

Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses

Kelsie E. Hunnicutt^{*,1}, Colin Callahan², Sara Keeble², Emily C. Moore^{1,2}, Jeffrey M. Good², and Erica L. Larson^{*,1}

¹ Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA

² Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA

*Corresponding authors

ORCID: 0000-0002-9674-0630 (KEH)

ORCID: 0000-0002-0385-1121 (CC)

ORCID: 0000-0002-7318-3122 (SK)

ORCID: 0000-0001-6166-3367 (ECM)

ORCID: 0000-0003-0707-5374 (JMG)

ORCID: 0000-0003-3006-645X (ELL)

Corresponding Authors:

Kelsie Hunnicutt

Department of Biological Sciences

University of Denver

Denver, CO 80208

Email: Kelsie.Hunnicutt@du.edu

Erica Larson

Department of Biological Sciences

University of Denver

Denver, CO 80208

Email: Erica.Larson@du.edu

Running title: Rodent hybrid male sterility

Key words: speciation, hybrid male sterility, gene expression, fluorescence activated cell sorting, meiotic sex chromosome inactivation, *Phodopus*

1 **ABSTRACT**
2

3 Hybrid incompatibilities are a critical component of species barriers and may arise due
4 to negative interactions between divergent regulatory elements in parental species. We used a
5 comparative approach to identify common themes in the regulatory phenotypes associated
6 with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We
7 investigated three potential characteristic gene expression phenotypes in hybrids including the
8 propensity of transgressive differentially expressed genes towards over or underexpression,
9 the influence of developmental stage on patterns of misexpression, and the role of the sex
10 chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in
11 hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on
12 developmental stage. In both house mouse and dwarf hamster hybrids, however,
13 misexpression increased with the progression of spermatogenesis, although to varying extents
14 and with potentially different consequences. In both systems, we detected sex-chromosome
15 specific overexpression in stages of spermatogenesis where inactivated X chromosome
16 expression was expected, but the hybrid overexpression phenotypes were fundamentally
17 different. Importantly, misexpression phenotypes support the presence of multiple
18 developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role
19 of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that
20 while there are some similarities in hybrid expression phenotypes of house mice and dwarf
21 hamsters, there are also clear differences that point towards unique mechanisms underlying
22 hybrid male sterility. Our results highlight the potential of comparative approaches in helping to
23 understand the causes and consequences of disrupted gene expression in speciation.

24

25 **INTRODUCTION**

26 The evolution of postzygotic reproductive barriers, such as hybrid inviability and
27 sterility, is an important part of the speciation process, and identifying the genetic architecture
28 of hybrid incompatibilities has been a common goal uniting speciation research (Coughlan and
29 Matute 2020). While identifying the genetic basis of hybrid dysfunction remains difficult in many
30 systems, downstream regulatory phenotypes can provide insight into the underlying
31 mechanisms of speciation (Mack and Nachman 2017). An outstanding question surrounding
32 the role of disrupted gene regulation and speciation is whether the combination of two
33 divergent genomes in hybrids results in gene expression perturbations that are consistent or
34 repeatable across species. At the broadest level, it is unclear whether gene expression in
35 hybrids tends to be intermediate or transgressive (outside the range of parental gene
36 expression), whether transgressive gene expression is biased towards over or underexpression
37 (Ortíz-Barrientos *et al.* 2007), and whether transgressive misexpression tends to be modulated
38 by *cis* or *trans* regulatory elements (Wittkopp *et al.* 2004; McManus *et al.* 2010; Oka *et al.* 2014;
39 Mack *et al.* 2016; Mugal *et al.* 2020; Kopania *et al.* 2022a). By investigating trends in the
40 magnitude and direction of transgressive expression across different hybrid systems, we can
41 begin to understand the evolutionary forces shaping regulatory-based hybrid incompatibilities.
42 For example, if transgressive misexpression in hybrids tends towards overexpression, this may
43 mean that genes with disrupted regulation in hybrids tend to be genes that are normally
44 repressed in parental lineages (Meiklejohn *et al.* 2014; Barreto *et al.* 2015; Larson *et al.* 2017).
45 Alternatively, transgressive misexpression in hybrids may tend towards underexpression if
46 regulatory divergence between parental lineages results in impaired transcription factor binding
47 with promoter or enhancer elements (Oka *et al.* 2014; Guerrero *et al.* 2016) or if divergence
48 stimulates epigenetic silencing (Paun *et al.* 2007; Shivaraprasad *et al.* 2012; Lafon-Placette and

49 Köhler 2015; Brekke *et al.* 2016; Zhu *et al.* 2017). At a finer scale, transgressive misexpression
50 patterns may depend on developmental stage: for example, if there is greater pleiotropy earlier
51 in development (Ortíz-Barrientos *et al.* 2007; Cutter and Bundus 2020). In particular, we might
52 expect sterile hybrids to have more transgressive misexpression during later stages of
53 gametogenesis when genes are evolving rapidly and are potentially under less regulatory
54 constraint (Kopania *et al.* 2022a; Murat *et al.* 2023). Finally, the role of sex chromosome
55 regulation in inviable or sterile hybrids encompasses both larger questions. Sex chromosomes
56 may be prone to asymmetry in their expression divergence (Oka and Shiroishi 2014; Civetta
57 2016) and be regulated differently across stages of development (Presgraves 2008; Larson *et*
58 *al.* 2018), particularly in reproductive tissues, and thus may play a central role in hybrid
59 dysregulation relative to autosomes.

60 Disruption of sex chromosome regulation is thought to be a potentially widespread
61 regulatory phenotype in sterile hybrids (Lifschytz and Lindsley 1972; Larson *et al.* 2018), in part
62 because X chromosome repression may be crucial to normal spermatogenesis in diverse taxa
63 (McKee and Handel 1993; Landeen *et al.* 2016; Taxiarchi *et al.* 2019; Rappaport *et al.* 2021;
64 Viera *et al.* 2021; Murat *et al.* 2023). Furthermore, misregulation of the X chromosome is
65 associated with hybrid sterility in several species pairs (Davis *et al.* 2015; Sánchez-Ramírez *et*
66 *al.* 2021; Bredemeyer *et al.* 2021), although it has been best studied in house mice. In fertile
67 male mice, the X chromosome is silenced just prior to the Diplotene stage of meiosis through
68 meiotic sex chromosome inactivation (MSCI; McKee and Handel 1993; Handel 2004) and is
69 again repressed in postmeiotic sperm development (*i.e.*, postmeiotic sex chromosome
70 repression or PSCR; Namekawa *et al.* 2006). In contrast, the X chromosome is not properly
71 inactivated and is overexpressed in sterile hybrid mice (Good *et al.* 2010; Bhattacharyya *et al.*
72 2013; Campbell *et al.* 2013; Turner *et al.* 2014; Larson *et al.* 2017, 2022). Disrupted MSCI in
73 house mice is associated with divergence at *Prdm9*, a gene that is a major contributor to

74 hybrid male sterility (Mihola *et al.* 2009; Davies *et al.* 2016). However, misexpression of the X
75 chromosome in sterile hybrids could result from mechanisms other than *Prdm9*-associated
76 disrupted MSCI, such as mispairing of the sex chromosomes due to divergence in their region
77 of homology known as the pseudoautosomal region (PAR; Burgoyne 1982; Ellis and
78 Goodfellow 1989; Raudsepp and Chowdhary 2015). In sum, the ubiquity of X chromosome
79 repression and the growing body of evidence linking disrupted MSCI to hybrid sterility in
80 mammals suggest that disrupted sex chromosome regulation may be a common regulatory
81 phenotype in sterile hybrid males.

82 Here, we characterized disruption of gene expression associated with hybrid male
83 sterility in two rodent crosses, dwarf hamsters and house mice, which span ~35 million years
84 of divergence (Swanson *et al.* 2019). The regulatory phenotypes of hybrid male sterility have
85 been thoroughly studied in house mice (Good *et al.* 2010; Bhattacharyya *et al.* 2013; Campbell
86 *et al.* 2013; Turner *et al.* 2014; Larson *et al.* 2017, 2022; Hunnicutt *et al.* 2022). We contrast
87 these with an analogous cross between two sister species of dwarf hamster, Campbell's dwarf
88 hamster (*Phodopus campbelli*) and the Siberian dwarf hamster (*P. sungorus*), and their sterile
89 F1 hybrid male offspring. These species diverged only ~0.8-1.0 million years ago (Neumann *et*
90 *al.* 2006), and they are not thought to interbreed in the wild due to geographic separation
91 (Ishishita *et al.* 2015). Crosses between female *P. sungorus* and male *P. campbelli* produce
92 sterile hybrid males that, similar to mice, have a range of sterility phenotypes, suggesting
93 multiple developmental blocks to spermatogenesis (Ishishita *et al.* 2015; Bikchurina *et al.*
94 2018). Hybrids from the reciprocal cross are usually inviable due to abnormal growth *in utero*
95 (Brekke and Good 2014), and the species origin of the X chromosome is the primary genetic
96 factor controlling hybrid inviability (Brekke *et al.* 2021). Additionally, sex chromosome
97 asynapsis during spermatogenesis is common in hybrid dwarf hamsters, providing further
98 reason to think that X chromosome-specific misregulation may be observed in sterile hybrid

99 dwarf hamsters (Ishishita *et al.* 2015; Bikchurina *et al.* 2018). Both the abnormal spermatogenic
100 phenotypes observed in dwarf hamster hybrids and the potential regulatory interactions that
101 may result from the involvement of the X chromosome in multiple reproductive barriers make
102 dwarf hamsters an important comparison to mice for investigating what regulatory phenotypes
103 may be repeatedly associated with the evolution of postzygotic reproductive isolation.

104 Expression phenotypes associated with hybrid sterility have historically been difficult to
105 assess because of the cellular diversity of reproductive tissues (e.g., testes; Ramm and
106 Schärer 2014) and because hybrids may differ from parents in both tissue composition and
107 developmental timing (reviewed in Montgomery and Mank 2016; Hunnicutt *et al.* 2022). To
108 overcome these difficulties, we used Fluorescence Activated Cell Sorting (FACS) to isolate and
109 sequence cell populations across the developmental timeline of spermatogenesis for each
110 species pair and their F1 hybrids, including stages that span the different sex chromosome
111 regulatory states. Our developmental timeline spans stages where we expect fertile parents to
112 have a transcriptionally active X chromosome (spermatogonia and leptotene/zygotene
113 spermatocytes) and an inactive X chromosome (diplotene spermatocytes and round
114 spermatids). We used both datasets to address three main questions about the transgressive
115 gene expression phenotypes observed in sterile hybrids: (1) within transgressive differentially
116 expressed genes, does misexpression tend towards up- or downregulation in hybrids
117 compared to parents? (2) are there similar patterns of disrupted transgressive expression
118 across stages of development? and (3) are there clear differences between autosomes and sex
119 chromosomes in expression phenotypes? And if so, is sex chromosome-specific transgressive
120 misexpression consistent with either disrupted MSCI and/or disrupted PAR regulation?
121 Collectively, we demonstrate the power of cell type-specific approaches for untangling the
122 expression phenotypes associated with the evolution of hybrid male sterility and for identifying
123 common themes in the mechanistic basis of hybrid incompatibilities across divergent taxa.

124 **MATERIALS AND METHODS**125 **Hamster crosses and male reproductive phenotypes**

126 We used wild-derived colonies of two sister species of dwarf hamster, *P. sungorus* and
127 *P. campbelli*, established by Kathy Wynne-Edwards (Scribner and Wynne-Edwards 1994) and
128 housed at the University of Montana. Both species were maintained as closed colonies with a
129 breeding scheme to minimize inbreeding. Nonetheless, inbreeding levels of these closed
130 colonies are still high as indicated by very low nucleotide diversity (Brekke *et al.* 2018). We
131 used males from both parent species and male F1 hybrid offspring from crosses of female *P.*
132 *campbelli* with male *P. sungorus*. We weaned males in same-sex sibling groups between 17 -
133 21 dpp and housed them individually at 45 dpp. We euthanized reproductively mature males
134 using carbon dioxide followed by cervical dislocation between 59 - 200 dpp (Table S1 in File
135 S1). All animal use was approved by the University of Montana (IACUC protocols 050-
136 16JGDBS & 035-19JGDBS).

137 We measured several fertility metrics for parent species and hybrid males including
138 paired testes weight, paired seminal vesicle weight, normalized sperm counts, and sperm
139 motility (Good *et al.* 2008). Paired testes weight and paired seminal vesicle weight were
140 correlated with body weight (paired testes weight Pearson's $r(29) = 0.47$, $p = 0.007$; paired
141 seminal vesicle weight Pearson's $r(23) = 0.56$, $p = 0.003$), so we standardized both metrics
142 relative to body weight. We calculated sperm count by isolating sperm from caudal
143 epididymides diced in 1 ml of Dulbecco's PBS (Sigma) and incubated at 37°C for 10 minutes.
144 We quantified sperm motility (proportion of motile sperm in a 5 μ l suspension) and sperm count
145 (number of sperm with head and tail in a heat shocked 5 μ l suspension) across a fixed area on
146 a Makler counting chamber. We performed statistical comparisons of fertility phenotypes in R

147 v.4.3.1, and we used the FSA package v.0.9.4 for the Kruskal-Wallis and Dunn's tests (Ogle
148 and Ogle 2017).

149

150 **Isolation of enriched cell populations from hamster testes**

151 To investigate the regulatory dynamics of the sex chromosomes during
152 spermatogenesis, we isolated four spermatogenic cell populations from whole testes using
153 FACS. These cell populations span a developmental timeline of spermatogenesis from mitosis
154 (spermatogonia), meiosis prior to X inactivation (leptotene/zygotene spermatocytes), meiosis,
155 after X inactivation (diplotene spermatocytes), and post-meiosis (round spermatids). Briefly, we
156 disassociated a single testis per male following a published protocol originally developed for
157 house mice (Getun *et al.* 2011) with modifications (github.com/goodest-goodlab/good-protocols/tree/main/protocols/FACS, last accessed June 16, 2021). We doubled the volumes
158 of all reagents to account for the increased mass of testes in dwarf hamsters relative to house
159 mice. We isolated cell populations based on size, granularity, and fluorescence on a FACS Aria
160 IIu cell sorter (BD Biosciences) at the University of Montana Center for Environmental Health
161 Sciences Fluorescence Cytometry Core. For each sorted cell population, we extracted RNA
162 using RNeasy kits (Qiagen) following protocols for Purification of Total RNA from Animal Cells.
163 We quantified sample RNA quantity and quality (requiring an RNA integrity number > 7) on a
164 Tapestation 2200 (Agilent) at the University of Montana genomics core. RNA libraries were
165 prepared by Novogene and sequenced on Illumina NovaSeq 6000s (paired end, 150 bp). Six
166 samples (distributed across different species and cell types) had low RNA concentrations, and
167 for these samples we used Novogene's low input RNA library preparation (Table S2 in File S1).
168 MDS plots indicated no severe library batch effects between samples from different library
169 preparations (Figure S1 in File S1), so we included all samples from both libraries in
170 subsequent analyses.

