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Abstract: In humans, females of reproductive age often experience a more severe disease during
influenza A virus infection, which may be due to differences in their innate immune response. Sex-
specific outcomes to influenza infection have been recapitulated in mice, enabling researchers to study
viral and immune dynamics in vivo in order to identify immune mechanisms that are differently
regulated between the sexes. This study is based on the hypothesis that sex-specific outcomes emerge
due to differences in the rates/speeds that select immune components respond. Using publicly
available sex-specific murine data, we utilized dynamic mathematical models of the innate immune
response to identify candidate mechanisms that may lead to increased disease severity in female
mice. We implemented a large computational screen using the Bayesian information criterion (BIC),
wherein the goodness of fit of the competing model scenarios is balanced against complexity (i.e.,
the number of parameters). Our results suggest that having sex-specific rates for proinflammatory
monocyte induction by interferon and monocyte inhibition of virus replication provides the simplest
(lowest BIC) explanation for the difference observed in the male and female immune responses.
Markov-chain Monte Carlo (MCMC) analysis and global sensitivity analysis of the top performing
scenario were performed to provide rigorous estimates of the sex-specific parameter distributions and
to provide insight into which parameters most affect innate immune responses. Simulations using the
top-performing model suggest that monocyte activity could be a key target to reduce influenza disease
severity in females. Overall, our Bayesian statistical and dynamic modeling approach suggests that
monocyte activity and induction parameters are sex-specific and may explain sex-differences in
influenza disease immune dynamics.
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1. Introduction

In human infections, females are at increased risk for death and serious illness from
outbreak and pandemic strains of influenza A virus (IAV) compared to age-matched
males [1]. This trend is most obvious during female reproductive years (18-50 years of
age). During the 2009 HIN1 pandemic, females in the United States made up 53.2% of
hospitalizations, versus 46.8% for males, and were at higher risk of death than their male
counterparts [2,3]. H5N1 infections, while occurring more often in males, result in greater
disease severity and mortality for females [4]. During the H7N9 outbreak in 2013-2014,
while aged men were the most likely to be hospitalized, females of reproductive age were
most likely to die due to infection [5]. Pregnant females experience even greater disease
severity during influenza infection than non-pregnant women of reproductive age [6].
These disparities indicate a mechanistic difference in the pathogenesis of IAV between
males and females during reproductive years.

Several factors may explain the different infection outcomes between males and
females. These can include sex chromosome-linked genes, such as the protein recognition
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receptor Tlr7 located on the X chromosome, which is responsible for recognizing viral RNA
genomes and has a higher expression in female versus male cells [7], or environmental
factors such as nutrition or microbiota [8]. One factor in particular, sex hormone levels, has
been shown to have a considerable impact on inflammation, a major driver of respiratory
infection disease severity [9]. Estrogen, progesterone, and androgens have receptors on
many different innate and adaptive immune cells, such as T cells, dendritic cells (DCs), and
natural killer (NK) cells, and the number of receptors for each hormone differs between
male and female cells, resulting in different responses to infection between sexes [8].
Estrogens, specifically estradiol (E2), have bipotential effects on immune regulation. At low
concentrations, E2 enhances the production of pro-inflammatory cytokines by increasing
the activity of Type 1 T helper cells (Tg1 cells). Tyl cells produce interferon-gamma (IFNy),
interleukin-2 (IL-2), and tumor necrosis factor-beta (TNF@). These cytokines activate
macrophages and can increase cell-mediated immunity [10]. Conversely, high doses of
E2 reduce the production of these cytokines, dampening macrophage responses [8]. High
concentrations of E2 increase the activity of Type 2 T helper cells (T2 cells), which produce
anti-inflammatory cytokines (i.e., IL-4 and IL-5) that cause increased antibody protection
and eosinophil activation [10]. Females also have greater type I interferon (IFN) activity
than males, likely due to E2 promotion of monocytes into inflammatory DCs that produce
IFN and other pro-inflammatory cytokines [11,12]. IFNs are responsible for the induction
of IFN-stimulated genes, which cause the antiviral responses to be activated in infected and
neighboring cells [11]. E2 also promotes the differentiation of bone marrow precursor cells
into functional CD11c+ DCs, which increases MCP1/CCL2 synthesis [8]. CCL2 regulates
the migration and infiltration of monocytes to the site of infection [13]. Taken together,
chromosomal differences and sex hormone differences can differently regulate many aspects
of the innate immune response during IAV infection between males and females.

Mathematical modeling is a powerful tool for integrating dynamic, sex-specific im-
mune data into testable frameworks and enabling rigorous, data-driven exploration for
potential sex-specific factors that may drive distinct outcomes. Many mathematical models
of the immune response to influenza have been developed to answer specific questions
about infection kinetics, immune dynamics, and resolution [14-17]. For example, models
have been created to analyze the cause of a double peak in viral loads during infection [18]
and why viral loads rebound during bacterial coinfection [19], as well as to determine the
effectiveness of therapeutic targets in reducing inflammation during infection [18,20-22].
Most of the developed models have used ordinary differential equations (ODEs) to link
viral replication and host target cells to cell-to-cell signaling during infection (i.e., interferon
and other pro-inflammatory cytokine responses) or immune cell activity. Other types of
models, such as agent-based models (ABMs), use a rule-based approach to include spatial
and stochastic effects to determine optimal experimental setups [23] and understand spatial
effects on infection outcomes [24]. Hernandez-Vargas et al. employed an engineering-
based approach to construct a reduced model of viral replication which treats cytokines
as inputs and determined that type I interferons caused decreased viral production and
dampened immune cell recruitment in aged mice [25]. Using an in silico screen, Ackerman
et al. determined that the primary cause of distinct immune responses in high versus
low pathogenicity influenza viruses is differences in the rate of interferon production by
infected lung cells after infection [14]. These studies provide evidence that mathematical
modeling can be an important tool to understand the key drivers of sex differences in the
immune response to influenza infection.

