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ABSTRACT

Hybrid incompatibilities are a critical component of species barriers and may arise due
to negative interactions between divergent regulatory elements in parental species. We used a
comparative approach to identify common themes in the regulatory phenotypes associated
with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We
investigated three potential characteristic gene expression phenotypes in hybrids including the
propensity of transgressive differentially expressed genes towards over or underexpression,
the influence of developmental stage on patterns of misexpression, and the role of the sex
chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in
hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on
developmental stage. In both house mouse and dwarf hamster hybrids, however,
misexpression increased with the progression of spermatogenesis, although to varying extents
and with potentially different consequences. In both systems, we detected sex-chromosome
specific overexpression in stages of spermatogenesis where inactivated X chromosome
expression was expected, but the hybrid overexpression phenotypes were fundamentally
different. Importantly, misexpression phenotypes support the presence of multiple
developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role
of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that
while there are some similarities in hybrid expression phenotypes of house mice and dwarf
hamsters, there are also clear differences that point towards unique mechanisms underlying
hybrid male sterility. Our results highlight the potential of comparative approaches in helping to

understand the causes and consequences of disrupted gene expression in speciation.
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INTRODUCTION

The evolution of postzygotic reproductive barriers, such as hybrid inviability and
sterility, is an important part of the speciation process, and identifying the genetic architecture
of hybrid incompatibilities has been a common goal uniting speciation research (Coughlan and
Matute 2020). While identifying the genetic basis of hybrid dysfunction remains difficult in many
systems, downstream regulatory phenotypes can provide insight into the underlying
mechanisms of speciation (Mack and Nachman 2017). An outstanding question surrounding
the role of disrupted gene regulation and speciation is whether the combination of two
divergent genomes in hybrids results in gene expression perturbations that are consistent or
repeatable across species. At the broadest level, it is unclear whether gene expression in
hybrids tends to be intermediate or transgressive (outside the range of parental gene
expression), whether transgressive gene expression is biased towards over or underexpression
(Ortiz-Barrientos et al. 2007), and whether transgressive misexpression tends to be modulated
by cis or trans regulatory elements (Wittkopp et al. 2004; McManus et al. 2010; Oka et al. 2014;
Mack et al. 2016; Mugal et al. 2020; Kopania et al. 2022a). By investigating trends in the
magnitude and direction of transgressive expression across different hybrid systems, we can
begin to understand the evolutionary forces shaping regulatory-based hybrid incompatibilities.
For example, if transgressive misexpression in hybrids tends towards overexpression, this may
mean that genes with disrupted regulation in hybrids tend to be genes that are normally
repressed in parental lineages (Meiklejohn et al. 2014; Barreto et al. 2015; Larson et al. 2017).
Alternatively, transgressive misexpression in hybrids may tend towards underexpression if
regulatory divergence between parental lineages results in impaired transcription factor binding
with promoter or enhancer elements (Oka et al. 2014; Guerrero et al. 2016) or if divergence

stimulates epigenetic silencing (Paun et al. 2007; Shivaprasad et al. 2012; Lafon-Placette and
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Kdhler 2015; Brekke et al. 2016; Zhu et al. 2017). At a finer scale, transgressive misexpression
patterns may depend on developmental stage: for example, if there is greater pleiotropy earlier
in development (Ortiz-Barrientos et al. 2007; Cutter and Bundus 2020). In particular, we might
expect sterile hybrids to have more transgressive misexpression during later stages of
gametogenesis when genes are evolving rapidly and are potentially under less regulatory
constraint (Kopania et al. 2022a; Murat et al. 2023). Finally, the role of sex chromosome
regulation in inviable or sterile hybrids encompasses both larger questions. Sex chromosomes
may be prone to asymmetry in their expression divergence (Oka and Shiroishi 2014; Civetta
2016) and be regulated differently across stages of development (Presgraves 2008; Larson et
al. 2018), particularly in reproductive tissues, and thus may play a central role in hybrid
dysregulation relative to autosomes.

Disruption of sex chromosome regulation is thought to be a potentially widespread
regulatory phenotype in sterile hybrids (Lifschytz and Lindsley 1972; Larson et al. 2018), in part
because X chromosome repression may be crucial to normal spermatogenesis in diverse taxa
(McKee and Handel 1993; Landeen et al. 2016; Taxiarchi et al. 2019; Rappaport et al. 2021;
Viera et al. 2021; Murat et al. 2023). Furthermore, misregulation of the X chromosome is
associated with hybrid sterility in several species pairs (Davis et al. 2015; Sanchez-Ramirez et
al. 2021; Bredemeyer et al. 2021), although it has been best studied in house mice. In fertile
male mice, the X chromosome is silenced just prior to the Diplotene stage of meiosis through
meiotic sex chromosome inactivation (MSCI; McKee and Handel 1993; Handel 2004) and is
again repressed in postmeiotic sperm development (i.e., postmeiotic sex chromosome
repression or PSCR; Namekawa et al. 2006). In contrast, the X chromosome is not properly
inactivated and is overexpressed in sterile hybrid mice (Good et al. 2010; Bhattacharyya et al.
2013; Campbell et al. 2013; Turner et al. 2014; Larson et al. 2017, 2022). Disrupted MSCI in

house mice is associated with divergence at Prdm9, a gene that is a major contributor to
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hybrid male sterility (Mihola et al. 2009; Davies et al. 2016). However, misexpression of the X
chromosome in sterile hybrids could result from mechanisms other than Prdm9-associated
disrupted MSCI, such as mispairing of the sex chromosomes due to divergence in their region
of homology known as the pseudoautosomal region (PAR; Burgoyne 1982; Ellis and
Goodfellow 1989; Raudsepp and Chowdhary 2015). In sum, the ubiquity of X chromosome
repression and the growing body of evidence linking disrupted MSCI to hybrid sterility in
mammals suggest that disrupted sex chromosome regulation may be a common regulatory
phenotype in sterile hybrid males.

Here, we characterized disruption of gene expression associated with hybrid male
sterility in two rodent crosses, dwarf hamsters and house mice, which span ~35 million years
of divergence (Swanson et al. 2019). The regulatory phenotypes of hybrid male sterility have
been thoroughly studied in house mice (Good et al. 2010; Bhattacharyya et al. 2013; Campbell
et al. 2013; Turner et al. 2014; Larson et al. 2017, 2022; Hunnicutt et al. 2022). We contrast
these with an analogous cross between two sister species of dwarf hamster, Campbell’s dwarf
hamster (Phodopus campbelli) and the Siberian dwarf hamster (P. sungorus), and their sterile
F1 hybrid male offspring. These species diverged only ~0.8-1.0 million years ago (Neumann et
al. 2006), and they are not thought to interbreed in the wild due to geographic separation
(Ishishita et al. 2015). Crosses between female P. sungorus and male P. campbelli produce
sterile hybrid males that, similar to mice, have a range of sterility phenotypes, suggesting
multiple developmental blocks to spermatogenesis (Ishishita et al. 2015; Bikchurina et al.
2018). Hybrids from the reciprocal cross are usually inviable due to abnormal growth in utero
(Brekke and Good 2014), and the species origin of the X chromosome is the primary genetic
factor controlling hybrid inviability (Brekke et al. 2021). Additionally, sex chromosome
asynapsis during spermatogenesis is common in hybrid dwarf hamsters, providing further

reason to think that X chromosome-specific misregulation may be observed in sterile hybrid
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dwarf hamsters (Ishishita et al. 2015; Bikchurina et al. 2018). Both the abnormal spermatogenic
phenotypes observed in dwarf hamster hybrids and the potential regulatory interactions that
may result from the involvement of the X chromosome in multiple reproductive barriers make
dwarf hamsters an important comparison to mice for investigating what regulatory phenotypes
may be repeatedly associated with the evolution of postzygotic reproductive isolation.
Expression phenotypes associated with hybrid sterility have historically been difficult to
assess because of the cellular diversity of reproductive tissues (e.g., testes; Ramm and
Scharer 2014) and because hybrids may differ from parents in both tissue composition and
developmental timing (reviewed in Montgomery and Mank 2016; Hunnicutt et al. 2022). To
overcome these difficulties, we used Fluorescence Activated Cell Sorting (FACS) to isolate and
sequence cell populations across the developmental timeline of spermatogenesis for each
species pair and their F1 hybrids, including stages that span the different sex chromosome
regulatory states. Our developmental timeline spans stages where we expect fertile parents to
have a transcriptionally active X chromosome (spermatogonia and leptotene/zygotene
spermatocytes) and an inactive X chromosome (diplotene spermatocytes and round
spermatids). We used both datasets to address three main questions about the transgressive
gene expression phenotypes observed in sterile hybrids: (1) within transgressive differentially
expressed genes, does misexpression tend towards up- or downregulation in hybrids
compared to parents? (2) are there similar patterns of disrupted transgressive expression
across stages of development? and (3) are there clear differences between autosomes and sex
chromosomes in expression phenotypes? And if so, is sex chromosome-specific transgressive
misexpression consistent with either disrupted MSCI and/or disrupted PAR regulation?
Collectively, we demonstrate the power of cell type-specific approaches for untangling the
expression phenotypes associated with the evolution of hybrid male sterility and for identifying

common themes in the mechanistic basis of hybrid incompatibilities across divergent taxa.
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MATERIALS AND METHODS