172 **Read processing and mapping**

173 We sequenced RNA from each cell population for three to five individuals of each
174 parent species and F1 hybrids generating an average of ~27.5 million read pairs per individual
175 (Table S2 in File S1). We trimmed reads using Trimmomatic v.0.39 (Bolger *et al.* 2014) to
176 remove low quality bases from the first and last 5 bp of each read and bases with an average
177 Phred score of less than 15 across a 4 bp sliding window and only retained reads of at least 36
178 bp. We next used an approach (based on the modtools pipeline) which maps reads from each
179 sample to pseudogenomes for both parent species (described below) to obtain a merged
180 output alignment file in order to alleviate reference bias associated with mapping hybrids to
181 only a single reference genome (Holt *et al.* 2013; Huang *et al.* 2014). For this approach, we
182 mapped reads for each individual to both a *P. sungorus* pseudogenome and a *P. campbelli*
183 pseudogenome with Hisat v.2.2.0 (Kim *et al.* 2019) with default settings and retaining at most
184 100 distinct, primary alignments, although multi-mapped reads were removed downstream
185 (described below). We generated the *P. sungorus* pseudogenome by mapping RNASeq reads
186 from a male *P. sungorus* individual (30.6 million total read pairs; NCBI SRA: SRR17223284;
187 Moore *et al.* 2022) to the *P. sungorus* reference genome (GCA_023856395.1) with bwa-mem
188 v.2.2.1 (Vasimuddin *et al.* 2019), and the *P. campbelli* pseudogenome by mapping female *P.*
189 *campbelli* whole genome sequencing reads (average coverage: 33x; NCBI SRA: SRR17223279;
190 Moore *et al.* 2022) to the *P. sungorus* reference genome. Because our *P. sungorus*
191 pseudogenome was based on a male hamster and the reference genome on a female hamster,
192 we excluded reads mapping to the PAR because sequences mapping to this region could have
193 originated from either the X or Y chromosomes and interfered with subsequent variant calling.
194 Following mapping, we used GATK v.4.2.5.0 HaplotypeCaller (-ERC GVCF) to call SNPs then
195 performed genotyping with genotypeGVCFs. We hard-filtered our SNPs (--mask-extension 5
196 "QD < 2.0" "FS > 60.0" "MQ < 40.0" "QUAL < 30.0" "DP < 10" "DP > 150") and restricted

197 SNPs to biallelic loci. Finally, we incorporated filtered SNPs back into the *P. sungorus*
198 reference genome with FastaAlternateReferenceMaker to create the *P. sungorus* and *P.*
199 *campbelli* pseudoreferences. For our RNASeq data, we appended query hit indexes to
200 resulting alignment files using hisat2Tophat.py (<https://github.com/goodest-goodlab/pseudo-it/tree/master/helper-scripts/hisat2Tophat.py>, last accessed March 8th, 2022) to maintain
201 compatibility with the modtools pipeline. We used our VCFs (above) to generate a mod-file for
202 both species with vcf2mod from Lapels v.1.1.1 to convert alignments to the *P. sungorus*
203 reference genome, and Suspenders v.0.2.6 to merge alignments while retaining the highest
204 quality alignment per read (Holt *et al.* 2013; Huang *et al.* 2014). We used featureCounts v.2.0.1
205 (Liao *et al.* 2014) to estimate counts of read pairs that aligned to the same chromosome (-B
206 and -C) and retained only singly-mapped reads. Summaries of properly mapped reads for each
207 sample can be found in Table S2 in File S1.

209 We sought to compare the gene expression phenotypes observed in dwarf hamsters to
210 those previously documented in house mice using published RNASeq data for the same four
211 spermatogenic cell types of two subspecies of house mouse and their sterile F1 hybrids
212 (Larson *et al.* 2017; Hunnicutt *et al.* 2022). These studies examined two subspecies of house
213 mice, *Mus musculus musculus* (intra-subspecific F1 males between wild-derived inbred strains
214 PWK/PhJ ♀ and CZECHII/EiJ ♂) and *M. m. domesticus* (intra-subspecific F1 males between
215 wild-derived inbred strains WSB/EiJ ♀ and LEWES/EiJ ♂) and their sterile (PWK ♀ x LEWES ♂)
216 F1 hybrids for disrupted gene expression across spermatogenesis following the same FACS
217 protocols implemented in this study. For all comparisons between house mice and dwarf
218 hamsters, we used read count files generated previously for house mice (Hunnicutt *et al.* 2022)
219 and performed all subsequent analyses in parallel for both systems.

220

221 **Estimating nucleotide diversity and divergence within and between crosses and strains**

222
223 We next estimated nucleotide diversity within and divergence between each strain or
224 cross for parent species and hybrids (π and d_{XY}). We used the bam files generated above from
225 mapping each strain or cross to its respective reference genome (either GCA_023856395.1 for
226 dwarf hamsters or GRCm38.p6 for house mice) to call SNPs as described above but with the
227 addition of a step to split reads at intronic regions using the GATK function SplitNCigarReads.
228 We generated two VCFs, one for dwarf hamster crosses and the other for house mouse
229 crosses, which we processed and filtered separately. If an individual mouse or hamster was
230 sequenced for more than one cell type, we randomly chose one of the represented cell types
231 to be included in the analysis. We hard-filtered our SNPs as above and restricted SNPs to
232 biallelic loci. Because our SNPs were called from RNASeq data and thus may be susceptible to
233 allelic imbalances or coverage differences between samples, we next investigated how the
234 inclusion of SNPs with different levels of missing data impacted estimation of π and d_{XY} . We
235 used vcftools v.0.1.17 (Danecek *et al.* 2011) to filter SNPs allowing between 0% and 90%
236 missing data (--max_missing; Figure S3 in File S1), and filtered SNPs with a depth lower than 5
237 and higher than 60 (~2-3 higher than average coverage) to eliminate multi-mapped reads.
238 Finally, we used pixy v.1.2.10.beta2 (Korunes and Samuk 2021) on our filtered VCFs to
239 estimate π and d_{XY} . Patterns of nucleotide diversity across strains and crosses were
240 qualitatively similar across missing data thresholds, so we present results corresponding to
241 10% missing data in the main text. However, we note that for all comparisons, estimates of π
242 and d_{XY} decreased with more stringent missing data thresholds regardless of strain or cross
243 (Figure S3 in File S1).

244

245 **Gene expression pre-processing**

246 Following read processing and mapping, we conducted all analyses in R v.4.3.1. We
247 classified genes as “expressed” if genes had a minimum of one Fragment Per Kilobase of exon
248 per Million mapped reads (FPKM) in at least three samples, resulting in 21,077 expressed
249 genes across the dwarf hamster dataset and 21,212 expressed genes across the house mouse
250 dataset. We also identified sets of genes “induced” in a given cell type defined as genes with a
251 median expression in a given cell population (normalized FPKM) greater than two times its
252 median expression across all other sorted cell populations (following Kousathanas *et al.* 2014).
253 We calculated normalized FPKM values by adjusting the sum of squares to equal one using the
254 R package vegan v.2.6-4 (Oksanen *et al.* 2013). We conducted expression analyses using
255 edgeR v.3.42.4 (Robinson *et al.* 2010) and normalized the data using the scaling factor method
256 (Anders and Huber 2010).

257 We qualitatively assessed cell population purity both by visual inspection during cell
258 sorting and following sequencing by assessing the expression of a panel of marker genes
259 specific to the four cell populations targeted by our FACS protocol and present in only a single
260 copy in the *P. sungorus* annotation. Spermatogonia markers included *Dmrt1* (Raymond *et al.*
261 2000) and *Hells* (Green *et al.* 2018). Leptotene/zygotene markers included *Ccnb1ip1* and
262 *Adad2* (Hermann *et al.* 2018). Diplotene was characterized by *Aurka* and *Tank* expression
263 (Murat *et al.* 2023) and round spermatids by *Cabyr* and *Acrv1* expression (Green *et al.* 2018).
264 To estimate relative purity, we compared mean marker gene expression across replicates for a
265 given cell population for both parent species. A cell population was considered qualitatively
266 pure if it had higher marker gene expression than other populations isolated by our FACS
267 protocol and if X-linked gene expression matched the expected regulatory dynamics (*i.e.*,
268 active vs. silenced (MSCI) vs. repressed (PSCR); Handel 2004; Namekawa *et al.* 2006). We
269 examined expression patterns across cell populations for all genes, autosomal genes, and X-

270 linked genes using MDS plots generated with the plotMDS function in limma v.3.56.2 (Ritchie
271 *et al.* 2015) and heatmaps using ComplexHeatmap v.2.16.0 (Gu *et al.* 2016). MDS plots used
272 the top 500 genes with the largest fold change difference between samples.

273

274 **Differential gene expression analysis**

275 We assessed differential gene expression by contrasting hybrids and each parent
276 species for all cell populations. We fit the expression data for dwarf hamsters and house mice
277 separately with negative binomial generalized linear models with Cox-Reid tagwise dispersion
278 estimates and adjusted P-values to a false discovery rate (FDR) of 5% (Benjamini and
279 Hochberg 1995). We quantified the biological coefficient of variation (BCV), a metric
280 representing the variation in gene expression among replicates (McCarthy *et al.* 2012), for each
281 dataset. Additionally, we calculated the BCV of just parental males or hybrid samples for each
282 species for the first three cell populations to examine whether dwarf hamster hybrids exhibited
283 more variability in expression than house mouse hybrids and parental dwarf hamsters. For our
284 differential expression analyses, we contrasted expression between hybrids and each parent
285 so that a positive log fold-change (logFC) indicated overexpression in sterile males and
286 implemented a logFC cutoff of 1.25. We then categorized differentially expressed (DE) genes
287 into one of four categories: DE relative to only one parent species, DE relative to both parent
288 species but with intermediate expression (intermediate), and DE relative to both parent species
289 but outside of the range of either parent species (transgressive; Figure S2 in File S1). Unless
290 otherwise specified, results discussed in the main text are restricted to transgressive DE genes
291 and are presented with the logFC from the contrast of the hybrid offspring to the parent with
292 the same X chromosome (*P. campbelli* for dwarf hamster F1 hybrids and *M. m. musculus* for
293 house mouse F1 hybrids). Transgressive DE genes have similar logFC values regardless of
294 which parent is used as the contrast, but figures depicting the logFC between F1 hybrids and

295 *P. sungorus* or *M. m. domesticus* are provided in supplementary material. We also assessed
296 differential expression between parent species/strains (parental DE) by contrasting expression
297 between parents sharing the same X chromosome as hybrids (i.e., *M. m. musculus* and *P.*
298 *campbelli*) with parents with the alternate X chromosome (i.e., *M. m. domesticus* and *P.*
299 *sungorus*) so that a positive log fold-change indicated overexpression in parents with the same
300 X chromosome as hybrids and implemented a logFC cutoff of 1.25.

301 We tested for significant differences in the number of under and overexpressed
302 transgressive DE genes within a stage for both house mouse and hamster hybrids using χ^2
303 tests with chisq.tests in R and used FDR correction for multiple comparisons. We also tested
304 for differences in the magnitude of misexpression between mouse and hamster hybrids for
305 each stage by comparing the distributions of logFC of transgressive DE genes between hybrids
306 and parent species using Wilcoxon signed-rank tests and FDR correction. To characterize
307 hybrid diplotene expression in both house mice and dwarf hamsters, we used two approaches.
308 First, we calculated Pearson's correlation coefficient (r) between average normalized hybrid
309 diplotene expression and the average normalized expression in each parental cell type. We
310 corrected p-values for each correlation with FDR. We generated bootstrap values for each
311 correlation coefficient by randomly sampling the expression matrices with replacement for
312 each sample type for 1000 replicates. Second, we compared the gene sets that escaped MSCI
313 in each species with gene sets that characterize stage-specific expression in parent species.
314 For this analysis, we defined sets of overexpressed X-linked diplotene genes as genes with
315 expression (normalized FPKM) in hybrids that was in the top 10% of X-linked genes in parental
316 diplotene samples (i.e., genes that normally escape MSCI). We then compared these sets of
317 overexpressed hybrid diplotene genes to genes “induced” in each parental stage for each
318 species. We used gProfiler2 v.0.2.3 (Kolberg *et al.* 2020) in R to perform gene ontology (GO)
319 analysis to identify GO terms overrepresented in hybrid transgressive DE genes sets for each

320 cell population. We only included *P. sungorus* genes associated with mouse orthologs in our
321 GO analysis (as established by Moore *et al.* 2022), and for our background gene lists, we used
322 *P. sungorus* genes associated with mouse orthologs that were “expressed” in hybrids and both
323 parent species in a given stage. We retained only Biological Process GO terms with an FDR
324 below 0.05 and ran gProfiler2 both with and without the highlight option, a two-stage algorithm
325 for reducing resulting GO terms by grouping significant terms into sub-ontologies and then
326 identifying the gene sets that give rise to other significant functions (Kolberg *et al.* 2020). To
327 test whether specific chromosomes were enriched or depleted for transgressive DE genes for a
328 given stage, we performed hypergeometric tests on the number of transgressive DE genes on
329 a given chromosome with phyper and adjusted P-values to an FDR of 5%. We also assessed
330 overlap in specific transgressive DE genes within stages between house mice and dwarf
331 hamsters. We estimated whether overlap was more or less than expected by chance and
332 whether overlapping genes were preferentially located on the X chromosome using
333 hypergeometric tests and performed GO enrichment on overlapping genes. For all
334 hypergeometric tests, we defined the background sets of genes as those with non-zero logFC
335 values in both differential expression comparisons between hybrids and each parent for a
336 given spermatogenic stage.

337

338 **Characterizing the behavior of PAR genes in dwarf hamsters**

339 We sought to characterize the regulatory behavior of PAR genes in dwarf hamster
340 parent species and hybrids to determine if (1) PAR genes are normally silenced in parent
341 species (consistent with an extension of MSCI to the PAR) and (2) if PAR genes were
342 overexpressed in hybrids (consistent with disrupted MSCI in the PAR of hybrids). The PAR on
343 the *P. sungorus* X chromosome is on the distal arm of the X chromosome from around
344 115,350,000-119,112,095 bp (Moore *et al.* 2022). There are 15 annotated *P. sungorus* genes in

345 this region (Table S3 in File S1), which is comparable to the latest PAR assembly in C57BL/6J
346 house mice (Kasahara *et al.* 2022). Six of these are orthologous to annotated genes in mice
347 (*Tppp2*, *Gprin1*, *Ndrg2*, *Kcnip4*, *Ndrg2*, and *Hs6st3*), but they are not located in the mouse PAR
348 (Kasahara *et al.* 2022). Only seven of the annotated genes in the PAR were expressed in more
349 than three replicates across all samples (Psun_G000022875, Psun_G000022880,
350 Psun_G000022883, Psun_G000022886, *Tppp2*, *Gprin1*, and *Ndrg2*). For these genes, we
351 assessed whether these genes were consistently expressed or silenced in parent species in
352 any cell population and whether any genes were differentially expressed between hybrids and
353 either species.

354 **RESULTS**

355 **Impaired sperm production in hybrid male dwarf hamsters**

356 We first established the extent of hybrid male sterility in dwarf hamsters by comparing
357 reproductive phenotypes for *P. campbelli*, *P. sungorus*, and F1 hybrid males (Figure 1; Table
358 S1 in File S1). *Phodopus sungorus* males had smaller testes and seminal vesicles than *P.*
359 *campbelli* males (Dunn's Test relative testes weight $p < 0.001$; relative seminal vesicle weight p
360 $= 0.0061$; Figure 1). These differences are qualitatively consistent across independent
361 laboratory colonies (Ishishita *et al.* 2015; Bikchurina *et al.* 2018) and likely reflect species-
362 specific differences between *P. campbelli* and *P. sungorus*. *Phodopus sungorus* males also
363 had lower nucleotide diversity ($\pi = 0.00013$) than *P. campbelli* males ($\pi = 0.00045$) and both
364 house mouse parental crosses between fully inbred mouse strains (*M. m. musculus* $\pi =$
365 0.00029 ; *M. m. domesticus* $\pi 0.00017$; Figure S3 in File S1), which could contribute to
366 depression of male fertility within this highly inbred laboratory colony (Brekke *et al.* 2018).
367 Nucleotide divergence between parental dwarf hamster species was elevated relative to house
368 mice ($d_{xy} = 0.0020$ vs. 0.0010), consistent with reported older divergence time estimates for

369 dwarf hamsters (Neumann *et al.* 2006). However, these dwarf hamster species did not differ in
370 normalized sperm counts ($p = 0.071$) or in sperm motility ($p = 0.12$). The F1 hybrid males
371 exhibited extreme reproductive defects relative to *P. campbelli* (Figure 1). Hybrid males had
372 smaller testes ($p < 0.001$) and seminal vesicles ($p < 0.001$) than male *P. campbelli* hamsters,
373 and importantly, produced almost no mature spermatozoa. In the one instance where a hybrid
374 male produced a single mature spermatozoon, it was non-motile, indicating severe
375 reproductive impairment in hybrid males. Overall, our results confirmed previous reports of
376 reduced fertility in hybrid male dwarf hamsters (Ishishita *et al.* 2015; Bikchurina *et al.* 2018).