Here, we hypothesize that the majority of the immune system is conserved between
the sexes and that differences observed between male and female immune outcomes are
due to differences in the rates/speeds with which a few immune components respond.
Using a previously published model of the influenza-induced innate immune response [14],
we created an in silico screen in which an innate immune model is trained on data from
male and female mice infected with PR8 HIN1 influenza virus [26] under 13 scenarios.
In each scenario, a different set of model parameters are allowed to take on sex-specific
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parameter values. The Bayesian information criterion (BIC), a criterion used for model
selection based on a finite number of models, was used to select the best model scenario.
The BIC penalizes large models in favor of smaller models to prevent overfitting. Markov-
chain Monte Carlo analysis and global sensitivity analysis of the top performing model
were performed to provide rigorous estimates of the sex-specific parameter distributions
and to establish the parameter(s) which most effect innate immune responses. Overall,
our Bayesian statistical and dynamic model approach suggests that monocyte activity and
induction parameters are sex-specific and may explain sex-differences in influenza disease
immune dynamics.

2. Materials and Methods
2.1. Experimental Data Collection from Literature

The data for this paper were gathered from Robinson et al., 2011 [26]. Briefly, male
and female mice (n = 15 per sex) were infected with HIN1-PR8 at 100 TCID50. Virus
titer, body weight, body temperature, and cytokine/chemokine levels were measured
at 1, 3, 5, and 7 days post-infection (dpi). The data were pulled from the figures using
WebPlotDigitizer. From these data, we were able to select two of the cytokines to use for
our model fitting. The authors do not report IFN« or IFNf for all four timepoints and
across the three experimental conditions; we instead chose IL-6 data to use for fitting, since
IL-6 is secreted by infected cells in a similar way to interferon and is a common marker of
inflammation [27]. The authors also did not report macrophage concentrations, but did
report CCL2, which is a cytokine that recruits macrophages at a known rate [11,13]. Overall,
we used viral titer data (log 10 TCID50), IL-6 fold-change data, and CCL2 fold-change data
to fit the model.

2.2. Model Development

The published model from Ackerman et al. was used [14]. This model was developed
as a minimal mechanistic model to retain a high level of confidence in the specific mecha-
nisms within the model while minimizing the number of parameters to be trained. The
innate immune model is shown in Equations (1)—(3). The model does not include any cell
populations, and instead virus growth is modeled semi-logistically. The virus (V) produces
interferon (IFN) according to mass-action kinetics. Interferon then recruits monocytes
(M) based on a Hill kinetic term, assuming that a critical concentration of interferon is
required to attract macrophages to the site of infection. We modified the original model
after determining that a Hill kinetic term would be better suited for modeling virus-specific
interferon production. Additionally, the original Ackerman model used a Hill kinetic term
to model the interferon induction of macrophage production, which we determined would
be better modelled using mass action kinetics.

‘?j:k*V*(l—X)—rvlifn*IFN*V—rU,m*V*M—dU*V (1)

dIFN _ k1% V"

it ket un + Tifnm * M — difn « [EN @)
adM
W:rm'ifn*IFN_dm*M (3)

2.3. Parameter Training and Model Selection

The immune model was simulated in Python using Jupyter Notebook (version 6.1.4,
Austin, TX, USA) and using the initial conditions and parameter bounds published in the
original papers. The integration was performed using Odeint. The model parameters were
determined using scipy.minimize, with a Nelder-Mead optimizer and 100,000 maximum
iterations. Log-likelihood (Equation (4)) was used as the cost function for minimization
with i time points and j states. The difference between the value of the data and the model
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is represented as y; ; — y;,j, Ui%j is the standard deviation of each timepoint of the data, and n
is the overall number of data points.

Table 1 shows the full list of parameters, parameter names, and parameter bounds
used. The parameter bounds were taken from [14], with the caveat that the parameter
ranges needed to be enlarged to account for differences in the units of the virus, interferon,
and monocyte data used in this paper compared to [14].

2
/
. _log(2mn) 1 (yiJ’ - yi,j) 2
log likelihood = Y~ 2,‘2]' 7‘71‘2]‘ + log (0’1',]'71> 4)

Table 1. Parameter bounds during model fitting and selection. Parameter bounds were adapted from
[14].

Parameter Lower Bound Upper Bound Units Parameter Name
k 1 100 days~! Maximum viral growth rate
K 1 2000 log1o(TCID50/mL) Viral carrying capacity in lungs
Tyifn 1x107° 10 days~! Interferon-regulated inhibition of virus replication
dy 1x1073 500 days~! Nonspecific viral decay rate
T'm,ifn 1x 1071 100 days~! Monocyte induction via interferon
difn 1x1073 1000 days~! Nonspecific interferon decay rate
K1 1 100,000 days*1 Interferon production from virus
K2 1 100,000 unitless Apparent dissociation constant
dm 1x1073 100 days~! Nonspecific monocyte decay rate
. Hill coefficient, activation threshold of virus
N 1 10 unitless . .
needed for interferon production
I'ym 1x1073 100 days~! Monocyte activity on viral removal
Tifn,m 1x 103 250 days~! Monocyte-regulated interferon production
v0 1 3 log1o(TCID50/mL) Initial Virus Titer

2.4. BIC-Guided Model Selection

In this work, we generate multiple model scenarios where we fit a male and female
model simultaneously to the experimental data, changing which parameters must be
shared between the models at each iteration. The model scenarios were generated using a
hypothesis-driven approach, where we specifically excluded parameters such as decay rates
that are unlikely to be driving infection and immune response dynamics in the male and
female mice. We did not do an exhaustive search of all parameter combinations, due to the
large amount of computational time that would be needed to explore 8191 model scenarios,
not including analysis of the results. Instead, we focused on relevant combinations of viral-
and immune-regulating parameters (13 total scenarios). We use the Bayesian information
criterion (BIC) to compare these models (Equation (5)). The BIC is comprised of a log-
likelihood term, L, and a penalty term for increasing numbers of parameters, such that a
larger model with a better log likelihood value will not necessarily result in a lower BIC
value. The number of data points is represented by n. A lower BIC represents a better
model, in that the resultant model has a strong balance between its goodness of fit and the
number of free parameters.

