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Abstract

We consider the Glauber dynamics of a ferromagnetic Ising-Kac model on a three-
dimensional periodic lattice of size (2N + 1)3, in which the flipping rate of each spin
depends on an average field in a large neighborhood of radius y ~! << N. We study
the random fluctuations of a suitably rescaled coarse-grained spin field as N — oo
and y — 0; we show that near the mean-field value of the critical temperature, the
process converges in distribution to the solution of the dynamical <I>§1 model on a
torus. Our result settles a conjecture from Giacomin et al. (1999). The dynamical @‘3‘
model is given by a non-linear stochastic partial differential equation (SPDE) which is
driven by an additive space-time white noise and which requires renormalisation of the
non-linearity. A rigorous notion of solution for this SPDE and its renormalisation is
provided by the framework of regularity structures (Hairer in Invent Math 198(2):269—
504, 2014. https://doi.org/10.1007/s00222-014-0505-4). As in the two-dimensional
case (Mourrat and Weber in Commun Pure Appl Math 70(4):717-812, 2017), the
renormalisation corresponds to a small shift of the inverse temperature of the discrete
system away from its mean-field value.
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1 Introduction

We consider the Glauber dynamics of the three-dimensional Ising-Kac model on the
discrete torus Z3 /(2N + 1)Z3. The spins take values +1 and —1 and flip randomly,
where the flipping rate at a site & depends on an average field in a large neighborhood
of radius y ~! << N around k. We study the random fluctuations of a suitably rescaled
coarse-grained spin field X, as N — oo and y — 0. We prove that there is a choice
of the inverse temperature such that if the initial states converge in a suitable topology,
then X, converges in distribution to the solution of the dynamical CI>§1 model, which
is formally given by the SPDE

1
(8,—A)X:—§X3+AX+\/§§, x e T3, (1.1)

where £ denotes a Gaussian space-time white noise.

The Ising-Kac model was introduced in the 60s to recover rigorously the van
der Waals theory of phase transition [27]. Various scaling regimes for the Glauber
dynamics were studied in the nineties [8—10, 34] and in particular, it was conjectured,
that in 1, 2 and 3 dimensions and in a very specific scaling, non-linear fluctuations
described by (1.1) can be observed [17]. For d = 4 (1.1) is not expected to have
a non-trivial meaning [1] and this is reflected in the dimension-dependent scaling
relation (2.20) below which can be satisfied in dimensions d = 1, 2, 3 but not for
d = 4. The one-dimensional convergence result was proved three decades ago in [5,
14]. The two dimensional case settled much more recently [30]. In this article we treat
the three-dimensional case, thereby completely settling the conjecture from [17].

The main difference between the one-dimensional case d = 1 and the cases d = 2
and d = 3 lies in the increased irregularity of solutions to (1.1) in higher dimensions.
In fact, for d = 1 solutions are continuous functions and a solution theory is classical
(see e.g. [12]). For d = 2, 3 solutions are Schwartz-distributions and (2.20) has to be
renormalised by adding an infinite counter-term. Formally, the equation becomes

(8,—A)X=—%(X3—3ooxX)+AX+\/§§.

For d = 2 this renormalisation procedure was implemented rigorously in the influ-
ential paper by Da Prato-Debussche [11] (see also [32] for a solution theory on the
full space R; x R)%). Consequently, the convergence proof for Ising-Kac for d = 2
consists of adapting their solution method to a discrete approximation (already found
in [17]). A key technical step was to show that, up to well-controlled error terms, the
renormalisation of products of martingales is similar to the Wick renormalisation of
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Gaussian processes. Moreover, the renormalisation of the non-linearity in the discrete
equation corresponds to a small shift (of order 2 log y in the notation of that work)
of the inverse temperature from the critical value of the mean-field mode (in fact this
shift had already been suggested in [7]).

The solution theory for (1.1) for d = 3 is yet much more involved than the d = 2
case and was understood only much more recently. Short-time solution theories were
contained in the groundbreaking theories of regularity structures [20] and paracon-
trolled distributions [6, 16] and a solution theory is by now completely developed [6,
15, 31, 33], see Sect. 3 for a brief review. In particular, it is known that the renormali-
sation procedure is more complex—beyond the leading order “Wick” renormalisation
an additional logarithmic divergence (the “sunset diagram”) appears.

In this article we develop an analysis for the discrete approximation to (1.1) pro-
vided in [17, 30] based on the theory of regularity structures. More specifically, we
rely on the discretisation framework for regularity structures developed in [13, 22],
which of course has to be adapted to the situation at hand. A key part of this analysis is
the construction and derivation of bounds for a suitable discrete model. Following [30]
the discrete analogue of Hairer’s model is defined, based on a linearised version of the
discrete equation. The elements of this model can be represented as iterated stochastic
integrals with respect to a jump martingale. Our companion article [ 18] develops a sys-
tematic theory of these integrals which provides the necessary bounds. We encounter
the same “divergences” as in the continuum, and as in the two-dimensional case, these
correspond to small shifts (of order ¥ and of order y°logy~!) to the temperature.
Additionally, we encounter an order 1 shift (corresponding to a shift of order y® of
the temperature), in the analysis of the approximate Wick constant. This term, comes
from the analysis of the predictable quadratic variation of the discrete martingales and
does not have a counterpart in the continuous theory.

1.1 Structure of the article

In Sect.2 we define the dynamical Ising-Kac model and state in Theorem 2.3 our
main convergence result. We recall the solution theory of the dynamical CDg¥ model
(1.1) in Sect. 3. In Sect.4 we construct a regularity structure for the discrete equation
describing the Ising-Kac model. Furthermore, we make the definitions of discrete
models and modelled distributions on this regularity structure, which are required to
solve the equation. A particular discrete renormalised model is constructed in Sect. 5.
Section 6 contains some properties of the driving martingales and bounds on auxiliary
processes, which allow to prove moment bounds for the discrete models in Sect.7. In
Sect. 8 we write and solve the discrete equation on the regularity structure. Theorem 2.3
is proved in Sect. 9. Appendix A contains some properties of the discrete kernels used
throughout the paper.

1.2 Notation

We use N for the set of natural numbers 1, 2, ..., and we set Ny := N U {0}. The set
of positive real numbers is denoted by R := [0, 00). We typically use the Euclidean
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674 P. Grazieschi et al.

distance |x| for points x € RY, but sometimes we need the distances |x|, = |xi| +
-+ 4 |xg4] and |x|, = max{|x1], ..., |xq|}. We denote by B(x, r) the open ball in R3
containing the points y such that |y — x| < r.

For an integer n > 0, we denote by Cj; the set of compactly supported C" functions
@ : R* — R. The set B" contains all functions ¢ € C2, which are supported on
B(0, 1), and which satisfy ||¢|¢c» < 1. For a function ¢ € B", for x € R? and for
A € (0, 1], we define its rescaled and recentered version

o = 50(20) (1.2)

We define the three-dimensional torus T identified with [—1, 1]3, and the space
9’ (’IF3) of distributions on T>. We define %’ (Rd) to be the space of distributions on RY.
When working with distribution-valued stochastic processes, we use the Skorokhod
space DR, 2’ (T?)) of cadlag functions [4].

For n < 0 we define the Besov space C" (T3) as a completion of smooth functions
f: ™ — R, under the seminorm

I £l := sup sup sup A7"|f (¢})| < oo, (1.3)
0eB’ veR3 1e(0.1]

for r being the smallest integer such that r > —n, where we extended f periodically
to R?, and where we write f (¢}) = (f, ¢?) for the duality pairing. Then the Dirac
delta § is an element of the space C 3 (T3). It is important to define these spaces as
completions of smooth functions, because this makes the spaces separable and allows
to use various probabilistic results.

For ¢ > 0 we define the grid A, := ¢Z> of mesh size ¢. Then it is convenient to
map a function f : A, — R to adistribution as

@)=Y fp), (1.4)

xeA,

for any continuous and compactly supported function .

When working on the time-space domain R?*, we use the parabolic scaling s :=
(2,1, 1, 1), where the first coordinate corresponds to the time variable and the other
three correspond to the space variables. Then for any point (¢, x1, x2, x3) € R4, we
introduce the parabolic distance from the origin || (¢, x)||s := |t|% + |x1 |+ |x2| + |x3].
For a multiindex k = (kg, k1, k2, k3) € Ng we define |k|s := 2ko + k1 + ko + k3.

We frequently use the notation a < b, which means that @ < Cb for a constant
C > 0 independent of the relevant quantities (such quantities are always clear from
the context). In the case a < b and b < a we simply write a ~ b. For a vanishing
sequence of values ¢, the notation a, ~ ¢~ ! means that lim,_, ¢ ea, exists and is finite.

We write L(V, W) for the space of linear bounded operators from V to W.
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The dynamical Ising-Kac model 675

2 The dynamical Ising-Kac model

The Ising-Kac model is a mean-field model with long range potential, which was
introduced to recover rigorously the van der Waals theory of phase transition [27].
We are interested in the three-dimensional model on a periodic domain. To define the
model, let us take N € N and let T3, := Z3/(2N + 1)Z3 be the three-dimensional
discrete torus, i.e. a discrete periodic grid with 2N + 1 points per side. It will be
convenient to identify T?\, with the set {—N,—-N +1,...,0,..., N}3 and allow
points to be multiplied by real numbers in such a way that r - x = rx (mod 2N + 1)),
forany x € T?\, and r € R, where the mod operator is taken on each component of x.
Each site of the grid k € T?V has an assigned spin value o (k) € {—1, +1}. The set of
all spin configurations is Xy := {—1, +1)TX and we write o = (o (k) : k € T3,) for
an element of Xy .

Let us fix a constant r, > 0. The range of the interaction is represented by a real
number y € (0, ), for some y, < r, l 3, and by a smooth, compactly supported,
rotation invariant function £ : R® — [0, 1], supported in the ball B(0, r,). (A high
regularity of this function is required in the proof of Lemma A.2.) We impose that
R(O) =0and

f Rx)dx =1, / R)|x|>dx =6, 2.

R} R}

where |x| is the Euclidean norm. Then we define the function &), : T?V — [0, 00) as
Ry (k) = 35,17 R(yk) 2.2)

fork e ’]I'?V. The constant sz, 1 is given by %;) 11 = ZkeT}v y2R(yk), and it guarantees
that ), TS, Ry (k) = 1. Our assumption y < ¥, makes sure that the radius of inter-

action r,y ~! does not exceed the size of the domain N & y~* (the precise definition
of N is given in (2.18)). In the rest of this paper, we always consider y < y,.
The locally averaged (coarse-grained) field h,, : ¥y X T?\, — Ris defined as

hy (k) i= ) Ry k= )a()).

- o3
JeTy

Here and in what follows we consider the difference k— j on the torus. The Hamiltonian
of the system is the function /%, : ¥y — R given by

1 1
Ay (0) 1= =5 23 Ry (k= po (o) =3 Z o(k)hy (0, k).  (23)
J-keTy keTy,

In other words, two spins o (j) and o (k) interact if they are located at a distance
bounded by r,y ~!, where r, is the radius of the support of K.
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676 P. Grazieschi et al.

For a fixed inverse temperature 8 > 0, the Gibbs measure A, is the probability
measure on Xy

Ay(0) = g;exp(— ﬂ%’j/(o)) for o € Xy,
Y

with normalization constant %, := )" __» v €XP ( — B, ((T)). Since we consider the
Ising-Kac model in a finite volume, the sum is finite and 2, is always well-defined.

We are interested in the Glauber dynamics of the Ising-Kac model, in which
the spins evolve in time as a Markov process on a filtered probability space
(Q, P, 7, (%) 120) with the infinitesimal generator

2L, f(0) =Y ¢y, )D(f(0) = f(o)), 24)

]
JeTy

acting on functions f : ¥y — R.The configuration o'/ is obtained from o by flipping
the spin at the site j, i.e. for any k € 'IF?V

4 o(k if k#7j,
oithy = |70 EA
—o(k)y it k=j.
The flipping rates c,, are chosen such that the Gibbs measure 1,, is reversible for the
dynamics. For any o € Xy and for any j € T3, we set

N Ay (‘Tj) 1 . .
Cy(O', ]) = m = 5(1 —G(])tanh (ﬁhy(U, ]))) (25)

One can readily check that the detailed balance condition is satisfied (see Proposi-
tion 5.3 in [28] and the discussion above it)

ey (@, Py (@) = ¢, (0, )iy (0),
for each j € T3, which implies that indeed the Gibbs measure Ay isteversible. Given
a time variable # > 0, we denote by o (t) = (0'(t, k) : k € T3;) the pure jump Markov

process with jump rates ¢y, .
We can use properties of the infinitesimal generator (see [26, App. 1.1.5]) to write

t
o(t,k)=0(0,k)+ / Zyo(s, k)ds +m, (1, k), (2.6)
0

where 0(0) € Xy is a fixed initial configuration of spins at time 0, the generator
is applied to the function f(0) = o(k) and t +— m, (¢, k) is a family of cadlag
martingales with jumps of size 2 (because each spin changes values from +1 to —1
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The dynamical Ising-Kac model 677

or vice versa). Moreover, the predictable quadratic covariations of these martingales
are given by the carré du champ operator [29, App. B] and may be written as

t
(my (. k), my (+, KN), = 480 10 /0 ¢y (o (s), k) ds, 2.7

for all k, k' € ’]T?V, where 8y 4 is the Kronecker delta, i.e. 8 = 1 if k = k’ and
Sk, = 0 otherwise. We recall that the predictable quadratic covariation in (2.7) is the
unique increasing process, vanishing at7 = O and such thats +— m,, (z, k)m,, (z, k') —
(my ¢, k), my, ., k' )) ; is a martingale. The definitions and properties of the bracket
processes for cadlag martingales can be found in [24].