377

378 **Cell type-specific gene expression across spermatogenesis**

379 To characterize cell type-specific gene expression, we used FACS to isolate enriched
380 cell populations from each fertile parent species and their sterile F1 hybrids across four stages
381 of spermatogenesis. The four targeted populations included: spermatogonia (mitotic precursor
382 cells), leptotene/zygotene spermatocytes (meiotic cells before MSCI), diplotene spermatocytes
383 (meiotic cells after MSCI), and round spermatids (postmeiotic cells). We were unable to isolate
384 round spermatids from the F1 hybrids, which was consistent with the lack of mature
385 spermatozoa present in the cauda epididymis extractions (Figure 1). We sequenced RNA from
386 each cell population for *P. campbelli* (spermatogonia $n = 4$, leptotene/zygotene $n = 5$, diplotene
387 $n = 5$, and round spermatids $n = 4$; Table S2 in File S1), *P. sungorus* (spermatogonia $n = 4$,
388 leptotene/zygotene $n = 4$, diplotene $n = 5$, and round spermatids $n = 3$), and F1 hybrid males (389
390 *P. campbelli* ♀ \times *P. sungorus* ♂; spermatogonia $n = 4$, leptotene/zygotene $n = 4$, diplotene $n =$
391 4). We compared our hamster expression data to an analogous cell type-specific RNASeq
392 dataset from two species of house mice, *Mus musculus musculus* and *M. m. domesticus*, and
their sterile F1 hybrids ($n = 3$ for all cell populations in each cross; Larson *et al.* 2017).

393 We used two approaches to qualitatively evaluate the purity of spermatogonia,
394 leptotene/zygotene spermatocytes, diplotene spermatocytes, and round spermatids isolated
395 from males from both parental species: (1) we quantified the relative expression of a panel of
396 cell population marker genes, and (2) we characterized the expression patterns of the sex
397 chromosomes across development. We found that our candidate marker genes had the
398 highest expression in their expected cell population for all stages except leptotene/zygotene
399 (Figures S4 and S5 in File S1), indicating high purity of spermatogonia, diplotene
400 spermatocytes, and round spermatids. Leptotene/zygotene markers did not have the highest
401 expression in leptotene/zygotene samples (except for *Ccnb1ip1*), potentially indicating lower
402 purity of this cell population. Nonetheless, the patterns of X chromosome expression in fertile
403 parents were consistent with expectations across this developmental timeline: the X
404 chromosome had active expression in spermatogonia and leptotene/zygotene cells, was
405 inactivated in diplotene cells consistent with MSCI, and was partially inactivated in round
406 spermatids, consistent with PSCR (Figure 2; Namekawa *et al.* 2006), indicating successful
407 isolation of these cell populations.

408 When we examined overall expression differences within dwarf hamsters and within
409 house mice, we found that samples clustered primarily by cell population on MDS1 and 2
410 (Figure 3), then by cross/strain when cell populations were examined separately (Figures S6
411 and S7 in File S1). Within all cell populations across both systems, hybrids showed
412 intermediate overall expression patterns to parent species (Figures S6 and S7 in File S1).
413 However, in dwarf hamsters but not house mice, spermatogonia and leptotene/zygotene
414 samples overlap rather than forming distinct clusters (Figure 3). Further, the expression profiles
415 of hybrid diplotene cell populations ranged from clustering with parental leptotene/zygotene to
416 parental diplotene cell populations, which contrasted with what we observed in house mice
417 where hybrid diplotene cell populations clustered distinctly with parental diplotene cell

418 populations (Figure 3). Overall, our results indicate that we successfully isolated cell
419 populations in dwarf hamsters that span key stages of spermatogenesis.

420

421 **Disrupted transcription early in spermatogenesis in dwarf hamsters**

422 We sought to characterize which expression phenotypes were associated with sterile
423 hybrids in both house mice and dwarf hamsters. We first investigated whether differential gene
424 expression in hybrids tended towards intermediate or transgressive expression, and then
425 within transgressive DE genes, whether misexpression tends towards up- or downregulation in
426 hybrids compared to parents. Differential gene expression in mouse hybrids had a slight bias
427 towards transgressive expression except in round spermatids (percentage of transgressive DE
428 genes: SP: 72.0%, LZ: 62.7%, DIP: 60.8%, and RS: 24.9%; Figures 4b and S2 in File S1), while
429 almost all differential expression in dwarf hamster hybrids was transgressive (percentage of
430 transgressive DE genes: SP: 99.2%, LZ: 98.0%, and DIP: 97.1). For transgressive DE genes,
431 autosomal misexpression in hybrid house mice was biased towards upregulation across
432 spermatogenesis (mean logFC of spermatogonia autosomal transgressive DE genes: $+1.90/ X^2$:
433 $p < 0.001$; leptotene/zygotene: $+1.33/ X^2$: $p < 0.001$; diplotene: $+0.47/ X^2$: $p < 0.001$; Figures 4c
434 and S8 in File S1), as was X-linked misexpression (spermatogonia mean logFC: $+1.98 / X^2$: $p <$
435 0.001 ; leptotene/zygotene: $+2.50 / X^2$: $p < 0.001$; diplotene: $+2.78 / X^2$: $p < 0.001$). In contrast,
436 we found that the direction of misexpression in dwarf hamster hybrids was cell type-specific.
437 Autosomal transgressive DE genes in dwarf hamster hybrids were overwhelmingly
438 downregulated in both early stages of spermatogenesis, especially in comparison to house
439 mice (mean logFC of spermatogonia autosomal transgressive DE genes: $-4.38 / X^2$: $p < 0.001$;
440 leptotene/zygotene: $-4.67 / X^2$: $p < 0.001$; Figure 4d) but upregulated in diplotene (average
441 logFC = $+4.67 / X^2$: $p < 0.001$; Figures 4d and S8 in File S1). When comparing both X-linked and
442 autosomal expression in dwarf hamsters, we found similar patterns: almost all X-linked

443 transgressive DE genes in the first two stages of spermatogenesis were exclusively
444 downregulated (spermatogonia mean logFC = -6.57/ X^2 : p < 0.001; leptotene/zygotene: -6.73/ X^2 : p < 0.001), but misexpression was biased towards upregulation in diplotene (mean logFC: 5.70/ X^2 : p < 0.001).

447 Second, we investigated how developmental stage influenced the extent of hybrid
448 misexpression. In both systems, the number of DE genes between parent species increased
449 with the progression of spermatogenesis, consistent with less constraint on gene expression
450 levels as spermatogenesis progresses (Figure 4a; Kopania *et al.* 2022a; Murat *et al.* 2023).

451 Similarly, transgressive misexpression in both hybrid dwarf hamsters and house mice
452 increased with the progression of spermatogenesis, though to a greater extent in dwarf
453 hamsters (Figure 4b). While both parental DE genes and transgressive hybrid DE genes
454 increased with the progression of spermatogenesis, parental DE genes initially exceeded the
455 number of transgressive hybrid DE genes in hybrids in spermatogonia and leptotene/zygotene
456 spermatocytes. However, in diplotene spermatocytes, transgressive hybrid differential
457 expression surpassed parental differential expression in both house mice and dwarf hamsters.

458 We also found a much greater genome-wide disruption of expression in diplotene cell
459 populations of hybrid dwarf hamsters than in hybrid house mice (Figures 4c, 4d, and S8-S10 in
460 File S1), indicating more widespread regulatory disruption. We then compared transgressive
461 DE genes between house mice and dwarf hamster hybrids across all three stages and found
462 that the number of shared transgressive DE genes did not differ from the number expected by
463 chance in early spermatogenesis (spermatogonia = 3 genes, hypergeometric test p = 0.98;
464 leptotene/zygotene = 2 genes, p = 0.59; Table S4 in File S1). However, the number of shared
465 transgressive DE genes did exceed the number expected by chance in diplotene cell
466 populations (n = 68; p < 0.001), and these shared genes were preferentially located on the X
467 chromosome (61/68; p < 0.001). Additionally, these sets of shared transgressive DE genes

468 between house mice and dwarf hamsters were not significantly enriched for any GO terms,
469 though many play known roles in spermatogenesis, the apoptotic process, and cell
470 differentiation (Table S5 in File S1) and may be promising candidates for future functional
471 analysis. Ultimately, we found that there are similar trends in the patterns of transgressive
472 expression across stages in both systems, and although few specific genes had disrupted
473 expression in both dwarf hamster and house mouse hybrids, genes with similar patterns of
474 disrupted expression tend to be X-linked and disrupted in later stages of spermatogenesis.

475 To determine if the differences we observed in the extent of misexpression between
476 dwarf hamsters and house mice was due to greater expression variability across our dwarf
477 hamster samples, we calculated the BCV, a measurement of inter-replicate variability, for each
478 species and hybrid across the first three cell populations. Inter-replicate variability was higher
479 in dwarf hamster hybrids relative to house mouse hybrids (dwarf hamster BCV = 0.69; house
480 mice = 0.18). Additionally, nucleotide diversity within dwarf hamster hybrids was higher (π =
481 0.0012) than within house mouse hybrids (π = 0.00052; Figure S3 in File S1). However, the
482 extent of the expression variability observed in hybrids relative to the inter-replicate variability
483 of parental species differed between house mice and dwarf hamsters: dwarf hamster hybrid
484 variability was more than dwarf hamster parental samples (*P. campbelli* = 0.49; *P. sungorus* =
485 0.40), but hybrid variability was similar to parental samples for house mice (*M. m. musculus* =
486 0.19; *M. m. domesticus* = 0.22). The greater inter-replicate expression variability in dwarf
487 hamster hybrids relative to parent species suggests that the increased misexpression we see
488 in hybrids cannot be explained by greater inter-replicate variability in our dwarf hamster
489 samples alone, and it may also reflect the greater nucleotide diversity present among dwarf
490 hamster hybrids.

491 Third, we characterized whether there was a clear difference between the autosomes
492 and sex chromosomes in expression phenotype by testing whether the X chromosome was

493 enriched for transgressive DE genes in each stage for both systems. Across all stages of
494 spermatogenesis in house mice, the X chromosome was enriched for transgressive DE genes
495 between hybrids and parents (spermatogonia $p < 0.001$; leptotene/zygotene $p < 0.001$;
496 diplotene $p < 0.001$; round spermatids $p < 0.0036$; Figure S9 in File S1). In contrast,
497 misexpression in dwarf hamsters was not uniformly sex chromosome-specific across all
498 stages, as the sex chromosomes in dwarf hamsters showed no enrichment for transgressive
499 DE genes early in spermatogenesis (spermatogonia: $p = 0.21$; Figure S10 in File S1) despite X
500 chromosome enrichment in both leptotene/zygotene ($p = 0.0064$) and round spermatids ($p <$
501 0.001). However, we note that the magnitude of misexpression was greater for sex
502 chromosomes than autosomes in dwarf hamsters across all stages (Figures 4c and 4d;
503 discussed above). Only two autosomes were enriched for transgressive DE genes in dwarf
504 hamsters in any cell population: one scaffold on chromosome 5 in spermatogonia
505 (JAJQIY010003390.1; hypergeometric test; $p = 0.003$) and chromosome 11 in
506 leptotene/zygotene ($p = 0.017$; Figure S10 in File S1). Together, the subtle differences in the
507 distribution of transgressive DE genes across autosomes and the X chromosome between
508 dwarf hamster hybrids and house mouse hybrids suggest a difference in the extent of the role
509 for sex chromosome-specific disruption between systems.

510

511 **Misexpression in diplotene appears to be unrelated to disrupted MSCI in dwarf hamsters**

512 We next asked whether expression patterns indicated similar disrupted regulatory
513 processes resulting in sex chromosome-specific misexpression in both systems. In sterile
514 hybrid house mice, the mean logFC of transgressive X-linked DE genes during diplotene was
515 higher than the mean logFC of transgressive autosomal DE genes (X logFC = +2.78 in contrast
516 to autosomal logFC = +0.47; Figures 4c and 4d), consistent with disrupted MSCI (Good *et al.*
517 2010; Bhattacharyya *et al.* 2013; Campbell *et al.* 2013; Turner and Harr 2014; Larson *et al.*

518 2017, 2022). In sterile dwarf hamster hybrids, we also found elevated mean logFC of
519 transgressive X-linked DE genes relative to autosomal genes (X logFC = +5.70 in contrast to
520 autosomal logFC = +3.69), but the extent of X chromosome overexpression, as measured by
521 logFC of X-linked transgressive DE genes, was greater than in hybrid house mice (5.7/3.69 or
522 ~1.5x higher; Figures 2, 4c, and 4d). There was also more variability in the extent of
523 overexpression of X-linked genes in hybrid dwarf hamsters compared to normal parental X-
524 linked expression during diplotene (relative overexpression = 18.5 +/- 6.8) than for
525 overexpression of X-linked genes in hybrid house mice compared to normal parental X-linked
526 expression in diplotene (relative overexpression = 1.75 +/- 0.09; Figures 2 and S11 in File S1).
527 Strikingly, some hybrid male dwarf hamsters had an almost completely silenced X
528 chromosome, while others had an almost completely transcriptionally-activated X chromosome
529 (Figure 2).

530 Despite overexpression of the X chromosome during diplotene in hybrid dwarf
531 hamsters, the overall expression phenotype, including the identity and the extent of
532 misexpression of overexpressed genes, appeared to fundamentally differ between house
533 mouse and dwarf hamster hybrids (Figures 2 and 5a-5c). We established these differences in
534 X-linked overexpression using two approaches. First, we tested which parental cell types had
535 the highest expression correlation with hybrid diplotene cell types for both X-linked and
536 autosomal genes. In mice, the expression profile of X-linked genes in hybrids during diplotene
537 was most positively correlated with the expression profile of X-linked parental round spermatid
538 genes, consistent with disrupted MSCI (spermatogonia (r) = -0.25, p < 0.001;
539 leptotene/zygotene (r) = -0.073, p = 0.035; round spermatid (r) = 0.26, p < 0.001; Figures 2 and
540 5a). Autosomal diplotene genes showed no positive correlations with either spermatogonia (r =
541 -0.26; p < 0.001), leptotene/zygotene (r = -0.032; p < 0.001), or round spermatids (r = -0.060; p
542 < 0.001; Figure 5a). If the X-linked overexpression phenotype in dwarf hamsters was consistent

543 with disrupted MSCI, then we would also expect X-linked and autosomal expression profiles in
544 hybrid diplotene to follow the same patterns. In contrast to this prediction, hybrid dwarf
545 hamster diplotene expression profiles for both X-linked and autosomal genes had a positive
546 correlation with parental leptotene/zygotene (autosomal (r) = 0.14, $p < 0.001$; X-linked (r) =
547 0.22, $p < 0.001$) and spermatogonia (autosomal (r) = 0.027, $p < 0.001$; X-linked (r) = 0.091, $p =$
548 0.016) and a negative correlation with round spermatids (autosomal (r) = -0.30, $p < 0.001$; X-
549 linked (r) = -0.31, $p < 0.001$; Figure 5b). These striking differences in the strength and direction
550 of expression profile correlations suggest that the regulatory mechanisms underlying the
551 overexpression phenotype of X-linked genes in sterile hybrids differed between house mice
552 and dwarf hamsters.

553 This difference in pattern was further supported when we compared which sets of
554 genes were overexpressed in hybrid diplotene in dwarf hamsters and house mice. For this
555 approach, we looked at parental gene expression patterns to characterize which stages of
556 spermatogenesis all genes were normally active during and characteristic of (i.e., “induced”;
557 see Methods). Using this information, we then identified which X-linked genes were
558 overexpressed in hybrid diplotene (defined as genes with normalized expression in the top
559 10% of X-linked genes) and assessed which parental stages the overexpressed X-linked genes
560 were characteristic of in both systems. As in our correlation analysis, we found that in hybrid
561 house mice, the genes that were overexpressed in diplotene most closely resembled genes
562 that are normally active in round spermatids in parental mice (51.6% of genes), but that in
563 hybrid dwarf hamsters, overexpressed diplotene genes resembled spermatogonia- and
564 leptotene/zygotene-specific genes (47.6% and 41.6% respectively; Figure 5c). Because of the
565 dissimilarity in the genes that were overexpressed during diplotene in both systems, we next
566 performed gene ontology (GO) enrichment analyses on the set of transgressive DE genes in
567 hybrids to determine which biological processes could be potentially contributing to this

568 pattern. In contrast to house mice hybrids where transgressive DE genes were enriched for no
569 biological processes, the transgressive DE genes in dwarf hamster were enriched for several
570 biological processes including cell junction/extracellular matrix organization, system
571 development, inflammatory response, and apoptotic process which together point to
572 widespread disruption of numerous processes necessary for normal male fertility (highlighted
573 terms presented in Figure 5d and the full lists in Tables S6-S8 in File S1). Collectively, these
574 results suggest that the X-linked overexpression phenotype in sterile hybrid dwarf hamsters is
575 inconsistent with disrupted MSCI and is possibly related to a stalling and breakdown of
576 spermatogenesis between leptotene/zygotene and diplotene during Prophase I.