BIC = kIn(n) — 2In(L) )

2.5. Markov-Chain Monte Carlo Parameter Exploration

Markov-chain Monte Carlo (MCMC) analysis was used to further explore the parame-
ter space for the sex-specific model fits using the emcee package. MCMC analysis is useful
for systems where a distribution of parameter values satisfies the model, instead of one
exact value for each parameter. This is an appropriate method for use in biological systems,
given the inherent heterogeneity. The log-prior was set to be a uniform distribution within
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the parameter bounds. The log-probability, the sum of the log prior and log likelihood, was
used for MCMC evaluation. A Metropolis—Hastings algorithm was used to sample the
posterior distribution, which uses a weighted random walk [28,29].

The initial amount of virus was allowed to vary between 1 and 2 log10 TCID50/mL
and was estimated during fitting. The initial interferon and monocyte values were set to 1
(unitless) since the data were reported in units of fold-change.

The results from using MCMC analysis to explore the parameter space were filtered
based on the top 10% of parameter chains, i.e., the chains resulting in the lowest 10% of the
-log-likelihood values. This is done to ensure that the algorithm is given enough time to
“burn-in” and that we are only analyzing the best-fitting set of parameters. The best 10%
of parameter chains were used to identify correlated parameters and compare male and
female parameter distributions.

2.6. Sensitivity Analysis

A global sensitivity analysis was performed using linear regression to identify the
parameter values that most impact model responses. A random parameter space with
1000 parameter sets was generated within +20% of the best-fit value for the male and
female models independently. Then, the model was simulated and the area under the curve
(AUC) was calculated for each state. The parameter values and AUC were normalized
using the best-fit values for each model. The linear regression module from the scikit-learn
package in Python was used to perform a linear regression using the normalized parameter
values as the predictors and the normalized AUC values as the output [30].

3. Results
3.1. Reconstructing Prior Data

After extracting the data from Robinson et al., 2011 [26], we reconstructed the data
as shown in Figure 1. The viral titers for the male and female mice are not significantly
different at 1, 3, 5, or 7 dpi. The interferon activity, measured by the IL-6 fold-change
levels, was significantly elevated in female mice at 5 dpi (p < 0.05, as reported in the
original work) but otherwise not statistically different. The monocyte activity, measured by
the CCL2 fold-change levels, was significantly elevated at 3, 5, and 7 dpi in female mice
compared to male mice (p < 0.05, as reported in the original work). The female mice also had
significant increases in morbidity and mortality compared to the male mice ([26]). Given
the similarities in viral titers for the male and female mice, it is likely that the significant
increase in the proinflammatory immune response in the female mice is a major driver
of the reported increase in morbidity and mortality in the female mice. The schematic of
the mathematical model of the immune response used to analyze these data is shown in
Figure 2.
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Figure 1. Data used in model fitting that was reconstructed from Robinson et al., 2011 [26]. Female
data are shown in red; male data in blue. * indicates significant differences between the sexes at each
time point, p < 0.05. Please see original publication for detailed experiment protocols.
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Figure 2. Model diagram of the innate immune model. This model describes the innate immune
response to influenza and does not describe the adaptive immune response or infection resolution.
Virus growth (V) is modeled using semi-logistic growth and induces interferon (IFN) production.
Interferon inhibits viral growth and recruits monocytes (M) to the site of infection. Monocytes also
inhibit viral growth and produce additional interferon. The equations describing the model can be
found in Section 2.2. The model parameters and the interactions in which they are involved are
shown. Created using Biorender.

3.2. Innate Immune Mathematical Model Can Fit Immune Response Data from Male and
Female Mice

The goal of this work is to use dynamic mathematical modeling to determine differ-
ences in immune regulation between male and female mice after HIN1 infection. Differ-
ences in immune regulation can be represented by parameters taking on different values
within a mathematical model (model shown in Figure 2). In this study, we will propose
several scenarios wherein different hypotheses for differences in male and female immune
regulation can be evaluated (Figure 3). Each scenario will be evaluated using the BIC,
which provides a score that rewards the model for fitting well to the data but penalizes
a model for requiring more parameters to fit the data. The lower the BIC, the better the
model is for representing the available data.
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Figure 3. Male and female model scenarios. Example model scenarios considered to determine

sex-specific parameters in the innate immune response to influenza. Black parameters indicate shared
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male and female parameters, while red and blue parameters indicate that the parameters can take
unique, sex-specific values. In the All Different model, each parameter can take a unique, sex-specific
value. In the All Same model, where no parameters are different, all of the parameters must share
values while simultaneously fitting the male and female data. Finally, a pre-selected subset of the
parameters can take unique values while the remaining parameters must share a value during
simultaneous fitting of the male and female data. The specific parameter subset will be chosen based
on prior knowledge of the data and the innate immune behaviors known to be different between

males and females. Created using Biorender.

The first scenario considered is the All Different scenario, wherein we assume that
all of the parameters can differ when comparing the immune responses of infected males
and females. In this scenario, the model is trained separately to the male and female data,
resulting in a male-specific and a female-specific estimate for each parameter. The model
parameters are trained using a constrained optimization algorithm. The parameter bounds
are shown in Table 1 and were based on parameter ranges used in [14]. Allowing all the
model parameters to take sex-specific values results in a good model fit, indicated by the
best-fit line falling within two standard deviations of all data points (red line, Figure 4).
This demonstrates that the mechanistic model is capable of fitting to the male and female
immunologic data in such a way that the parameters are bounded between physiologically
relevant rates. The BIC for this scenario is 72 and this represents a reference number against
which future scenarios can be compared.