Hamster crosses and male reproductive phenotypes

We used wild-derived colonies of two sister species of dwarf hamster, P. sungorus and
P. campbelli, established by Kathy Wynne-Edwards (Scribner and Wynne-Edwards 1994) and
housed at the University of Montana. Both species were maintained as closed colonies with a
breeding scheme to minimize inbreeding. Nonetheless, inbreeding levels of these closed
colonies are still high as indicated by very low nucleotide diversity (Brekke et al. 2018). We
used males from both parent species and male F1 hybrid offspring from crosses of female P.
campbelli with male P. sungorus. We weaned males in same-sex sibling groups between 17 -
21 dpp and housed them individually at 45 dpp. We euthanized reproductively mature males
using carbon dioxide followed by cervical dislocation between 59 - 200 dpp (Table S1 in File
S1). All animal use was approved by the University of Montana (IACUC protocols 050-
16JGDBS & 035-19JGDBS).

We measured several fertility metrics for parent species and hybrid males including
paired testes weight, paired seminal vesicle weight, normalized sperm counts, and sperm
motility (Good et al. 2008). Paired testes weight and paired seminal vesicle weight were
correlated with body weight (paired testes weight Pearson’s r(29) = 0.47, p = 0.007; paired
seminal vesicle weight Pearson’s r(23) = 0.56, p = 0.003), so we standardized both metrics
relative to body weight. We calculated sperm count by isolating sperm from caudal
epididymides diced in 1 ml of Dulbecco’s PBS (Sigma) and incubated at 37°C for 10 minutes.
We quantified sperm motility (proportion of motile sperm in a 5 pl suspension) and sperm count
(number of sperm with head and tail in a heat shocked 5 pl suspension) across a fixed area on

a Makler counting chamber. We performed statistical comparisons of fertility phenotypes in R
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v.4.3.1, and we used the FSA package v.0.9.4 for the Kruskal-Wallis and Dunn’s tests (Ogle

and Ogle 2017).

Isolation of enriched cell populations from hamster testes

To investigate the regulatory dynamics of the sex chromosomes during
spermatogenesis, we isolated four spermatogenic cell populations from whole testes using
FACS. These cell populations span a developmental timeline of spermatogenesis from mitosis
(spermatogonia), meiosis prior to X inactivation (leptotene/zygotene spermatocytes), meiosis,
after X inactivation (diplotene spermatocytes), and post-meiosis (round spermatids). Briefly, we
disassociated a single testis per male following a published protocol originally developed for
house mice (Getun et al. 2011) with modifications (github.com/goodest-goodlab/good-
protocols/tree/main/protocols/FACS, last accessed June 16, 2021). We doubled the volumes
of all reagents to account for the increased mass of testes in dwarf hamsters relative to house
mice. We isolated cell populations based on size, granularity, and fluorescence on a FACSAria
llu cell sorter (BD Biosciences) at the University of Montana Center for Environmental Health
Sciences Fluorescence Cytometry Core. For each sorted cell population, we extracted RNA
using RNeasy kits (Qiagen) following protocols for Purification of Total RNA from Animal Cells.
We quantified sample RNA quantity and quality (requiring an RNA integrity number > 7) on a
Tapestation 2200 (Agilent) at the University of Montana genomics core. RNA libraries were
prepared by Novogene and sequenced on lllumina NovaSeq 6000s (paired end, 150 bp). Six
samples (distributed across different species and cell types) had low RNA concentrations, and
for these samples we used Novogene’s low input RNA library preparation (Table S2 in File S1).
MDS plots indicated no severe library batch effects between samples from different library
preparations (Figure S1 in File S1), so we included all samples from both libraries in

subsequent analyses.
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Read processing and mapping

We sequenced RNA from each cell population for three to five individuals of each
parent species and F1 hybrids generating an average of ~27.5 million read pairs per individual
(Table S2 in File S1). We trimmed reads using Trimmomatic v.0.39 (Bolger et al. 2014) to
remove low quality bases from the first and last 5 bp of each read and bases with an average
Phred score of less than 15 across a 4 bp sliding window and only retained reads of at least 36
bp. We next used an approach (based on the modtools pipeline) which maps reads from each
sample to pseudogenomes for both parent species (described below) to obtain a merged
output alignment file in order to alleviate reference bias associated with mapping hybrids to
only a single reference genome (Holt et al. 2013; Huang et al. 2014). For this approach, we
mapped reads for each individual to both a P. sungorus pseudogenome and a P. campbelli
pseudogenome with Hisat v.2.2.0 (Kim et al. 2019) with default settings and retaining at most
100 distinct, primary alignments, although multi-mapped reads were removed downstream
(described below). We generated the P. sungorus pseudogenome by mapping RNASeq reads
from a male P. sungorus individual (30.6 million total read pairs; NCBI SRA: SRR17223284;
Moore et al. 2022) to the P. sungorus reference genome (GCA_023856395.1) with bwa-mem
v.2.2.1 (Vasimuddin et al. 2019), and the P. campbelli pseudogenome by mapping female P.
campbelli whole genome sequencing reads (average coverage: 33x; NCBI SRA: SRR17223279;
Moore et al. 2022) to the P. sungorus reference genome. Because our P. sungorus
pseudogenome was based on a male hamster and the reference genome on a female hamster,
we excluded reads mapping to the PAR because sequences mapping to this region could have
originated from either the X or Y chromosomes and interfered with subsequent variant calling.
Following mapping, we used GATK v.4.2.5.0 HaplotypeCaller (-ERC GVCF) to call SNPs then
performed genotyping with genotypeGVCFs. We hard-filtered our SNPs (--mask-extension 5

"QD < 2.0" "FS > 60.0" "MQ < 40.0" "QUAL < 30.0" "DP < 10" "DP > 150") and restricted
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SNPs to biallelic loci. Finally, we incorporated filtered SNPs back into the P. sungorus
reference genome with FastaAlternateReferenceMaker to create the P. sungorus and P.
campbelli pseudoreferences. For our RNASeq data, we appended query hit indexes to
resulting alignment files using hisat2Tophat.py (https://github.com/goodest-goodlab/pseudo-
it/tree/master/helper-scripts/hisat2Tophat.py, last accessed March 8th, 2022) to maintain
compatibility with the modtools pipeline. We used our VCFs (above) to generate a mod-file for
both species with vef2mod from Lapels v.1.1.1 to convert alignments to the P. sungorus
reference genome, and Suspenders v.0.2.6 to merge alignments while retaining the highest
quality alignment per read (Holt et al. 2013; Huang et al. 2014). We used featureCounts v.2.0.1
(Liao et al. 2014) to estimate counts of read pairs that aligned to the same chromosome (-B
and -C) and retained only singly-mapped reads. Summaries of properly mapped reads for each
sample can be found in Table S2 in File S1.