577

578 **PAR expression was not disrupted in sterile hybrid dwarf hamsters**

579 Finally, we tested the hypothesis that hybrid sterility in dwarf hamsters may be
580 correlated with asynapsis of the X and Y chromosomes because of divergence in the
581 pseudoautosomal region (PAR) which prevents proper chromosome pairing (Bikchurina *et al.*
582 2018). The PAR is the only portion of the sex chromosomes that is able to synapse during
583 routine spermatogenesis, and PAR genes are assumed to escape silencing by MSCI
584 (Raudsepp and Chowdhary 2015). However, because XY asynapsis is common in dwarf
585 hamster hybrids, Bikchurina *et al.* (2018) hypothesized that MSCI may extend to the PAR of
586 hybrid male dwarf hamsters, resulting in the silencing of PAR genes in hybrids that may be
587 critical to meiosis (Figure 6a). To test this hypothesis, we compared the expression of genes
588 located in the dwarf hamster PAR (Moore *et al.* 2022) between parental dwarf hamster species
589 and hybrid offspring across the timeline of spermatogenesis. Specifically, we hypothesized that
590 if XY asynapsis results in an extension of MSCI to the PAR in hybrid dwarf hamsters, then
591 hybrids should have similar PAR gene expression to parents early in meiosis before
592 homologous chromosome synapse during pachytene. This should be followed by the silencing

593 of PAR genes in hybrids, but not parent species, during diplotene. If XY asynapsis does not
594 alter the regulation of the PAR in hybrids, then we may see two possible patterns. First, if all
595 PAR genes are critical to the later stages of spermatogenesis, then PAR genes in both hybrids
596 and parents should be uniformly expressed in diplotene. Alternatively, if PAR genes are not
597 critical to the later stages of spermatogenesis, then hybrids and parent species should have
598 similar PAR gene expression, and not all PAR genes may be expressed during diplotene.

599 We did not find evidence supporting PAR-wide silencing in dwarf hamster hybrids
600 during diplotene suggesting that MSCI is not extended to the PAR in dwarf hamster hybrids
601 because of XY asynapsis (Figure 6b). Furthermore, we do not see PAR-wide expression of
602 genes during diplotene in hybrids or parents, indicating that not all PAR genes are critical to
603 the progression of spermatogenesis in dwarf hamsters. In general, most PAR gene expression
604 followed similar trends between hybrids and parent species. Two PAR genes were differentially
605 expressed between hybrids and *P. campbelli* during diplotene (*Ndrg2* and *Psun_G000022883*;
606 Table S3 in File S1), but these genes were still expressed in hybrids. Further, an association
607 between PAR misregulation during the early stages of spermatogenesis and hybrid male
608 sterility also seems unlikely as only one gene, *Gprin1*, showed transgressive differential
609 expression in early meiosis between both parent species and hybrids (Table S3 in File S1).
610 Thus, based on the current annotation of the PAR in *P. sungorus*, we currently find no direct
611 evidence linking improper silencing of PAR genes to hybrid male sterility in dwarf hamsters.

612 **DISCUSSION**

613 We used a comparative approach to understand common gene expression phenotypes
614 associated with hybrid male sterility in two divergent rodent crosses. We characterized the
615 asymmetry in the expression patterns of transgressive genes, how misexpression changed
616 over developmental timelines, and how the X chromosome and autosomes differed in both of

617 these aspects. We found that while there were similarities in hybrid expression phenotypes in
618 house mice and dwarf hamsters, there were also differences in the timing and chromosomal
619 distribution of disrupted gene expression that point towards different underlying mechanisms
620 behind hybrid male sterility.

621

622 **Asymmetry and developmental timing of misexpression in hybrids**

623 We first investigated patterns of transgressive gene misexpression in sterile male
624 hybrids. Studies of transgressive misexpression in sterile or inviable hybrids have often
625 focused on whether hybrid expression is biased towards over or underexpression, with the
626 hypothesis that expression may be biased towards overexpression if hybrid incompatibilities
627 disrupt repressive gene regulatory elements (Meiklejohn *et al.* 2014; Barreto *et al.* 2015; Larson
628 *et al.* 2017). In house mice, there is strong support for overexpression of both autosomal and
629 X-linked genes in sterile F1 hybrids (Mack *et al.* 2016; Larson *et al.* 2017, 2022; Hunnicutt *et al.*
630 2022). Surprisingly, we found that in dwarf hamster hybrids, there was nearly uniform
631 downregulation of transgressive DE genes in mitotic and early meiotic cell populations,
632 suggesting that a loss of regulatory repression is not an inevitable outcome of hybrid genomes.
633 Hybrid house mice expression is also more similar to the parent with the same X chromosome,
634 *M. m. musculus*, than to the parent with a different X chromosome, *M. m. domesticus* (Figure
635 4b and S2 in File S1; Larson *et al.* 2017). Further work in house mice has shown that F1 hybrid
636 expression patterns depend on both autosomal background and sex chromosome mismatch
637 (Kopania *et al.* 2022b). In contrast, hybrid dwarf hamsters showed similar levels of
638 misexpression in both the *P. campbelli* and *P. sungorus* comparisons. Determining what
639 factors shape the misexpression of parental alleles is a fruitful area of future research.

640 Asymmetric patterns of misexpression have been found in many hybrids, including
641 underexpression in sterile *Drosophila* hybrids (Michalak and Noor 2003; Haerty and Singh

642 2006; Llopart 2012) and sterile introgression lines of tomato (Guerrero *et al.* 2016) and
643 *Drosophila* (Meiklejohn *et al.* 2014), but overexpression has also been found in other sterile
644 hybrids (Llopart 2012; Davis *et al.* 2015). In many of these studies, patterns of misexpression
645 may be complicated by differences in cell composition or differences in the developmental
646 timeline of sterile hybrids and their parents (Good *et al.* 2010; Wei *et al.* 2014; Montgomery and
647 Mank 2016; Kerwin and Sweigart 2020; Hunnicutt *et al.* 2022). The variation we and others
648 have found in hybrid expression phenotypes suggests that the mechanisms of disrupted
649 expression are complex, even within groups with relatively shallow divergence times, such as
650 rodents, and we need more data from diverse hybrid sterility systems to begin to understand
651 common drivers of transgressive hybrid misexpression.

652 The downregulation we observed in early spermatogenesis in hybrid dwarf hamsters
653 could be due to impaired transcription factor binding with promoter or enhancer elements (Oka
654 *et al.* 2014; Guerrero *et al.* 2016) or disrupted epigenetic silencing. Disruption of epigenetic
655 regulation of gene expression has been increasingly linked to hybrid dysfunction in plants
656 (Shivaprasad *et al.* 2012; Lafon-Placette and Köhler 2015; Zhu *et al.* 2017), especially
657 polyploids (Paun *et al.* 2007), and may also contribute to hybrid male sterility in *Drosophila*
658 (Bayes and Malik 2009) and cattle x yak hybrids (Luo *et al.* 2022). At least one known
659 chromatin difference, an expansion of the heterochromatin-enriched Xp arm of the X
660 chromosome, has been documented between parental dwarf hamster species (Gamperl *et al.*
661 1977; Haaf *et al.* 1987). However, it is unknown what the functional consequences of this
662 chromatin state divergence or other diverged epigenetic regulatory mechanisms, such as
663 methylation, may be in hybrid dwarf hamster spermatogenesis, and further work is needed to
664 distinguish between potential mechanisms underlying the observed genome-wide
665 downregulation.

666 Spermatogenesis as a developmental process may be sensitive to disruption (Lifschytz
667 and Lindsley 1972; Wu and Davis 1993), but it remains an open question whether specific
668 stages of spermatogenesis, or developmental processes more broadly, may be more prone to
669 the accumulation of hybrid incompatibilities. In general, earlier developmental stages are
670 thought to be under greater pleiotropic constraint and less prone to disruption (Cutter and
671 Bundus 2020). With the progression of mouse spermatogenesis, pleiotropy decreases (as
672 approximated by increases in tissue specificity; Murat *et al.* 2023) and the rate of protein-
673 coding evolution increases (Larson *et al.* 2016; Kopania *et al.* 2022a; Murat *et al.* 2023), which
674 may make the later stages of spermatogenesis more prone to accumulating hybrid
675 incompatibilities. Indeed, we found fewer DE genes both between parent species and in sterile
676 hybrids for both dwarf hamsters and house mice during the early stages of spermatogenesis
677 than in later stages (Figures S9 and S10), and hybrid misexpression greatly exceeds parental
678 expression divergence in late spermatogenesis. When examining transgressive DE genes
679 shared between analogous cell types in dwarf hamster and house mouse hybrids, we found
680 that there were similar or fewer shared genes than expected by chance during early
681 spermatogenesis but more shared genes than expected by chance, especially on the X
682 chromosome, in later spermatogenesis, suggesting that disrupted expression of shared genes
683 of large effect during early spermatogenesis is unlikely to be responsible for the repeated
684 evolution of hybrid male sterility in these species.

Despite general similarities in patterns of misexpression across spermatogenesis in hybrids, studies in house mice suggest that early spermatogenesis may be tolerant of some misregulation as low levels of gene misexpression in early meiotic stages does not always correlate with a complete cessation of sperm development (Oka *et al.* 2010; Ishishita *et al.* 2015; Mipam *et al.* 2023). However, the patterns we find in dwarf hamsters suggests that spermatogenesis may be disrupted between zygotene and diplotene cell stages from early

691 misexpression. Dwarf hamster hybrid diplotene cell populations had X-linked and autosomal
692 gene expression profiles which more closely resemble parental leptotene/zygotene cell
693 populations than either diplotene or postmeiotic cell populations. Furthermore, transgressive
694 DE genes in hybrids during diplotene were enriched for genes associated with cell
695 differentiation, proliferation, and programmed cell death, suggesting misexpression during this
696 stage could be a consequence of a stalling or breakdown of early meiosis in hybrid dwarf
697 hamsters. It's unclear what underlying genomic mechanisms could result in this breakdown,
698 but it is possible that this disruption could potentially act as a major contributor to hybrid
699 sterility in this system. Ultimately, we find that spermatogenesis is a complex and rapidly
700 evolving developmental program that may provide many potential avenues across its timeline
701 for the evolution of hybrid incompatibilities.

702

703 **Abnormal sex chromosome expression patterns differ between dwarf hamster and house**
704 **mouse hybrids**

705 The sex chromosomes play a central role in speciation, an observation which has been
706 supported by both Haldane's rule (Haldane 1922) and the large X-effect on hybrid male sterility
707 (Coyne and Orr 1989). Misregulation of the X chromosome may contribute to hybrid sterility in
708 several species pairs (Davis *et al.* 2015; Morgan *et al.* 2020; Sánchez-Ramírez *et al.* 2021). The
709 X chromosome is transcriptionally repressed during routine spermatogenesis in many
710 organisms including eutherian mammals (McKee and Handel 1993), monotremes (Murat *et al.*
711 2023), *Drosophila* (Landeen *et al.* 2016), grasshoppers (Viera *et al.* 2021), mosquitos (Taxiarchi
712 *et al.* 2019), and nematodes (Rappaport *et al.* 2021). Because of the ubiquity of X chromosome
713 repression during spermatogenesis, disruption of transcriptional repression could be a
714 widespread regulatory phenotype in sterile hybrids (Lifschytz and Lindsley 1972; Larson *et al.*
715 2018). In sterile hybrid mice, disrupted X repression (disrupted MSCI) leads to the

716 overexpression of the normally silenced X chromosome during diplotene (Good *et al.* 2010;
717 Bhattacharyya *et al.* 2013; Campbell *et al.* 2013; Turner and Harr 2014; Larson *et al.* 2017,
718 2022). We also found overexpression of the X chromosome during diplotene in sterile hybrid
719 dwarf hamsters, but in a manner inconsistent with sterile hybrid house mice. Both the X
720 chromosome and autosomes are overexpressed in dwarf hamster hybrid diplotene cell
721 populations to a greater extent on average than was observed in house mice, and importantly,
722 X-linked overexpression was more variable in dwarf hamster hybrids than house mice hybrids.
723 In fact, some dwarf hamster hybrids had wildly overexpressed X chromosomes while others
724 appeared to have properly silenced X chromosomes. Our expression correlation and gene set
725 analyses of hybrid diplotene cell populations provide additional evidence that the genes
726 overexpressed in hybrid hamster diplotene are different than those overexpressed in house
727 mouse hybrids, sharing more similarity to the earlier meiotic cell types than downstream
728 postmeiotic cell types. Overall, our results indicate fundamentally different patterns of X-linked
729 overexpression in both systems, with X-linked overexpression in dwarf hamster hybrids being
730 inconsistent with disrupted MSCI patterns observed in house mouse hybrids.

731 Much of what we know about the genomic architecture and the role of sex
732 chromosome misregulation in hybrid male sterility in mammals comes from decades of work
733 that have shown a major gene, *Prdm9*, and its X chromosome modulator, *Hstx2*, may be
734 responsible for most F1 hybrid male sterility in house mice (Forejt *et al.* 1991, 2021; Trachtulec
735 *et al.* 1997; Mihola *et al.* 2009; Lustyk *et al.* 2019). *Prdm9* directs the location of double strand
736 breaks during meiotic recombination (Mihola *et al.* 2009; Oliver *et al.* 2009; Smagulova *et al.*
737 2016). In hybrid mice, divergence at *Prdm9* binding sites leads to asymmetric double-stranded
738 breaks and results in autosomal asynapsis, triggering Meiotic Silencing of Unsynapsed
739 Chromatin, shutting down transcription on asynapsed autosomes using the same cellular
740 machinery as MSCI (Turner 2015), and eventually meiotic arrest and cell death (Bhattacharyya

741 *et al.* 2013; Forejt *et al.* 2021). This process is associated with the disruption of MSCI and a
742 characteristic overexpression of the X chromosome during meiosis (Good *et al.* 2010;
743 Bhattacharyya *et al.* 2013; Campbell *et al.* 2013; Turner and Harr 2014; Larson *et al.* 2017,
744 2022), but whether disrupted MSCI directly contributes to hybrid male sterility or is simply a
745 downstream consequence of *Prdm9* divergence is still uncertain (Forejt *et al.* 2021).

746 Whether we should have expected patterns of disrupted sex chromosome expression
747 in sterile hybrid hamsters to be the same as house mice is unclear. The sex chromosomes in
748 pachytene cells of hybrid dwarf hamsters display normal γH2AFX staining (Ishishita *et al.* 2015;
749 Bikchurina *et al.* 2018), a key marker in MSCI (Abe *et al.* 2022), which may indicate that the
750 hybrid sex chromosomes are properly silenced. Additionally, autosomal asynapsis is rarely
751 observed in hybrid dwarf hamsters, and asynapsis is almost exclusive to the sex chromosomes
752 (Ishishita *et al.* 2015; Bikchurina *et al.* 2018). This contrasts *Prdm9*-mediated sterility in house
753 mice, where hybrid autosomes are often asynapsed and decorated with γH2AFX
754 (Bhattacharyya *et al.* 2013; Forejt *et al.* 2021). Mechanisms other than *Prdm9* may also disrupt
755 MSCI and result in sterility, such as macrosatellite copy number divergence (Bredemeyer *et al.*
756 2021) and X-autosome translocations that impair synapsis (Homolka *et al.* 2007), although
757 there is no evidence for X-autosome translocations between these two species of dwarf
758 hamsters (Moore *et al.* 2022). Thus, while MSCI may be a major target for the accumulation of
759 reproductive barriers between species in many mammalian systems, either through *Prdm9*
760 divergence or alternative mechanisms, our results suggest that sterility in dwarf hamsters has a
761 more composite regulatory basis.