) ]
A B &2 Male >
. o7 2 sod 2
Parameter Unique BIC e O 5 @ -—
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Figure 4. BIC-guided model selection to identify sex-specific parameters. (A) Table summarizing
a subset of the different model scenarios tested, with model trajectories shown in (B). The All
Different scenario (red line) resulted in a BIC of 72, which will be considered the baseline BIC
that the subsequent models will be compared to. The All Same (light blue line) scenario results
in a BIC of 321, which is a significantly worse model fit than the All Different scenario. The viral
production and removal scenario (bark blue line) results in a BIC value of 222, again signifying a
significantly worse model fit than the All Different scenario. The monocyte induction and activity
scenario (yellow line) results in a BIC value of 68, which is a significant improvement over the All
Different BIC value, indicating a better model fit and improved model. The monocyte induction
scenario (purple line) results in a BIC value of 110, which is a significantly worse model fit than
the All Different scenario. The BIC and -log-likelihood values for other tested model scenarios
can be found in Supplementary S1. The code to simulate the scenarios shown can be found at
https:/ / github.com/ImmuSystems-Lab/Sex-Disparities-Influenza-Infection.git.
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3.3. The Innate Immune Mathematical Model Finds That Male and Female Mice Have Different
Rates of Immune Activation to HIN1

The other extreme scenario to consider is that no differences exist between the male
and female immune responses. Referring to this scenario as the All Same scenario, we
assume that there are no sex differences and, therefore, all the parameters of the immune
system model can only take on a single value. The model is trained on the combined
male and female data, resulting in a single estimated value for each parameter. Forcing
all the parameters to share a value when fitting the male and female models simulta-
neously results in a poor fit (light blue line, Figure 4B) and a BIC of 321 (Figure 4A).
This is significantly larger than the BIC for the All Different scenario, indicating that
the All Different scenario provides a better model of the male and female immune re-
sponse data. At the very least, this allows us to conclude that it is unlikely that the
parameters of the immune system model are the same when modeling male and female
immune responses.

3.4. A Computational Screen of Competing Immune Regulation Scenarios Suggests That Monocyte
Induction and Activation Are Potential Sex-Specific Parameters

The All Different and All Same scenarios represent two relatively extreme hypotheses,
that the rates of the male and female immune systems are either completely different or
completely the same. Here, to robustly determine if a subset of the parameters in the
model is sex-specific, BIC-guided model selection was performed to screen 13 scenarios
(Section 2.4).

Figure 4 shows a subset of the resulting BIC and trajectories of the best fit achieved
for a subset of the scenarios screened. Supplemental Figure S1 shows a graph of the BIC
versus -log-likelihood values for all tested scenarios. We first decided to test the hypothesis
that viral reproduction could explain differences in disease severity between males and
females by allowing k, K, and d, to take on sex-specific values. The BIC value for this
scenario (viral production and decay) was 222 (Figure 4A), which is significantly larger
than the BIC value for the All Different scenario. Looking at the trajectory of this scenario
(Figure 4B, dark blue line), we can see that there is a poor model fit to the male and female
interferon data and the female monocyte data. Allowing the viral production and decay
parameters to be sex-specific resulted in a worse model fit; therefore, it is unlikely that
these parameters are sufficient to explain the differences observed in the male and female
data. We decided to focus on the monocyte-regulating parameters, since this is the only
state with significantly different data between the male and female mice. Allowing just
the monocyte induction and activity parameters (7, 5, and ry,m) to take sex-specific values
results in a model fit similar to the All Different scenario (yellow and red lines, respectively,
Figure 4B) while improving the BIC to 68 (Figure 4A). This corresponds to strong evidence
that the model with sex-specific monocyte induction and activity parameters is the better
model. Allowing monocyte induction (r,, ) alone to take unique male and female values
does not accurately fit the data, particularly with regards to the female interferon and
monocyte data (purple line, Figure 4B). The BIC value for this scenario is 110, which is
significantly greater than the All Different BIC value, indicating a worse model. Finally, we
tested an immune regulating with viral production scenario (k, T, ifns Yoms Yifums Toms Tojifns
and K1), shown in Supplemental Figure S1, that resulted in a BIC value of 70; this is not
a significantly improved BIC value compared to the All Different scenario, so we did not
further investigate this scenario.

Overall, we have shown that monocyte induction and activity (v, and ry,,) are likely
sex-specific parameters leading to the differences we see in infection dynamics between
male and female mice, which, from this point on, we will refer to as the “Sex-Specific
Monocyte Induction and Activation” scenario, or SSMIA.
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3.5. Monocyte Induction and Activation Are Differentially Requlated in Male and Female Mice

The screening method above identifies the scenario wherein the model is most suited
for modeling the immune data, but it does not provide a rigorous estimate of the model’s
parameter space. MCMC analysis (Section 2.5) was used to estimate the distributions
of the parameters for which the model reasonably fit the data. The parameter density
distributions for the SSMIA scenario are shown in Figure 5. The x axes are logg-scaled,
and only the top 10% of the parameter chains are shown to account for burn-in during
the initial steps of MCMC analysis and ensure only the parameter chains resulting in
the best fit of the model to the data are analyzed (described in Section 2.5). In our SS-
MIA scenario, we see that the two parameters allowed to take sex-specific values (rp, i
and rym) have distinct parameter-density distributions between male and female values,
shown by the blue and red distributions, respectively (Figure 5). The dotted red line
in the figure indicates bounds used during MCMC simulations. To ensure that MCMC
simulations resulted in appropriate model fits, Figure 6 shows the 95% range of model
solutions from the MCMC analysis for the male and female models. For all of the states,
the model best-fit ranges are within two standard deviations of the data, indicating that the
parameter distributions identified by the MCMC analysis do result in a good model fit to
the data.
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Figure 5. Parameter histograms for SSMIA scenario. Red dotted lines indicate parameter bounds
used during MCMC. The purple color indicates parameters shared between the male and female
models, while female-specific parameter distributions are shown in red and male-specific parameter
distributions are shown in blue.

In order to determine if there were differences in parameter distributions between the
All Different and Best BIC scenarios, we used MCMC analysis to explore the parameter
space of the All Different model (Supplement Figure S2). K, d,-ﬁl, K1, K2, d;, and n have
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significant parameter overlap between the male and female parameters, indicating that it is
unlikely that these parameters are sex-specific. The parameters Y, ifns Yoms and Tifu,m have
clearly distinct male and female parameter distributions, indicating that these parameters
could be sex-specific. We ran a simulation including 7,5, , in the SSMIA scenario, resulting
in a BIC value of 220, which was not a significant improvement over the All Different
scenario (not shown); therefore, it is unlikely that Tif,m 18 @ sex-specific parameter. The
distributions for the male and female r,,,, parameters and male 7,, ;;, parameter are similar
for the All Different and SSMIA scenarios, while the distribution for the female 7, ;s
scenario has a double-peak that includes larger parameter values in the All Different
compared to the SSMIA scenario. The remaining parameters have some overlap between
the male and female parameter distributions, but the BIC was not improved when including
these parameters in additional model scenarios, which indicates that these parameters are
not strongly sex-specific parameters.