The dynamical version of the averaged field we denote by

hy (t, k) := hy (o (1), k).

Remark 2.1 As we stated above, we always consider N >> y !, which together with
the property £, (0) = 0 means that there is no self-interaction of spins. In contrast
to the setting of [30], we have to avoid self-interaction by postulating £(0) = 0.
The reason for this assumption can be seen in the proof of Lemma A.2, where the
function K, is required to be differentiable. The weaker bounds in [30, Lem. 8.2] in

the two-dimensional setting allow this function to have a discontinuity at the origin.

2.1 Convergence of a rescaled model

Our main interest lies in understanding the behavior of a rescaled version of the
dynamical Ising-Kac model. For ¢ = 2/(2N + 1) we introduce the rescaled lattice

T? = {ek 1 k € T} }.

In particular, Tg’ is a subset of the three-dimensional torus T°. In what follows, we use
the convolution on the lattice, defined for two functions f, g : Tg — Ras

(freg)@) =6 > flx =g (2.8)

yeT;

For any function g : Tg — R, we use the standard definition for the discrete Fourier
transform

2(w) =& Z gx)e T for we {—N,..., N} . (2.9)
xe’]Tg

We fix two positive real constants § > 0 and o > 0 and define the family of rescaled
martingales

1 g1
M, (1, x) = gmy( x) for x € T3, 1 > 0, (2.10)

-, =
o &
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678 P. Grazieschi et al.

and also |
X
Ky () = =%, (;) . 2.11)
Then from (2.6) we can conclude that the rescaled process
X, (1. x) == 3hy<&, ;) for x € T2, 1 >0, 2.12)

solves the following equation (see [30] for the derivation of an analogous equation in
the two-dimensional case)

Xy (t,x) = X)(x) + (Ky % MMy (2, x) (2.13)

t 82 - /3 -1 /3382 3

+ 0 mAyXy—i-TKy ke Xy—?Ky *e X]/+EV (s,x)ds,
where X 3 (x) = X, (0, x) is a rescaled initial configuration. The linear part of this
equation is given by the discrete operator

2
A, fx) = };—Z(Ky s [ — f)0), (2.14)

and the “error term” E,, is given by

E,(t,x) = %(tanh(/%xy) - BsX, + %(,BSX),)3> (t, x). (2.15)
As we commented after (2.2), for all y sufficiently small the function K, (x) is sup-
ported on (—1, 1)3, and its convolutions with periodic processes in (2.13) make sense.

We are going to take the limit such that all the scaling parameters in (2.12) tend to
zero. In order to prevent explosion of the multiplier (8 — 1)/« in (2.13), we need to
consider the inverse temperature of the form

B=1+a(C, +A), (2.16)

where A is a fixed constant (its value does not play any significant role and produces a
linear term in the limiting Eq. (2.21)) and where €, is a suitably chosen renormalisation
constant, which diverges as y — 0 such that y —1' « ! In other words, we consider
the model near the critical mean-field value of the inverse temperature 8. = 1, and as
we will see later, €,, plays a role of the renormalisation constant, which is required to
have a non-trivial limit of the non-linearity X 73/ in (2.13). The shift of the critical inverse
temperature was observed in [ 7], and in the three-dimensional case it has a significantly
more complicated structure than in two dimensions [30] (see Theorem 2.3).

From (2.5) and (2.7) we conclude that the predictable quadratic covariations of the
martingales (2.10) are

3

, 26% o (! s X
(9 -, ), M, (-, 1)), = %(S;i/o (1—0(5,;) tanh(,BSXy(s,x)))ds, 2.17)
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The dynamical Ising-Kac model 679

(€]

X,X

We would like to have convergence of the operators Z), to the Laplacian, and of
the quadratic covariations for the martingales to those of a cylindrical Wiener process.
We also want to have a non-trivial nonlinearity in the limit (given by the cubic term),
which translates into the relations between the scaling parameters

for any x, x" € ']I‘g, where §., = 8’35“(/ is an approximation of the Dirac’s delta.

&2 82 g
1=~ ~ —
o

y2a

In the rest of this article, we therefore fix them to be y-dependent as

2
N:L —4J, - , =0 5=193 2.18
Y e IN 1 a=y 14 (2.18)

This implies & & y*, and such choice of ¢ (rather than ¢ = y*#) makes the use of the
discrete Fourier transform (2.9) more convenient. Moreover, we define:

83
My = —— A, 2.19
which we will use in the rest of the paper, remembering that it converges to 1.

The scaling (2.18) makes the radius of interaction for the rescaled process to be
¢ :=&/y ~ y>. As such, the model has two scales: ¢ ~ y* is the distance between
points on the lattice, and e & 3 is the distance up to which the interaction between
two spins is felt.

Remark 2.2 The dynamical Ising-Kac model can be defined for any spatial dimension
d > 1, where the previous conditions on the quantities ¢, § and « become

4 2d d

Ry, o X yid, 8§~ yid. (2.20)

Observe that, in order to make these quantities vanish when y — 0, we need to impose
d < 4. This condition coincides with the local sub-criticality condition in the solution
theory of the dynamical CIDfi model [20].

Our goal is to prove convergence of the rescaled processes (2.12) to the solution of
the CI>§1 equation (the dynamical Cbg model)

3 — A)X = —%X3 +AX +2E X0, = X°), (2.21)

on Ry x T3 , where & is space-time white noise, and A is the same as in (2.16).
The notion of solution for the singular stochastic PDE (2.21) was first provided in
[20] using the theory of regularity structures, and later in [6] using paracontrolled
distributions.

Inorder to solve Eq. (2.21), one considers a mollified noise &5, such thatlims_, o &5 =
& in a suitable space of distributions. Then the Eq. (2.21), driven by the smooth noise
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680 P. Grazieschi et al.

&, can be solved classically. Furthermore, one can show that there is a renormalisation
constant €5 ~ 8! such that the solution of the renormalised equation

1
(& — A)Xs = —§X§ + (€5 + A)Xs + V28,  Xs5(0,9) = X3 (),

has a non-trivial limit X as 6 — 0 in a suitable topology. Although the constant €5
depends on the particular mollification of the noise, the limit X is independent of
it, i.e. different mollifications give the same limit. The role of &5 is to compensate
the divergence of the non-linear term %X g’. This constant can be written explicitly in
terms of a singular part of the heat kernel, and its precise value can be found in [20,
Sec. 10.5]. The linear term A X appears in (2.21) as a consequence of our assumption
(2.16) on the discrete model.

We need to introduce the topology in which convergence of the initial states holds.
Namely, for a function f), : ’I['S — R, for n < 0 and for the smallest integer r such
that r > —n, we define the semi-norm

||f),||g7) := sup sup sup A7 (e fy) ((p;‘)| + sup sup sup ¢ 7 |(ic fy) (goﬁ)]
peB’ xeAs Aele,1] peB’ xel, Aele.e)
(2.22)

where we extended the function f, periodically to A, the set of test functions 5"
defined in Sect. 1.2 and the map ¢, is defined in (1.4). This definition is similar to
(1.3), where we “measure” regularity only above the scale e. On the smaller scale, we
expect the function to be uniformly bounded by a constant multiple of ¢”. One can see
that this semi-norm is finite for any function f,, but we will be always interested in
the situation when it is bounded uniformly in y > 0. If A < e, then the support of ¢?
contains only the point x € A, and we readily get

sup | f, (0] < "l £ 115)- (2.23)

xele

To compare this function with a distribution f € C" ("JI‘3), we also define
1Lfys FUIG) = sup sup sup 27" |(ie fyy — ) ()] (2.24)
peB" xeA; rele,1]

+ sup sup sup e [(ce fy) (¢)| + sup sup sup A77|f (¢})
peB’ xeA Lele,e) peB" xeR3 Ae(0,¢)

s

where we extended f), and f periodically to A, and R3 respectively. In other words,
we compare the two functions on the scale above ¢, and use the simple control on the
smaller scale.

The following is the main result of this article, which is proved in Sect. 9. We refer
to Sect. 1.2 for the definitions of the involved spaces.

Theorem 2.3 Let there exist values —‘7—‘ <n<n< —% and y, > 0, and a distribution
X0 ecn (T3) such that the rescaled initial state X 3 of the dynamical Ising-Kac model
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The dynamical Ising-Kac model 681

satisfies

sup X9 < oo, lim, 1x%: x5 = (2.25)
7€(0,7:)

Then there is a choice of the constant €, in (2.16), such that the processest +— 1 X, (t)
converge in law as y — 0 to t — X (t) with respect to the topology of the Skorokhod
space D(R+, 174 (T3)), where X is the solution of the d>‘3‘ Eq. (2.21) with the initial
state X© and with the constant A from (2.16).

Furthermore, let_ K be the discrete Fourier transform of the function K, (since
K, is symmetric, Ky is real-valued). Then for all y > 0 small enough one has the
expansion

2 1 0
¢, =P+ 4D, (2.26)
where the constants c(z) ~ ¢ land cg,l) ~ log e are given by
6 N2
P 1Ky@I” (2.27)
o<l <y 1 ~ Ky (@)
m_r'® Ky (@D Ky (@) Ky (@1 + o))

o =

octor Tl en 1= Ky @)1 = Ky @) 1= Ky @1) = Ky (@) + Ky (@1 + )

and the constant cy) has a finite limit as y — 0. All sums in (2.27) run over
(=N, ..., N} with the imposed restrictions, and the denominators of the terms in
these sums are non-vanishing.

Remark 2.4 One should note that the renormalisation constant ¢, depends non-
trivially on the covariations (2.17) of the driving martingales. It can be seen from the
proof of Theorem 2.3 (more precisely, from the renormalisation of the lift in Sect. 5.1,
from the definition of the renormalisation constant (8.13) in the discrete equation and
from Lemma 5.4 which relates different renormalisation constants).

Lemma 5.4 and the definitions (5.4) and (5.8) imply that the divergent constants

c7(/2) and cg,l) can be written as

P = 2/ V(@) dz+al?,

V) = 8/ f TV QI (@) HY @) A (21 — ) AV (22 — 2) dzdzydzy + al))
D, JD, JD,

with convergent terms a}(,z) and a)(,l), where £ 7 is a singular part of the discrete heat

kernel. These are the standard renormalisation constants for a discrete approximation
of the <I>4 equation, which would be used if the driving martingales in (2.13) were
Gauss1an with the covariance (2.17) given by

(9, (-, x), M, (-, X)), = gsaaffj( (2.28)
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The covariance (2.17) of the driving martingales in our model is non-linear and this
non-linearity requires renormalisation too. More precisely, we show that the product
of o and tanh(86X,) in (2.17) can be replaced with a product of X v and X, with a
suitable multiplier, where the process X, is defined similarly to X, . When proving
moment bounds for the discrete model defined in Sect.5.2, we demonstrate that the
product X, X, should be renormalised and this renormalisation makes a contribution

to the constant C;O) (see Sect. 7.1.2 for more details). Such a contribution is not observed
in the two-dimensional case [30].

Remark 2.5 The precise value of the constant cg,o) may be obtained from (8.13), which
does not play a significant role and we omit it here.

Remark 2.6 1t is natural to consider the initial states of regularity strictly smaller than
—%, because this is the spatial regularity of the solution to (2.21) (see [20]). We make
the assumption n > —‘7—‘ on the regularity of the initial state. It follows from the
definition of the model that X, lives on the scale ¢ ~ y>. This implies that, for any
k > 0, we expect the following a priori bound

1
”Xy(t)”Loo(']l'g)Se LA

uniformly in y € (0, y,). Hence, for k < ﬁ we can use the Taylor expansion of order

5 for the function tanh in (2.15), with the error term bounded by a positive power of
y. This is the reason for our restriction n = —% —K > —‘71. Proving Theorem 2.3 for
lower regularity of the initial state requires some technicalities. More precisely, for
n < —% we need to have a bigger regularity structure, than the one defined in Sect. 4,
we need to control blow-ups of X, at time ¢ = 0, similarly to how it was done in [20,
23], and we may need to work in more complicated spaces (see [21] for continuous

equations with irregular initial states).

2.2 A mild form of the equation

In order to define the Green’s function for the linear operator in (2.13), it is convenient
to use the discrete Fourier transform (2.9). We start with recalling some of its basic
properties. Every time when a sum runs over w € {—N, ..., N}?, we will simply
write |w|. < N. For the function as in (2.9), the Fourier series is

g(x>=% > Bwem . (2.29)

lwl <N

Then, for two functions f, g : ']I‘g — R, Parseval’s theorem reads

1 e
e ) fgw =2 3 f@3gw), (2.30)

x€T? ||, <N
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where g(w) is the complex conjugation of g(w). Moreover, one has the identities

— 1 -~ —~ — -~
fg(w)=§ > Flo-o)3W), f e g(w) = f(@)g(w),  (2.31)

|| <N

where *, is the convolution on TS , defined in (2.8), and the subtraction @ — @' is
performed on the torus {—N, ..., N}3. To have a lighter notation in the following
formulas we will write .% f (w) for the discrete Fourier transform f(a)). One can
readily see that .7 f converges in a suitable sense as ¢ — 0 to the continuous Fourier
transform % f given by

9f(a))=f f(x)e ™xdx  for we R
R3

It will be convenient to include the factor £2/ (yza) in (2.13) into the definition of
the linear operator. For this, we write

e=y%03  with |53 —1] <y? (2.32)

and we define a new operator
~ 82

Ay =32 A, = ——A,. 233
% e (2.33)

2
#y3
One can see that A, approximates the continuous Laplace operator A as y — 0,
when it is applied to a sufficiently regular function, and we can define the respective

approximate heat kernel. More precisely, we define the function P : Tg’ — Rsolving

for t > 0 the ODEs d
d—P,V =A, P/, (2.34)

with the initial condition P} (x) = 8} () o (the latter is defined below (2.17)). P is the
Green’s functions of the linear operator which appear in Eq. (2.13). This function can
alternatively be defined by its discrete Fourier transform

JgPy(a))_eXp( (B (@) — 1)= ) (2.35)

for all @ € {—N,..., N}>. With a little ambiguity, we denote by P/ the operator
acting on functions f : Tg — R by the convolution

(Prf)x) =e> Y Plax—yrf). (2.36)

yeT?
It will be also convenient to define the kernel

P/ (x) := P! % K, (x), (2.37)
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and the respective integral operator is defined by analogy with (2.36). We can then
rewrite the discrete Eq. (2.13) in the mild form

X, (t,x) = P/ X9(x) + V27, (1, x) (2.38)

t"’y ’33 3
+/O Pz—s(_?xy + (¢, +A)X, + Ey)(s,x)ds,

where we have used the inverse temperature (2.16) and where

1 -
Y, (1, x) = 353 > /0 P/ (x — y)d, (s, y). (2.39)
3

Here and in the following, we always write stochastic integrals with respect to the
time variable (which is s in this integral).