We sought to compare the gene expression phenotypes observed in dwarf hamsters to
those previously documented in house mice using published RNASeq data for the same four
spermatogenic cell types of two subspecies of house mouse and their sterile F1 hybrids
(Larson et al. 2017; Hunnicutt et al. 2022). These studies examined two subspecies of house
mice, Mus musculus musculus (intra-subspecific F1 males between wild-derived inbred strains
PWK/PhJ @ and CZECHII/EiJJ) and M. m. domesticus (intra-subspecific F1 males between
wild-derived inbred strains WSB/EiJ @ and LEWES/EiJJ) and their sterile (PWK? x LEWESJ)
F1 hybrids for disrupted gene expression across spermatogenesis following the same FACS
protocols implemented in this study. For all comparisons between house mice and dwarf
hamsters, we used read count files generated previously for house mice (Hunnicutt et al. 2022)

and performed all subsequent analyses in parallel for both systems.
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Estimating nucleotide diversity and divergence within and between crosses and strains
We next estimated nucleotide diversity within and divergence between each strain or
cross for parent species and hybrids (11 and dxv). We used the bam files generated above from
mapping each strain or cross to its respective reference genome (either GCA_023856395.1 for
dwarf hamsters or GRCm38.p6 for house mice) to call SNPs as described above but with the
addition of a step to split reads at intronic regions using the GATK function SplitNCigarReads.
We generated two VCFs, one for dwarf hamster crosses and the other for house mouse
crosses, which we processed and filtered separately. If an individual mouse or hamster was
sequenced for more than one cell type, we randomly chose one of the represented cell types
to be included in the analysis. We hard-filtered our SNPs as above and restricted SNPs to
biallelic loci. Because our SNPs were called from RNASeq data and thus may be susceptible to
allelic imbalances or coverage differences between samples, we next investigated how the
inclusion of SNPs with different levels of missing data impacted estimation of T and dxy. We
used vcftools v.0.1.17 (Danecek et al. 2011) to filter SNPs allowing between 0% and 90%
missing data (--max_missing; Figure S3 in File S1), and filtered SNPs with a depth lower than 5
and higher than 60 (~2-3 higher than average coverage) to eliminate multi-mapped reads.
Finally, we used pixy v.1.2.10.beta2 (Korunes and Samuk 2021) on our filtered VCFs to
estimate 1 and dxy. Patterns of nucleotide diversity across strains and crosses were
qualitatively similar across missing data thresholds, so we present results corresponding to
10% missing data in the main text. However, we note that for all comparisons, estimates of 1
and dxy decreased with more stringent missing data thresholds regardless of strain or cross

(Figure S3 in File S1).
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Gene expression pre-processing

Following read processing and mapping, we conducted all analyses in R v.4.3.1. We
classified genes as “expressed” if genes had a minimum of one Fragment Per Kilobase of exon
per Million mapped reads (FPKM) in at least three samples, resulting in 21,077 expressed
genes across the dwarf hamster dataset and 21,212 expressed genes across the house mouse
dataset. We also identified sets of genes “induced” in a given cell type defined as genes with a
median expression in a given cell population (normalized FPKM) greater than two times its
median expression across all other sorted cell populations (following Kousathanas et al. 2014).
We calculated normalized FPKM values by adjusting the sum of squares to equal one using the
R package vegan v.2.6-4 (Oksanen et al. 2013). We conducted expression analyses using
edgeR v.3.42.4 (Robinson et al. 2010) and normalized the data using the scaling factor method
(Anders and Huber 2010).

We qualitatively assessed cell population purity both by visual inspection during cell
sorting and following sequencing by assessing the expression of a panel of marker genes
specific to the four cell populations targeted by our FACS protocol and present in only a single
copy in the P. sungorus annotation. Spermatogonia markers included Dmrt1 (Raymond et al.
2000) and Hells (Green et al. 2018). Leptotene/zygotene markers included Ccnb1ip1 and
Adad2 (Hermann et al. 2018). Diplotene was characterized by Aurka and Tank expression
(Murat et al. 2023) and round spermatids by Cabyr and Acrv1 expression (Green et al. 2018).
To estimate relative purity, we compared mean marker gene expression across replicates for a
given cell population for both parent species. A cell population was considered qualitatively
pure if it had higher marker gene expression than other populations isolated by our FACS
protocol and if X-linked gene expression matched the expected regulatory dynamics (i.e.,
active vs. silenced (MSCI) vs. repressed (PSCR); Handel 2004; Namekawa et al. 2006). We

examined expression patterns across cell populations for all genes, autosomal genes, and X-
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linked genes using MDS plots generated with the plotMDS function in limma v.3.56.2 (Ritchie
et al. 2015) and heatmaps using ComplexHeatmap v.2.16.0 (Gu et al. 2016). MDS plots used

the top 500 genes with the largest fold change difference between samples.

Differential gene expression analysis

We assessed differential gene expression by contrasting hybrids and each parent
species for all cell populations. We fit the expression data for dwarf hamsters and house mice
separately with negative binomial generalized linear models with Cox-Reid tagwise dispersion
estimates and adjusted P-values to a false discovery rate (FDR) of 5% (Benjamini and
Hochberg 1995). We quantified the biological coefficient of variation (BCV), a metric
representing the variation in gene expression among replicates (McCarthy et al. 2012), for each
dataset. Additionally, we calculated the BCV of just parental males or hybrid samples for each
species for the first three cell populations to examine whether dwarf hamster hybrids exhibited
more variability in expression than house mouse hybrids and parental dwarf hamsters. For our
differential expression analyses, we contrasted expression between hybrids and each parent
so that a positive log fold-change (logFC) indicated overexpression in sterile males and
implemented a logFC cutoff of 1.25. We then categorized differentially expressed (DE) genes
into one of four categories: DE relative to only one parent species, DE relative to both parent
species but with intermediate expression (intermediate), and DE relative to both parent species
but outside of the range of either parent species (transgressive; Figure S2 in File S1). Unless
otherwise specified, results discussed in the main text are restricted to transgressive DE genes
and are presented with the logFC from the contrast of the hybrid offspring to the parent with
the same X chromosome (P. campbelli for dwarf hamster F1 hybrids and M. m. musculus for
house mouse F1 hybrids). Transgressive DE genes have similar logFC values regardless of

which parent is used as the contrast, but figures depicting the logFC between F1 hybrids and
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P. sungorus or M. m. domesticus are provided in supplementary material. We also assessed
differential expression between parent species/strains (parental DE) by contrasting expression
between parents sharing the same X chromosome as hybrids (i.e., M. m. musculus and P.
campbelli) with parents with the alternate X chromosome (i.e., M. m. domesticus and P.
sungorus) so that a positive log fold-change indicated overexpression in parents with the same
X chromosome as hybrids and implemented a logFC cutoff of 1.25.

We tested for significant differences in the number of under and overexpressed
transgressive DE genes within a stage for both house mouse and hamster hybrids using X?
tests with chisqg.tests in R and used FDR correction for multiple comparisons. We also tested
for differences in the magnitude of misexpression between mouse and hamster hybrids for
each stage by comparing the distributions of logFC of transgressive DE genes between hybrids
and parent species using Wilcoxon signed-rank tests and FDR correction. To characterize
hybrid diplotene expression in both house mice and dwarf hamsters, we used two approaches.
First, we calculated Pearson's correlation coefficient (r) between average normalized hybrid
diplotene expression and the average normalized expression in each parental cell type. We
corrected p-values for each correlation with FDR. We generated bootstrap values for each
correlation coefficient by randomly sampling the expression matrices with replacement for
each sample type for 1000 replicates. Second, we compared the gene sets that escaped MSCI
in each species with gene sets that characterize stage-specific expression in parent species.
For this analysis, we defined sets of overexpressed X-linked diplotene genes as genes with
expression (normalized FPKM) in hybrids that was in the top 10% of X-linked genes in parental
diplotene samples (i.e., genes that normally escape MSCI). We then compared these sets of
overexpressed hybrid diplotene genes to genes “induced” in each parental stage for each
species. We used gProfiler2 v.0.2.3 (Kolberg et al. 2020) in R to perform gene ontology (GO)

analysis to identify GO terms overrepresented in hybrid transgressive DE genes sets for each
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cell population. We only included P. sungorus genes associated with mouse orthologs in our
GO analysis (as established by Moore et al. 2022), and for our background gene lists, we used
P. sungorus genes associated with mouse orthologs that were “expressed” in hybrids and both
parent species in a given stage. We retained only Biological Process GO terms with an FDR
below 0.05 and ran gProfiler2 both with and without the highlight option, a two-stage algorithm
for reducing resulting GO terms by grouping significant terms into sub-ontologies and then
identifying the gene sets that give rise to other significant functions (Kolberg et al. 2020). To
test whether specific chromosomes were enriched or depleted for transgressive DE genes for a
given stage, we performed hypergeometric tests on the number of transgressive DE genes on
a given chromosome with phyper and adjusted P-values to an FDR of 5%. We also assessed
overlap in specific transgressive DE genes within stages between house mice and dwarf
hamsters. We estimated whether overlap was more or less than expected by chance and
whether overlapping genes were preferentially located on the X chromosome using
hypergeometric tests and performed GO enrichment on overlapping genes. For all
hypergeometric tests, we defined the background sets of genes as those with non-zero logFC
values in both differential expression comparisons between hybrids and each parent for a

given spermatogenic stage.