A. Female MCMC trajectories
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B. Male MCMC trajectories
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Figure 6. Model trajectories using the top 10% of parameter chains after MCMC analysis of the Best
BIC scenario. Top 10% of parameter chains were selected, the parameters were separated into shared,
male, or female parameters based on the Best BIC scenario, and Odeint was used to solve the model
for each parameter chain. The results were then summarized to show the trajectory of 95% of the
model solutions. (A) Female trajectories for virus, interferon, and monocyte. All of the trajectories
fall within two standard deviations of the data, indicating that MCMC analysis successfully found
solutions to the model that fit the data. (B) Male trajectories for virus, interferon, and monocyte. All
of the trajectories fall within two standard deviations of the data, indicating that MCMC analysis
successfully found solutions to the model that fit the data.

Lastly, the parameter chains were analyzed to determine significant correlations
between parameters for the SSMIA scenario, shown in Figure 7. While the monocyte
induction and activity sex-specific parameter values are not correlated, there are other
parameters that are correlated. Specifically, we can see that d,, is perfectly correlated to
T, ifn male and Tm,if emale, and that dy, is perfectly corelated to k. Perfect correlations concerning
the decay rates of monocytes and the virus indicate that the model could be further
simplified according to these correlations to fix the values of the decay parameters by some
ratio during fitting, which would further reduce the model complexity.
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Figure 7. Parameter correlations for the SSMIA scenario. Correlations were determined using the corr
function from Pandas in Python on the top 10% of parameter chains from MCMC analysis.

3.6. Global Sensitivity Analysis

We next determined which parameters most affect the immune model’s response and
determined how these parameters may differently impact the model output when trained
on the male or female data. The male and female global sensitivity results for each state
are shown in Figure 8 for the SSMIA scenario. The female and male models are slightly
sensitive to viral production and decay (k and d,). The male and female monocyte states
are sensitive to 7, iz, which was identified as a sex-specific parameter and is one of the two
parameters allowed to take unique male and female values. This could support monocyte
induction (r,,,) as a sex-specific parameter, since this parameter has a large effect on male
and female model outcomes. Additionally, all of the model states for males and females in
SSMIA scenarios are sensitive to n, the Hill coefficient. As this is an exponential parameter,
it makes sense that small changes would have a large effect on the model outputs. The
model is not highly sensitive (sensitivity coefficient < 10.51) to the remaining parameters,
and the male and female models have similar sensitivities to these parameters.
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Figure 8. Global sensitivity analysis for the Best BIC model. Sensitivity was calculated using the
methods described in Section 2.6. The code used to determine the global sensitivity can be found at
https:/ / github.com/ImmuSystems-Lab /Sex-Disparities-Influenza-Infection.git.

3.7. Model Simulations

We then wanted to use the model to predict the effectiveness of a treatment strategy
that targeted monocyte induction (r,,,¢,) or monocyte activation (r5,,) in females for severe
influenza. Using the SSMIA scenario, we ran two simulations in which each female
sex-specific parameter (rmliﬁ/(em“le OF Ty emale) yyag changed to the value of the male-
specific parameter in order to determine which pathway would be preferable to target
therapeutically. We used parameter values found during the computational screen for
the SSMIA scenario (Section 2.3). When changing rm,,»f,fem”le to rm,ifnm“le, keeping all other
parameters at their median shared or median female value, we can see, in Figure 9, that
the decrease in monocyte induction leads to an increase in viral titers between 3 and 8 dpi,
prolonged elevated interferon levels after 4 dpi, and reduced monocyte levels as early as
3 dpi. The elevated virus and interferon levels are suggestive of a more severe infection
using rmrlfnm“le . This suggests that dampening monocyte induction in female mice is not an
effective therapeutic approach for improving infection outcomes in females.
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Figure 9. The model predicts that, in the female SSMIA scenario, replacing the female monocyte induc-
tion (”m,iﬁ/ emaley barameter value with the male monocyte induction ("m,ifn male) narameter value, that
the decrease in monocyte induction leads to a prolonged infection and excess interferon production.
This could indicate a more severe infection. The solid red line shows the nominal female model while
the dotted red line shows the nominal female model with the male monocyte induction parameter.

When changing 74,/ to r,,,"", keeping all other parameters at their median
shared or median female value, we can see, in Figure 10, that that the increase in the viral
removal capability of the monocytes leads to a decrease in viral titers as early as 3 dpi and
an overall decrease in interferon production and monocyte recruitment. This suggests a
shorter infection duration with less inflammation and less severe disease in the female mice.
This result additionally suggests that therapeutics that regulate monocyte differentiation,
resulting in increased viral removal rates, could benefit females during influenza infection.
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Figure 10. The model predicts that, in the female SSMIA scenario, replacing the female monocyte
activity (ry,m) parameter with the male monocyte activity (ry,m) parameter, that the increase in viral
removal capability of the monocyte leads to a decrease in viral titers at 3 dpi and an overall decrease
in interferon production. This indicates a shorter, less severe infection. The solid red line shows the
nominal female model while the dotted red line shows the nominal female model with the male
monocyte activity parameter.

4. Discussion

Overall, we were able to use a mathematical model of the innate immune response
to analyze sex differences in the immune response to influenza. Our results suggest that
allowing the monocyte induction and activity parameters to be sex-specific is sufficient
to replicate the trends seen in the male and female murine immune data. Independent,
prior studies provide additional support for differences in monocyte induction leading
to sex disparities in influenza infection. In females, low levels of circulating estradiol
result in increased monocyte recruitment and increased monocyte differentiation into
proinflammatory cells [8,10]. This evidence is consistent with our model findings that
monocyte induction and activity play a crucial role in severe influenza infection in female
mice. Dawson et al. have shown that limiting monocyte infiltration by knocking out CCR2
leads to improved infection outcomes, such as increased survival in mice (sex of mice
unclear), despite increases in the viral titer at 5 dpi in those mice [31]. They observed lower
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monocyte cell counts and increased virus titers at day 5 p.i. These authors did not report
any information on interferon in their study. Our simulation results in Figure 9 (Section 3.6)
show similar behavior, with lower monocyte counts resulting from a decrease in monocyte
induction; however, we are unable to specifically correlate these dynamics to a predicted
level of disease severity.

