits known structure.

Numerical solvers may be tailored to particular scenarios,

and so the approach we provide is complementary to those

based in Cholesky decomposition or QR approaches. We

propose a method that efficiently computes the inverse in (7)

for the embedding at time t + 1 by exploiting its structural

similarity to the embedding at time t.
Our method efficiently updates the kernel embedding (7)

by incorporating new data points and removing the oldest

ones, utilizing linear algebra techniques such as the Wood-

bury matrix identity and block partitioned matrix inversion

lemmas, providing the same computational efficiency as a

Cholesky decomposition based approach.

III. METHODS

Our approach is to sequentially update the embedding by

first accounting for the new sample, that is, by calculating

the embedding based on sample set S+
t , then by accounting

for removing the oldest sample, which results in calculating

the embedding based on sample set St+1.

A. Adding an Observation

We presume that we have previously computed the em-

bedding (7) using the sample set St. In this subsection, we

seek to update the embedding (7) with the sample set S+
t ,

by exploiting what we already have done to compute St.

We define the embedding associated with set S+
t as

µ̂+(x) = (Φ>
+ − Φ̃>

+)W+K+(x) + k(f̃(x), ·). (9)

We seek to compute (9) efficiently, by exploiting the solution

to (7).

We note that we can use matrix decomposition to rewrite

the elements of (9) in terms of the elements of (7), that is,

of the embedding associated with the set St. Specifically, the

feature vectors Φ+ and Φ̃+ can be written as

Φ+ =

[

Φ
k(yM+1, ·)

]

, Φ̃+ =

[

Φ̃

k(f̃(xM+1), ·)

]

. (10)

We also note the vector K+(x) ∈ R
M+1 and the matrix

W+ ∈ R
(M+1)×(M+1) can also be decomposed, as

K+(x) =

[

K(x)
k(xM+1, x)

]

(11)

W+ =

([

G K(xM+1)
K(xM+1)

> k(xM+1, xM+1)

]

+ λI

)−1

.

(12)

The matrix W+ is symmetric and positive semi-definite (as

is W ). However, computing the inverse in (12) is the main

difficulty to real-time computation. We seek an alternative to

compute (12), that takes advantage of our knowledge of W ,

K(x), and Φ, and employs only matrix multiplication and

addition.

Proposition 1 (Matrix inversion lemma, [24], Prop. 2.8.7).

Consider a partitioned matrix A = [A12 A12

A21 A22
] ∈ R

n×n, with

block diagonal elements A11 ∈ R
n1×n1 and A22 ∈ R

n2×n2

of dimensions n1 + n2 = n, that are invertible, then the

partition block matrix inversion of A can be written as:

[

A11 A12

A21 A22

]−1

=

[

F 0
0 H

] [

I −A12A
−1
22

−A21A
−1
11 I

]

(13)

where F = (A11 − A12A
−1
22 A21)

−1 and H = (A22 −
A21A

−1
11 A12)

−1.

The factored form in (13) requires inversion of A11 and

A22, the expression in H , and the expression in F .

Lemma 1 (Woodbury matrix identity [25]). Let B be an

invertible matrix, and let U , C, and V be conformable ma-

trices, meaning the dimensions are suitable for the operation

given. Then,

(B1+UB2V )−1 = B−1
1 −B

−1
1 U(B−1

2 +V B−1
1 U)−1V B−1

1

(14)

By partitioning W+ with A11 = G+λI , A12 = K(xM+1),
A21 = K(xM+1)

T , and A22 = k(xM+1, xM+1)+λ, we see

that A22 and H are scalar, i.e., n1 = M,n2 = 1 for n =
M +1. Further, using these substitutions along with Lemma

1 with B1 = W−1, U = −K(xM+1), B2 = (k + λI)−1,

V = K(xM+1)
T , we can simplify F as

F =
(

W−1 −K(k + λ)−1KT
)−1

=W +WK(k + λ−KTWK)−1KTW

=W +WKHKTW

(15)

where, with a slight abuse of notation, we use K to

indicate K(xM+1). Hence by using 15, the solution to µ̂+ in



(9) is found by computing W+ using W , without explicitly

computing the matrix inverse. We present the algorithm for

computing W+ from W in Algorithm 1.