Characterizing the behavior of PAR genes in dwarf hamsters

We sought to characterize the regulatory behavior of PAR genes in dwarf hamster
parent species and hybrids to determine if (1) PAR genes are normally silenced in parent
species (consistent with an extension of MSCI to the PAR) and (2) if PAR genes were
overexpressed in hybrids (consistent with disrupted MSCI in the PAR of hybrids). The PAR on
the P. sungorus X chromosome is on the distal arm of the X chromosome from around

115,350,000-119,112,095 bp (Moore et al. 2022). There are 15 annotated P. sungorus genes in
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this region (Table S3 in File S1), which is comparable to the latest PAR assembly in C57BL/6J
house mice (Kasahara et al. 2022). Six of these are orthologous to annotated genes in mice
(Tepp2, Gprin1, Ndrg2, Kcnip4, Ndrg2, and Hs6st3), but they are not located in the mouse PAR
(Kasahara et al. 2022). Only seven of the annotated genes in the PAR were expressed in more
than three replicates across all samples (Psun_G000022875, Psun_G000022880,
Psun_G000022883, Psun_G000022886, Tppp2, Gprini, and Ndrg2). For these genes, we
assessed whether these genes were consistently expressed or silenced in parent species in
any cell population and whether any genes were differentially expressed between hybrids and

either species.

RESULTS

Impaired sperm production in hybrid male dwarf hamsters

We first established the extent of hybrid male sterility in dwarf hamsters by comparing
reproductive phenotypes for P. campbelli, P. sungorus, and F1 hybrid males (Figure 1; Table
S1 in File S1). Phodopus sungorus males had smaller testes and seminal vesicles than P.
campbelli males (Dunn's Test relative testes weight p < 0.001; relative seminal vesicle weight p
= 0.0061; Figure 1). These differences are qualitatively consistent across independent
laboratory colonies (Ishishita et al. 2015; Bikchurina et al. 2018) and likely reflect species-
specific differences between P. campbelli and P. sungorus. Phodopus sungorus males also
had lower nucleotide diversity (i = 0.00013) than P. campbelli males (it = 0.00045) and both
house mouse parental crosses between fully inbred mouse strains (M. m. musculus i =
0.00029; M. m. domesticus 1 0.00017; Figure S3 in File S1), which could contribute to
depression of male fertility within this highly inbred laboratory colony (Brekke et al. 2018).
Nucleotide divergence between parental dwarf hamster species was elevated relative to house

mice (dx, = 0.0020 vs. 0.0010), consistent with reported older divergence time estimates for
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dwarf hamsters (Neumann et al. 2006). However, these dwarf hamster species did not differ in
normalized sperm counts (p = 0.071) or in sperm motility (p = 0.12). The F1 hybrid males
exhibited extreme reproductive defects relative to P. campbelli (Figure 1). Hybrid males had
smaller testes (p < 0.001) and seminal vesicles (p < 0.001) than male P. campbelli hamsters,
and importantly, produced almost no mature spermatozoa. In the one instance where a hybrid
male produced a single mature spermatozoon, it was non-motile, indicating severe
reproductive impairment in hybrid males. Overall, our results confirmed previous reports of

reduced fertility in hybrid male dwarf hamsters (Ishishita et al. 2015; Bikchurina et al. 2018).

Cell type-specific gene expression across spermatogenesis

To characterize cell type-specific gene expression, we used FACS to isolate enriched
cell populations from each fertile parent species and their sterile F1 hybrids across four stages
of spermatogenesis. The four targeted populations included: spermatogonia (mitotic precursor
cells), leptotene/zygotene spermatocytes (meiotic cells before MSCI), diplotene spermatocytes
(meiotic cells after MSCI), and round spermatids (postmeiotic cells). We were unable to isolate
round spermatids from the F1 hybrids, which was consistent with the lack of mature
spermatozoa present in the cauda epididymis extractions (Figure 1). We sequenced RNA from
each cell population for P. campbelli (spermatogonia n = 4, leptotene/zygotene n = 5, diplotene
n =5, and round spermatids n = 4; Table S2 in File S1), P. sungorus (spermatogonia n = 4,
leptotene/zygotene n = 4, diplotene n = 5, and round spermatids n = 3), and F1 hybrid males (
P. campbelli @ x P. sungorus &' ; spermatogonia n = 4, leptotene/zygotene n = 4, diplotene n =
4). We compared our hamster expression data to an analogous cell type-specific RNASeq
dataset from two species of house mice, Mus musculus musculus and M. m. domesticus, and

their sterile F1 hybrids (n = 3 for all cell populations in each cross; Larson et al. 2017).
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We used two approaches to qualitatively evaluate the purity of spermatogonia,
leptotene/zygotene spermatocytes, diplotene spermatocytes, and round spermatids isolated
from males from both parental species: (1) we quantified the relative expression of a panel of
cell population marker genes, and (2) we characterized the expression patterns of the sex
chromosomes across development. We found that our candidate marker genes had the
highest expression in their expected cell population for all stages except leptotene/zygotene
(Figures S4 and S5 in File S1), indicating high purity of spermatogonia, diplotene
spermatocytes, and round spermatids. Leptotene/zygotene markers did not have the highest
expression in leptotene/zygotene samples (except for Ccnb1ip1), potentially indicating lower
purity of this cell population. Nonetheless, the patterns of X chromosome expression in fertile
parents were consistent with expectations across this developmental timeline: the X
chromosome had active expression in spermatogonia and leptotene/zygotene cells, was
inactivated in diplotene cells consistent with MSCI, and was partially inactivated in round
spermatids, consistent with PSCR (Figure 2; Namekawa et al. 2006), indicating successful
isolation of these cell populations.

When we examined overall expression differences within dwarf hamsters and within
house mice, we found that samples clustered primarily by cell population on MDS1 and 2
(Figure 3), then by cross/strain when cell populations were examined separately (Figures S6
and S7 in File S1). Within all cell populations across both systems, hybrids showed
intermediate overall expression patterns to parent species (Figures S6 and S7 in File S1).
However, in dwarf hamsters but not house mice, spermatogonia and leptotene/zygotene
samples overlap rather than forming distinct clusters (Figure 3). Further, the expression profiles
of hybrid diplotene cell populations ranged from clustering with parental leptotene/zygotene to
parental diplotene cell populations, which contrasted with what we observed in house mice

where hybrid diplotene cell populations clustered distinctly with parental diplotene cell
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populations (Figure 3). Overall, our results indicate that we successfully isolated cell

populations in dwarf hamsters that span key stages of spermatogenesis.

Disrupted transcription early in spermatogenesis in dwarf hamsters

We sought to characterize which expression phenotypes were associated with sterile
hybrids in both house mice and dwarf hamsters. We first investigated whether differential gene
expression in hybrids tended towards intermediate or transgressive expression, and then
within transgressive DE genes, whether misexpression tends towards up- or downregulation in
hybrids compared to parents. Differential gene expression in mouse hybrids had a slight bias
towards transgressive expression except in round spermatids (percentage of transgressive DE
genes: SP: 72.0%, LZ: 62.7%, DIP: 60.8%, and RS: 24.9%; Figures 4b and S2 in File S1), while
almost all differential expression in dwarf hamster hybrids was transgressive (percentage of
transgressive DE genes: SP: 99.2%, LZ: 98.0%, and DIP: 97.1). For transgressive DE genes,
autosomal misexpression in hybrid house mice was biased towards upregulation across
spermatogenesis (mean logFC of spermatogonia autosomal transgressive DE genes: +1.90/ X2
p < 0.001; leptotene/zygotene: +1.33/ X: p < 0.001; diplotene: +0.47/ X?: p < 0.001; Figures 4c
and S8 in File S1), as was X-linked misexpression (spermatogonia mean logFC: +1.98 / X% p <
0.001; leptotene/zygotene: +2.50/ X?: p < 0.001; diplotene: +2.78/ X?: p < 0.001). In contrast,
we found that the direction of misexpression in dwarf hamster hybrids was cell type-specific.
Autosomal transgressive DE genes in dwarf hamster hybrids were overwhelmingly
downregulated in both early stages of spermatogenesis, especially in comparison to house
mice (mean logFC of spermatogonia autosomal transgressive DE genes: -4.38/ X*: p < 0.001;
leptotene/zygotene: -4.67/ X2 p < 0.001; Figure 4d) but upregulated in diplotene (average
logFC = +4.67/ X*: p < 0.001; Figures 4d and S8 in File S1). When comparing both X-linked and

autosomal expression in dwarf hamsters, we found similar patterns: almost all X-linked
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transgressive DE genes in the first two stages of spermatogenesis were exclusively
downregulated (spermatogonia mean logFC = -6.57/ X*: p < 0.001; leptotene/zygotene: -6.73/
X?: p < 0.001), but misexpression was biased towards upregulation in diplotene (mean logFC:
5.70/ X?: p < 0.001).