Interestingly, our scenario screen performed in Section 3.4 did not identify interferon
activity or induction parameters as being sex-specific. Interferon activity has previously
been included in influenza modeling studies and was shown to be a key driver of influenza
severity [14-16,18]. As shown in Figure 1, the interferon concentration is higher in female
mice compared to male mice during infection [26]. The modeling suggests that this dif-
ference is driven by differences in the viral load and is not necessarily due to differences
in the rate of IFN production. More research is needed to fully understand the role that
cytokines and chemokines have in recruiting and polarizing innate immune cells and how
differences in immune cell counts and activity differ between males and females, since
this additional knowledge could aid model validation. Additionally, our model suggests
that hypotheses in the literature concerning viral production as a primary driver of disease
severity [32,33] may not be the case when comparing sex differences in disease severity,
since the scenario screen in Section 3.4 did not identify viral production as a sex-specific
parameter. Host differences in susceptibility to viral production could still contribute to
differences in influenza infection outcomes but are likely coupled with differences in the
innate immune response based on the results of our study.

While the results in this paper are exciting and represent a novel use of mathematical
models in identifying sex differences in influenza infection, important limitations exist,
especially with regards to data availability. This makes investigating model behavior
difficult; however, our conclusions can still be used to inform future experimental work.
Narrowing potential sex-specific effects to monocytes does not show a complete picture
of the innate immune response to influenza infection; a model including more innate
immune response cell states would greatly benefit analysis and fitting. Neutrophils have
been implicated in female responses to influenza infection, and incorporating this state
could aid in understanding these sex differences [34]. Additionally, more complete data are
needed to clarify the dynamics of the system, specifically within the first few days post-
infection. This has been shown to be a key period of IFN and pro-inflammatory cytokine
production, leading to differences in disease severity, and differences during this time frame
could aid in identifying clear drivers of sex differences during infection [12,35]. Certain
model parameters are perfectly correlated, which could be leveraged to reduce the model
dimensions and increase the parameter estimation confidence in future modeling studies.

A notable interest for future models will be to incorporate hormones, either as immune
cell rate modulators or as a distinct state, to tie hormonal influences on the innate immune
response to infection outcomes. For this, we require not only hormone concentrations to be
reported, but the identification of menstrual cycle stages for the female mice. Since hormone
concentrations change cyclically in female mammals, tracking hormone concentrations
alone during influenza infection may not be enough to establish a relationship between
estradiol levels in female mice, influenza disease severity, and immune responses. While
many murine studies have treated gonadectomized animals with sex hormones to avoid
this issue [26], hormone treatment is unlikely to be used for the treatment of severe influenza
infections. Rather, we are more interested in determining which immune pathways are most
affected by hormones, and then identifying treatment strategies that target those pathways.

The innate immune model only represents the first few days of the immune response,
before the adaptive response begins the work of clearing the virus. This model is limited
because infections not cleared by the innate immune response would conceivably lead to
death of the host, where, biologically, the adaptive response could still lead to viral clearance
after a longer period. It is difficult to include the adaptive immune response in models
since the innate and adaptive responses occur on very different time scales, and, often,
experiments emphasize early time points or late time points for measurements. Models that
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can successfully identify sex-specific differences across the innate and adaptive immune
systems will require greater temporal resolution across the entire infection time period.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/v16060837/s1, Figure S1: A plot showing BIC values versus
-log-likelihood values for each model scenario considered. Square data points indicate just a single
parameter was allowed to be sex-specific, while circles indicate two or more parameters (or no
parameters) were allowed to be sex-specific. Labels in bold indicate those model scenarios shown in
Figure 3. While the majority of the model scenarios shown do not have BIC and -log-likelihood values
smaller than the All Different scenario, there is one scenario, Immune regulating with viral production
(k, Toifus Tm,ifns Tifams Toms K1), that has a BIC value of 70. This is not a significant improvement in BIC
over the All Different scenario, therefore we do not have evidence that this model scenario is better
than the All Different scenario; for this reason we did not include this model scenario in Figure 3 or
in further analysis; Figure S2: Parameter histograms for All Different scenario. Parameter bounds are
the same as used in Figure 4 during MCMC simulations. The female-specific parameter distributions
are shown in red and male-specific parameter distributions are shown in blue.

Author Contributions: Conceptualization, J.E.S.; methodology, J.E.S. and T.S.L.; software, T.S.L.;
validation, T.S.L.; formal analysis, T.S.L.; investigation T.S.L.; resources, J.E.S.; data curation, T.S.L.;
writing—original draft preparation, T.S.L.; writing—review and editing, J.E.S. and T.S.L.; visualiza-
tion, T.S.L.; supervision, J.E.S.; project administration, J.E.S.; funding acquisition, J.E.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by NIH R21AI151418 and NSF 1943777.

Data Availability Statement: Code for Figures 4 and 8, the BIC and global sensitivity analysis, can be
found at https:/ /github.com/ImmuSystems-Lab/Sex-Disparities-Influenza-Infection.git.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Steeg, L.G.V,; Klein, S.L. Sex and sex steroids impact influenza pathogenesis across the life course. Semin. Immunopathol. 2019, 41,
189-194. [CrossRef] [PubMed]

2. Jacobs, ].H.; Archer, B.N.; Baker, M.G.; Cowling, B.].; Heffernan, R.T.; Mercer, G.; Uez, O.; Hanshaoworakul, W.; Viboud, C,;
Schwartz, J.; et al. Searching for sharp drops in the incidence of pandemic A/HI1N1 influenza by single year of age. PLoS ONE
2012, 7, e42328. [CrossRef] [PubMed]

3. WHO. Update on human cases of influenza at the human-animal interface, 2012. Wkly. Epidemiol. Rec. Relev. Epidémiologique Hebd.
2013, 88, 137-144.