Algorithm 1 Computing W+ from W

Input: W , K(x), st
Output: updated matrix W+

1: A22 ← k(xM+1, xM+1) + λ
2: T ← K>WK
3: H ← (A22 − T )

−1

4: F ←W +WKHK>W

5: W+ ←

[

F 0
0 H

] [

I −KA−1
22

−K>W I

]

6: Return W+

B. Removing an Observation

In this section we consider a similar problem, that is, we

seek to compute an update to the embedding (7) after remov-

ing the oldest observation, without explicitly recomputing the

matrix inverse term in (7). We remove the oldest measure-

ment from S+t , and compute the embedding associated with

St+1,

µ̂−(x) = (Φ>
− − Φ̃>

−)W−K−(x) + k(f̃(x), ·). (16)

We assume we have access to (9) and its components,

Φ+,K+, and W+, and seek to compute W−. We rewrite

the feature vectors Φ+, vector K+(x) ∈ R
M and the matrix

W+ ∈ R
M×M as:

Φ+ =

[

Φ−

k(y1, ·)

]

(17)

K+(x) =

[

K−(x)
k(x1, x)

]

(18)

W+ =

([

G− K(x1)
K(x1)

> k(x1, x1)

]

+ λI

)−1

. (19)

We rewrite W+ as (G+ + λI)−1 to make explicit the

structure within the matrix.

Lemma 2 (Inverse of partitioned matrix, [26]). Given a

partitioned matrix A = [A12 A12

A21 A22
] ∈ R

n×n, with block

diagonal elements A11 ∈ R
n1×n1 and A22 ∈ R

n2×n2 of

dimensions n1 + n2 = n, that are invertible, the inverse of

A can be written as
[

A11 A12

A21 A22

]−1

=

[

F −FA12A
−1
22

−A−1
22 A21F A−1

22 +A−1
22 A21FA12A

−1
22

]

(20)

with F = (A11 −A12A
−1
22 A21)

−1 ∈ R
n1×n1 .

We partition (19) to employ Lemma 2 with W+ =
[A11 A12

A21 A22
]. We can then solve for W− directly.

W− = F−1 (21)

= A11 −A12A
−1
22 A21 (22)

With (22), the solution to µ̂− in (16) is readily com-

putable without an inverse. We summarize this process in

Algorithm 2.

Algorithm 2 Removing an Observation

Input: matrix W+

Output: updated matrix W−

1: Partition W+ ∈ R
M+1×M+1 as: W+ ← [ a b

c d ] , such

that a ∈ R
M×M , b = c> ∈ R

M , and d ∈ R.

2: W− ← a− bd−1c
3: Return W−

C. Updating the embedding

We combine the steps in Sec. III-A and Sec. III-B at every

time step, as described in Algorithm 3. This algorithm has a

computational complexity of O(n2), whereas calculating (7)

directly via inversion incurs a computational complexity of

O(n3).

Algorithm 3 Updating the kernel embedding with a moving

horizon sample set

Input: St, st, W , K(x), µt

Output: µ̂t+1

1: S+t ← St ∪ st
2: Rewrite K+(x) with observation st via (11)

3: Compute W+ using Algorithm 1 with W , K+(x), st
4: St+1 ← S+

t \st−M−1

5: Compute W− using Algorithm 2 with W+

6: µ̂t+1 ← µ̂− via (16)

7: Return µ̂t+1

The output of Algorithm 3 provides a computationally

efficient solution to update the empirical embedding µ̂t+1,

addressing Problem 1 by utilizing low-rank updates to incor-

porate new data while minimizing computational complexity.

Unlike [20], which focuses on incorporating prior system

knowledge into kernel embeddings, our approach enables

real-time updates, making it well-suited for dynamic envi-

ronments.

D. Stability & Convergence

We wish to characterize the stability of the algorithm and

the conditions for its convergence. We rely on the theory

of algorithmic stability, which seeks to derive generalization

error bounds for learning algorithms, and provides a means

to estimate the risk, or generalization error, using a type of

sensitivity analysis. Unlike other approaches, such as [27],

which seek to determine uniform convergence to the mean,

sensitivity analysis seeks to determine how much a variation

in the training data can influence the estimate provided by

a learning algorithm. In our case, this is particularly useful

since the bounds describe the stability of (5) in response to

changes in the sample set (such as data being removed or

altered).

The risk, denoted by R(µ̂), measures the expected loss

(error) of the solution µ̂ to the regularized least-squares



problem in (5), and is defined as

R(µ̂) =

∫

X

‖k(x′, ·)− µ̂(x)‖2H Q(dx′ | x). (23)

However, we cannot compute the risk directly since Q is

unknown. Thus, we seek to bound the risk by its empirical

counterpart. Given a sample S , the empirical risk, denoted

by RS(µ̂), also known as the empirical error, measures the

actual loss of the learning problem, and is defined as

RS(µ̂) =
1

2λ

M
∑

i=1

‖k(x′i, ·)− µ̂(xi)‖
2
H +

1

2
‖µ̂‖2V − 〈µ̂, f0〉V .