Second, we investigated how developmental stage influenced the extent of hybrid
misexpression. In both systems, the number of DE genes between parent species increased
with the progression of spermatogenesis, consistent with less constraint on gene expression
levels as spermatogenesis progresses (Figure 4a; Kopania et al. 2022a; Murat et al. 2023).
Similarly, transgressive misexpression in both hybrid dwarf hamsters and house mice
increased with the progression of spermatogenesis, though to a greater extent in dwarf
hamsters (Figure 4b). While both parental DE genes and transgressive hybrid DE genes
increased with the progression of spermatogenesis, parental DE genes initially exceeded the
number of transgressive hybrid DE genes in hybrids in spermatogonia and leptotene/zygotene
spermatocytes. However, in diplotene spermatocytes, transgressive hybrid differential
expression surpassed parental differential expression in both house mice and dwarf hamsters.
We also found a much greater genome-wide disruption of expression in diplotene cell
populations of hybrid dwarf hamsters than in hybrid house mice (Figures 4c, 4d, and S8-S10 in
File S1), indicating more widespread regulatory disruption. We then compared transgressive
DE genes between house mice and dwarf hamster hybrids across all three stages and found
that the number of shared transgressive DE genes did not differ from the number expected by
chance in early spermatogenesis (spermatogonia = 3 genes, hypergeometric test p = 0.98;
leptotene/zygotene = 2 genes, p = 0.59; Table S4 in File S1). However, the number of shared
transgressive DE genes did exceed the number expected by chance in diplotene cell
populations (n = 68; p < 0.001), and these shared genes were preferentially located on the X

chromosome (61/68; p < 0.001). Additionally, these sets of shared transgressive DE genes
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between house mice and dwarf hamsters were not significantly enriched for any GO terms,
though many play known roles in spermatogenesis, the apoptotic process, and cell
differentiation (Table S5 in File S1) and may be promising candidates for future functional
analysis. Ultimately, we found that there are similar trends in the patterns of transgressive
expression across stages in both systems, and although few specific genes had disrupted
expression in both dwarf hamster and house mouse hybrids, genes with similar patterns of
disrupted expression tend to be X-linked and disrupted in later stages of spermatogenesis.

To determine if the differences we observed in the extent of misexpression between
dwarf hamsters and house mice was due to greater expression variability across our dwarf
hamster samples, we calculated the BCV, a measurement of inter-replicate variability, for each
species and hybrid across the first three cell populations. Inter-replicate variability was higher
in dwarf hamster hybrids relative to house mouse hybrids (dwarf hamster BCV = 0.69; house
mice = 0.18). Additionally, nucleotide diversity within dwarf hamster hybrids was higher (1 =
0.0012) than within house mouse hybrids (it = 0.00052; Figure S3 in File S1). However, the
extent of the expression variability observed in hybrids relative to the inter-replicate variability
of parental species differed between house mice and dwarf hamsters: dwarf hamster hybrid
variability was more than dwarf hamster parental samples (P. campbelli = 0.49; P. sungorus =
0.40), but hybrid variability was similar to parental samples for house mice (M. m. musculus =
0.19; M. m. domesticus = 0.22). The greater inter-replicate expression variability in dwarf
hamster hybrids relative to parent species suggests that the increased misexpression we see
in hybrids cannot be explained by greater inter-replicate variability in our dwarf hamster
samples alone, and it may also reflect the greater nucleotide diversity present among dwarf
hamster hybrids.

Third, we characterized whether there was a clear difference between the autosomes

and sex chromosomes in expression phenotype by testing whether the X chromosome was
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enriched for transgressive DE genes in each stage for both systems. Across all stages of
spermatogenesis in house mice, the X chromosome was enriched for transgressive DE genes
between hybrids and parents (spermatogonia p < 0.001; leptotene/zygotene p < 0.001;
diplotene p < 0.001; round spermatids p < 0.0036; Figure S9 in File S1). In contrast,
misexpression in dwarf hamsters was not uniformly sex chromosome-specific across all
stages, as the sex chromosomes in dwarf hamsters showed no enrichment for transgressive
DE genes early in spermatogenesis (spermatogonia: p = 0.21; Figure S10 in File S1) despite X
chromosome enrichment in both leptotene/zygotene (p = 0.0064) and round spermatids (p <
0.001). However, we note that the magnitude of misexpression was greater for sex
chromosomes than autosomes in dwarf hamsters across all stages (Figures 4c and 4d;
discussed above). Only two autosomes were enriched for transgressive DE genes in dwarf
hamsters in any cell population: one scaffold on chromosome 5 in spermatogonia
(JAJQIY010003390.1; hypergeometric test; p = 0.003) and chromosome 11 in
leptotene/zygotene (p = 0.017; Figure S10 in File S1). Together, the subtle differences in the
distribution of transgressive DE genes across autosomes and the X chromosome between
dwarf hamster hybrids and house mouse hybrids suggest a difference in the extent of the role

for sex chromosome-specific disruption between systems.

Misexpression in diplotene appears to be unrelated to disrupted MSCI in dwarf hamsters
We next asked whether expression patterns indicated similar disrupted regulatory
processes resulting in sex chromosome-specific misexpression in both systems. In sterile
hybrid house mice, the mean logFC of transgressive X-linked DE genes during diplotene was
higher than the mean logFC of transgressive autosomal DE genes (X logFC = +2.78 in contrast
to autosomal logFC = +0.47; Figures 4c and 4d), consistent with disrupted MSCI (Good et al.

2010; Bhattacharyya et al. 2013; Campbell et al. 2013; Turner and Harr 2014; Larson et al.
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2017, 2022). In sterile dwarf hamster hybrids, we also found elevated mean logFC of
transgressive X-linked DE genes relative to autosomal genes (X logFC = +5.70 in contrast to
autosomal logFC = +3.69), but the extent of X chromosome overexpression, as measured by
logFC of X-linked transgressive DE genes, was greater than in hybrid house mice (5.7/3.69 or
~1.5x higher; Figures 2, 4c, and 4d). There was also more variability in the extent of
overexpression of X-linked genes in hybrid dwarf hamsters compared to normal parental X-
linked expression during diplotene (relative overexpression = 18.5 +/- 6.8) than for
overexpression of X-linked genes in hybrid house mice compared to normal parental X-linked
expression in diplotene (relative overexpression = 1.75 +/- 0.09; Figures 2 and S11 in File S1).
Strikingly, some hybrid male dwarf hamsters had an almost completely silenced X
chromosome, while others had an almost completely transcriptionally-activated X chromosome
(Figure 2).

Despite overexpression of the X chromosome during diplotene in hybrid dwarf
hamsters, the overall expression phenotype, including the identity and the extent of
misexpression of overexpressed genes, appeared to fundamentally differ between house
mouse and dwarf hamster hybrids (Figures 2 and 5a-5c). We established these differences in
X-linked overexpression using two approaches. First, we tested which parental cell types had
the highest expression correlation with hybrid diplotene cell types for both X-linked and
autosomal genes. In mice, the expression profile of X-linked genes in hybrids during diplotene
was most positively correlated with the expression profile of X-linked parental round spermatid
genes, consistent with disrupted MSCI (spermatogonia (r) = -0.25, p < 0.001;
leptotene/zygotene (r) = -0.073, p = 0.035; round spermatid (r) = 0.26, p < 0.001; Figures 2 and
5a). Autosomal diplotene genes showed no positive correlations with either spermatogonia (r =
-0.26; p < 0.001), leptotene/zygotene (r = -0.032; p < 0.001), or round spermatids (r = -0.060; p

< 0.001; Figure 5a). If the X-linked overexpression phenotype in dwarf hamsters was consistent
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with disrupted MSCI, then we would also expect X-linked and autosomal expression profiles in
hybrid diplotene to follow the same patterns. In contrast to this prediction, hybrid dwarf
hamster diplotene expression profiles for both X-linked and autosomal genes had a positive
correlation with parental leptotene/zygotene (autosomal (r) = 0.14, p < 0.001; X-linked (r) =
0.22, p < 0.001) and spermatogonia (autosomal (r) = 0.027, p < 0.001; X-linked (r) = 0.091, p =
0.016) and a negative correlation with round spermatids (autosomal (r) = -0.30, p < 0.001; X-
linked (r) = -0.31, p < 0.001; Figure 5b). These striking differences in the strength and direction
of expression profile correlations suggest that the regulatory mechanisms underlying the
overexpression phenotype of X-linked genes in sterile hybrids differed between house mice
and dwarf hamsters.