4. Sabra, L.; Klein, A.P; Catherine, P; Martha, A.; Peju, O. Sex, Gender and Influenza; World Health Organization: Geneva,
Switzerland, 2010.

5. Hoffmann, J.; Otte, A,; Thiele, S.; Lotter, H.; Shu, Y.; Gabriel, G. Sex differences in H7N9 influenza A virus pathogenesis. Vaccine
2015, 33, 6949-6954. [CrossRef] [PubMed]

6. Dawood, ES,; Kittikraisak, W.; Patel, A.; Hunt, D.R.; Suntarattiwong, P.; Wesley, M.G.; Thompson, M.G.; Soto, G.; Mundhada, S.;
Arriola, C.S.; et al. Incidence of influenza during pregnancy and association with pregnancy and perinatal outcomes in three
middle-income countries: A multisite prospective longitudinal cohort study. Lancet Infect. Dis. 2021, 21, 97-106. [CrossRef]
[PubMed]

7. Pisitkun, P; Deane, J.A.; Difilippantonio, M.].; Tarasenko, T.; Satterthwaite, A.B.; Bolland, S. Autoreactive B cell responses to
RNA-related antigens due to TLR7 gene duplication. Science 2006, 312, 1669-1672. [CrossRef] [PubMed]

8.  Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626—-638. [CrossRef] [PubMed]

9. Sarda, C.; Palma, P; Rello, J. Severe influenza: Overview in critically ill patients. Curr. Opin. Crit. Care 2019, 25, 449-457.
[CrossRef] [PubMed]

10. Romagnani, S. Th1/th2 cells. Inflamm. Bowel Dis. 1999, 5, 285-294. [CrossRef]

11. Koyama, S.; Ishii, K.J.; Coban, C.; Akira, S. Innate immune response to viral infection. Cytokine 2008, 43, 336-341. [CrossRef]

12.  Berghofer, B.; Frommer, T.; Haley, G.; Fink, L.; Bein, G.; Hackstein, H. TLR7 ligands induce higher IFN-o production in females.
J. Immunol. 2006, 177, 2088-2096. [CrossRef] [PubMed]

13.  Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon.
Cytokine Res. 2009, 29, 313-326. [CrossRef] [PubMed]

14. Ackerman, E.E.; Weaver, J.J.A.; Shoemaker, J.E. Mathematical Modeling Finds Disparate Interferon Production Rates Drive

Strain-Specific Inmunodynamics during Deadly Influenza Infection. Viruses 2022, 14, 906. [CrossRef] [PubMed]


https://www.mdpi.com/article/10.3390/v16060837/s1
https://www.mdpi.com/article/10.3390/v16060837/s1
https://github.com/ImmuSystems-Lab/Sex-Disparities-Influenza-Infection.git
https://doi.org/10.1007/s00281-018-0718-5
https://www.ncbi.nlm.nih.gov/pubmed/30298431
https://doi.org/10.1371/journal.pone.0042328
https://www.ncbi.nlm.nih.gov/pubmed/22876316
https://doi.org/10.1016/j.vaccine.2015.08.044
https://www.ncbi.nlm.nih.gov/pubmed/26319064
https://doi.org/10.1016/S1473-3099(20)30592-2
https://www.ncbi.nlm.nih.gov/pubmed/33129424
https://doi.org/10.1126/science.1124978
https://www.ncbi.nlm.nih.gov/pubmed/16709748
https://doi.org/10.1038/nri.2016.90
https://www.ncbi.nlm.nih.gov/pubmed/27546235
https://doi.org/10.1097/MCC.0000000000000638
https://www.ncbi.nlm.nih.gov/pubmed/31313681
https://doi.org/10.1097/00054725-199911000-00009
https://doi.org/10.1016/j.cyto.2008.07.009
https://doi.org/10.4049/jimmunol.177.4.2088
https://www.ncbi.nlm.nih.gov/pubmed/16887967
https://doi.org/10.1089/jir.2008.0027
https://www.ncbi.nlm.nih.gov/pubmed/19441883
https://doi.org/10.3390/v14050906
https://www.ncbi.nlm.nih.gov/pubmed/35632648

Viruses 2024, 16, 837 16 of 16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

Saenz, R.A.; Quinlivan, M.; Elton, D.; MacRae, S.; Blunden, A.S.; Mumford, J.A.; Daly, ].M.; Digard, P.; Cullinane, A.; Grenfell,
B.T,; et al. Dynamics of Influenza Virus Infection and Pathology. J. Virol. 2010, 84, 3974-3983. [CrossRef]

Baccam, P.,; Beauchemin, C.; Macken, C.A.; Hayden, EG.; Perelson, A.S. Kinetics of Influenza A Virus Infection in Humans. J. Virol.
2006, 80, 7590-7599. [CrossRef] [PubMed]

Hancioglu, B.; Swigon, D.; Clermont, G. A dynamical model of human immune response to influenza A virus infection. J. Theor.
Biol. 2007, 246, 70-86. [CrossRef]

Pawelek, K.A.; Huynh, G.T.; Quinlivan, M.; Cullinane, A.; Rong, L.; Perelson, A.S. Modeling within-host dynamics of influenza
virus infection including immune responses. PLoS Comput. Biol. 2012, 8, e1002588. [CrossRef] [PubMed]

Smith, A.M.; Adler, ER.; Ribeiro, R.M.; Gutenkunst, R.N.; McAuley, J.L.; McCullers, J.A.; Perelson, A.S. Kinetics of coinfection
with influenza A virus and Streptococcus pneumoniae. PLoS Pathog. 2013, 9, €1003238. [CrossRef]

Pawelek, K.A_; Dor, D.; Salmeron, C.; Handel, A. Within-host models of high and low pathogenic influenza virus infections: The
role of macrophages. PLoS ONE 2016, 11, e0150568. [CrossRef]