762 Another mechanism often proposed to underlie mammalian male hybrid sterility,
763 especially in rodents, is divergence in the PAR between parental species. The PAR is the only
764 portion of the sex chromosomes which can synapse during spermatogenesis, and it is still
765 unclear if the regulation of the PAR is uniformly detached from MSCI across divergent

766 mammalian sex chromosome systems (Raudsepp and Chowdhary 2015). We find no evidence
767 that PAR-specific misregulation is associated with hybrid sterility in dwarf hamsters. PAR
768 genes are not silenced in hybrids or parents, a pattern that is inconsistent with MSCI that has
769 extended to the PAR due to XY asynapsis, and further, expression of PAR genes in hybrids
770 differs little from parental PAR expression. While we find no evidence that PAR misregulation
771 *per se* is associated with hybrid sterility in this system, we cannot rule out the possibility that
772 structural and sequence divergence between the PARs of *P. sungorus* and *P. campbelli* may
773 be associated with hybrid sterility. Structural and sequence divergence in the PAR has been
774 hypothesized to activate the meiotic spindle checkpoint by interfering with proper pairing of
775 sex chromosomes (Burgoyne *et al.* 2009; Dumont 2017). The PAR evolves rapidly in rodents
776 (White *et al.* 2012b; Raudsepp and Chowdhary 2015; Morgan *et al.* 2019), and this elevated
777 divergence may underlie sex chromosome asynapsis and apoptosis in several hybrid mouse
778 crosses (Matsuda *et al.* 1991; Oka *et al.* 2010; White *et al.* 2012a; Dumont 2017). Furthermore,
779 divergence in the mouse PAR has been implicated in spermatogenic defects in crosses where
780 *Prdm9*-divergence is minimal, such as between closely related subspecies (Dumont 2017) or in
781 mice with genetically-modified *Prdm9* alleles (Davies *et al.* 2021). Meiosis is likely tolerant to
782 some degree of divergence in the PAR (Morgan *et al.* 2019), but exact limits are currently
783 unknown. At this time, thorough analysis of structural and sequence divergence between the
784 PARs in dwarf hamsters is challenging as the PAR is notoriously difficult to assemble (but see
785 Kasahara *et al.* 2022), and there are annotation gaps in the current assembly of the PAR in
786 dwarf hamsters. In sum, we find no clear pattern of regulatory disruption of PAR genes in
787 sterile hybrid dwarf hamsters, though this result may change pending further refinement of the
788 PAR annotation.

789

790 **Conclusions**

791 Cell-specific approaches for quantifying expression phenotypes are powerful tools for
792 providing insight into the underlying mechanisms behind hybrid dysfunction (Hunnicutt *et al.*
793 2022), especially in systems where it remains difficult to interrogate the underlying genomic
794 architecture of these traits. Using a contrast of dwarf hamster and house mouse hybrids, we
795 have shown that transgressive overexpression is not an inevitable outcome of hybridization,
796 that misexpression resulting from hybrid incompatibilities may be likely to arise in differing
797 stages of spermatogenesis, and that disrupted sex chromosome silencing does not appear to
798 play an equal role in sterility between these two systems. Both the expression phenotypes we
799 observed here and histological evidence from other studies (Ishishita *et al.* 2015; Bikchurina *et*
800 *al.* 2018) suggest that several reproductive barriers are acting during spermatogenesis in dwarf
801 hamster hybrids. It has become increasingly apparent as more study systems are investigated
802 that the genetic basis of postzygotic species barriers are often complex and polymorphic
803 (Cutter 2012; Coughlan and Matute 2020), and implementing approaches which account for
804 the developmental complexities of hybrid dysfunction, as we have done here, will allow us to
805 make further advances in understanding the processes of speciation.

806

807 **Data accessibility:**

808 Hamster sequence data are available through the NCBI SRA under accession number
809 PRJNA1024468, and mouse sequence data are available under SRA accession PRJNA296926.
810 File S1 contains all supplemental figures. Code used for the analyses and fertility phenotypic
811 data are available on GitHub (https://github.com/KelsieHunnicutt/dwarf_hamster_hybrids).

812

813 **Acknowledgements:**

814 We would like to thank members of the Larson and Good labs, as well as Jonathan

815 Velotta and members of the Velotta lab, for feedback on this project, Gabrielle Welsh for
816 technical assistance, Ivan Kovanda for support using the University of Denver Research Data
817 Analysis Cluster, and Pamela K. Shaw and the UM Fluorescence Cytometry Core.

818

819 **Funding and competing interests:**

820 This work was supported by a National Science Foundation Graduate Research
821 Fellowship to KEH (DGE-2034612) and the following grants awarded to KEH: Sigma Xi Grant-
822 in-aid of Research, American Society of Mammalogists Grant-in-Aid of Research Grant, and a
823 Society for the Study of Evolution R.C. Lewontin Early Award. Additionally, this work was
824 supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and
825 Human Development of the National Institutes of Health (R01-HD073439, R01-HD094787) to
826 JMG, and the National Science Foundation to ELL (DEB-2012041). The UM Fluorescence
827 Cytometry Core was supported by an Institutional Development Award from the NIGMS
828 (P30GM103338). Any opinions, findings, and conclusions or recommendations expressed in
829 this material are those of the author(s) and do not necessarily reflect the views of the National
830 Science Foundation or the National Institutes of Health.

831

832 **Author contributions:**

833 KEH, JMG, and ELL conceived of the study. CC, SK, ELL, and KEH conducted lab work. KEH
834 conducted the analyses. KEH and ELL wrote the manuscript with input from ECM, CC, SK, and
835 JMG.

836

LITERATURE CITED

837
838
839 Abe H., Y.-H. Yeh, Y. Munakata, K.-I. Ishiguro, P. R. Andreassen, *et al.*, 2022 Active DNA
840 damage response signaling initiates and maintains meiotic sex chromosome
841 inactivation. *Nat. Commun.* 13: 7212.

842 Anders S., and W. Huber, 2010 Differential expression analysis for sequence count data.
843 *Nature Precedings* 1–1.

844 Barreto F. S., R. J. Pereira, and R. S. Burton, 2015 Hybrid dysfunction and physiological
845 compensation in gene expression. *Mol. Biol. Evol.* 32: 613–622.

846 Bayes J. J., and H. S. Malik, 2009 Altered heterochromatin binding by a hybrid sterility protein
847 in *Drosophila* sibling species. *Science* 326: 1538–1541.

848 Benjamini Y., and Y. Hochberg, 1995 Controlling the false discovery rate: a practical and
849 powerful approach to multiple testing. *J. R. Stat. Soc.* 57: 289–300.

850 Bhattacharyya T., S. Gregorova, O. Mihola, M. Anger, J. Sebestova, *et al.*, 2013 Mechanistic
851 basis of infertility of mouse intersubspecific hybrids. *Proc. Natl. Acad. Sci. U. S. A.* 110:
852 E468–E477.

853 Bikchurina T. I., K. V. Tishakova, E. A. Kizilova, S. A. Romanenko, N. A. Serdyukova, *et al.*,
854 2018 Chromosome synapsis and recombination in male-sterile and female-fertile
855 interspecies hybrids of the dwarf hamsters (*Phodopus*, Cricetidae). *Genes* 9: 227.

856 Bolger A. M., M. Lohse, and B. Usadel, 2014 Trimmomatic: a flexible trimmer for Illumina
857 sequence data. *Bioinformatics* 30: 2114–2120.

858 Bredemeyer K. R., C. M. Seabury, M. J. Stickney, J. R. McCarrey, B. M. vonHoldt, *et al.*, 2021

859 Rapid macrosatellite evolution promotes X-linked hybrid male sterility in a feline
860 interspecies cross. *Mol. Biol. Evol.* 38: 5588–5609.

861 Brekke T. D., and J. M. Good, 2014 Parent-of-origin growth effects and the evolution of hybrid
862 inviability in dwarf hamsters. *Evolution* 68: 3134–3148.

863 Brekke T. D., L. A. Henry, and J. M. Good, 2016 Genomic imprinting, disrupted placental
864 expression, and speciation. *Evolution* 70: 2690–2703.

865 Brekke T. D., K. A. Steele, and J. F. Mulley, 2018 Inbred or outbred? Genetic diversity in
866 laboratory rodent colonies. *G3* 8: 679–686.

867 Brekke T. D., E. C. Moore, S. C. Campbell-Staton, C. M. Callahan, Z. A. Cheviron, *et al.*, 2021 X
868 chromosome-dependent disruption of placental regulatory networks in hybrid dwarf
869 hamsters. *Genetics* 218: iyab043.

870 Burgoyne P. S., 1982 Genetic homology and crossing over in the X and Y chromosomes of
871 mammals. *Hum. Genet.* 61: 85–90.

872 Burgoyne P. S., S. K. Mahadevaiah, and J. M. A. Turner, 2009 The consequences of asynapsis
873 for mammalian meiosis. *Nat. Rev. Genet.* 10: 207–216.

874 Campbell P., J. M. Good, and M. W. Nachman, 2013 Meiotic sex chromosome inactivation is
875 disrupted in sterile hybrid male house mice. *Genetics* 193: 819–828.

876 Civetta A., 2016 Misregulation of gene expression and sterility in interspecies hybrids: causal
877 links and alternative hypotheses. *J. Mol. Evol.* 82: 176–182.

878 Coughlan J. M., and D. R. Matute, 2020 The importance of intrinsic postzygotic barriers
879 throughout the speciation process. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 375:

880 20190533.

881 Coyne J. A., and H. A. Orr, 1989 Two rules of speciation, pp. 180–207 in *Speciation and its*
882 *consequences*, edited by Otte D., Endler J. A. Sinauer Associates, Sunderland, MA.

883 Cutter A. D., 2012 The polymorphic prelude to Bateson-Dobzhansky-Muller incompatibilities.
884 Trends Ecol. Evol. 27: 209–218.

885 Cutter A. D., and J. D. Bundus, 2020 Speciation and the developmental alarm clock. Elife 9:
886 e56276.

887 Danecek P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, *et al.*, 2011 The variant call format
888 and VCFtools. Bioinformatics 27: 2156–2158.

889 Davies B., E. Hatton, N. Altemose, J. G. Hussin, F. Pratto, *et al.*, 2016 Re-engineering the zinc
890 fingers of PRDM9 reverses hybrid sterility in mice. Nature 530: 171–176.

891 Davies B., A. Gupta Hinch, A. Cebrian-Serrano, S. Alghadban, P. W. Becker, *et al.*, 2021
892 Altering the binding properties of PRDM9 partially restores fertility across the species
893 boundary. Mol. Biol. Evol. 38: 5555–5562.

894 Davis B. W., C. M. Seabury, W. A. Brashear, G. Li, M. Roelke-Parker, *et al.*, 2015 Mechanisms
895 underlying mammalian hybrid sterility in two feline interspecies models. Mol. Biol. Evol.
896 32: 2534–2546.

897 Dumont B. L., 2017 Meiotic consequences of genetic divergence across the murine
898 pseudoautosomal region. Genetics 205: 1089–1100.

899 Ellis N., and P. N. Goodfellow, 1989 The mammalian pseudoautosomal region. Trends Genet.
900 5: 406–410.

901 Forejt J., V. Vincek, J. Klein, H. Lehrach, and M. Loudová-Micková, 1991 Genetic mapping of
902 the t-complex region on mouse chromosome 17 including the Hybrid sterility-1 gene.
903 Mamm. Genome 1: 84–91.

904 Forejt J., P. Jansa, and E. Parvanov, 2021 Hybrid sterility genes in mice (*Mus musculus*): a
905 peculiar case of PRDM9 incompatibility. Trends Genet. 37: 1095–1108.

906 Gamperl R., G. Vistorin, and W. Rosenkranz, 1977 New observations on the karyotype of the
907 Djungarian hamster, *Phodopus sungorus*. Experientia 33: 1020–1021.

908 Getun I. V., B. Torres, and P. R. J. Bois, 2011 Flow cytometry purification of mouse meiotic
909 cells. J. Vis. Exp. e2602.

910 Good J. M., M. A. Handel, and M. W. Nachman, 2008 Asymmetry and polymorphism of hybrid
911 male sterility during the early stages of speciation in house mice. Evolution 62: 50–65.

912 Good J. M., T. Giger, M. D. Dean, and M. W. Nachman, 2010 Widespread over-expression of
913 the X chromosome in sterile F1 hybrid mice. PLoS Genet. 6: e1001148.

914 Green C. D., Q. Ma, G. L. Manske, A. N. Shami, X. Zheng, *et al.*, 2018 A comprehensive
915 roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Dev. Cell 46:
916 651-667.e10.

917 Gu Z., R. Eils, and M. Schlesner, 2016 Complex heatmaps reveal patterns and correlations in
918 multidimensional genomic data. Bioinformatics 32: 2847–2849.

919 Guerrero R. F., A. L. Posto, L. C. Moyle, and M. W. Hahn, 2016 Genome-wide patterns of
920 regulatory divergence revealed by introgression lines. Evolution 70: 696–706.

921 Haaf T., H. Weis, and M. Schmid, 1987 A comparative cytogenetic study on the mitotic and

922 meiotic chromosomes in hamster species of the genus *Phodopus* (Rodentia,
923 Cricetinae). *Zeitschrift für Säugetierkunde* 52: 281–290.

924 Haerty W., and R. S. Singh, 2006 Gene regulation divergence is a major contributor to the
925 evolution of Dobzhansky-Muller incompatibilities between species of *Drosophila*. *Mol.*
926 *Biol. Evol.* 23: 1707–1714.

927 Haldane J. B. S., 1922 Sex ratio and unisexual sterility in hybrid animals. *J. Genet.* 12: 101–
928 109.

929 Handel M. A., 2004 The XY body: a specialized meiotic chromatin domain. *Exp. Cell Res.* 296:
930 57–63.

931 Hermann B. P., K. Cheng, A. Singh, L. Roa-De La Cruz, K. N. Mutoji, *et al.*, 2018 The
932 mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells
933 to spermatids. *Cell Rep.* 25: 1650–1667.e8.

934 Holt J., S. Huang, L. McMillan, and W. Wang, 2013 Read annotation pipeline for high-
935 throughput sequencing data, pp. 605–612 in *Proceedings of the International*
936 *Conference on Bioinformatics, Computational Biology and Biomedical Informatics -*
937 *BCB'13*, ACM Press, New York, New York, USA.

938 Homolka D., R. Ivanek, J. Capkova, P. Jansa, and J. Forejt, 2007 Chromosomal rearrangement
939 interferes with meiotic X chromosome inactivation. *Genome Res.* 17: 1431–1437.

940 Huang S., J. Holt, C.-Y. Kao, L. McMillan, and W. Wang, 2014 A novel multi-alignment pipeline
941 for high-throughput sequencing data. *Database* 2014: bau057.

942 Hunnicutt K. E., J. M. Good, and E. L. Larson, 2022 Unraveling patterns of disrupted gene

943 expression across a complex tissue. *Evolution* 76: 275–291.

944 Ishishita S., K. Tsuboi, N. Ohishi, K. Tsuchiya, and Y. Matsuda, 2015 Abnormal pairing of X and
945 Y sex chromosomes during meiosis I in interspecific hybrids of *Phodopus campbelli*
946 and *P. sungorus*. *Sci. Rep.* 5: 9435.

947 Kasahara T., K. Mekada, K. Abe, A. Ashworth, and T. Kato, 2022 Complete sequencing of the
948 mouse pseudoautosomal region, the most rapidly evolving ‘chromosome.’ *bioRxiv*
949 2022.03.26.485930.

950 Kerwin R. E., and A. L. Swiegart, 2020 Rampant Misexpression in a *Mimulus* (Monkeyflower)
951 Introgression Line Caused by Hybrid Sterility, Not Regulatory Divergence. *Mol. Biol.*
952 *Evol.* 37: 2084–2098.

953 Kim D., J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg, 2019 Graph-based genome
954 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* 37: 907–
955 915.

956 Kolberg L., U. Raudvere, I. Kuzmin, J. Vilo, and H. Peterson, 2020 gprofiler2 -- an R package
957 for gene list functional enrichment analysis and namespace conversion toolset
958 g:Profiler. *F1000Res.* 9. <https://doi.org/10.12688/f1000research.24956.2>

959 Kopania E. E. K., E. L. Larson, C. Callahan, S. Keeble, and J. M. Good, 2022a Molecular
960 evolution across mouse spermatogenesis. *Mol. Biol. Evol.* 39: msac023.

961 Kopania E. E. K., E. M. Watson, C. C. Rathje, B. M. Skinner, P. J. I. Ellis, *et al.*, 2022b The
962 contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house
963 mice. *Genetics* 222: iyac151.

964 Korunes K. L., and K. Samuk, 2021 pixy: Unbiased estimation of nucleotide diversity and
965 divergence in the presence of missing data. *Mol. Ecol. Resour.* 21: 1359–1368.