This difference in pattern was further supported when we compared which sets of
genes were overexpressed in hybrid diplotene in dwarf hamsters and house mice. For this
approach, we looked at parental gene expression patterns to characterize which stages of
spermatogenesis all genes were normally active during and characteristic of (i.e., “induced”;
see Methods). Using this information, we then identified which X-linked genes were
overexpressed in hybrid diplotene (defined as genes with normalized expression in the top
10% of X-linked genes) and assessed which parental stages the overexpressed X-linked genes
were characteristic of in both systems. As in our correlation analysis, we found that in hybrid
house mice, the genes that were overexpressed in diplotene most closely resembled genes
that are normally active in round spermatids in parental mice (51.6% of genes), but that in
hybrid dwarf hamsters, overexpressed diplotene genes resembled spermatogonia- and
leptotene/zygotene-specific genes (47.6% and 41.6% respectively; Figure 5c). Because of the
dissimilarity in the genes that were overexpressed during diplotene in both systems, we next
performed gene ontology (GO) enrichment analyses on the set of transgressive DE genes in

hybrids to determine which biological processes could be potentially contributing to this
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pattern. In contrast to house mice hybrids where transgressive DE genes were enriched for no
biological processes, the transgressive DE genes in dwarf hamster were enriched for several
biological processes including cell junction/extracellular matrix organization, system
development, inflammatory response, and apoptotic process which together point to
widespread disruption of numerous processes necessary for normal male fertility (highlighted
terms presented in Figure 5d and the full lists in Tables S6-S8 in File S1). Collectively, these
results suggest that the X-linked overexpression phenotype in sterile hybrid dwarf hamsters is
inconsistent with disrupted MSCI and is possibly related to a stalling and breakdown of

spermatogenesis between leptotene/zygotene and diplotene during Prophase |.

PAR expression was not disrupted in sterile hybrid dwarf hamsters

Finally, we tested the hypothesis that hybrid sterility in dwarf hamsters may be
correlated with asynapsis of the X and Y chromosomes because of divergence in the
pseudoautosomal region (PAR) which prevents proper chromosome pairing (Bikchurina et al.
2018). The PAR is the only portion of the sex chromosomes that is able to synapse during
routine spermatogenesis, and PAR genes are assumed to escape silencing by MSCI
(Raudsepp and Chowdhary 2015). However, because XY asynapsis is common in dwarf
hamster hybrids, Bikchurina et al. (2018) hypothesized that MSCI may extend to the PAR of
hybrid male dwarf hamsters, resulting in the silencing of PAR genes in hybrids that may be
critical to meiosis (Figure 6a). To test this hypothesis, we compared the expression of genes
located in the dwarf hamster PAR (Moore et al. 2022) between parental dwarf hamster species
and hybrid offspring across the timeline of spermatogenesis. Specifically, we hypothesized that
if XY asynapsis results in an extension of MSCI to the PAR in hybrid dwarf hamsters, then
hybrids should have similar PAR gene expression to parents early in meiosis before

homologous chromosome synapse during pachytene. This should be followed by the silencing
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of PAR genes in hybrids, but not parent species, during diplotene. If XY asynapsis does not
alter the regulation of the PAR in hybrids, then we may see two possible patterns. First, if all
PAR genes are critical to the later stages of spermatogenesis, then PAR genes in both hybrids
and parents should be uniformly expressed in diplotene. Alternatively, if PAR genes are not
critical to the later stages of spermatogenesis, then hybrids and parent species should have
similar PAR gene expression, and not all PAR genes may be expressed during diplotene.

We did not find evidence supporting PAR-wide silencing in dwarf hamster hybrids
during diplotene suggesting that MSCI is not extended to the PAR in dwarf hamster hybrids
because of XY asynapsis (Figure 6b). Furthermore, we do not see PAR-wide expression of
genes during diplotene in hybrids or parents, indicating that not all PAR genes are critical to
the progression of spermatogenesis in dwarf hamsters. In general, most PAR gene expression
followed similar trends between hybrids and parent species. Two PAR genes were differentially
expressed between hybrids and P. campbelli during diplotene (Ndrg2 and Psun_G000022883;
Table S3 in File S1), but these genes were still expressed in hybrids. Further, an association
between PAR misregulation during the early stages of spermatogenesis and hybrid male
sterility also seems unlikely as only one gene, Gprin1, showed transgressive differential
expression in early meiosis between both parent species and hybrids (Table S3 in File S1).
Thus, based on the current annotation of the PAR in P. sungorus, we currently find no direct

evidence linking improper silencing of PAR genes to hybrid male sterility in dwarf hamsters.

DISCUSSION

We used a comparative approach to understand common gene expression phenotypes
associated with hybrid male sterility in two divergent rodent crosses. We characterized the
asymmetry in the expression patterns of transgressive genes, how misexpression changed

over developmental timelines, and how the X chromosome and autosomes differed in both of
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these aspects. We found that while there were similarities in hybrid expression phenotypes in
house mice and dwarf hamsters, there were also differences in the timing and chromosomal
distribution of disrupted gene expression that point towards different underlying mechanisms

behind hybrid male sterility.

Asymmetry and developmental timing of misexpression in hybrids

We first investigated patterns of transgressive gene misexpression in sterile male
hybrids. Studies of transgressive misexpression in sterile or inviable hybrids have often
focused on whether hybrid expression is biased towards over or underexpression, with the
hypothesis that expression may be biased towards overexpression if hybrid incompatibilities
disrupt repressive gene regulatory elements (Meiklejohn et al. 2014; Barreto et al. 2015; Larson
et al. 2017). In house mice, there is strong support for overexpression of both autosomal and
X-linked genes in sterile F1 hybrids (Mack et al. 2016; Larson et al. 2017, 2022; Hunnicutt et al.
2022). Surprisingly, we found that in dwarf hamster hybrids, there was nearly uniform
downregulation of transgressive DE genes in mitotic and early meiotic cell populations,
suggesting that a loss of regulatory repression is not an inevitable outcome of hybrid genomes.
Hybrid house mice expression is also more similar to the parent with the same X chromosome,
M. m. musculus, than to the parent with a different X chromosome, M. m. domesticus (Figure
4b and S2 in File S1; Larson et al. 2017). Further work in house mice has shown that F1 hybrid
expression patterns depend on both autosomal background and sex chromosome mismatch
(Kopania et al. 2022b). In contrast, hybrid dwarf hamsters showed similar levels of
misexpression in both the P. campbelli and P. sungorus comparisons. Determining what
factors shape the misexpression of parental alleles is a fruitful area of future research.

Asymmetric patterns of misexpression have been found in many hybrids, including

underexpression in sterile Drosophila hybrids (Michalak and Noor 2003; Haerty and Singh
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2006; Llopart 2012) and sterile introgression lines of tomato (Guerrero et al. 2016) and
Drosophila (Meiklejohn et al. 2014), but overexpression has also been found in other sterile
hybrids (Llopart 2012; Davis et al. 2015). In many of these studies, patterns of misexpression
may be complicated by differences in cell composition or differences in the developmental
timeline of sterile hybrids and their parents (Good et al. 2010; Wei et al. 2014; Montgomery and
Mank 2016; Kerwin and Sweigart 2020; Hunnicutt et al. 2022). The variation we and others
have found in hybrid expression phenotypes suggests that the mechanisms of disrupted
expression are complex, even within groups with relatively shallow divergence times, such as
rodents, and we need more data from diverse hybrid sterility systems to begin to understand
common drivers of transgressive hybrid misexpression.