Price, I.; Mochan-Keef, E.D.; Swigon, D.; Ermentrout, G.B.; Lukens, S.; Toapanta, ER.; Ross, T.M.; Clermont, G. The inflammatory
response to influenza A virus (HIN1): An experimental and mathematical study. J. Theor. Biol. 2015, 374, 83-93. [CrossRef]
Gregg, RW.; Sarkar, S.N.; Shoemaker, ].E. Mathematical modeling of the cGAS pathway reveals robustness of DNA sensing to
TREX1 feedback. J. Theor. Biol. 2019, 462, 148-157. [CrossRef] [PubMed]

Gregg, RW,; Shabnam, F.; Shoemaker, J.E. Agent-based modeling reveals benefits of heterogeneous and stochastic cell populations
during cGAS-mediated IFNf production. Bioinformatics 2021, 37, 1428-1434. [CrossRef] [PubMed]

Aponte-Serrano, ].O.; Weaver, J.J.A.; Sego, T.J.; Glazier, ].A.; Shoemaker, ].E. Multicellular spatial model of RNA virus replication
and interferon responses reveals factors controlling plaque growth dynamics. PLoS Comput. Biol. 2021, 17, €1008874. [CrossRef]
[PubMed]

Hernandez-Vargas, E.A.; Wilk, E.; Canini, L.; Toapanta, ER.; Binder, S.C.; Uvarovskii, A.; Ross, T.M.; Guzman, C.A.; Perelson, A.S,;
Meyer-Hermann, M. Effects of aging on influenza virus infection dynamics. J. Virol. 2014, 88, 4123-4131. [CrossRef] [PubMed]
Robinson, D.P,; Lorenzo, M.E.; Jian, W.; Klein, S.L. Elevated 17[3-estradiol protects females from influenza A virus pathogenesis
by suppressing inflammatory responses. PLoS Pathog. 2011, 7, €1002149. [CrossRef] [PubMed]

Velazquez-Salinas, L.; Verdugo-Rodriguez, A.; Rodriguez, L.L.; Borca, M.V. The Role of Interleukin 6 During Viral Infections.
Front. Microbiol. 2019, 10, 1057. [CrossRef] [PubMed]

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing
machines. J. Chem. Phys. 1953, 21, 1087-1092. [CrossRef]

Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97-109. [CrossRef]
Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Dawson, T.C.; Beck, M.A.; Kuziel, W.A.; Henderson, F.; Maeda, N. Contrasting Effects of CCR5 and CCR2 Deficiency in the
Pulmonary Inflammatory Response to Influenza A Virus. Am. J. Pathol. 2000, 156, 1951-1959. [CrossRef]

Kash, ].C.; Taubenberger, ].K. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am. J. Pathol. 2015,
185, 1528-1536. [CrossRef] [PubMed]

Uiprasertkul, M.; Puthavathana, P.; Sangsiriwut, K.; Pooruk, P.; Srisook, K.; Peiris, M.; Nicholls, ].M.; Chokephaibulkit, K;
Vanprapar, N.; Auewarakul, P. Influenza A H5N1 replication sites in humans. Emerg. Infect. Dis. 2005, 11, 1036. [CrossRef]
[PubMed]

Robinson, D.P; Hall, O.].; Nilles, T.L.; Bream, ]J.H.; Klein, S.L. 173-estradiol protects females against influenza by recruiting
neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 2014, 88, 4711-4720. [CrossRef] [PubMed]
Sophia, D.; Maini, M.K.; Wack, A. Pathogenic potential of interferon «f3 in acute influenza infection. Nat. Commun. 2014, 5, 3864.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1128/JVI.02078-09
https://doi.org/10.1128/JVI.01623-05
https://www.ncbi.nlm.nih.gov/pubmed/16840338
https://doi.org/10.1016/j.jtbi.2006.12.015
https://doi.org/10.1371/journal.pcbi.1002588
https://www.ncbi.nlm.nih.gov/pubmed/22761567
https://doi.org/10.1371/journal.ppat.1003238
https://doi.org/10.1371/journal.pone.0150568
https://doi.org/10.1016/j.jtbi.2015.03.017
https://doi.org/10.1016/j.jtbi.2018.11.001
https://www.ncbi.nlm.nih.gov/pubmed/30395807
https://doi.org/10.1093/bioinformatics/btaa969
https://www.ncbi.nlm.nih.gov/pubmed/33196784
https://doi.org/10.1371/journal.pcbi.1008874
https://www.ncbi.nlm.nih.gov/pubmed/34695114
https://doi.org/10.1128/JVI.03644-13
https://www.ncbi.nlm.nih.gov/pubmed/24478442
https://doi.org/10.1371/journal.ppat.1002149
https://www.ncbi.nlm.nih.gov/pubmed/21829352
https://doi.org/10.3389/fmicb.2019.01057
https://www.ncbi.nlm.nih.gov/pubmed/31134045
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1016/S0002-9440(10)65068-7
https://doi.org/10.1016/j.ajpath.2014.08.030
https://www.ncbi.nlm.nih.gov/pubmed/25747532
https://doi.org/10.3201/eid1107.041313
https://www.ncbi.nlm.nih.gov/pubmed/16022777
https://doi.org/10.1128/JVI.02081-13
https://www.ncbi.nlm.nih.gov/pubmed/24522912

	Introduction 
	Materials and Methods 
	Experimental Data Collection from Literature 
	Model Development 
	Parameter Training and Model Selection 
	BIC-Guided Model Selection 
	Markov-Chain Monte Carlo Parameter Exploration 
	Sensitivity Analysis 

	Results 
	Reconstructing Prior Data 
	Innate Immune Mathematical Model Can Fit Immune Response Data from Male and Female Mice 
	The Innate Immune Mathematical Model Finds That Male and Female Mice Have Different Rates of Immune Activation to H1N1 
	A Computational Screen of Competing Immune Regulation Scenarios Suggests That Monocyte Induction and Activation Are Potential Sex-Specific Parameters 
	Monocyte Induction and Activation Are Differentially Regulated in Male and Female Mice 
	Global Sensitivity Analysis 
	Model Simulations 

	Discussion 
	References