966 Kousathanas A., D. L. Halligan, and P. D. Keightley, 2014 Faster-X adaptive protein evolution in
967 house mice. *Genetics* 196: 1131–1143.

968 Lafon-Placette C., and C. Köhler, 2015 Epigenetic mechanisms of postzygotic reproductive
969 isolation in plants. *Curr. Opin. Plant Biol.* 23: 39–44.

970 Landen E. L., C. A. Muirhead, L. Wright, C. D. Meiklejohn, and D. C. Presgraves, 2016 Sex
971 chromosome-wide transcriptional suppression and compensatory cis-regulatory
972 evolution mediate gene expression in the *Drosophila* male germline. *PLoS Biol.* 14:
973 e1002499.

974 Larson E. L., D. Vanderpool, S. Keeble, M. Zhou, B. A. J. Sarver, *et al.*, 2016 Contrasting levels
975 of molecular evolution on the mouse X chromosome. *Genetics* 203: 1841–1857.

976 Larson E. L., S. Keeble, D. Vanderpool, M. D. Dean, and J. M. Good, 2017 The composite
977 regulatory basis of the large X-effect in mouse speciation. *Mol. Biol. Evol.* 34: 282–295.

978 Larson E. L., E. E. K. Kopania, and J. M. Good, 2018 Spermatogenesis and the evolution of
979 mammalian sex chromosomes. *Trends Genet.* 34: 722–732.

980 Larson E. L., E. E. K. Kopania, K. E. Hunnicutt, D. Vanderpool, S. Keeble, *et al.*, 2022 Stage-
981 specific disruption of X chromosome expression during spermatogenesis in sterile
982 house mouse hybrids. *G3* 12: jkab407.

983 Liao Y., G. K. Smyth, and W. Shi, 2014 featureCounts: an efficient general purpose program for
984 assigning sequence reads to genomic features. *Bioinformatics* 30: 923–930.

985 Lifschytz E., and D. L. Lindsley, 1972 The role of X-chromosome inactivation during
986 spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 69: 182–186.

987 Llopart A., 2012 The rapid evolution of X-linked male-biased gene expression and the large-X
988 effect in *Drosophila yakuba*, *D. santomea*, and their hybrids. Mol. Biol. Evol. 29: 3873–
989 3886.

990 Luo H., T. Mipam, S. Wu, C. Xu, C. Yi, *et al.*, 2022 DNA methylome of primary spermatocyte
991 reveals epigenetic dysregulation associated with male sterility of cattle yak.
992 Theriogenology 191: 153–167.

993 Lustyk D., S. Kinsky, K. K. Ullrich, M. Yancoskie, L. Kašíková, *et al.*, 2019 Genomic structure of
994 Hstx2 modifier of Prdm9-dependent hybrid male sterility in mice. Genetics 213: 1047–
995 1063.

996 Mack K. L., P. Campbell, and M. W. Nachman, 2016 Gene regulation and speciation in house
997 mice. Genome Res. 26: 451–461.

998 Mack K. L., and M. W. Nachman, 2017 Gene regulation and speciation. Trends Genet. 33: 68–
999 80.

1000 Matsuda Y., T. Hirobe, and V. M. Chapman, 1991 Genetic basis of X-Y chromosome
1001 dissociation and male sterility in interspecific hybrids. Proc. Natl. Acad. Sci. U. S. A. 88:
1002 4850–4854.

1003 McCarthy D. J., Y. Chen, and G. K. Smyth, 2012 Differential expression analysis of multifactor
1004 RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40: 4288–
1005 4297.

1006 McKee B. D., and M. A. Handel, 1993 Sex chromosomes, recombination, and chromatin
1007 conformation. *Chromosoma* 102: 71–80.

1008 McManus C. J., J. D. Coolon, M. O. Duff, J. Eipper-Mains, B. R. Graveley, *et al.*, 2010
1009 Regulatory divergence in *Drosophila* revealed by mRNA-seq. *Genome Res.* 20: 816–
1010 825.

1011 Meiklejohn C. D., J. D. Coolon, D. L. Hartl, and P. J. Wittkopp, 2014 The roles of cis- and trans-
1012 regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene
1013 expression. *Genome Res.* 24: 84–95.

1014 Michalak P., and M. A. F. Noor, 2003 Genome-wide patterns of expression in *Drosophila* pure
1015 species and hybrid males. *Mol. Biol. Evol.* 20: 1070–1076.

1016 Mihola O., Z. Trachulec, C. Vlcek, J. C. Schimenti, and J. Forejt, 2009 A mouse speciation
1017 gene encodes a meiotic histone H3 methyltransferase. *Science* 323: 373–375.

1018 Mipam T., X. Chen, W. Zhao, P. Zhang, Z. Chai, *et al.*, 2023 Single-cell transcriptome analysis
1019 and in vitro differentiation of testicular cells reveal novel insights into male sterility of the
1020 interspecific hybrid cattle-yak. *BMC Genomics* 24: 149.

1021 Montgomery S. H., and J. E. Mank, 2016 Inferring regulatory change from gene expression: the
1022 confounding effects of tissue scaling. *Mol. Ecol.* 25: 5114–5128.

1023 Moore E. C., G. W. C. Thomas, S. Mortimer, E. E. K. Kopania, K. E. Hunnicutt, *et al.*, 2022 The
1024 evolution of widespread recombination suppression on the dwarf hamster (*Phodopus*) X
1025 chromosome. *Genome Biol. Evol.* 14: evac080.

1026 Morgan A. P., T. A. Bell, J. J. Crowley, and F. Pardo-Manuel de Villena, 2019 Instability of the

1027 pseudoautosomal boundary in house mice. *Genetics* 212: 469–487.

1028 Morgan K., B. Harr, M. A. White, B. A. Payseur, and L. M. Turner, 2020 Disrupted gene
1029 networks in subfertile hybrid house mice. *Mol. Biol. Evol.* 37: 1547–1562.

1030 Mugal C. F., M. Wang, N. Backström, D. Wheatcroft, M. Ålund, *et al.*, 2020 Tissue-specific
1031 patterns of regulatory changes underlying gene expression differences among *Ficedula*
1032 flycatchers and their naturally occurring F1 hybrids. *Genome Res.* 30: 1727–1739.

1033 Murat F., N. Mbengue, S. B. Winge, T. Trefzer, E. Leushkin, *et al.*, 2023 The molecular evolution
1034 of spermatogenesis across mammals. *Nature* 613: 308–316.

1035 Namekawa S. H., P. J. Park, L.-F. Zhang, J. E. Shima, J. R. McCarrey, *et al.*, 2006 Postmeiotic
1036 sex chromatin in the male germline of mice. *Curr. Biol.* 16: 660–667.

1037 Neumann K., J. Michaux, V. Lebedev, N. Yigit, E. Colak, *et al.*, 2006 Molecular phylogeny of the
1038 Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes
1039 and the nuclear vWF gene. *Mol. Phylogen. Evol.* 39: 135–148.

1040 Ogle D., and M. D. Ogle, 2017 Package ‘FSA.’ CRAN Repos 1–206.

1041 Oka A., A. Mita, Y. Takada, H. Koseki, and T. Shiroishi, 2010 Reproductive isolation in hybrid
1042 mice due to spermatogenesis defects at three meiotic stages. *Genetics* 186: 339–351.

1043 Oka A., and T. Shiroishi, 2014 Regulatory divergence of X-linked genes and hybrid male
1044 sterility in mice. *Genes Genet. Syst.* 89: 99–108.

1045 Oka A., T. Takada, H. Fujisawa, and T. Shiroishi, 2014 Evolutionarily diverged regulation of X-
1046 chromosomal genes as a primal event in mouse reproductive isolation. *PLoS Genet.* 10:
1047 e1004301.

1048 Oksanen J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, *et al.*, 2013 Package 'vegan.'

1049 Community ecology package, version 2: 1–295.

1050 Oliver P. L., L. Goodstadt, J. J. Bayes, Z. Birtle, K. C. Roach, *et al.*, 2009 Accelerated evolution

1051 of the Prdm9 speciation gene across diverse metazoan taxa. *PLoS Genet.* 5: e1000753.

1052 Ortíz-Barrientos D., B. A. Counterman, and M. A. F. Noor, 2007 Gene expression divergence

1053 and the origin of hybrid dysfunctions. *Genetica* 129: 71–81.

1054 Paun O., M. F. Fay, D. E. Soltis, and M. W. Chase, 2007 Genetic and epigenetic alterations

1055 after hybridization and genome doubling. *Taxon* 56: 649–656.

1056 Presgraves D. C., 2008 Sex chromosomes and speciation in *Drosophila*. *Trends Genet.* 24:

1057 336–343.

1058 Ramm S. A., and L. Schärer, 2014 The evolutionary ecology of testicular function: size isn't

1059 everything. *Biol. Rev. Camb. Philos. Soc.* 89: 874–888.

1060 Rappaport Y., H. Achache, R. Falk, O. Murik, O. Ram, *et al.*, 2021 Bisection of the X

1061 chromosome disrupts the initiation of chromosome silencing during meiosis in

1062 *Caenorhabditis elegans*. *Nat. Commun.* 12: 4802.

1063 Raudsepp T., and B. P. Chowdhary, 2015 The eutherian pseudoautosomal region. *Cytogenet.*

1064 *Genome Res.* 147: 81–94.

1065 Raymond C. S., M. W. Murphy, M. G. O'Sullivan, V. J. Bardwell, and D. Zarkower, 2000 *Dmrt1*,

1066 a gene related to worm and fly sexual regulators, is required for mammalian testis

1067 differentiation. *Genes Dev.* 14: 2587–2595.

1068 Ritchie M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, *et al.*, 2015 limma powers differential

1069 expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.*
1070 43: e47.

1071 Robinson M. D., D. J. McCarthy, and G. K. Smyth, 2010 *edgeR*: a Bioconductor package for
1072 differential expression analysis of digital gene expression data. *Bioinformatics* 26: 139–
1073 140.

1074 Sánchez-Ramírez S., J. G. Weiss, C. G. Thomas, and A. D. Cutter, 2021 Widespread
1075 misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-
1076 chromosome regulatory evolution. *PLoS Genet.* 17: e1009409.

1077 Scribner S. J., and K. E. Wynne-Edwards, 1994 Disruption of body temperature and behavior
1078 rhythms during reproduction in dwarf hamsters (*Phodopus*). *Physiol. Behav.* 55: 361–
1079 369.

1080 Shivaprasad P. V., R. M. Dunn, B. A. Santos, A. Bassett, and D. C. Baulcombe, 2012
1081 Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics
1082 and small silencing RNAs. *EMBO J.* 31: 257–266.

1083 Smagulova F., K. Brick, Y. Pu, R. D. Camerini-Otero, and G. V. Petukhova, 2016 The
1084 evolutionary turnover of recombination hot spots contributes to speciation in mice.
1085 *Genes Dev.* 30: 266–280.

1086 Swanson M. T., C. H. Oliveros, and J. A. Esselstyn, 2019 A phylogenomic rodent tree reveals
1087 the repeated evolution of masseter architectures. *Proc. Biol. Sci.* 286: 20190672.

1088 Taxiarchi C., N. Kranjc, A. Kriezis, K. Kyrou, F. Bernardini, *et al.*, 2019 High-resolution
1089 transcriptional profiling of *Anopheles gambiae* spermatogenesis reveals mechanisms of
1090 sex chromosome regulation. *Sci. Rep.* 9: 14841.

1091 Trachtulec Z., M. Mnuková-Fajdelová, R. M. Hamvas, S. Gregorová, W. E. Mayer, *et al.*, 1997

1092 Isolation of candidate hybrid sterility 1 genes by cDNA selection in a 1.1 megabase pair

1093 region on mouse chromosome 17. *Mamm. Genome* 8: 312–316.

1094 Turner L. M., M. A. White, D. Tautz, and B. A. Payseur, 2014 Genomic networks of hybrid

1095 sterility. *PLoS Genet.* 10: e1004162.

1096 Turner L. M., and B. Harr, 2014 Genome-wide mapping in a house mouse hybrid zone reveals

1097 hybrid sterility loci and Dobzhansky-Muller interactions. *Elife* 3: e02504.

1098 Turner J. M. A., 2015 Meiotic silencing in mammals. *Annu. Rev. Genet.* 49: 395–412.

1099 Vasimuddin M., S. Misra, H. Li, and S. Aluru, 2019 Efficient architecture-aware acceleration of

1100 BWA-MEM for multicore systems, pp. 314–324 in *2019 IEEE International Parallel and*

1101 *Distributed Processing Symposium (IPDPS)*, IEEE.

1102 Viera A., M. T. Parra, S. Arévalo, C. García de la Vega, J. L. Santos, *et al.*, 2021 X chromosome

1103 inactivation during grasshopper spermatogenesis. *Genes* 12: 1844.

1104 Wei K. H.-C., A. G. Clark, and D. A. Barbash, 2014 Limited gene misregulation is exacerbated

1105 by allele-specific upregulation in lethal hybrids between *Drosophila melanogaster* and

1106 *Drosophila simulans*. *Mol. Biol. Evol.* 31: 1767–1778.

1107 White M. A., M. Stubbings, B. L. Dumont, and B. A. Payseur, 2012a Genetics and evolution of

1108 hybrid male sterility in house mice. *Genetics* 191: 917–934.

1109 White M. A., A. Ikeda, and B. A. Payseur, 2012b A pronounced evolutionary shift of the

1110 pseudoautosomal region boundary in house mice. *Mamm. Genome* 23: 454–466.

1111 Wittkopp P. J., B. K. Haerum, and A. G. Clark, 2004 Evolutionary changes in cis and trans gene

1112 regulation. *Nature* 430: 85–88.

1113 Wu C. I., and A. W. Davis, 1993 Evolution of postmating reproductive isolation: the composite
1114 nature of Haldane's rule and its genetic bases. *Am. Nat.* 142: 187–212.

1115 Zhu W., B. Hu, C. Becker, E. S. Doğan, K. W. Berendzen, *et al.*, 2017 Altered chromatin
1116 compaction and histone methylation drive non-additive gene expression in an
1117 interspecific *Arabidopsis* hybrid. *Genome Biol.* 18: 157.

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130 **Figures**

1131 **Figure 1. Evidence of some hybrid male sterility in dwarf hamsters.** We assessed paired
1132 testes weight and paired seminal vesicle weight (SV; both normalized by body weight), sperm
1133 count, and proportion of motile sperm for *P. sungorus*, *P. campbelli*, and F1 hybrids. Whiskers
1134 extend to either the largest or smallest value or no further than 1.5 times the interquartile range,
1135 and *** indicates $p < 0.001$, ** indicates $p < 0.01$, and n.s. indicates non-significant difference
1136 between means at $p > 0.05$ using a post-hoc Dunn's test with FDR correction. Upwards-
1137 pointing triangles (\blacktriangle) indicate *P. campbelli*, downwards-pointing triangles (\blacktriangledown) indicate *P.*
1138 *sungorus*, and crosses (\times) indicate F1 hybrids.

1139

1140 **Figure 2. Overexpression of X-linked genes in diplotene spermatocytes in both house**
1141 **mouse and dwarf hamster hybrids.** Heatmap of X-linked gene expression in house mice
1142 (upper panel) and dwarf hamsters (lower panel) plotted as normalized FPKM values that are
1143 hierarchically clustered using Euclidean distance. Each column represents a different
1144 individual, each row represents a gene, and darker colors indicate higher expression. The
1145 heatmap was generated with the R package ComplexHeatmap v.2.12.0 (Gu et al. 2016). Note,
1146 hybrid dwarf hamsters do not produce mature spermatozoa, and accordingly, we were unable
1147 to isolate round spermatids.