The downregulation we observed in early spermatogenesis in hybrid dwarf hamsters
could be due to impaired transcription factor binding with promoter or enhancer elements (Oka
et al. 2014; Guerrero et al. 2016) or disrupted epigenetic silencing. Disruption of epigenetic
regulation of gene expression has been increasingly linked to hybrid dysfunction in plants
(Shivaprasad et al. 2012; Lafon-Placette and Kdéhler 2015; Zhu et al. 2017), especially
polyploids (Paun et al. 2007), and may also contribute to hybrid male sterility in Drosophila
(Bayes and Malik 2009) and cattle x yak hybrids (Luo et al. 2022). At least one known
chromatin difference, an expansion of the heterochromatin-enriched Xp arm of the X
chromosome, has been documented between parental dwarf hamster species (Gamperl et al.
1977; Haaf et al. 1987). However, it is unknown what the functional consequences of this
chromatin state divergence or other diverged epigenetic regulatory mechanisms, such as
methylation, may be in hybrid dwarf hamster spermatogenesis, and further work is needed to
distinguish between potential mechanisms underlying the observed genome-wide

downregulation.
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Spermatogenesis as a developmental process may be sensitive to disruption (Lifschytz
and Lindsley 1972; Wu and Davis 1993), but it remains an open question whether specific
stages of spermatogenesis, or developmental processes more broadly, may be more prone to
the accumulation of hybrid incompatibilities. In general, earlier developmental stages are
thought to be under greater pleiotropic constraint and less prone to disruption (Cutter and
Bundus 2020). With the progression of mouse spermatogenesis, pleiotropy decreases (as
approximated by increases in tissue specificity; Murat et al. 2023) and the rate of protein-
coding evolution increases (Larson et al. 2016; Kopania et al. 2022a; Murat et al. 2023), which
may make the later stages of spermatogenesis more prone to accumulating hybrid
incompatibilities. Indeed, we found fewer DE genes both between parent species and in sterile
hybrids for both dwarf hamsters and house mice during the early stages of spermatogenesis
than in later stages (Figures S9 and S10), and hybrid misexpression greatly exceeds parental
expression divergence in late spermatogenesis. When examining transgressive DE genes
shared between analogous cell types in dwarf hamster and house mouse hybrids, we found
that there were similar or fewer shared genes than expected by chance during early
spermatogenesis but more shared genes than expected by chance, especially on the X
chromosome, in later spermatogenesis, suggesting that disrupted expression of shared genes
of large effect during early spermatogenesis is unlikely to be responsible for the repeated
evolution of hybrid male sterility in these species.

Despite general similarities in patterns of misexpression across spermatogenesis in
hybrids, studies in house mice suggest that early spermatogenesis may be tolerant of some
misregulation as low levels of gene misexpression in early meiotic stages does not always
correlate with a complete cessation of sperm development (Oka et al. 2010; Ishishita et al.
2015; Mipam et al. 2023). However, the patterns we find in dwarf hamsters suggests that

spermatogenesis may be disrupted between zygotene and diplotene cell stages from early
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misexpression. Dwarf hamster hybrid diplotene cell populations had X-linked and autosomal
gene expression profiles which more closely resemble parental leptotene/zygotene cell
populations than either diplotene or postmeiotic cell populations. Furthermore, transgressive
DE genes in hybrids during diplotene were enriched for genes associated with cell
differentiation, proliferation, and programmed cell death, suggesting misexpression during this
stage could be a consequence of a stalling or breakdown of early meiosis in hybrid dwarf
hamsters. It’s unclear what underlying genomic mechanisms could result in this breakdown,
but it is possible that this disruption could potentially act as a major contributor to hybrid
sterility in this system. Ultimately, we find that spermatogenesis is a complex and rapidly
evolving developmental program that may provide many potential avenues across its timeline

for the evolution of hybrid incompatibilities.

Abnormal sex chromosome expression patterns differ between dwarf hamster and house
mouse hybrids

The sex chromosomes play a central role in speciation, an observation which has been
supported by both Haldane’s rule (Haldane 1922) and the large X-effect on hybrid male sterility
(Coyne and Orr 1989). Misregulation of the X chromosome may contribute to hybrid sterility in
several species pairs (Davis et al. 2015; Morgan et al. 2020; Sanchez-Ramirez et al. 2021). The
X chromosome is transcriptionally repressed during routine spermatogenesis in many
organisms including eutherian mammals (McKee and Handel 1993), monotremes (Murat et al.
2023), Drosophila (Landeen et al. 2016), grasshoppers (Viera et al. 2021), mosquitos (Taxiarchi
et al. 2019), and nematodes (Rappaport et al. 2021). Because of the ubiquity of X chromosome
repression during spermatogenesis, disruption of transcriptional repression could be a
widespread regulatory phenotype in sterile hybrids (Lifschytz and Lindsley 1972; Larson et al.

2018). In sterile hybrid mice, disrupted X repression (disrupted MSCI) leads to the
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overexpression of the normally silenced X chromosome during diplotene (Good et al. 2010;
Bhattacharyya et al. 2013; Campbell et al. 2013; Turner and Harr 2014; Larson et al. 2017,
2022). We also found overexpression of the X chromosome during diplotene in sterile hybrid
dwarf hamsters, but in a manner inconsistent with sterile hybrid house mice. Both the X
chromosome and autosomes are overexpressed in dwarf hamster hybrid diplotene cell
populations to a greater extent on average than was observed in house mice, and importantly,
X-linked overexpression was more variable in dwarf hamster hybrids than house mice hybrids.
In fact, some dwarf hamster hybrids had wildly overexpressed X chromosomes while others
appeared to have properly silenced X chromosomes. Our expression correlation and gene set
analyses of hybrid diplotene cell populations provide additional evidence that the genes
overexpressed in hybrid hamster diplotene are different than those overexpressed in house
mouse hybrids, sharing more similarity to the earlier meiotic cell types than downstream
postmeiotic cell types. Overall, our results indicate fundamentally different patterns of X-linked
overexpression in both systems, with X-linked overexpression in dwarf hamster hybrids being
inconsistent with disrupted MSCI patterns observed in house mouse hybrids.

Much of what we know about the genomic architecture and the role of sex
chromosome misregulation in hybrid male sterility in mammals comes from decades of work
that have shown a major gene, Prdm9, and its X chromosome modulator, Hstx2, may be
responsible for most F1 hybrid male sterility in house mice (Forejt et al. 1991, 2021; Trachtulec
et al. 1997; Mihola et al. 2009; Lustyk et al. 2019). Prdm9 directs the location of double strand
breaks during meiotic recombination (Mihola et al. 2009; Oliver et al. 2009; Smagulova et al.
2016). In hybrid mice, divergence at Prdm9 binding sites leads to asymmetric double-stranded
breaks and results in autosomal asynapsis, triggering Meiotic Silencing of Unsynapsed
Chromatin, shutting down transcription on asynapsed autosomes using the same cellular

machinery as MSCI (Turner 2015), and eventually meiotic arrest and cell death (Bhattacharyya
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et al. 2013; Forejt et al. 2021). This process is associated with the disruption of MSCI and a
characteristic overexpression of the X chromosome during meiosis (Good et al. 2010;
Bhattacharyya et al. 2013; Campbell et al. 2013; Turner and Harr 2014; Larson et al. 2017,
2022), but whether disrupted MSCI directly contributes to hybrid male sterility or is simply a
downstream consequence of Prdm9 divergence is still uncertain (Forejt et al. 2021).

Whether we should have expected patterns of disrupted sex chromosome expression
in sterile hybrid hamsters to be the same as house mice is unclear. The sex chromosomes in
pachytene cells of hybrid dwarf hamsters display normal yH2AFX staining (Ishishita et al. 2015;
Bikchurina et al. 2018), a key marker in MSCI (Abe et al. 2022), which may indicate that the
hybrid sex chromosomes are properly silenced. Additionally, autosomal asynapsis is rarely
observed in hybrid dwarf hamsters, and asynapsis is almost exclusive to the sex chromosomes
(Ishishita et al. 2015; Bikchurina et al. 2018). This contrasts Prdm9-mediated sterility in house
mice, where hybrid autosomes are often asynapsed and decorated with yH2AFX
(Bhattacharyya et al. 2013; Forejt et al. 2021). Mechanisms other than Prdm9 may also disrupt
MSCI and result in sterility, such as macrosatellite copy number divergence (Bredemeyer et al.
2021) and X-autosome translocations that impair synapsis (Homolka et al. 2007), although
there is no evidence for X-autosome translocations between these two species of dwarf
hamsters (Moore et al. 2022). Thus, while MSCI may be a major target for the accumulation of
reproductive barriers between species in many mammalian systems, either through Prdm9
divergence or alternative mechanisms, our results suggest that sterility in dwarf hamsters has a
more composite regulatory basis.