2.3 A priori bounds

In the proof of Theorem 2.3, we are going to show convergence of X, (¢) in a stronger
topology than 2’ ("JI‘S). For this we need to control this process using the semi-norm
(2.22). More precisely, for a fixed constant a > 1 and the value 1 as in the statement
of Theorem 2.3 we define the stopping time

ol =inflr = 011X, 01 = a}. (2.40)
On the random time interval [0 rﬁlg) we have the a priori bound || X, (1) ||(e) <a,

while on the closed interval |0, r(l) the bound is || X, (t)||(e) < a+ 25,1 almost
surely. The two bounds are different because there may be a jump of the process

at time r,f ‘)1, and as one can see from (2.13) the jump size of X, (¢, x) is bounded

by the jump size of (Ky *g ﬂﬁy)(t, x), and the latter is almost surely bounded by
2(%3 SUPyep, Ky ()| < 2%y 1. Here, we used the properties that the jump size of the

martingale M, (¢, x) is 5 2 and a jump at time ¢ may almost surely happen only at one
x. As follows from the deﬁn1t10n of s, 1 in (2.2), it converges to 1 as y — 0. Since
we always consider y sufficiently small, we can assume that sz, ; < 2, and hence

X, (t)||(°) < a+ 4 < S5a almost surely on [O ‘C(l)] Using (2.23) we also have a
uniform bound on this process

|X, (1, x)| < Sae’ (2.41)

almost surely. Staying on the time interval [0, r (D ] is also sufficient to control the

()

bracket process (2.17). More precisely, for ¢ < 1, ; we have (2.41) and the random
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part of (2.17) is bounded by

t
o (£, 2 ) tanh (85X, ¢, 1)) S dae” S ay ),
o &

where we used the estimate | tanh(x)| < |x| for any x € R, where we estimated § by a
constant and where we used the scaling (2.18). Since n > —1, the preceding expression
vanishes as y — 0 and the bracket process (2.17) converges to the covariance of a
cylindrical Wiener process.

To control the discrete model, constructed in Sect. 5, we need to introduce another
stopping time. For this we define the rescaled spin field

I st x 3
Syt x) = ~0(=, =) for xe T 120, (2.42)
§ \a ¢

In Sect.7.1.2 we will need to control the product S,, (¢, x) X, (¢, x), appearing in the
random part of the bracket process (2.17), in a suitable space of distributions. For this,
we will show in Lemma 6.3 that the spin field S, can be replaced, up to an error,
by its local average. More precisely, we take any smooth, rotation invariant function
£ : R® = R, supported in the ball of radius 2 and centered at the origin, whose
continuous Fourier transform satisfies .% R(w) = 1, forall w € R3 such that lo|. < 1.
Then for a fixed constant ¥ € (0, %) we define

&, (k) :=c, v’ "Pa(y' k) with ¢ 1. Z U8Ry 5k), (2.43)
keT3,

and 1 .
X, (t,x) = (K, % )1, %), K, (x) = y(g) (2.44)

In contrast to (2.12), where the local average of the rescaled spin field S, is computed
in a ball of radius of order 3, the process X , (t) is defined as a local average of spins

in a ball of a smaller radius of order y3+<. A precise value of « will not play any
significant role, as soon as it is small enough. In particular, taking x < % will later
allow us to use Lemma 8.5.

Then for 1 as in the statement of Theorem 2.3 and for the constant

=251 / Z K,) @) P (x)dt, (2.45)

xe’ﬂ‘%

where we use (2.19), we define the stopping time
2 = inf{t > 01X, 00X, ()~ &, 12, > /> } (2.46)

where ¢ := ey%. Since both of the involved processes X , and X, are expected to
converge to distributions as y — 0, the product X, X, needs to be renormalised by
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subtracting the divergent constant €. From Lemma 5.5 we have | | < el and we

expect that || X M2.¢% (t)||(cg_)1_K blows up with the speed ¢~ L. The speed of blow-up
in (2.46), after renormalising the product, is slower. It can be significantly improved,
but the presented speed is enough for our estimates in Sect.7.1.2.

To combine the two stopping times (2.40) and (2.46), we set

1 2
Ty = t]fc)l A T)E,c)l’ (2.47)
and we restrict the time variable to the interval [0, T, 4]. For this it will be convenient to
consider a stopped process o (¢), extended beyond the random time 7,, 4. To define such

extension, we introduce a new spin system o)’/ « Which starts from the configuration

o] (M) = O’(M—) and which for the times r > %2 is given by the infinitesimal
V.a\ «a o o

generator f)ﬁ given by (2.4) with the flip rates'

N A
¢ (0. ) = 5(1=0(hy (. ).

Then we set
o(t) for ¢t < r(yx'“,

/ Iya
Gy,a(t) for ¢t > B2,

oy.alt) == { (2.48)
where « is from (2.18). The reason to make this particular choice for the extension is
in a good control of the rescaled spin field X ;, «» defined as in (2.12) for the process
0, - More precisely, we show in Lemma 6.4 that X, ; solves a linear equation which
allows to bound it globally in time.

We define the martingales 90, , via the process oy, 4 in the same way as we defined
9M,, in (2.10) via the process o. For t < 7, 4 the martingale 91, 4(¢) coincides with
M, (¢), while for ¢t > 7, o we denote M, ,(t) = zm’m, where the latter has the
predictable quadratic covariations

! s X
(smg,,a(., X), Dﬁ;,,a(-, x/)>t = 2%),,28)(‘&:1,[ <1 — 80;/’(1(&, g)X;,ﬁa(s, x))ds,
Ty.a
’ (2.49)

with 8)(65))6/ defined below (2.17) and s, > is defined in (2.19). Then for t > 1, o we
have

(D 0 ), My 0 (e, xN), = (D, C,x), My, Cox") A+ (D (), T, (-, X)),
(2.50)
We define X, 4 as the solution of an analogue of equation (2.38), driven by these new

martingales

Tya

Xya(t,x) = P XD (x) + V2 Yy 4, %) (2.51)

! The process o’ defined by the generator Elﬁ is called a “voter model” [28]. The scaling limit of the
one-dimensional Ising-Kac model near the critical temperature was proved in [14] by using a coupling of
these two models.
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t 3
+/(; PIJ/_S<_%X)?:,a+(Q:y +A)Xy,a+Ey,a)(va)dS,

where

1 F o
Vyalt,x)i= 56" 3 fo BY (x — y) Oy, as. y),

yeT?

and the error term E,, , is defined in the same way as E, in (2.15), but via the
process X, q. For t < 1,4 we have X, 4(t) = X, (¢), and for t > 7, o we have
Xya(t) = X;’a(t).

Working with the process X, o is advantageous, because we can use the a priori
bounds provided by the stopping times (2.40) and (2.46), which guarantees conver-
gence of the martingales and their lift to a discrete model (see Proposition 7.1). To
prove Theorem 2.3, we will first prove the respective convergence result for X, ; and
then we will take the limit a — 0. In order to show that 7, ; almost surely diverges
in these limits, we will prove that this stopping time is close to a stopping time of the
limiting process X, and the latter is almost surely infinite.

2.4 Periodic extensions

We are going to write equation (2.51) in the framework of regularity structures. For
this, we need to write this equation on the whole domain A, rather than on the torus
11‘3. To do this, we denote by th : Ay — R the discrete heat kernel, which solves
equation (2.34) on A, (one can see that for  small enough, the discrete operator A,
is naturally extended to functions on A;). Then we have the identity

€Y PHWf=¢ Y GIxnf), (2.52)

xe']l‘g xelg

forany f : ’]Tg — R, where on the right-hand side we extended f periodically to A,.
We define respectively

Gl(x)=¢ Y Glx—yK,®). (2.53)
YEA,

Then equation (2.51) may be written as

Xya(t,x) = G} XD (x) + V2 Yy a(t, x) (2.54)
fay (LB
+ /0 G (_?X},a + (QV + A)Xy,a + Ey,a)(sa x)ds,

where we extended all the involved processes periodically to Ag.
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3 The dynamical ®3 model

In this section we recall the notion of solution to the ®* equation (2.21) on the
three-dimensional torus. Following [20], we describe the solution in the framework
of regularity structures. Throughout the section we are going to use singular modelled
distributions and their basic properties, which can be found in [20]. However, we pre-
fer to duplicate some of the definitions here to have a better motivation for the setting
of Sects.4 and 8.

3.1 A model space

In this section we introduce an infinite set ¥ and a finite-dimensional regularity struc-
ture 7 = (A, 7, G) such that 7 C ¥ and that is required to describe equation (2.21).

To define the space ¥, it is convenient to use some “abstract symbols” as its basis
elements. Namely, 2 will represent the driving noise in (2.21), the integration map
7 will represent the space-time convolution with the heat kernel, i.e. the Green’s
function of the parabolic operator d; — A on R3. The symbols X;,i =0, ..., 3, will
represent the time and space variables, and for £ = ({g, ..., {3) € Ng we will use the
shorthand X¢ = XéOXleng?, with the special unit symbol 1 := X°. We define
Wooly := {X t.pe Ng} to be the set of all monomials.

Then we define the minimal sets V and U of formal expressions such that & € V),
Wholy C VN U and the following implications hold:

teVY = I(r)el, (3.1a)
71,2, 3EU = T3 €, (3.1b)

where the product of symbols is commutative with the convention 17 = 7. We postu-
late Z(X*%) = 0 and do not include such zero elements into ¢/ and V. The set I{ contains
the elements needed to describe the solution of (2.21), while V contains the elements
to describe the expression on the right-hand side of this equation. Namely, the rela-
tion (3.1a) means that the elements of I/ are obtained by integrating the elements on
the right-hand side of the equation. The rule (3.1b) means that the right-hand side of
(2.54) contains the third power of the solution (we note that since 1 € U, the set )V also
contains the symbols 77 and 711, for all 71, 7o € U).

We set 20 := U UV, and for a fixed « € (O, 11—4) we define the homogeneity
| +]: 20 — R of each element of 2 by the recurrent relations

X = [€ls, (3.22)
5
IEI=—§—K, (3.2b)
[T172| = |02| + |72l (3.2¢)
IZ()| = 1t1 +2, T ¢ Wholy. (3.2d)
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The definition (3.2a) takes into account the parabolic scaling of space-time; (3.2b)
is the regularity of the space-time white noise; (3.2d) is motivated by the Schauder
estimate, i.e. a convolution with the heat kernel increases regularity by 2. One can
readily see that for any « < 11—4 and for any ¢ € R the set {t € 20 : |t| < ¢} is finite.
The restriction k < ﬁ will be useful later in Sect. 8 and it is explained in Remark 2.6.

We define ¥ to contain all finite linear combinations of the elements in 20, and
we view 7 as a linear map T + Z(t), defined on the subspace generated by
{&, Z(8)3, I(E)3}. Our definition of this map implies that it can be considered as
“an abstract integration map” from [20]. The set 2( contains the homogeneities |t | for
allt € 20.

In order to solve equation (2.21), it is enough to consider the elements in 20 with
negative homogeneities to describe the right-hand side, while the solution of this
equation is described by the elements of homogeneities not exceeding 1 + 3. Hence,
we define

Wi={teV:|t| <0, t#EB}U{teld:|t]| <1+ 3k} 3.3)

This is the minimal set of the basis elements of a regularity structure, which will allow
us to solve the equation (3.10), an abstract version of (2.21). We will see in Sect.5,
that the element E plays a special role; namely, E corresponds to a distribution (a time
derivative of a martingale), while the other elements correspond to functions. That is
why it will be convenient to remove E from the regularity structure.

As we will see, the set )V contains the elements describing the right-hand side of
(3.10), except the noise element E which we prefer to exclude. In order to get the right-
hand side of (2.21) after reconstruction of the right-hand side of (8.6), it is enough
to use the elements of V with non-positive homogeneities. This explains why we use
only the elements {t € V : |t] < 0} in (3.3). As we explained above, we use the
elements {t € U : |t]| < 1 + 3k}, because we are going to solve equation (3.10) in a
space of modelled distributions of regularity 1 + 3«.

We define 7 to be the linear span of the elements in W, and the set A contains the
homogeneities |t| for all elements 7 € W.

It is convenient to represent the elements of )V as trees. Namely, we denote E by
anode ¢. When a map Z is applied to a symbol 7, we draw an edge from the root of
the tree representing this symbol 7. For example, the symbol Z(E) is represented by
the diagram ?. The product of symbols 7, ..., 7, is represented by the tree, obtained
from the trees of these symbols by drawing them from the same root. For example,
% and * are the diagrams for Z(E)? and Z(Z)> respectively. We use the symbols
for the polynomials as before. In Table 1 we provide the elements of ¥V and their
homogeneities.