1148

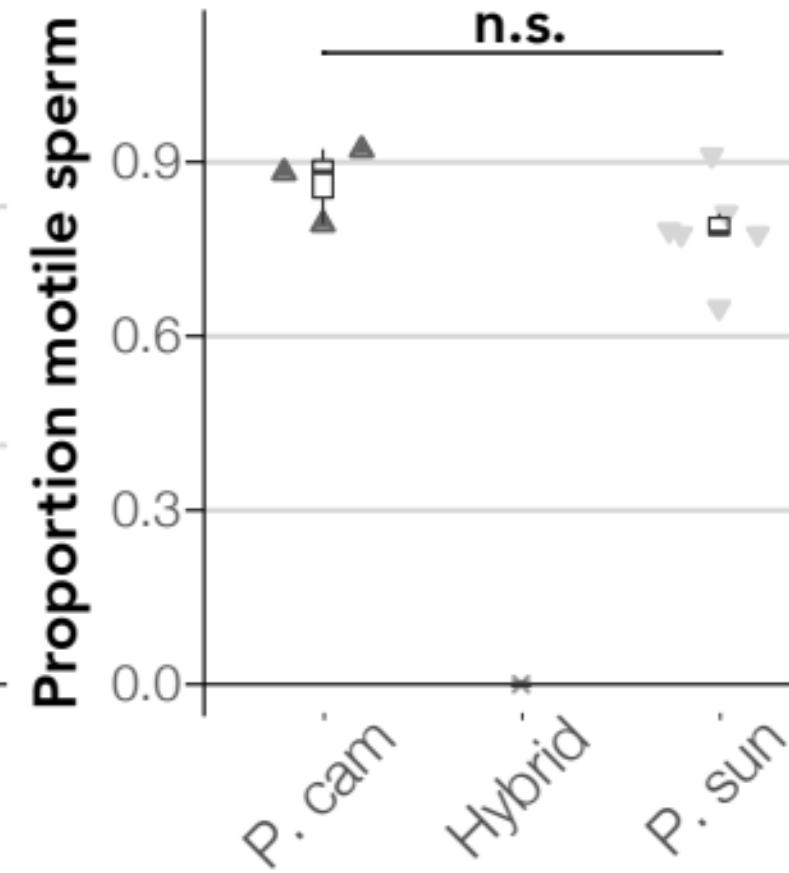
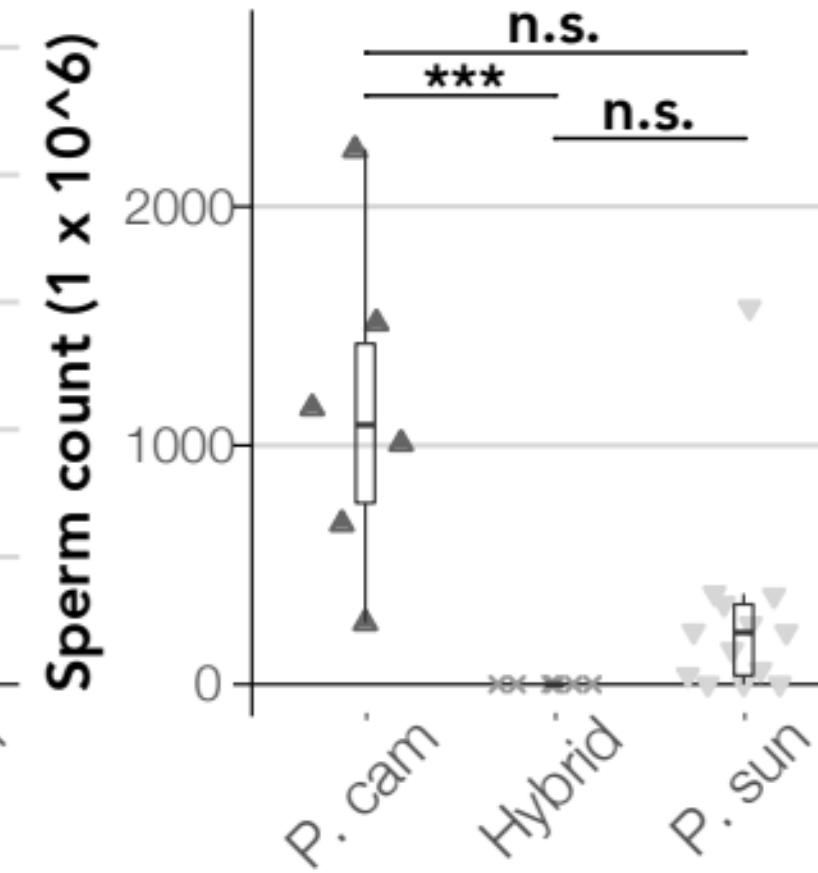
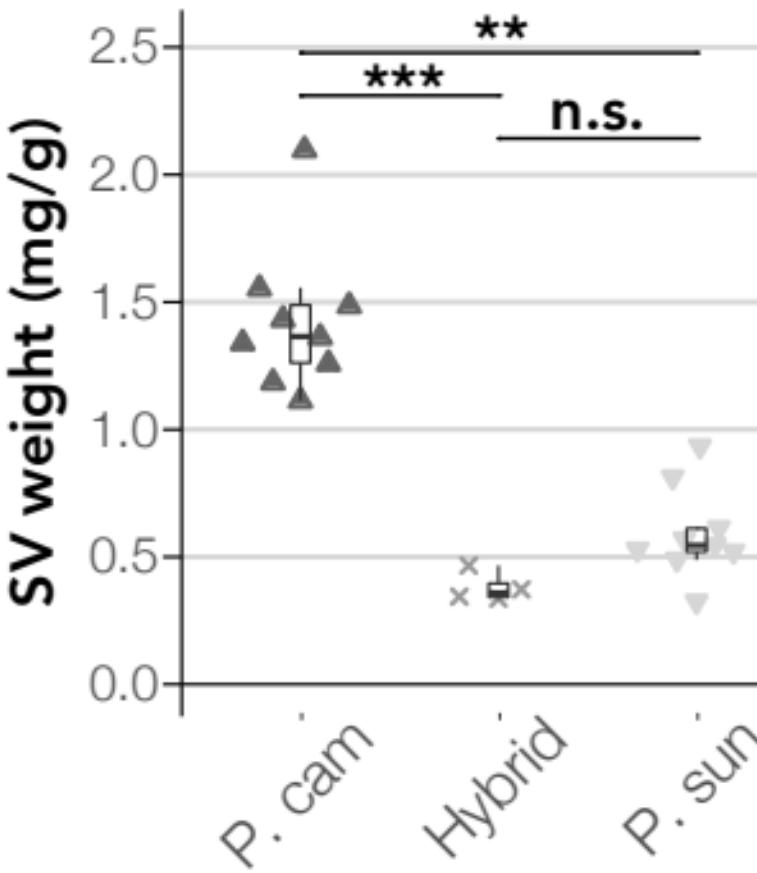
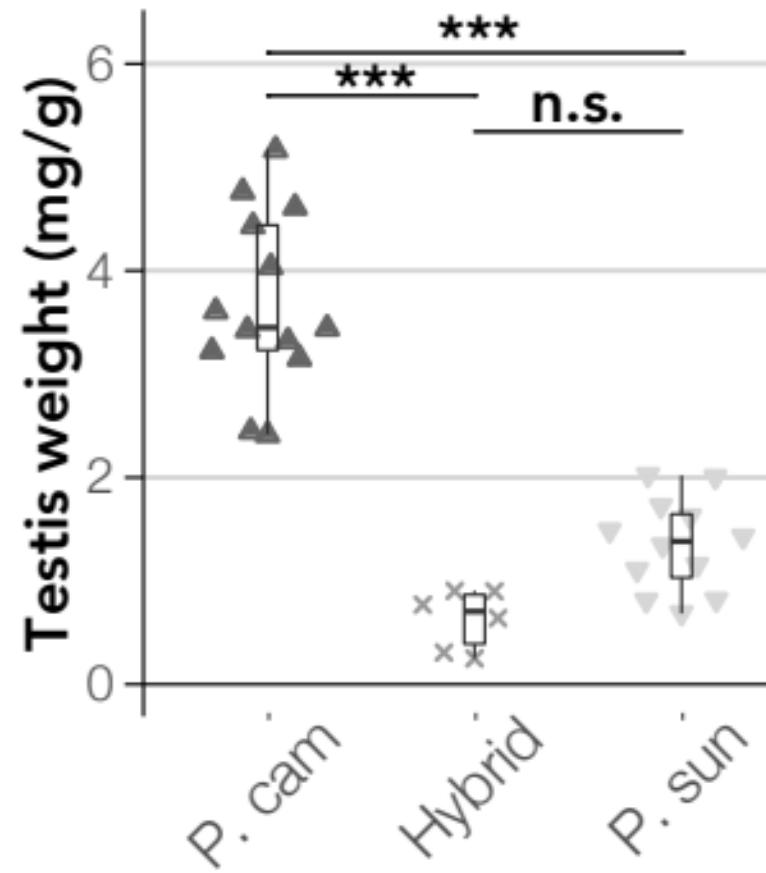
1149 **Figure 3. Hybrid gene expression profiles cluster by parental spermatogenic cell**
1150 **population in house mice but not dwarf hamsters.** Multidimensional scaling (MDS) plots of
1151 distances among house mouse (upper panels) and dwarf hamster (lower panels) samples for
1152 expressed autosomal (left) and X-linked (right) genes. Distances are calculated as the root-
1153 mean-square deviation (Euclidean distance) of log2 fold changes among the top 500 genes

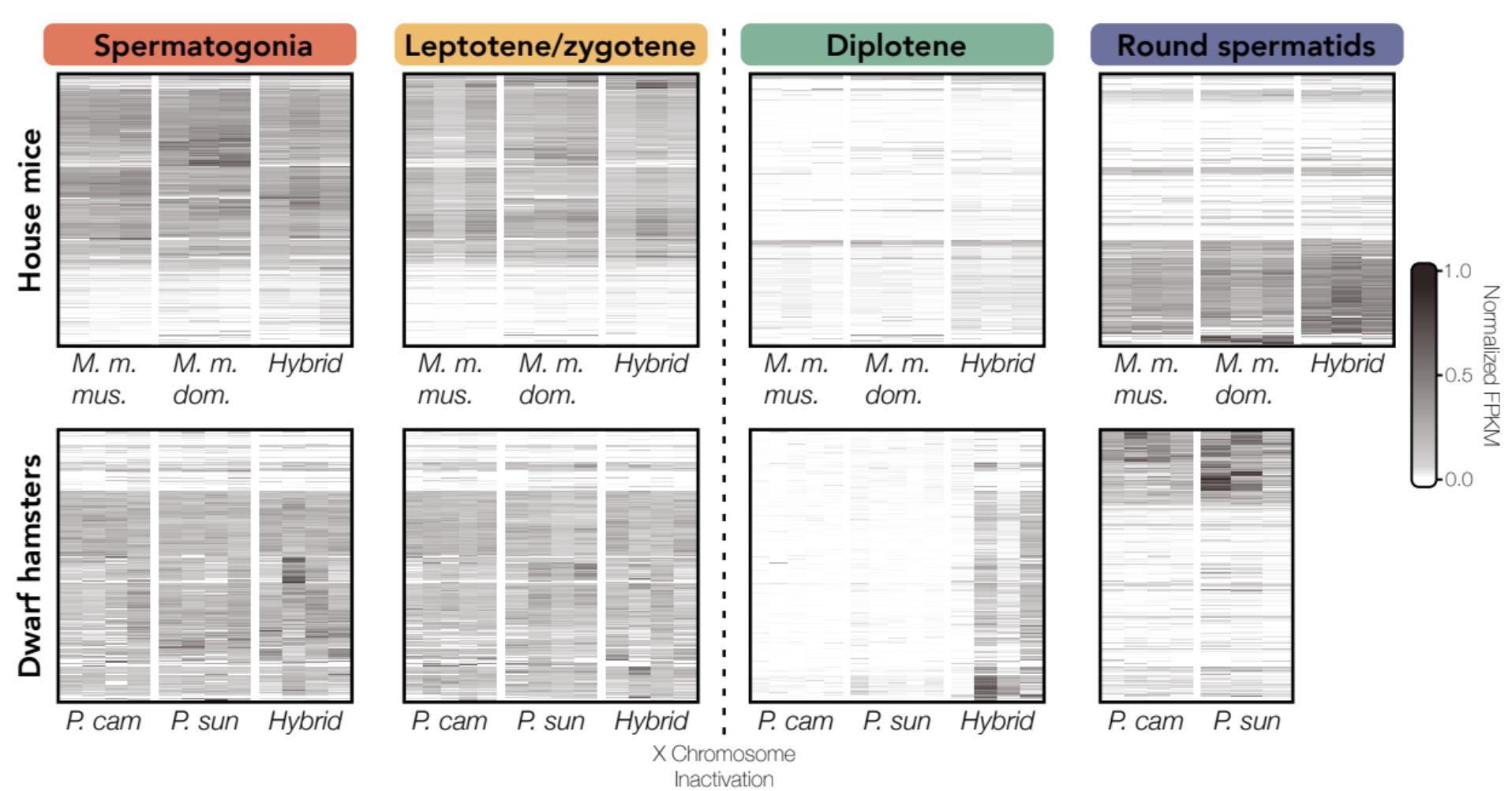
1154 that distinguish each sample. Each strain or cross is indicated by a symbol, and samples are
1155 colored by cell population.