Another mechanism often proposed to underlie mammalian male hybrid sterility,
especially in rodents, is divergence in the PAR between parental species. The PAR is the only
portion of the sex chromosomes which can synapse during spermatogenesis, and it is still

unclear if the regulation of the PAR is uniformly detached from MSCI across divergent
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mammalian sex chromosome systems (Raudsepp and Chowdhary 2015). We find no evidence
that PAR-specific misregulation is associated with hybrid sterility in dwarf hamsters. PAR
genes are not silenced in hybrids or parents, a pattern that is inconsistent with MSCI that has
extended to the PAR due to XY asynapsis, and further, expression of PAR genes in hybrids
differs little from parental PAR expression. While we find no evidence that PAR misregulation
per se is associated with hybrid sterility in this system, we cannot rule out the possibility that
structural and sequence divergence between the PARs of P. sungorus and P. campbelli may
be associated with hybrid sterility. Structural and sequence divergence in the PAR has been
hypothesized to activate the meiotic spindle checkpoint by interfering with proper pairing of
sex chromosomes (Burgoyne et al. 2009; Dumont 2017). The PAR evolves rapidly in rodents
(White et al. 2012b; Raudsepp and Chowdhary 2015; Morgan et al. 2019), and this elevated
divergence may underlie sex chromosome asynapsis and apoptosis in several hybrid mouse
crosses (Matsuda et al. 1991; Oka et al. 2010; White et al. 2012a; Dumont 2017). Furthermore,
divergence in the mouse PAR has been implicated in spermatogenic defects in crosses where
Prdm9-divergence is minimal, such as between closely related subspecies (Dumont 2017) or in
mice with genetically-modified Prdm9 alleles (Davies et al. 2021). Meiosis is likely tolerant to
some degree of divergence in the PAR (Morgan et al. 2019), but exact limits are currently
unknown. At this time, thorough analysis of structural and sequence divergence between the
PARs in dwarf hamsters is challenging as the PAR is notoriously difficult to assemble (but see
Kasahara et al. 2022), and there are annotation gaps in the current assembly of the PAR in
dwarf hamsters. In sum, we find no clear pattern of regulatory disruption of PAR genes in
sterile hybrid dwarf hamsters, though this result may change pending further refinement of the

PAR annotation.
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Conclusions

Cell-specific approaches for quantifying expression phenotypes are powerful tools for
providing insight into the underlying mechanisms behind hybrid dysfunction (Hunnicutt et al.
2022), especially in systems where it remains difficult to interrogate the underlying genomic
architecture of these traits. Using a contrast of dwarf hamster and house mouse hybrids, we
have shown that transgressive overexpression is not an inevitable outcome of hybridization,
that misexpression resulting from hybrid incompatibilities may be likely to arise in differing
stages of spermatogenesis, and that disrupted sex chromosome silencing does not appear to
play an equal role in sterility between these two systems. Both the expression phenotypes we
observed here and histological evidence from other studies (Ishishita et al. 2015; Bikchurina et
al. 2018) suggest that several reproductive barriers are acting during spermatogenesis in dwarf
hamster hybrids. It has become increasingly apparent as more study systems are investigated
that the genetic basis of postzygotic species barriers are often complex and polymorphic
(Cutter 2012; Coughlan and Matute 2020), and implementing approaches which account for
the developmental complexities of hybrid dysfunction, as we have done here, will allow us to

make further advances in understanding the processes of speciation.
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Figures

Figure 1. Evidence of some hybrid male sterility in dwarf hamsters. We assessed paired
testes weight and paired seminal vesicle weight (SV; both normalized by body weight), sperm
count, and proportion of motile sperm for P. sungorus, P. campbelli, and F1 hybrids. Whiskers
extend to either the largest or smallest value or no further than 1.5 times the interquartile range,
and *** indicates p < 0.001, ** indicates p < 0.01, and n.s. indicates non-significant difference
between means at p > 0.05 using a post-hoc Dunn’s test with FDR correction. Upwards-
pointing triangles (A) indicate P. campbelli, downwards-pointing triangles (V) indicate P.

sungorus, and crosses (%) indicate F1 hybrids.

Figure 2. Overexpression of X-linked genes in diplotene spermatocytes in both house
mouse and dwarf hamster hybrids. Heatmap of X-linked gene expression in house mice
(upper panel) and dwarf hamsters (lower panel) plotted as normalized FPKM values that are
hierarchically clustered using Euclidean distance. Each column represents a different
individual, each row represents a gene, and darker colors indicate higher expression. The
heatmap was generated with the R package ComplexHeatmap v.2.12.0 (Gu et al. 2016). Note,
hybrid dwarf hamsters do not produce mature spermatozoa, and accordingly, we were unable

to isolate round spermatids.

Figure 3. Hybrid gene expression profiles cluster by parental spermatogenic cell
population in house mice but not dwarf hamsters. Multidimensional scaling (MDS) plots of
distances among house mouse (upper panels) and dwarf hamster (lower panels) samples for
expressed autosomal (left) and X-linked (right) genes. Distances are calculated as the root-

mean-square deviation (Euclidean distance) of log2 fold changes among the top 500 genes
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that distinguish each sample. Each strain or cross is indicated by a symbol, and samples are

colored by cell population.

Figure 4. House mice and dwarf hamster hybrids have opposite patterns of disrupted
regulation early in spermatogenesis. a) Up- and down-regulated DE genes between parent
species for house mice (left; M. m. musculus vs. M. m. domesticus) and dwarf hamsters (right;
P. sungorus vs. P. campbelli). b) Counts of DE genes between hybrids and one parent species
(two lightest shades of gray where Parent 1 was either M. m. musculus or P. sungorus and
parent 2 was either M. m. domesticus or P. campbelli) or between hybrids and both parents
(two darker shades of gray) that showed either intermediate or transgressive expression. c)
Transgressive DE genes in house mouse and dwarf hamster hybrids for autosomal genes
where the logFC represents hybrid expression relative to M. m. musculus or P. campbelli,
respectively, and d) transgressive DE gene expression for X-linked genes. Results are

*kk

displayed for autosomes (left) and the X chromosome (right). *** indicates p < 0.001 for
pairwise comparisons from Wilcoxon signed-rank tests after FDR correction. Whiskers extend
to either the largest or smallest value or no further than 1.5 times the interquartile range. The

number of up and downregulated transgressive DE genes in hybrids are listed next to arrows

indicating direction of differential expression.

Figure 5. Spermatogenesis in hybrid dwarf hamsters appears to stall after leptotene/
zygotene. a) We calculated the Pearson’s correlation coefficient (r) between mean hybrid
diplotene expression and the mean expression for each parental cell type for both house mice
and b) dwarf hamsters. Correlation coefficients were calculated for both autosomal (left panels)
and X-linked (right panels) genes. We then generated bootstrap values by randomly sampling

the expression matrices for 1000 replicates. All correlation coefficients were significantly
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different from zero (p < 0.05) after FDR correction. c) Classification of X-linked overexpressed
genes in diplotene cell populations of hybrid mice and dwarf hamsters by parental stage in
which genes are induced. Genes are colored by cell type (red = spermatogonia, yellow =
leptotene/zygotene, green = diplotene, and blue = round spermatids). d) Select enriched
Biological Process GO terms (ranked by FDR) for transgressive DE genes between hybrid
dwarf hamsters and P. campbelli in diplotene spermatocytes. Included terms shown are the
result of the highlight function within gProfiler2 which collapses GO terms in a two-step
clustering algorithm (Kolberg et al. 2020). Point size corresponds to the number of genes
belonging to each GO term, and terms are plotted by the fold enrichment of the GO term in the

dataset relative to the provided gene backgrounds.

Figure 6. PAR gene expression is not disrupted during spermatogenesis in hybrid dwarf
hamsters. a) Hypothesized types of PAR gene expression across spermatogenesis. If MSCI
extends to the entire X chromosome, then PAR genes would show some level of expression
early in spermatogenesis which would then drop to zero in diplotene when MSCI occurs. If the
PAR escapes silencing by MSCI and if PAR genes are critical to spermatogenesis, then we
would expect PAR genes to be uniformly expressed in diplotene when the rest of the X
chromosome is silenced. Finally, if the PAR escapes silencing by MSCI but all PAR genes are
not critical to spermatogenesis, then we would expect some PAR genes to be expressed and
some to be not expressed in diplotene. b) Observed patterns of PAR gene expression (as mean
normalized RPKM across individuals) in parental species and hybrid dwarf hamsters for all PAR
genes (indicated by line type and color) across spermatogenesis (SP = spermatogonia, LZ =

leptotene/zygotene’, and DIP = diplotene).
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