Every element f € ¥ can be uniquely written as f = ) __qy fr7 for f; € R, and
we define

fla= Y Ifl. (34

Te:|t|=

postulating |f|, = O if the sum runs over the empty set. We also introduce the
projections
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Table 1 The elements of W and their homogeneities

Element Homogeneity Element Homogeneity

1 0 X, i=123 -5 =3

X;i=1,2,3 1 Y 1 -2

! —3 -« N L

b4 -1 -2« m —4k

X, i=1,23 2k A vy

0 -3 -3 '35 —3 =5«
Quufi= Y, fo, Quuf = Y fit. (3.5)

e |t|<x TeW|t|<x

Let the model space ¥ ., contain all the elements f € T satisfying f = Qo f. All
these definitions can be immediately projected to 7.

3.2 A structure group

In order to use the results of [20], we need to define a structure group G. For this, we
need to introduce another set of basis elements W, containing 1, X; fori = 1,2, 3,
and the elements of W of the form Z(7) for T # E. Then we define 7. to be the free
commutative algebra generated by the elements of W...

We define a linear map A : 7— 7® 7 by the identities

Al=1®1, AX;i =X, Q1+1RQ X;, (3.6a)

and then recursively by (we denote by I the identity operator on 7;)

Aty = (A1) (ATR), (3.6b)
AZ(E) = T(E) ® 1, (3.6¢)
AZ(t) = TR DAT+1®I(r), T # &, (3.6d)

for respective elements 7;, 7, T € W. In Table 2 we write At for all T € W.

Remark 3.1 Since we restricted the set of basis elements (3.3), our definition of the
map A looks much easier than in [20, Eq. 8.8b]. More precise, the general definition
of AZ(t) should be

xk xt
AI(D) =T DAT+ Y — @ —Ti(1).

k! 2!
k,teNg
k+e]s<|7|+2
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Table 2 The image of the operator A

Al=13®1 AVX, =X, 21+ R X;
AX; = X; ®1+18® X; AY=Yo1+108%Y
At=tel A =-To1+10Y

AV Vol AG=Pe1+ve"
AVX; =X, 14+ X; AP =Pe1+1e7

A _ W1 AB=-Po1+ve"?

Table 3 Linear transformations in G of the elements in W

Element Image Element Image

1 1 X, i=1,2,3 X +a; P
X;i=123 X; +a;1 Y Y+

1 ! N ¥+

s v 3 N
X i=1,2,3 VX +a% % Bt

v o B Pt v

where 7y, are new auxiliary symbols. Our definition (3.3) implies that there is at
most one term in this sum, which yields (3.6¢) and (3.6d).

For any linear functional f : 7, — R we define the map I'y : T— Tas
It = ® f)Ar. 3.7

Then the structure group G is defined as G := {I'y : f € G}, where G contains all
linear functionals f : 7, — R satisfying f(1) = 1. In general f are assumed to be
multiplicative [20], i.e. f(r7) = f(t)f(7) for 7, T € 74, but our set 7 does not
contain products of elements and hence we do not need the multiplicativity assumption.
Since the model space 7is generated by a small number of elements listed in Table 1,
we can describe the structure group G explicitly. More precisely, G contains all the
transformations listed in Table 3 for any real constants a;, fori =0,...,3, b and c.
The bijection between these constants and the functionals f € G is given by

ai=fX), b=f(Y). c=£(7).

In the rest of this section we use the framework of [20] to work with the regularity
structure 7 = (A, 7, G) just introduced.
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3.3 A solution map

Let G be the heat kernel, i.e. the Green’s function of the parabolic operator 9; — A
on R3. As in [20, Sec. 5], we write it as G = % + %, where Z is smooth and %~
is singular, compactly supported. Let furthermore, Z = (II, I') be the model on the
regularity structure .7 for the equation (2.21), defined in [20, Sec. 10.5] with respect
to the kernel .#". Using the value « from (3.2b), we define the abstract integration
operator

P :=K¢ + Ri43cR, (3.8)

where the operator /C, is defined in [20, Eq. 5.15] via the kernel J# for the values
B = 2and y = «, the operator R 3, is defined in [20, Eq. 7.7] as a Taylor’s expansion
of the function Z up to the order 1 + 3«, and R is the reconstruction map for the
model Z defined in [20, Thm. 3.10]. The choice of the values k and 1 4 3« in (3.8)
is motivated as follows. We are going to solve an abstract version of equation (2.21)
for a modelled distribution U € D" with ¢ = 1 + 3k being the minimal regularity
such that the theory can be applied. Then the non-linearity U> of the equation is an
element of the space U € D¢ +2IEE)0 for |7(E)| being the regularity of the sector in
which U takes values. Since ¢ + 2|Z(E)| = « (see Table 1), the map P should act on
elements of D7,
Using this integral operator, we define the modelled distribution

W(2) := P14 (E)(2), (3.9)

where 1, is the projection of modelled distributions to R in the time variable. We
note that, although we have not included the symbol E into the regularity structure,
the model Z defined in [20, Sec. 10.5] is defined also on the symbol E. This makes
the definition (3.9) meaningful.

Using the polynomial lift of the convolution GX°, defined in [20, Lem. 7.5], we
consider the abstract equation

U =0 (GX"+PLFWU)+v2W), (3.10)

where U € D% (Z) is a modelled distribution, for ¢ = 1 + 3« and € R, and where
the non-linearity F is given by

F(U) = QSO(—§U3 + AU).

We note that the product U? is in general an element of T and may contain terms
which are not included into the model space 7. The aim of applying the projection
Qo is to remove such terms. Respectively, the right-hand side of (3.10) may contain
elements with homogeneities higher than 1, but we consider only the projection to the
homogeneities not exceeding ¢.

Let us now consider a mollified noise &5 = ps*&, where the mollifier o5 is defined
in (7.1) for § > 0. Let us define XJ := 5 * X, where the mollifier ¥5(x) :=
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6% ¥ () is defined for a smooth compactly supported function v : R — R, satisfying
fRs ¥ (x)dx = 1. Let furthermore U® be the solution of equation (3.10), defined with
respect to the initial condition X g and the model Z©® = (H(‘S), F(‘s)), defined in [20,
Sec. 10.5] via the mollified noise &;. Then from [20, Sec. 9.4] we conclude that the
process Xs = RO U® where R® is the reconstruction map for the model Z® from
[20, Thm. 3.10], is the classical solution of the SPDE

1
(8 — A) X5 = —§X§’+(€5+A)X3+«/§§,s, (3.11)

with the initial condition Xg at time 0. The renormalisation constant €® ~ §=1 is
defined in [20] and is such that the solution of (3.11) converges as § — 0 in a suitable
space of distributions.

Theorem 3.2 For ¢ = 1 + 3k and for n as in Theorem 2.3, Eq. (3.10) has a unique
local in time solution U € D5"(Z), and the solution map U = 8(x°, 7) is locally
Lipschitz continuous with respect to the initial state X° € C"(T) and the model Z.

Then the solution of (2.21) is defined as X = RU, where R is the reconstruction
map associated to the model Z by [20, Thm. 3.10]. Moreover, for any T > 0 and
p > 1 one has

E[ sup IIX(I)Ilgn] < 00,
1€[0,T]

and the same bound holds for || (X — \/ERW) (D) g3/243n, where W is defined in (3.9).

Finally, let X5 be the solution of (3.11). Then there exists 6 > 0 such that for any
T > 0, p > 1 and for some C > 0, depending on T and p, one has

E[ sup (X — X&)(t)”gn:| < s (3.12)
+€[0,T]

uniformly over § € (0, 1].

Proof Existence of a local solution and its continuity was proved in [20, Prop. 9.10].
From [31, Thm. 1.1] we obtain the moment bounds on the processes X and X —
V2RW.

One can readily see that the solution U has the following expansion:

U(Z)=~/§T+U(Z)1—2—\/§?—ZU(Z)Y+ Z v (2) X, (3.13)

3 i=1,2,3

for some functions v, v’ : Ry x R?> — R. Indeed, this identity follows by writing the
integration operator in (3.10) explicitly as

1 .
U@ =2(-3U@" +AUQ +V2E) +v@1+ Y v@Xs,
i=1,2,3
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repeating the iterative approximation of the solution several times and truncating all
terms with homogeneities strictly bigger than 1. The function v may be written as
v =X —+/2Y, where X = RU and Y = RW, with W defined in (3.9), and it solves
the “remainder equation”

(at—A)vz—%(v+x/§Y)3+A(v+\/§Y), (3.14)

with the initial condition X at time r = 0. Interpretation of the functions v’ is more
complicated, and we do not provide it here. Theorem 3.2 implies that for any p > 1
and 7 > 0 we have

E|: sup ||v(t)||g3/2+3,,:| < ©Q.
t€[0,T]

4 A regularity structure for the discrete equation

Proving convergence of the Ising-Kac model requires solving equation (2.54) using
the theory of regularity structures. For this we are going to use the framework [13],
which is suitable for solving approximate stochastic PDEs. A less general framework
developed in [22] could also be applied.

We would like to stress very clearly that the regularity structure for equation (2.54)
is very similar to the one used to solve the <I>‘31 equation, except for the fact that in our
setting we need to describe the additional error term E,, defined in (2.15). As we shall
see, the local description of this error term involves the local description of the fifth
power of the solution of our equation; this is the only reason why we need to introduce
new trees which would not appear in the classical q>‘31 solution theory.

In the following section we are going to define a regularity structure 7% =
(A%, 7%, G) which extends the regularity structure .7, defined in Sect. 3, by adding
several basis elements. Throughout this section we are going to use the notation from
Sect. 3.

4.1 A model space

In addition to the integration map Z we introduce a new map £ which will represent
the multiplication operator by e> & 1. Then we define the minimal sets V** and 4
of formal expressions by the implications

eV = I(r) e U, 4.1)
1,72, 3 €U = 111013 € VT, 4.2)
Tly..., T5 e = 5(1’1~-~‘L’5)€Vex, “4.3)

where we postulate £(X¢) = 0 and do not include such zero elements into V°*. The
rule (4.3) describes the remainder (2.15), in the Taylor expansion of which the first
non-vanishing element is proportional to %X y (@, x)°: in fact, the trees coming out
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Table 4 The elements of W**

and their homogeneities which Element Homogeneity Element Homogeneity
are not included into Table 1
oge 2 'y —4x
5 1
(e -5 — 5k ‘Y' -5 — 5k

from the rule (4.3) are those which will allow a local description of the error tern E,
(see also Remark 2.6).

We define the set of elements 20 := L~ UV** with the homogeneity |-| : 20 —
R defined by (3.2) and

(1)l =Inl+--+ 15l +2, 7175 € Wholy- 4.4)
The increase of homogeneity by 2 in (4.4) comes from the multiplier ¥ ~ ¢2.

The set T contains all finite linear combinations of the elements in 20%*, and we
view Z and & as linear maps t — Z(t) and T — &(7), defined on the subspaces
generated by {Z, Z(2)?, I(E)3} and {I(E)4, I(E)S} respectively. Our definitions of
these maps imply that they have the same properties (but, as just stated, different
domains), and both of them can be considered as “abstract integration maps” from
[20]. The set 2A°* contains the homogeneities |7| for all T € 20,

By analogy with (3.3) we define

W=t eV :|t| <0, T4 E}U{t el :|7|
< 14+3k}U{r:Ex) € V¥ |t| < -2}, 4.5)

where we also add to W** those t such that £(t) € V**. This is the minimal set of
the basis elements of a regularity structure, which will allow us to solve the equation
(8.6), an abstract version of (2.54). We need the elements {7 : £(t) € V=, |7| < =2}
to be able to reconstruct the non-linearity (8.10).

As before, we define 7°* to be the linear span of the elements in W**, and the set
A% contains the homogeneities |7| for all elements 7 € W™. We obviously have
W C W and T C 7% for the sets defined in Sect.3.1.

As in Sect. 3.1, we use the graphical representation of the elements of W™, where
application of the map £ is represented by the double edge Il. For example, the diagram
V represents the symbol E(Z(Z)%). Table 4 contains those elements of W™ which
are not included in Table 1. This setting is very similar to the one of the @‘3‘ solution
theory, except that here we have an extra “integration map” &.

We are going the same notations for the norms and projections for the elements in
0% as in (3.4) and (3.5).

4.2 A structure group

We introduce the set of basis elements Wi‘, containing 1, X; fori = 1,2,3, and
the elements of WW** of the form Z(7) and &£(7), for t # E. Then we define 7 to
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Table5 The image of the
operator A for the elements in AP =31 Av = Y ®1

WFX not provided in Table 2
AP = P31 A'ﬁrf = ?@1

be the free commutative algebra generated by the elements of JAS*. The linear map
AT — T ® T is define by (3.6) and

AE(T) = (EQ D)AT, (4.6)

for T € {*¥», *®»}. Then the action of A on the elements from Wis provided in Table 2
and the action on the other elements in W is trivial and is provided in Table 5.

The structure group G is defined as G := {I'y : f € GT'}, where Iy is given by
(3.7) and G* contains all linear functionals f : 79 — R satisfying f(1) = 1. One
can readily see that the elements of G act on W as described in Table 3, and they act
on the other elements of W** as the identity maps.

We will use the framework of [13] to work with the regularity structure .7 =
(A%, T, G*) just introduced on the discrete lattice A,.

4.3 Discrete models

Let Bg be the set of all rest functions ¢ € C>(R*), compactly supported in the ball
of radius 1 around the origin (with respect to the parabolic distance || « || defined in
Sect. 1.2), and satisfying ||¢[l2 < 1. By analogy with (1.2), for ¢ € sz_, A€ (0,1]
and (s, y) € R* we define a rescaled and recentered function

t—s x—y)

1
A -
Pt 0) = 50— = @.7)

In the rest of the paper we use the time-space domain D, := R x A, where the spatial
grid A, is defined in Sect. 1.2.