(24)

As shown in [28], the (unbiased) regularized least-squares

problem (5) is algorithmically stable and admits finite sample

bounds. An extension of this to the biased case is trivial and

directly follows [28] Theorem 1. We present these bounds

in Theorem 3 for this extension.

Theorem 3. Let k be bounded by ρ < ∞. For any M ≥ 1
and any δ ∈ (0, 1), with probability 1− δ, the risk R of the

regularized least-squares problem in (5) is bounded by

R(µ̂) ≤ RS(µ̂) +
σ2ρ2

λM
+

(

2σ2ρ2

λ
+ ρ

)

√

log(1/δ)

2M
, (25)

where σ > 0 is a coefficient that depends on the choice of

the kernel function k and bounds the algorithm loss function,

|‖k(x1, ·)− k(x
′, ·)‖2 − ‖k(x2, ·)− k(x

′, ·)‖2|

≤ σ‖k(x1, ·)− k(x2, ·)‖
2. (26)

Theorem 3 shows that the empirical estimate µ̂ converges

in probability to the true embedding µ as the size of the set of

samples increases, and also provides finite sample bound [29]

on the empirical estimate. We can ensure boundness of the

kernel k on ρ, with proof directly following [30, Theorem 2].

IV. NUMERICAL RESULTS

All experiments were performed in Python 3.8.12 on

a 11th Gen Intel i7 processor with 16Gb of RAM. We

utilize the stochastic optimal control using kernel methods

(SOCKS) toolbox [28] to perform the analysis. The code

for this paper is available at https://github.com/

unm-hscl/ortiz-ajthor-dipirro-CDC24.

A. Double integrator system

In this section, we discuss the accuracy and scalability

of the proposed method using an N-dimensional stochastic

chain of integrators in a regulation problem using a linear

feedback controller.

The dynamics are described by

xt+1 =















1 Ns
1
2N

2
s . . . 1

(n−1)!N
n−1
s

0 1 Ns

...
. . .

...

0 0 0 . . . Ns

0 0 0 . . . 1















xt

+
[

1
n!N

n
s . . . 1

2Ns Ns

]T
ut + αωt

(27)

Fig. 2: The proposed method can accurately solve (8) for

2-D integrator dynamics despite a noise scaling factor larger

than the step changes in the dynamics.

where xt ∈ R
n is the state, ut ∈ R is the control input, and

ωt is a random variable with distribution N (0, 1) scaled by

α ∈ [0.01, 1]. We define a linear state feedback controller

u = −Kx with gain matrix K chosen via pole placement to

ensure stability. The sampling time is Ns = 0.1 seconds.

We solve the single step prediction (8) for (27) using a

Guassian kernel function k(x, x′) = exp(−||x − x′||2/2σ2)
with hyperparameters σ = 0.5 and λ = 1e− 3.

1) Accuracy: We explore the accuracy of our method us-

ing the average mean squared error (AMSE) over ten trials as

a function of time, window size γ, and scaled additive noise

α. Figure 2 shows the solution to (8) for n = 2, over a time

horizon of N = 150 time steps, with α = 0.1. The prediction

inaccuracies primarily stem from the large impact of the

noise on the dynamics. The solution is numerically identical

to the prediction method that uses Cholesky factorization

to update W when both approaches are numerically stable.

Both the proposed method and the Cholesky decomposition

method can suffer from numerical instabilities when the

Gram matrix is ill-conditioned [23, §5.3.8]. The Cholesky

decomposition can also become numerically unstable when

the matrix W−1 is near rank deficient [23, §5.3.4].

Figures 3 and 4 depict the average mean square error for

the proposed approach as window size and noise scaling vary,

respectively. We found empirically that for window sizes

less than 10% of the M samples in the moving window,

the proposed method suffers from numerical instability, as

shown in 3. However, when γ > 0.1M , we see an increased

accuracy of prediction. Figure 4 shows the average 10 trial

AMSE of the proposed approach as we scale the noise on the

range [0.01, 1]. As expected, an increased error is observed

as a function of the scaling factor. When sufficient data is

collected to characterize the system and the Gram matrix is

well-conditioned, there is an increase in the prediction error.