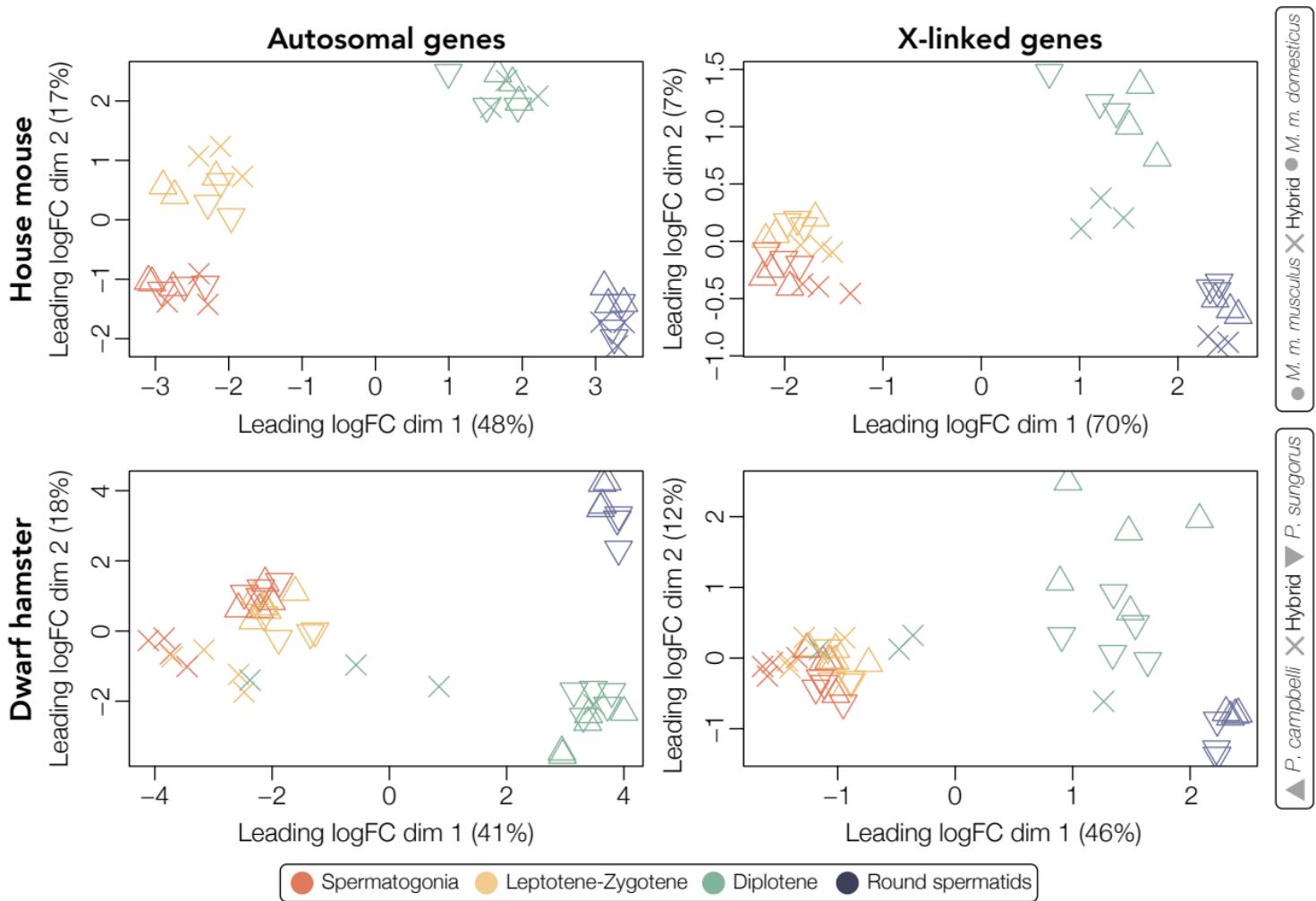
1156

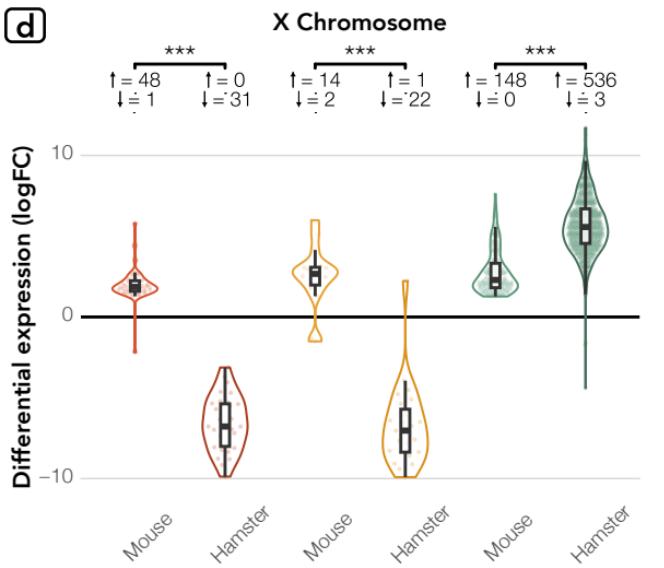
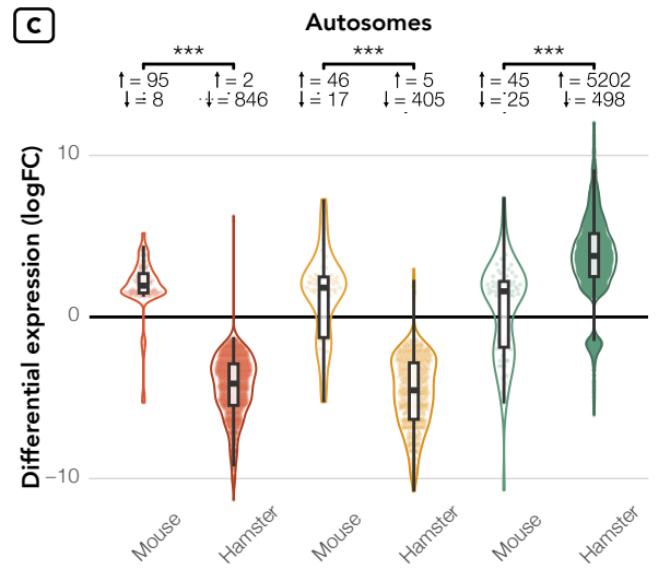
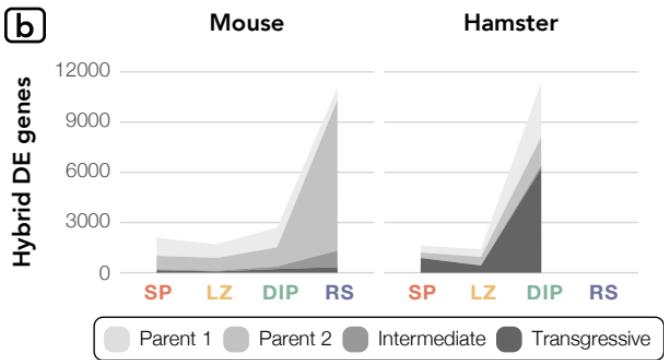
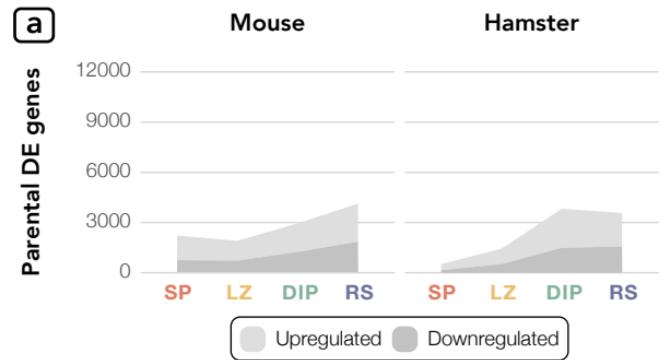
1157 **Figure 4. House mice and dwarf hamster hybrids have opposite patterns of disrupted**
1158 **regulation early in spermatogenesis.** a) Up- and down-regulated DE genes between parent
1159 species for house mice (left; *M. m. musculus* vs. *M. m. domesticus*) and dwarf hamsters (right;
1160 *P. sungorus* vs. *P. campbelli*). b) Counts of DE genes between hybrids and one parent species
1161 (two lightest shades of gray where Parent 1 was either *M. m. musculus* or *P. sungorus* and
1162 parent 2 was either *M. m. domesticus* or *P. campbelli*) or between hybrids and both parents
1163 (two darker shades of gray) that showed either intermediate or transgressive expression. c)
1164 Transgressive DE genes in house mouse and dwarf hamster hybrids for autosomal genes
1165 where the logFC represents hybrid expression relative to *M. m. musculus* or *P. campbelli*,
1166 respectively, and d) transgressive DE gene expression for X-linked genes. Results are
1167 displayed for autosomes (left) and the X chromosome (right). *** indicates $p < 0.001$ for
1168 pairwise comparisons from Wilcoxon signed-rank tests after FDR correction. Whiskers extend
1169 to either the largest or smallest value or no further than 1.5 times the interquartile range. The
1170 number of up and downregulated transgressive DE genes in hybrids are listed next to arrows
1171 indicating direction of differential expression.

1172

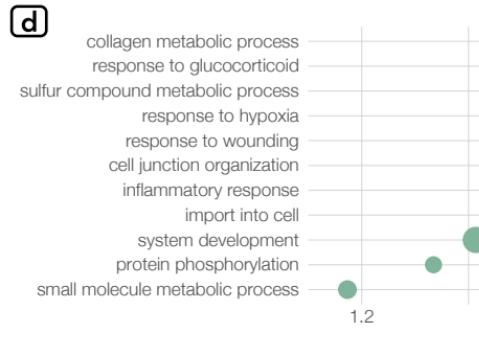
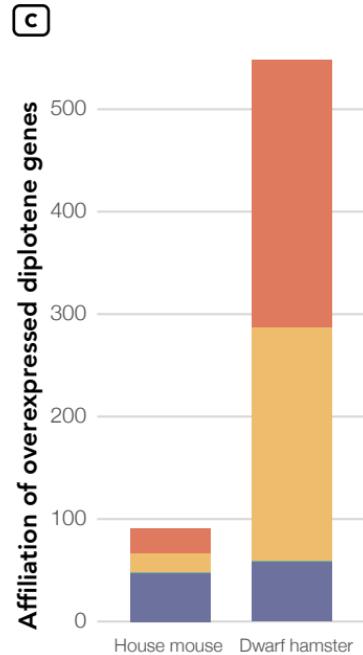
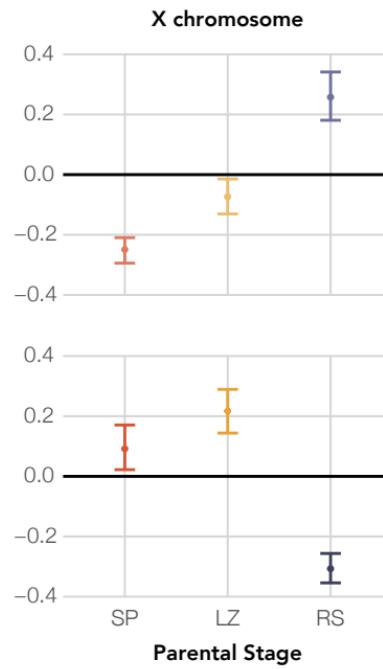
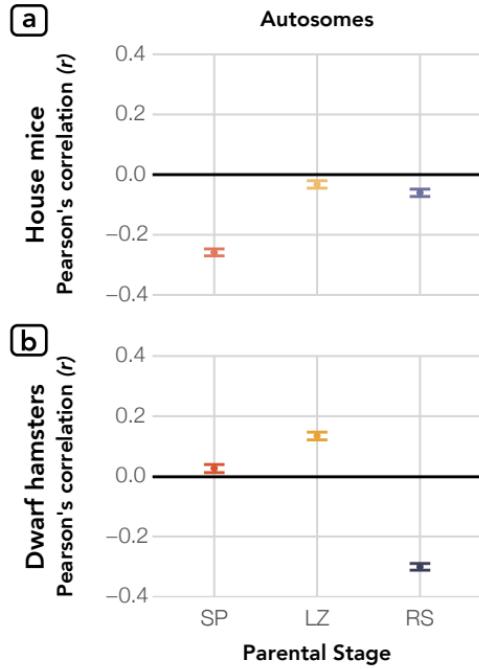




1173 **Figure 5. Spermatogenesis in hybrid dwarf hamsters appears to stall after leptotene/**
1174 **zygotene.** a) We calculated the Pearson's correlation coefficient (r) between mean hybrid
1175 diplotene expression and the mean expression for each parental cell type for both house mice
1176 and b) dwarf hamsters. Correlation coefficients were calculated for both autosomal (left panels)
1177 and X-linked (right panels) genes. We then generated bootstrap values by randomly sampling
1178 the expression matrices for 1000 replicates. All correlation coefficients were significantly

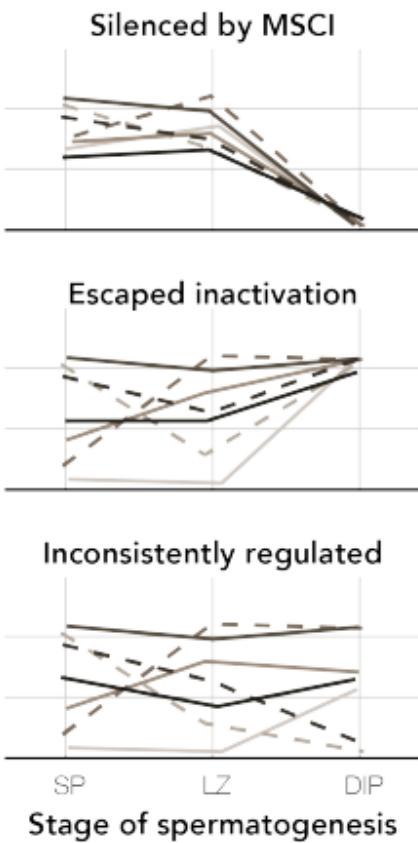
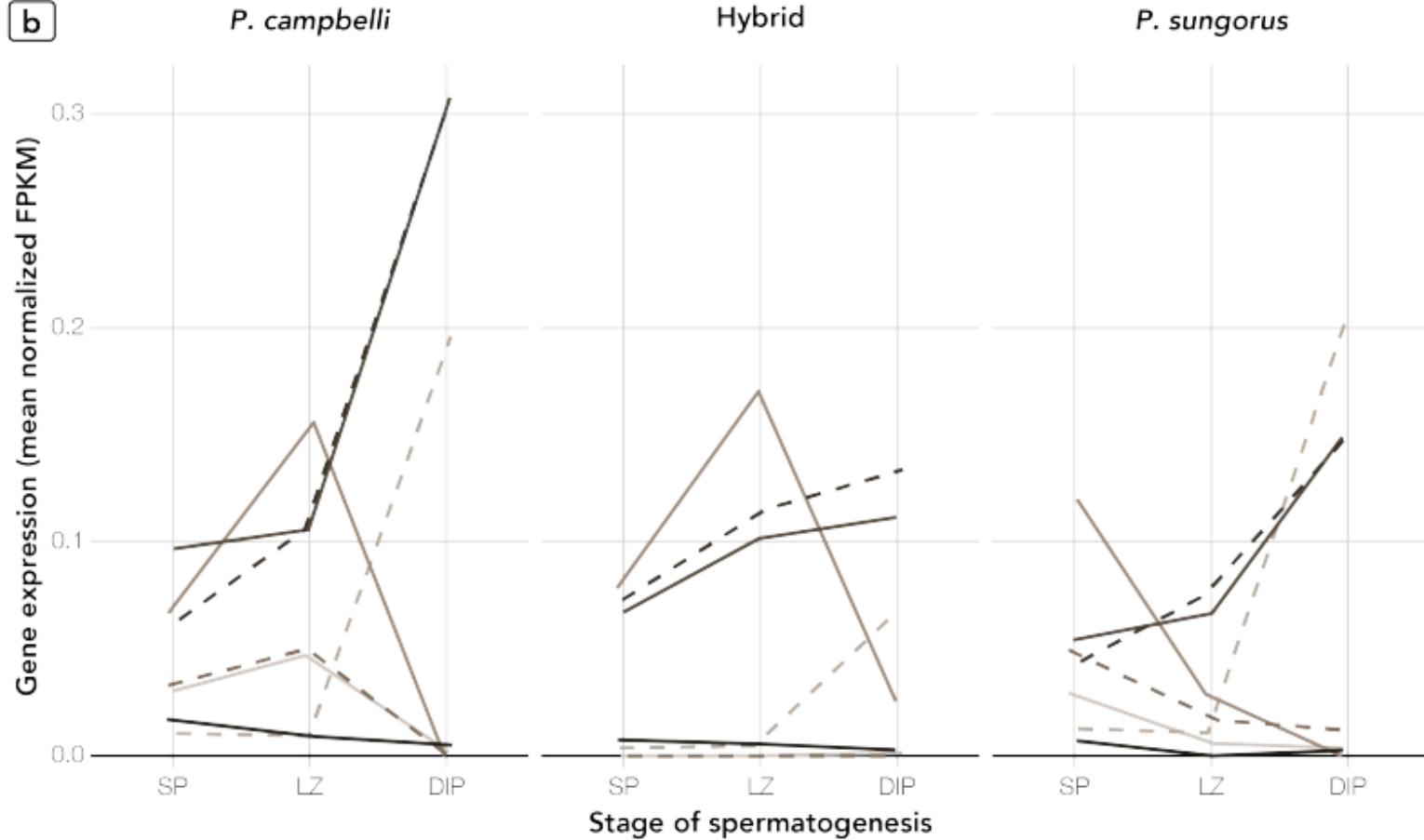

1179 different from zero ($p < 0.05$) after FDR correction. c) Classification of X-linked overexpressed
1180 genes in diplotene cell populations of hybrid mice and dwarf hamsters by parental stage in
1181 which genes are induced. Genes are colored by cell type (red = spermatogonia, yellow =
1182 leptotene/zygotene, green = diplotene, and blue = round spermatids). d) Select enriched
1183 Biological Process GO terms (ranked by FDR) for transgressive DE genes between hybrid
1184 dwarf hamsters and *P. campbelli* in diplotene spermatocytes. Included terms shown are the
1185 result of the highlight function within gProfiler2 which collapses GO terms in a two-step
1186 clustering algorithm (Kolberg *et al.* 2020). Point size corresponds to the number of genes
1187 belonging to each GO term, and terms are plotted by the fold enrichment of the GO term in the
1188 dataset relative to the provided gene backgrounds.


1189





1190 **Figure 6. PAR gene expression is not disrupted during spermatogenesis in hybrid dwarf**
1191 **hamsters.** a) Hypothesized types of PAR gene expression across spermatogenesis. If MSCI
1192 extends to the entire X chromosome, then PAR genes would show some level of expression
1193 early in spermatogenesis which would then drop to zero in diplotene when MSCI occurs. If the
1194 PAR escapes silencing by MSCI and if PAR genes are critical to spermatogenesis, then we
1195 would expect PAR genes to be uniformly expressed in diplotene when the rest of the X
1196 chromosome is silenced. Finally, if the PAR escapes silencing by MSCI but all PAR genes are
1197 not critical to spermatogenesis, then we would expect some PAR genes to be expressed and
1198 some to be not expressed in diplotene. b) Observed patterns of PAR gene expression (as mean
1199 normalized RPKM across individuals) in parental species and hybrid dwarf hamsters for all PAR
1200 genes (indicated by line type and color) across spermatogenesis (SP = spermatogonia, LZ =
1201 leptotene/zygotene, and DIP = diplotene).

1202

● Spermatogonia (SP) ● Leptotene-Zygotene (LZ) ● Diplotene (DIP) ● Round spermatid (RS)

a**b****PAR gene****Gprin1*****Ndrg2******Psun_G000022875******Psun_G000022880******Psun_G000022883******Psun_G000022886******Topp2***