In order to use the results of [ 13], we need to define a discretisation for the regularity
structure .7%* according to [13, Def. 2.1].

Definition 4.1 1. We define the space X, := L*°(D,), and we extend the operator
(14) totp : Xz = L®(R, Z'(R%)) as

), = (e f(D) ()

for f € X,. For any smooth compactly supported function ¢ : R* — R it will be
convenient to write

wHwy=e Y [ faneeod )

xeAg

@ Springer



The dynamical Ising-Kac model 697

2. Forany ¢ € R, z € D, and a compact set K, C R* of diameter at most 2e, we
define the following seminorm f € X:

”f”g“;Ke;z;e =t sup | f (2. 4.9
zeK.ND;

Obviously, this seminorm is local in the sense that if f, g € X, and (¢; f)(¢) =
(t:8)(p) for every ¢ € C? supported in K., then || f — glle:keze = 0.

3. Let the function ¢ be defined by (4.7) with A = ¢, and let [¢{] denote its support.
Then from the definition (4.9) we readily get the bound

I(tef)(wi)ls( sup |f(2)|>83 3 /R St 01dr S e Fllestgszses

ZelgsInD; oy

uniformly over f € X,z € D,, ¢ € R,and ¢ € Bg.
4. For any function T : Dy x Dy — G, any compact set K C R* and any ¢ € R,
we define the following seminorm on the functions f : D, — T‘Z‘;:

Wfllekze == sup  sup | f(2) — oz f @D lm. (4.10)
z,2eKND; m<¢
lz—zlls<e

For a second function I" : D, x D, — G and for f : D, — TZ} we also define

Ifs flleikze == sup  sup e °|f(2) Tz f @) — f(2)+ Tz f (D), @4.1D)
=

Both seminorms depend only on the values of f and f in a neighbourhood of size
ce around K, for a fixed constant ¢ > 0.

Remark 4.2 The seminorms (4.10) and (4.11) depends on the functions I' and T.
However, we prefer not to indicate it to have a lighter notation. The choice of these
functions will be always clear from the context.

Remark 4.3 Our definitions correspond to the “semidiscrete” case in [13, Sec. 2].

Following [13, Def. 2.5], we can define a discrete model on the regularity struc-
ture 7.

Definition 4.4 A discrete model (ITV, I'V) on the regularity structure .7 * consists of
a collection of maps D 3 z +— I} € L(T*, X,) and D, x D, > (z,7) — 1"17/Z e g™
with the following properties:

1. I, = id (where id is the identity operator), and l“zyZ ;; = FZ)% forallz,Z,Z € De,

2. ¥ =0Tk forall z, Z € Ds.

Zrzz
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Furthermore, for any compact set K C R* the following bounds hold

A
sup  sup |(L5H§r)((pz)| <A, sup - sup T Tl keze S 1.
§0€B§ zeKND, K.CK zeKND;

(4.12a)
uniformly over A € [e, 1] and T € W \ {**}, where the supremum in the second
bound is over compact sets K, C K with the diameter not exceeding 2e¢. For the
element T = ** we assume

_ 1 _
sup sup (MY T) (o) Sy ~'ATHE sup sup IIE e e S YT
peB2 2€KND; K.CK zeKND,

(4.12b)

. .. . v
uniformly over the same quantities. For the function f;’r (z) := F;;r — 7 one has

—ultl—m ,1“)/
Tt < llz =z, sup 15" Miepkie S 1, (4.12¢)

zeDg

uniformly over T € W, m < |r]and z,Z € K N D, such that ||z — Z||s € [e, 1]. In
the second bound in (4.12¢) we consider the seminorm (4.10) with respect to the map
rv.

Remark 4.5 The first bounds in (4.12) control the model on the scale above ¢ similarly
to continuous models in [20], and the second bounds in (4.12) control the model on
the scale below e.

Remark 4.6 We need to assume the much weaker bounds (4.12b) for the element <,
since in our definition in Sect.5 TTY*%* is an approximation of an element of the
fifth Wiener chaos. The latter is undefined in three dimensions because its correlation
kernel is not integrable, which prevents us from imposing the uniform bounds (4.12a)
(see Sect.7.1.8 for more details). This element is multiplied by y© in the definition of
solution in Sect. 8, and the multiplier compensates the divergence assumed in (4.12b).
We do not need to distinguish this element in (4.12c) because Fz’% acts trivially on it.

As we explained in Sect. 3.1, we cannot define a model on the symbol E, because
it corresponds to a distribution (a time derivative of the martingale) which is not an
element of the space X introduced in Definition 4.1.

We denote by || T || (1? and | T 5? the smallest proportionality constants such that
the bounds (4.12a) and (4.12c) hold respectively. Then for the model Z¥ = (I, I'?)
we set

27 = 1 g + e

For a second model Z¥ = (I17, T'V) we define the “distance”
0275 ZV NG = — A + 4y T,
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where ||['7; TV ||5§) is the smallest proportionality constant such that the following
bounds hold

y =y —nlt|l—m .,IV, ,1.TY
”(Fzz - Fzz)":”m Slz—zlls ) sup ”lfg 5 fz Mpkie S 1
zeD,

uniformly over the same quantities as in (4.12c), where in the second bound we
consider the distance (4.11) with respect to I'” and I'”.

Remark 4.7 We will often work with models on the set K = [—T, T] x [—1, 1]?. In
this case we prefer to remove the set K from the notation and write || IT" || (Te), 1T | (Te),
etc.

4.4 Modelled distributions

By analogy with [20, Sec. 6], we are going to define a weighted norm for 7%*-valued
functions with a weight at time 0. For this we define the following quantities for
7,7 e R%:
1 - _
lizllo :=lz12 A1, Iz, Zllo == llzllo A lIzllo,

where z = (¢, x) with t € R. We also set ||z, Z|l. := ||z, Zllo V e.
For ¢, n € R and for a compact set K C R4, we define in the context of Defini-
tion 4.1(4.1) the following quantities (see [13, Egs. 3.21, 3.22]):

| f(2)|m [f(2) = ez f(2)m
Wfllen:k:e := sup sup ————=+ sup sup ——, (4.13)
ke ceknD m<g €N kD mer el |z, Z||T¢
lzlls<e lz—zlls<e
and
- 1f @) = f@lm
IS5 flle, ke :== sup sup ————~—— (4.14)
SRR kAD mer [z 070
llzlls<e

1f(2) =Tz f() — f@) + Tz f @) m
+ sup sup .

2 7eKND, m=<¢ et=m|z, 2107
lz—zlls<e

Let us now take a discrete model Z¥ = (IT”, I'Y). A discrete modelled distribution
is an element of the space DE’"(FV), containing the maps f : D, — TZ} such that,

for any compact set K C R4,

Lf (@)|m

(e) oM
NANS = sup sup —> .15
¢mK 2€KND, m<t ”Z”g m)AO
lIzlls>e
|f(2) = TLf@lm
+ sup sup e o=z T e mikie < 00,
zzeKnDem<t ||z —Zlls " 11z, Zlle
lz—zlls>¢
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where the last term is defined by (4.13) via I'”. Sometimes it will be convenient to
write Dg’"(Z V) for Dg’"(f‘)’), and when the model is clear from the context we will
omit it from the notation and will simply write Dg’ . Observe that the first two terms in
(4.15) are the same as in the definition of the modelled distributions in [20, Def. 6.2],
except that we look at the scale above e. The last term measures regularity of f on
scale below e.

For another discrete model Z¥ = (I17, ") and a modelled distribution f €
Dg (Z7), we set

0 (®) If @) = f@)lm
Wfs ;5. g == sup  sup —————-—
St ceKnD, m<¢ ||z T7MN0
llzlls>e
1f @) = TLf@) — @)+ TLF@Im i
+ sup sup S — n_z’; +If5 Flle:kge
2,26 KNDy m<¢ lz—2zllz "z, zlle
lz—zlls>e

where the last term is defined by (4.14) via 'Y and I'?.

Remark 4.8 When we work on the compact set K = [T, T] x [—1, 113, we simply

write || f |||§37;T and || f; f |||§)’7;T. The space of modelled distributions, restricted to

: $sn
this set K we denote by D; .

4.5 The reconstruction theorem

For a discrete model (IT”, I'?) and for a modelled distribution f € Dg’", we would

like to define a reconstruction map RY : DE’" — X,, which behaves around each
point z as [T £(z). Following the idea of [22, Def. 4.5], we define it as

(R £)(2) == (I £(2))(2). (4.16)

In the case n = ¢, i.e. when there is no weights in the definition (4.15), we have the
following “reconstruction theorem,” where we use the short notation DS = Dﬁ*f.

Proposition 4.9 For a discrete model (I1V, T'Y), a modelled distribution f € DE )
with ¢ > 0, and compact set K C R* one has

e (R f = T2 £ @) @] £ AV O I IS (4.17)

uniformly over ¢ € B2 e (0,11, z € Dg, and ¢ € (0, 1]. Here, K is the 1-fattening
of K, [(pé] is the support of(p?, and we used the map (4.8).
Let (ITY, T'Y) be another discrete model with the respective reconstruction map

R, defined by (4.16). Then for any f € Dg(f‘y) one has
(R f =TI f (@) = RV f + 1L f () (¢2)] (4.18)
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< cliarn@n e 7@ Yy _ Y ©p en®
S @Ave) (IIH g I fs flllg;[(p?] + T =TT |||f|||§;[(p;]),

uniformly over the same quantities as in (4.17).

Proof For any compact set K, C R* of diameter smaller than 2¢ and for any z € D,,
from the properties of the model and modelled distribution we get

IRV f =ML f @, geee =¢7¢ sup [IE(f@) —TLf(2))@)

zeK.ND;g

. ) (4.19)
Ssup sup SN[ fB) —TLf @)
B<t zeK.ND; ¢
Using (4.13), the latter yields
IR f =T F @ gimse S I NE NS Wik (4.20)

Then (4.17) follows from [13, Thm. 3.5] and this bound.
The estimate (4.18) follows again from [13, Thm. 3.5] and from the following
bound, which can be proved similarly to (4.20),

|RYf =12 7@ =R F+ T FO| e

SIS Fllgikae + 1T = TN s o
uniformly over the involved quantities.

Respectively, we can show that the reconstruction theorem [13, Thm. 3.13] holds
in our case. The required Assumptions 3.6 and 3.12 in [13] follow readily from our
definitions and estimates similar to (4.19). We prefer not to duplicate full statement
of this theorem, and we provide only the estimates which we are going to use later.

Proposition 4.10 In the described context, [13, Thm. 3.13] holds. In particular, let
(ITY, TY) be a discrete model and let f € Dg’n(FV) be a modelled distribution, taking
values in a sector of regularity « < 0 and suchthat¢ > 0, n < ¢ anda An > —2.
Then for any compact set K C R* one has

|t (RY £) (2] < Gov oy 19 1S

eiler)

uniformly over the same quantities as in (4.17).
For a second discrete model (1Y, TV and for f € Dg (T'7) one has

(R f=RY 1)@ S Gver ™ (I 105 FUS o HIT =120 71E,)-
uniformly over the same quantities.
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5 A renormalised lift of martingales

Now we will construct a discrete model Z};* = (IT"-%, I'”>®) which will be used to
write equation (2.54) on the regularity structure 7 (as in [20], we call this model a
“lift” of the random driving noise I, o). For this, we are going to use the martingales
from (2.54), such that we have the a priori bounds on the solution provided by the
stopping time (2.47).

Since we have only few basis elements in the regularity structure, we prefer to define
71" as a renormalised model, as opposed to [20, Sec. 8.2], where renormalisation of
a canonical lift was done separately.

It will be convenient to use the following short notation:

dz:=¢&> / ,x)dr.
/Dsgo(z)z EZR(p(tx)t

XEA;
Throughout this section we will use the decomposition GY = AV + R of the
discrete kernel (2.53), defined in Appendix Appendix A.1.

5.1 Definition of the map "¢

In order to define the model (IT"-¢, I'V:%), we first introduce an auxiliary map "% €
L(T*, X,), and then we will use the results from [20, Sec. 8.3].

It will be convenient to extend the martingales 90, (¢, x) to all + € R. For this,
we denote by X y.a(t, x) an independent copy of X, 4(t, x), defined in Sect.2.3. Then
Xy a solves equation (2.51) driven by a martingale 91, (¢, x). We define the extension
of My o(t,x)tot <Oas

M, olt, x) = M, o(—1, x). 5.1

This extension does not affect equation (2.54) in any way, and is a technical trick which
simplifies the following formulas. In particular, it allows to define time integrals in
(5.2) and later on whole R rather than R . In what follows, the martingales 9, , (¢, x)
are extended periodically to x € A.

Using the map (4.8), we start with making the following definition:

1
1 (M7 E) () = 7253 > /Rw(z,x)dzmy,a(r,x), (5.2)
xeA;

for any smooth, compactly supported function ¢ : R* — R, and for the processes
M, .« just introduced. The stochastic integral is defined with respect to the martingale
t = M, q(f, x), which is well defined in the Stieltjes sense since the function ¢ is
smooth. We need to use the factor % in order to have convergence of II”'*E to a

white noise (as follows from (2.50), the martingale 97, o converges to a cylindrical
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Wiener process with diffusion 2). For monomials we set
(Hy’al)(t, x) =1, (l'[”’aXi)(t, X) = xj.