2) Scalability: We evaluate the scalability of the proposed

method on (27) for n ∈ [2, 50, 100, . . . , 1000]. As expected,



Fig. 3: Average mean square error over 10 trials in the

prediction of the states for a 2-D integrator via Algorithm

3, with noise scale α = 0.1. Small window sizes lead to

poor characterization of the system and can lead to numerical

instability with the proposed method. Larger window sizes

improve the accuracy of the prediction.

Fig. 4: Average mean square error over 10 trials in the

prediction of the states for a 2-D integrator using Algorithm

3 with window size γ = 50. While the prediction error

increases with larger noise scaling, it still remains robust

to noise, with magnitude < 0.01.

Figure 5 shows a linear increase in the computation time

with dimensionality, associated with the computation time

for the state variable predictions.

We also consider computational time as a function of

window size. Figure (6) shows the average computation time

increases over a window size range γ ∈ [5, 50], up to a

window size of approximately 33% of the total data.

B. F-16 Aircraft

In this section we demonstrate our proposed method in a

more realistic and complex scenario. We consider a ground

collision avoidance scenario for an F-16 aircraft with low

altitude and a negative pitch angle [20, 31, 32] , in which

the aircraft sequences through multiple controllers to first

right the aircraft and then initiate a climb.

We presume that the approximate dynamics (2) are in-

accurate, with gravity parameter that is g = 4.8 m/s2. We

chose this value to intentionally be a different value than is

Fig. 5: Computation time for online updates in Algorithm 3

for the n-D integrator with window size γ = 50 and noise

scale α = 0.1. The computation time increases linearly due

to the additional state elements to be predicted.

Fig. 6: Average computation time for 10 trials to compute

online updates (algorithm 3) over increasing window size γ,

with noise scale α = 0.1. The computation time increases

with increasing window size due to the increased complexity

of the matrix computations.

reflected in simulated data, which reflects the true value of

g = 9.8 m/s2.

The F-16 dynamics are nonlinear, with 13 states and 4

control inputs. The dynamics capture the 6-DOF motion with

a state that consists of velocity vt, angle of attack α, sideslip

β, altitude h, attitude angles roll φ, pitch θ, yaw ψ, and their

respective rates p, q, r, engine power, and two states, pn and

pe, which capture translation along north and east, as in [33].

The plant is built on linearly interpolated lookup tables that

incorporate wind tunnel data describing the engine model,

and other dynamic coefficients. The system is controlled by

three independent LQR controllers that switch at unknown

times during the ground collision avoidance scenario, pos-

ing notable alternations to the closed-loop dynamics during

flight.

As was done in [20], we collect an initial data set with

100 samples. We consider a window size of γ = 300, chosen

to be both large enough to sufficiently capture the system

dynamics, but also small enough to be responsive to the

switch in the dynamics. We use a Gaussian kernel with



Fig. 7: Upper: Using low-rank updates to physics informed kernel embeddings, we can accurately predict [orange] the true

state [blue] of an F-16 performing a ground collision avoidance maneuver, as shown for velocity, pitch, roll, and altitude.

Lower: The error between the predicted and true state is low as compared to the overall magnitude of the state.

σ = 0.5 and a regularization parameter of λ = 1e− 5.

Figure 7 shows the solution to (8) for state prediction. We

can see that the proposed approach can effectively predict

the states of the system online. As shown in Figure 7, when

the controller switches (shown by the vertical red lines),

the state prediction accuracy decreases, because the data

no longer characterizes the system behavior due to changes

in the underlying controller. However, as time progresses,

and the data replaced with samples corresponding to the

new dynamics, the prediction rapidly returns to be close to

the true dynamics. This importance of this result is that it

demonstrates that the proposed approach can accommodate

significant changes in the dynamics in near run-time.

V. CONCLUSION & FUTURE WORK

In this paper, we presented a novel technique for incor-

porating online updates to kernel embeddings for online

system identification and prediction. We presented algo-

rithms that enable the addition and removal of data to

maintain relevance over time through rank-one updates to the

empirical estimate of the embedding. Our approach avoids

computationally expensive matrix inversions. We analyzed

the accuracy, scalability, and numerical efficiency of our

approach on a chain of integrators, and demonstrated its

efficacy on a ground collision avoidance scenario for an F-16

aircraft. Our approach is computationally efficient for near

run-time applications, and robust to numerical instabilities

in the examples considered. Future directions for research

includes the development of methods to strategically choose

samples online to remove not only the oldest data, but rather

obsolete data.
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