Furthermore, we use the kernel N 24 , defined in the beginning of this section, and set

1 ~
(e = —=& ) / H 1y (& = 3) ANy as, ),
ﬁ yeA, R
as well as
()¢, x) = ("), )% = ¢ =), (53)
(I75a9) 1, ) = (I179%) (1, ) — 3y (1741) 1, ), |
where

¢, = / A7 (2)?dz (5.4)
Dy

is a diverging renormalisation constant (we show in Lemma 5.4 that the divergence
speed is e’l), and
/

¢, = —Bi,37°C ¢, (5.5)

is a renormalisation constant which is bounded uniformly in y, as follows from Lem-
mas 5.4 and 5.5. We used in (5.5) the constants 8, 5, 3 and Qy defined in (2.16), (2.32)
and (2.45) respectively.

We prefer to separate the two renormalisation constants in (5.3), because they have
different origins. More precisely, the constant ¢, would be the same if the driving
noise was Gaussian, while c;, comes from the renormalisation of the non-linearity of
the bracket process (2.17). The necessity of such renormalisation will be clear from
Sect.7.1.2.

Let H, : R x R4 — R be the n-th Hermite polynomial, defined for n € N and a
real constant ¢ > 0 in the following recursive way:

Hi(u,c) =u, Hy+1(u,c) =uH,(u,c) — CH,;(u, c) forany n >1, (5.6)

with H; denoting the derivative of the polynomial H, with respect to the variable u. In
particular, the first several Hermite polynomials are Hy (4, ¢) = u, Hy(u, c) = u?— c,
Hi(u,c) = u=3cu, Hy(u,c) = u*—6cu?+3c¢* and Hs (u,c) = u —10cu’+15¢2u.

Observe then that we have the identities (TI”-*%)(r, x) = Hp((II"*!)(z, x), ¢ +
¢/,) and (I7-%)(r, x) = H3((TI1”-%)(z, x), ¢, ), which correspond to the Wick renor-

malisation of models in the case of a Gaussian noise [20, Sec. 10]. Hence, in the same
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spirit we can define TT7-**¥ and I17-%«¥¥» in terms of the Hermite polynomials:

(T7-%%2#) (1, x) = Ha (N1, x). ¢y )
= (1), 0)* — 6c, (177) ¢, )% + 3¢,
(HV'“‘Q&')(I, x) = Hs((ny’aT)(t’ x)7 c}’)

= (7)1, x)° — 10¢, (I17*7) (£, x)* + 15¢; (1) (7, x).
(5.7)
For the elements of the form 7X; € W™ we set

(HV’atX,-)(t, x) = (Hy’ar)(t, x)(l'[y’“Xi)(t, x).
For each element £(t) € W™ we define
(IM°E(0)) (1, x) = ¥ (%) (¢, x),

and for each element Z(t) € W™ we set

(M7°Z(0))(t. x) = & > /J%'/ty_s(x — y)(I"%7) (s, y) ds.
R

YEAe
One can see that this recursive definition of the map IT"*® gives its action on all the

elements from Tables 1 and 4, except the three diagrams <[, % and -35 So, it is left
to define the map II7°® for these three elements. For the element «(» we set

(I7-2%e) (¢, x) = (1Y) (2, x) (T4 (¢, x) — ¢,
where

) = 2f / HY (@AY @) H Y (22) A (21 — ) H Y (22 — 2) dzdzidzs
D, JD, JD,

(5.8)
is a new diverging renormalisation constant (we show in Sect.9.1 that the divergence
order is log ¢). Finally, we define

(%) (7, x) = (M7*P) 2, x) (1) (2, x),
(708%) (1, x) = (I707) (¢, ) (T170%2) (2, x) — 3¢, (T17°1) (¢, x).

5.2 Definition of the model

Having IT"® defined on the basis elements W**, we extend it linearly to 7°*, which
yields the map II"% € £ (7%, X). As we pointed out above, we had to exclude the
symbol E from 7%, because our definition (5.2) suggests that IT":®Z does not belong
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to X;. A discrete model Z):® = (I17°%, I'">%) on .7 is defined via this map IT"° as
in [20, Sec. 8.3]. More precisely, we define

Ay ==-1, XD =-x, @) = -(I"I(1))(2) fort # E.

We extend this function linearly to £ : T — R, where 77" is defined in Sect. 4.2,
and we can use (3.7) to define
Fzy,a = Fﬂyva.

Since E”*" is an element of the group G, it has the inverse (F/**)~!. Then the discrete
model (IT”-%, T'"%) is defined as

n’'t = (M e %) Ar, re® =@E"H" o E, (5.9)

where the operator A is defined in Sect.4.2. All the properties in Definition 4.4 follow
from the definition of the model Z};". However, showing that the bounds (4.12) hold
uniformly in y > 0 is non-trivial and we prove these bounds in Sect. 7.

Since the operator A is simple in our case, we can write the map IT""® explicitly.
Namely, we have (IT}"“1)(Z) = 1 and (T1}"°X;)(Z) = % — x;, for z = (¢, x) and
Z = (¢, x). Using the same space-time points, we furthermore have

Ge\ = 1 7 X
(M@ = EESYGZA‘L fR%/?_S(x ) yals ).
(M) (@) = B (ML D@, ¢y + ),

(AX*")@) = Hy((M7N @), ) for n=3.4.5.

(5.10)

For T € {%, %} we have (TIY""rX;)(2) = (TIY""r)@)(MY*X;) (@), and for T €
{822, e} we have
(M °6(0) @) = y° (1Y) 2. (5.11)

For the elements t € {%?, ¥} the following formulas hold:

(M°7(1) @) = f (A7E-2 A=) ()@ dz (.12

€

Finally, we have the identities

(N7*Y%) @) = (M) @) /D £V @=2=H7 (=)W @) dz ¢,

(M%) @) = ()@ / (A E—2) K7 (- 2)(N7 ")) dz, (5.13)
De

(M%) @) = (M%) @) /D (7@ =2 =7 (@ — D) (ML) () dZ - 3¢, (ML) @).

Once the map IT"'° is defined, we can also write the map I'">® explicitly. The

latter can be easily obtained from the identity ITY"* = T2"*T 2%, which is a part of
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Definition 4.4. Namely, for fixed z, 7 € D, we have that F;;a is a linear map on 7%,
whose action on the elements of YW** is given in Table 3 with the constants

a=—(M"X;))@, b=—(M"Y)@, c=—(0"N@. 614

Remark 5.1 From the definition of the discrete model Z);" and the definition of the
respective reconstruction map R""% in (4.16), we can see that RVt = 0if || > 0.

Remark 5.2 For an element £(t) we obviously have R"%E(t) = yORY*%r.

Remark 5.3 We note that in (5.2) we defined the action of the map IT”>® also on the
symbol =. This allows to extend the maps (5.9) on this symbol as

a

=

r

z

]
1]

, (MY 8)(p) = 753 Z / @(t, x)dIM, 4(t, x),
xeAg

I

for any smooth, compactly supported function ¢ : R* — R, and for the martingales
M, q as in (5.2). We see however that I17'"E is not a function, which explains why
we excluded the symbol E from the domain of discrete models in Definition 4.4. We
can also extend the reconstruction map as

e(RVE)(p) = —83 Z f @(t, x) dM, (1, x).
\/_ xXEA;

5.3 Asymptotics of the renormalisation constants

We can show precise speeds of divergence of the renormalisation constants.

Lemma 5.4 Letc, and c " be defined in (5.4) and (5.8) respectively. The constants c( )

and c ) are well- deﬁned by (2.27) for all y > 0 small enough. Moreover, c( ) ~

2
and cg, ~ loge, and the expressions ¢, — —cg,) and cy — l ;,) converge as y — 0.
This in particular implies the asymptotics of the renormalisation constant &€, stated

in Theorem 2.3.

Proof The kernel .7 ¥, involved in the definitions (5.4) and (5.8), is supported in a ball

of radius ¢ > 1 (see Appendix Appendix A.1). Let D, . := [0, c] x Tg. Then, without

any harm, we can replace the integration domains D, by D, . in these definitions.
We define new constants

¥ :/ PY (2)%dz, (5.15a)
Dee

@ = 2/ / / BY () PY (21) PY (22) P (z1 — 2) P7 (22 — 2)dzdz1dzs.
D('é‘ D('é‘ D('F
(5.15b)
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We note that if we replace at least one instance of the singular kernel % by a
smooth function in the definitions of the renormalisation constants (5.4) and (5.8),
then we obtain convergent constants (as y — 0). This follows from the properties of
'V from Appendix Appendix A.l. Since J£7 is a singular part of the discrete heat
kernel, this implies that the limits lim, (¢, — ¢, ) and limyﬁo(E; - c;ﬁ) exist and
are finite. Hence, to prove this lemma, we need to show that the required asymptotic
behaviours hold if we replace ¢, and cgﬁ by ¢, and E;ﬁ respectively.

It will be convenient to write the constants (5.15) in a different form. Applying
Parseval’s identity (2.30) in the spatial variable in (5.15a), we get

5 =/Ocs3 3 B (0)dr = / > exp(2:25(Ry (@) — 1)~ )|K () 2dt,

xeT? ol <N

where we used the Fourier transform (2.35). From the properties of the function
(2.2) we have &3 Y e Ky (x) = 1, which yields K, (0) = 1. Furthermore, from

Lemma A.2 we can conclude that there exists yp > 0 such that K. y() #lfory <y
and all w € Z3 satisfying 0 < |w|. < N. Then we have

Ey= / 3 exp<2% (Ky (@) — 1)= )|1?y(w)|2dz

0 o<jwl.<N

c oz|I/(\ (a))l2 2 > c
g + R Z m(l — exp(2%y’3(K}, (a)) — 1);))

O<|w|.<N )’ 3

Let us write ¢, = ¢ + E;z) — Eg,l), where

o _ 1 a|Ky ()

v 160<|w‘ N y3(1 - Ky ()’

- 1 (x|K (a))l ~ c
M 2

¢, = exp| 2 ’3(K (w) — 1)— .
% 16 0ol <N y3(1 - (w)) ( Y 4 a)

From Lemma A.2 for0 < y < yp we have the bounds 1 — I/(\y (w) = C (|y3a)|2 A 1),
|fy(w)| < 1for|w| < y~3, and II?y(w)I < Ca|y3w|~* for |w| = ¥~ and for any
k € N. Using these bounds and (2.32), we conclude that 35/2) diverges as y — 0 with

the rate e ~'. Moreover, the constant .3 in the definition of E;z) can be replaced by 1,

)]

which produces a convergent error, i.e. ¢, — (2) has a finite limit as y — 0, where

the constant c ) is defined in 2.27). Slmllarly, we can conclude that ¢ is bounded

umformly in 0 < ¥ < o, and moreover it converges as y — 0. Thus, we have that
¢ —3 ( ) converges as y — 0, which finishes the proof of the asymptotic behaviours

from the statement of this lemma which involve ¢, and cg,z).
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The constant c;; is analysed in a similar way. Namely, we can show that

, o1 @3 |Ky (01) 1Ky (@) Ky (] + )

4 — Bak " _
32 o o< = Ky @)1 = Ky @2)) 1 = Ky (@1) = Ky (@2) + Ky (@1 +02)

¢!

converges as y — (. This expression equals c - —c ) and the double sum diverges

with the rate loge.

Similarly, we can study the asymptotic behaviour of the renormalisation constant
(2.45)

Lemma 5.5 The constant (2.45) satisfies |C,,| <e L

Proof Applying identities (2.30) and (2.31) to (2.45) we get

¢ - %VZ/ Z exp(2:22 3 (R (@) — 1)~ )K (@)K, (@) dt,

ol <N

where we used the Fourier transform (2.35). As in the proof of Lemma 5.4, for all
y > 0 small enough we can compute the integral, which yields

K, (@)K, ()
¢ = Zr.2 a— (5.16)
4 8 0<w2|3<N ”, 3(1 - K (a)))

From Lemma A.2 for all y > 0 small enough we have 1 — I?y (w) = Cy (|y3a)|2 A 1),
1K, (@) < 1for || <y, and [K, (®)| < Caly3w|~* for |o| > y~> and for any
k € N. Since the kernel K, has the same properties as K, , except that it is rescaled by
y31 rather than y3, we have the respective bounds |KV ()| < C3 for |w| < y 37X,
and |Ky ()| < C4ly3t<w|=* for |w| > y 37« and for any k € N. Then the part of

-3

the sum in (5.16) running over 0 < |w|. < y~ is bounded by a constant multiple of

/ aly’oldo <y,
0<lw].<y—3

where we made use of (2.32). The part of the sum running over y ~
bounded by a constant times

[ avortansy
y3<lol.=N

Hence, we have the required bound |&, | <e !

3 <ol < Nis
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Table 6 Auxiliary processes used in this section

Process Reference Comment

Sy Eq. (2.42) A rescaled spin field of o

X, Eq. (2.44) A local average of Sy, defined via the kernel
K
'l

0')//, a P12 A spin system used to extend the stopped
Ising-Kac model beyond the stopping time

Sya Eq. (6.18) A rescaled spin field of o),

X;/,a Eq. (6.2) A rescaled coarse-grained spin field, defined
by (2.12) for o}, o

X ;,’a P.37 An averaged spin field defined by (2.44) for
Sya

Oy.a Eq. (6.10) A random function which appears in the
zeroth-order chaos in Sect.7.1.2

Qy,a Eq. (6.11) An analogue of Qy 4 in which the spin field

Sy is replaced by its average X v

6 Properties of the martingales and auxiliary results
In this section we collect several result which will be used to prove moment bounds
for the discrete models constructed above. We are using several auxiliary processes

throughout this section, and we list them for reader’s convenience in Table 6.
We first show that the martingales (90, q(+, x)) s satisfy Assumption 1 in [18].

6.1 Properties of the martingales

The required properties of the predictable quadratic covariations, stated in Assump-
tion 1(1) in [18], follow from (2.50) and (2.17): (smy,u(-, x), My e, x’))t = 0 for
x # x', and in the case x = x’ we have

t
(M0, x)), =677 fo C,.a(s, x)ds, 6.1)
with an adapted process t — C, 4(t, x), given by

2%),,2<1 — U(L, ;—‘) tanh(/%Xy(t,x))) for t < 174,

Cyalt,x) = * (6.2)
2y2(1 = 80} 05 )X at.0))  for 12 70,
where X;/,a is defined as in (2.12) via the process o)’/ « and where the constant

»y, 2, which is closed to 1, was introduced in (2.19). We observe that the inequal-
ity |Cy . q(s, x)| < 2 holds uniformly over y € (0, 1) and x € 11“3.
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Assumption 1(2) in [18] follows readily from the definition of the martingales,
because every time a spin of the Ising-Kac model flips, only one of the martingales
M, o(+, x) changes its value, while the others stay unchanged.

We see that the martingale M, (-, x), forany fixed x € ']I‘;:’, has jumps of size 2;/*3,
because the martingale m,, (-, x) from (2.6) has jumps of size 2. Therefore, given that
e ~ y*, Assumption 1(3) in [18] holds with any value of the constant k bigger than

ININ

For a cadlag process f, we denote by f(¢7) its left limit at time # and we define
the jump size at time ¢ as

Aifi=f@)— f(7). (6.3)

The process t — oy (k) is pure jump, and from equation (2.6) we have Ao (k) =
Aymy, (k). Moreover, from (2.4) and (2.5) we have %, o (k) = tanh (Bh, (0, k)) —
o (k). Hence, using the definition (2.48) and rescaling Eq. (2.6) we get

t
My a(t, x) = Jy.alt, x) + 57 f Cy.als, x)ds, (6.4)
0

where 1 = Jy, o(t, X) = D o<, AsIMy o(x) is a pure jump process and

Ty,a
C ot x) = o(L.%) —tanh(B8X, (1,x)) for t < L=, 6.5)
vt 0 o(£. %) —8X!, (1, %) for t > 2 '
v.ala’ ¢ y,art - a

The process t +— C, q(t, x) is adapted and is bounded uniformly in x and ¢, and
Assumption 1(4) in [18] is satisfied.

6.2 Besov spaces of distributions

In this section we recall the definition of the Besov spaces using the Littlewood-Paley
theory.

According to [3, Prop. 2.10] there exist two smooth functions ¥, x : R} — R,
taking values in [0, 1], such that ¥ is supported on B (O, %‘), X is supported on
B (O, %) \B (O, %) and for every w € R they satisfy

o0
(@) + Y x@Fw)=1.
k=0
Then we define x_1(w) := X (w) and y;(w) = x (2_kw) for k > 0, and set g :=
F! Xk, where & ~1 is the inverse Fourier transform on R>. Then for k > 0 we have

ox(w) = 23kQ(2kw) where o := g¢. The k-th Littlewood-Paley block of a function or
tempered distribution f is defined as

Sf =ok* f=F (e Zf) (6.6)
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Then one can show that f = )", ., & f in the sense of distributions for any tempered
distribution f. -

Forn € Rand p, g € [1, 0o] the Besov space B} ; (T?) is defined as a completion
of the the space of smooth functions f : T? — R under the norm

£y, = | (27 N8 flr)

k>—1llea’

where we extended f periodically on the right-hand side and where we write
[(ak)k>—1ll¢a for the £9 norm of the sequence (ai)i>—1.

It is not hard to see that B, « (T°) coincides with the space C" (T°) defined in
Sect. 1.2.

6.3 Controlling the processest ands,

We need to prove some auxiliary bounds which will be used in the proof of Proposi-
tion 7.2. The following result provides bounds on the high frequency Fourier modes
of the process X,.

Lemma 6.1 Forany ik > 0 and M > 0, there is a non-random constant C > 0, such
that R
X, (t, )| < Cy™M, ©.7)

uniformly int € Ry, y 3% < |w|. < Nandy € (0, 1).

Proof Using (2. 12) and (2.42), we may write X,, = K, %, S, . Then Parseval’s identity
(2. 30) then ylelds X y(t, w) = K. (w)S,, (t, w). Usmg the tr1v1a1 bound [S) (¢, x)| <
Yy we - get |Sy (t, w)| < y73 and the absolute value of X y (¢, @) is bounded by
Ciy~ 3|K (w)]. Furthermore we use (A.5) to bound it by Czy 3|y w|™™ for any
integer m > 0, where the constant C, depends on m. Hence, for any ¥ > 0 and
lw|. = y737% we have |5(\y (1, w)| < C3y ™3, which is the required bound (6.7)
with M = km — 3.

The following result shows that the a priori bound, provided by the stopping time
(2.40), yields a bound on the process S, defined in (2.42). The bound on §,, is however
slightly worse than for the process X, . Namely, while we consider the average values
of X, on the scales above e (see the definition (2.22) of the seminorm), we bound S,
on strictly larger scales.

Lemma 6.2 Let n be as in the statement of Theorem 2.3, let us fix any k € (0, 1)

and let r be the smallest integer satisfying r > 1’:—" —nandr > 2. Then there exist

non-random yy > 0 and C > 0 such that

sup  sup [(eS, () (¢})]| < Car’,
(o] vk

uniformly over A € [el_’2 1] @ € B and y € (0, yo). We recall that the stopping
time ‘L'y a is defined in (2.40).
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Proof From the definitions (2.11) and (2.2) we have %K, () = »5,1% R(sw/y),
where % is the discrete Fourier transform defined in (2.9) and .% is defined by
replacing ¢ with y. The first property in (2.1) implies that there are a, ¢ > 0 such that
F R(w) = afor |w|. < c,and forall y > 0 small enough we have .% R(w) > a/2 for
|w|. < c.Hence, ZK,(w) > as, /2 for ||, < cy =3, and (2.32) yields asy, 1/2 >
a/4 for all y=>0 small enough. We define the function n ¥y (x) by its discrete Fourier
transform Uy (@) = 1/K, () for |o|. < cy™> and ¥, (@) = 0 for |w|. > ¢y 2.
Then |1//y ()| < 4/a for |w|. < cy =3, which implies that Y, is a rescaled function
with the scaling parameter y (in the sense of (1.2)).

Let ng be the smallest integer such that 2" > ¢y 3. Then we use the Littlewood-
Paley blocks, defined in Appendix 6.2, to write (1:5, (1)) (¢F) = (LgS)(,l)(t)) (o) +

(LES)(,Z) (®)) (¢2), where

(e8P 0) (03) = D (rteSy ) (02) . (1571) (%)

k>ng

_ Z (8kte Sy (1)) (%é)

—1<k<ng

We first bound the process S)(,l). We note that we can write ((SkLES}, (t)) (Sk(px) in
the sum. From the definition (2.42) we have |S) (¢, x)| < y‘3. Let us fix any integer

ro> 1%”—nsuchthatr > 2and k = r—l—n—l%".ThenwehaveO <K <Tr.
Moreover, if we take ¢ e B, then |8k 1 < (A2%)7"** because B’ is embedded
into the Besov space B, . Then we have

|(l8S}(/1)(t)) ((p))g)| SJ y—3 Z(sz)_H—K 5 y—3(A2i10)—r+K 5 )\‘—r-‘rKer—l—K.

k>ng

IfA > el K , then the latter is bounded by A".

Now, we will bound S;(,z). We note that for k& < ng we can express Sy, (7) in terms
of ¥, *¢ X, (t), and using (6.6) we may write

(1S (0) () = (1eXy ) (@17). (68)

where

L (y) = /R EY d@ne-n Y av-yd. 69

z€Ag —1<k<ng

This is a convolution of three rescaled functions and hence it can be viewed as a
function rescaled by A. Then the definition (2 40) yields |(t X, () (DY A)| < a2~ kn
fort € [0, T (1)] We note that the function \IJV is not compactly supported, as required
in the deﬁmtlon of the seminorm (2.22). This however does not play any role since
the process X, () is periodic and the function has a fast decay at infinity (because the
function ¢ involved in the definition (6.9) is compactly supported and the functions

@ Springer



The dynamical Ising-Kac model 713

Y, and gy have fast decays at infinity). Then (6.8) is absolutely bounded by a constant
multiple of a)A”, as required. O

6.4 Controlling the bracket process of the martingales

In Sect.7.1.2 we need to analyse the process
Ty.a
0y alt,x) =& Z /O HY_(x = 9)2S, (s, )X, (5, y)ds, (6.10)
yehe

where we used the stopping time (2.47). In the following lemma we estimate the error
after replacing S, by its local average, i.e. we estimate how close O, 4 is to

Qy,a(t,x) =g Z /0 mjfivfg/_s(x — y)ZXy(s, )X, (s, y)ds, (6.11)

y€As
where the process X y is defined in (2.44).

Lemma 6.3 For every T > Q there exist deterministic constants yy > 0 and C > 0,
depending also on the constant k fixed in (2.44), such that

sup sup [Qy.at,X) — Q (1, x)] < Cay*™ D, (6.12)
te[0,T] xeA; ’

uniformly in y € (0, yo). The value n is as in the statement of Theorem 2.3.

Proof As we stated in the beginning of Sect. 5, Gr =X + 7. Replacing AV in
the definitions of 0, by G”, and using (2.41) and the trivial bound |S,, (s, y)| < Y3,
we obtain

Ty,a ~
Qyalt,x) =6 ) fo GV (x — )28, (s, )X, (s, ) ds + O(y>@7D),
YEA;

and an analogous formula holds for gy o Here, we made use of the estimates

Ty.a _ Ty,a
&y / ST F mds S 2 / L0 ds S
0 0

yelAe yelAe

which follow from smoothness of the function Z? and an integrable singularity of A
(see Appendix A). We note that the value of the stopping time 7, 4 does not play arole
in this bound, because the kernel G!__ vanishes for s > ¢ and the integration interval
is contained in [0, #]. That is why the error term O(*@~ 1) is bounded uniformly in
te[0,T]and x € A,.
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Using the spatial periodicity of the processes we can write furthermore

TJ/,D
Qyalt. ) =¢" ) /0 O, (x = )8y (5, V)X, (5, y) ds + O(*" V),
yETg

where by analogy with (2.52) the function ®? is defined by

e Ol =Y G @) fx), (6.13)

xeTg xXeAg

for any f : ’]l'g — R, where on the right-hand side we extended f periodically to A.
Then we can write Q, 4(t, x) = QV a(t, xX)+E, ot x)+ O(y31=D)y with the error
term

Ty
Epatt,x) =6y /O ®7_(x — 1)(S, — X,) (s, 1) X, (5, ) ds,
yeTg

and we need to show that this error term is absolutely bounded by the right-hand side
of (6.12). Applying Parseval’s identity (2.30) we get

1 [Tre _
Ey,a(t,x) = g/(‘) Z ﬁ;q;g:s(w)%((sy _Xy)xy)(s’ w) PR R

lw| . <N

We expect that the high frequency Fourier modes of CDE’_S decay very fast, which
allows to have a good control of the whole expression in the integral. To separate low
and high Fourier modes of the function ®)_, we take k; > 0, whose precise value
will be fixed later, and write

1 Ty.a |
Eyalt,0) = g/ Z %CD;:S(Q)) %((Sy —Xy)Xy)(s’ w) e TN g
0 y 3 <|w|. <N
1 [T -
+§/0 Y. EO (@) F((Sy — X,)Xy) (s, @) e TN ds.

o] <y =31

We denote these two terms by E)(,l,fl(t, x) and EJ(,z’L(t, Xx) respectively.
We start with analysing the term E)(,lﬁ The processes S, and X,, can be uniformly
bounded by y ~3, while for the process X y we have the bound (2.41). Then

t
w%mMSWW“A Y. 1FE(@)lds,
Y

3Kl <|w| <N
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where we used the property ®} = 0 for s < 0 to extend the integral to [0, t]. The
definition (6.13), the Poisson summation formula and the identity (2.35) yield

Tl (@)= Y FP](0- TP (@)

lo'|.<N

= Z exp(y*6%]2/’3(lf(\y (w—0o)+ I?V (@) — 2).&‘)1/(\), (w— a)/)I/{\y ().

|/ <N
from which we readily get
t
/0 | Z0L (@)|ds <ty%5c3 Y Ky — oKy @),  (6.14)
|o'|.<N

where we made use of (A.6) to bound the exponential by 1. Estimating K y by (A.dc)
and (A.5), for any k > 4 we bound the preceding expression by a constant multiple of

e Y (- v DTy v )T (6.15)

|| <N

Then we have

EQ @0l Sap?oth 3 Y (73— v D (e v )

y 371 <|w| <N |&'|.=N
< ay30= / / (o —o'| v D7 *(o'| v 1) *do do.
y ¥l <|w|.<y3N J|o'|.<y3N
(6.16)

In order to bound this integral, we split the domain of integration into two subdomains.

If ||, < |w|./2, then | — &'|, > |w|./2. We also have |w|, > 1. Then the part
of the double integral (6.16), in which the integration variables satisfy ||, < |w|.. /2,
is bounded by a constant times

/ / lo| 7 (o] v1) " dew/do 5/ o]~ dw,
y ¥l <ol <y3N J|o/| . <|ol./2 y *l<|w|,<y3N

and the latter is of order y ?=3%1_Taking k large enough, we can make the power of
y arbitrarily big.

If |o'|. > |w]|./2, then we simply bound |w — &’|. v 1 > 1, and the respective part
of the double integral (6.16) is bounded by

/ f o' |~ Hde'do < / o> Hdw,
y Ml <|ol.<y3N Jol./2<|o'[.<y3N y ¥ <ol .<y3N

which is of order y ¥=%1 Combining the preceding bounds, we get | E )(,I,Zl(t, x)| <a.
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Now, we will analyse the term E; (2) . We have

EQ)(t.x) = / Y. F (o) Z((Sy — X,)X,)(s, ) e TN ds.

lol. <y 71
(6.17)
Furthermore, (2.31) yields
F((Sy = X)Xy 5,0 = Y (Zy = X,)(5,0) Xy (5,0 — )
lo'|.<N
= Z (1 —Ky(w))fy(s, X, (s, 0 — o).
lo'| <N

We assumed in Sect.2.3 that % R(w) = 1 forall w € R? such that lw|. < 1, from
which we conclude that the terms in the preceding sum may be non-vanishing only
for |@'|. > y~37£. Then the variables in these sums satisfy lw —w |.>cy 37K for
some ¢ > 0, if we take k1 = x /2. From Lemma 6.1 we have |X (s,0— )| <yM
for any M > 0, where the proportionality constant depends on x and M. Applying
the preceding estimate to (6.17), we get

t
|E;?L<r,x>|§y’”‘3/ > | Zol ()] ds,
|l <y =371

where as before we used the bound |Z, (s, < y 3 and extended the integral to

the interval [0, 7]. Using (6.14) and (6.15), this expression is bounded as

2 _ —
EGa ol <y 3 Y (- o)l v DT v T

lo]..<y =31 [o|.<N

< yM—IS/ / (o — '] v D" (o] v D) *do/ do.
lol.<y3y =371 Jjo'| . <y3N

This expression is of order y™~15 which can be made arbitrarily small by taking M
large.

6.5 Controlling the processx;, "

We recall that X, !, o is defined below (2.48) via the spin field ay «» and let us define

1 t x 3
S, o1, %) i= <o (—, g) for x € T3, t > 0. (6.18)

L RRARAN

We need to control these two processes.
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Lemma 6.4 Let n be as in Theorem 2.3. There exists yo > 0 such that for every p > 1
and T > 0 one has

E[ sup | (te X7, 4(0)) (¢§)|”] <Ca’(hve)”, (6.19)

te[ty,q,T]

uniformly over y € (0, ), ¢ € B!, x € Ay and A € (0, 1]. The constant C depends
only on p, T and yy.

Proof By the definition in Sect.2.3 we have Xj’,’u(ry,u) = X, (1y,q), and in the same
way as we derived equation (2.38), we get for r > 1), o

X}, o(t,%) = (P X)) (Ty.a, %) + & Z/ PY(x —y)dM, (s, y). (6.20)

3YTy.a
yeTy

Extending the processes periodically to x € A, and using (2.52), we replace P”, pr
and T% in the preceding equation by GV, G? and A, respectively. Then, for a test
funct10n ¢ € B! we have

(LSX;/,G(Z)) ((p;‘) = (LSGg/fry,qu (Ty.0)) (‘P;‘) +é°
t ~
> / (G1_s *e 93) () AN, (s, ). 6.21)

yeA, Ty.a

We denote the two terms on the right-hand side by A, ; (¢) and B, ; () respectively.
Then the first term may be written as

Apa) =8 Gl (X, (1,0)@)).

YEA,

Using the a priori bound on X, provided by the stopping time (2.40), we get
|(L£Xy (fy,a))(%)}_yﬂ < a(r Vv ¢)7 where we used the definition of the seminorm

(2.22). Then since the kernel G integrates to 1, we get

|4, (0] Sa(ve), (6.22)
with a proportionality constant independent of the involved values. Here, we used the
fact that the discrete heat kernel G! is absolutely summable over A, and the sum is

bounded uniformly in y and ¢, which follows from Lemma A.3.
Now, we will bound the last term in (6.21). For this, we define

Byt 1) =& Z/ s *e @) (9) A, (s, y),

YEAg
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so that By, 5(f) = B, ,(t,t) and the process " — B, ; (¢, 1) is a martingale on
[ty,q, t]. In order to apply the Burkholder-Davis-Gundy inequality [18, Prop. A.2] to
this martingale, we need to bound its jumps and bracket process. The jump times of

By ;. coincide with those of Dﬁy . and we get

|AsBy s D) <8 D |(GY e @2) D18, 4 31,
YEA,

for s € [1y,q, t], where we use the jump of the martingale Asim;’a defined in (6.3).
Moreover, the jump size of 9%, ; is bounded by 2y 3 and if M, (s, y) has a jump,

it happens almost surely at the points {y, + k : k € Z*} for a unique y, € 11‘2 (recall
Sect. 6.1 and periodicity of the martingale). Thus, we get almost surely

[AsBy 1D <2777 sup Y (G % 0)) e+ 0| Sy 778 Syv°. (6.23)
v*e’]I‘s kez3

The sum is bounded, because the discrete heat kernel decays very fast at infinity (see
Lemma A.3).
Recalling (2.49), the bracket process of By, A(t', 1) equals

(B0l =202 / e )00 (1= 800 oS 5)X] 000, 0))as

YEAs

The process in the parentheses is bounded by a constant, and the definition (2.18)
yields

(B0 S S f (7 e ¢2) ()2,

yEA;

where we used ¢’ < r. Similarly to how we estimated (5.4), we can show that

<(ve L (6.24)

|<BVJ~(°’ t)>t’

Applying the Burkholder-Davis-Gundy inequality [18, Prop. A.2] and using the
bounds (6.23) and (6.24), we get

(B[ sup |Bm(t)|”])% SOV 490 (6.25)

lelfy,a»T]

Using then the Minkowski inequality and the bounds (6.22) and (6.25), we obtain
from (6.21) the required result (6.19).

Using the preceding result, the following one is proved in exactly the same way as
Lemma 6.2.
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Lemma 6.5 For any k € (0, 1) there exist yo > O such that for any y € (0, yo),
T >0 ¢cB andx € [¢ %, 1] one has

sup sup |(1eS), o (1) (¢})| < Car”,

te[ty o, T]1x€A,

where the values n and r is the same as in the statement of Lemma 6.2. The non-random
proportionality constant C depends on T and is independent of y, ¢ and A.

6.6 Controlling the process )_(;, a

Let us define by analogy with (2.45) the renormalisation term, which is a function of
the time variable,

t
€, (1) =20y / e Y PY(x) P (x)ds (6.26)
0

xe’]l‘z,
where P/ := P} %, K , and 3z, o was defined in (2.19). The following result will be

useful later.

Lemma 6.6 The constant (2.45) and the function (6.26) satisfy |§y — gy ® <
t=2¢¢=1 for any ¢ € [0, 1).

Proof The proof of the bound goes along the lines of the proof of Lemma 5.5. More
precisely, as in (5.16) we get

% 2 X R t
&G0 = —exp 2522 (K, (w) — 1)=).
y ' 8 0<|w23<N < 23(1- Ky (@) ( %3( % )a>

(xf (a)) I’(\ (w)

Since the power of the exponential is negative, we can use the simple bound e™* <
x~¢/2 for any x > 0 and any ¢ > 0, to estimate

alK (@)K, ()] _ £\ ¢/
g, -¢,ml s > (- Ry@)s)

O<|ol. <N 1= Ky(w)

Proceeding as in the proof of Lemma 5.5, we get the desired bound.

Let us define the process X/, , as in (2.44), but via the spin field a}’,’ o~ The following

Ly.a
result will be used in Sect.7.1.2.

Lemma 6.7 Let n be as in Theorem 2.3 and let k and ¢ be as in (2.46). There exists
yo > 0 such that for every p > 1 and T > 0 one has

E[ sup (1 — 1y, a)—*||x WOX, (1) — ey(t—fy,a)”im] < Ca®Pe’?, (6.27)

te[tyq,T]
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uniformly over y € (0, yp). The constant C depends only on p, T, yo and k.

Proof Let I, o(t,x) = X;,’u(t, x)XJ’,’a(t, x) — gy (t — 1y,a) be the function, which
we need to bound. From the proof of Lemma 6.4 we know that X ;’a solves equation
(6.20). Similarly, we can show that

t
X, Lot x) = ( i1, u—V)(TV wX)+& Z P (x—y) dim;/’u(s, y). (6.28)

’IF* Ty,a

Here, we need to take y small enough so that the radius of the support of the function
K , gets smaller than one. Let us denote by Y)’/’u(t, x) and X;,,a(t, x) the last terms in
(6.20) and (6.28) respectively, and let us define

Yy (r t,x) =6 Zf (x — ) A9, (s, ),
yeT? Tr.a
(6.29)
Yot x) = Z/ PV (x — ) A, (s, ).
yeT? Tr.a

Then these two processes are cadlég martingales in r € [t 4, ], and Y. ’ W, x) =
(t t,x)and Y Y, a(t, x) = _y .(, 1, x). Since these martingales have ﬁnlte total
varlatlon their quadratic covariation may be written as (see [24])

(V) o .20, Y (et 0] = Y AY) G 1. 0) ALY (1 x), (6.30)

Tya<s<r

where Ag Y)’/,a(-, t,y) is the jumps size of the martingale at time s. Moreover, the
process

N, o1, ) =[] o 1,), Y, 1 1,0)], = (Y] o, 1,%), X)) (1, %)), (6.31)

is a martingale for r € [t} q, t], where from (6.1) we have

(V) aor 1,0, ¥ aler 1, 00), —832/ Y= B (r = »)Cyals, ) ds.

T
€T3 v.a

We denote 9, ,(t, x) = N, ,(¢, 1, x). Then we multiply (6.20) and (6.28), to get

Iya(t,x) = (P v, o Xy) (@0, ) X, o(t,x) + Y0, o6, x) (P v o Xy) (Ty.0. %) + 9, 4, x)
+(e3 Z/ @ — P (= y)Cpals. y)ds — €, (1 — 1y, a))
ye’]I‘g Tr.a
(6.32)
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We denote the four terms on the right-hand side by 1, (') at,x),fori =1,...,4, and
we will bound them one by one.

Expanding the discrete kernel as in Appendix Appendix A.l and using the a priori
bound provided by the stopping time (2.40), we obtain from Lemma A.5

(P, X)) (00| Sat—1,0"% (P, X,)(1.0,0] S alt —7,0".

Then the first term in (6.32) we bound as

E[ sup (t—zy,u)"z”|1;}g(t,x)|”]5a1’E[ sup X/, a(t,x)|Pi|.

t€[ty,q,T] te[ty q,

Applying Lemma 6.19, the preceding expression is bounded by a constant times

a?Pe"P . The term I,S%c)l(t, x) can be bounded similarly. Indeed, ¥ ;,’a coincides with
X ;, «» When the initial condition is 0, and Lemma 6.19 holds for X’ ;/,a where ¢ is used
in place of ¢. Hence, we have

E[ sup (t — ‘L’y,a)_% |I;?3(t, x)|p] < ale?,

relty,o.T]

To bound the third term in (6.32), we use the Burkholder-Davis-Gundy inequality

and get
E
E|: sup |1;£i)1(l,x)|p} < (E[[‘ﬁ;,,a(-,t,X)]t]>2, (6.33)
relty o T]

Ty.as

where the quadratic variation is computed for the martingale (6.31). From the definition
of the martingale, we get

[, Cen] = Y (A, 6n) (6.34)

Ty, a<S<t

Moreover, (6.30) yields As‘ﬁ;,)a(-,t,x) = ASY)’M(-, t,Xx) ASZ;W(-, t, x). Further-
more, the definitions (6.29) allow to bound the jumps of ¥}, ; and Y,  in terms of
jumps of zm;,u. Since the jumps size of the latter is bounded by 2y —3 (as follows from

the scaling (2.10)) and almost surely im;,’a(s, ¥) has a jump at a unique point y, we
get

ALY (ot x)| < 2p733 | BY

I—S”LOO’ ’A Yya( L x)| <2y~ - 3HP

ol oo

From Lemma A.4 we have ” I’;,y_ HLOC S@E—s+ ¢2)73/2 and ” P ”LOO S(t—s+
gz)_3/2. Using these bounds in (6.34) yields

2
[V, oo 1. 0)], Z (t—s+e) 71, M, 4 (5,2) =M, (5—.x) 70}

Ty a<s<t
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where 1 is the indicator function and so the sum runs over the jump times of the
martingales im;,’u. The moments of the number of jumps of the martingales are of
order ¥, and hence the p-th moment of the preceding expression is bounded by a
constant times

t
J/IZ/ (t—s+eH)ds Sylet <y
Ty’a

Then the right-hand side of (6.33) is bounded by a constant multiple of y ~2¢7.

It is left to bound the last term in (6.32). Using (6.2) and (6.26), we have

286 t -
IR x) = - Z / Pl (x = y)P! ((x = y)S), (5. )X, (5. y)ds.
yeT? r.a

Let I;?;(t,x) be defined by this formula, where we replace S;’a by K;,a. From
Lemma 6.4 we have |X;,,a(s, y)| < ¢ and we have |S)’,,a(s, y)| < el Then, is
we replace the kernels P? and PYinl )553 by £V and AV, we get an error of order
¢! Then Lemma 6.3 yields |I}Ef‘c)l(t, x)— I)E?c)‘(t, x)| < ¥ uniformly in x and locally

uniformly in ¢. To bound I)Ei), we write

286 t -
Ifc)l(t, X)=—— Z f Ei’_s(x — y)P,V_s(x — W, a(s, y)ds
* yeT? Tr.a

286 t -
+E Y / PG = BT (= )€, s — 1.0 ds,

and we denote these two terms by I]S?g(t, x) and I)E?c)l(t, x). Since | Qy )] < ¢! (what

follows from Lemma 5.5), we get |I)EZ)1 (t, x)| < 1. Furthermore, we have |I)Ei)1 x| =<

€ SUPs¢[r,, 4,11 11y,a(s)|l oo
Combining all the previous bounds, we get

_nhp —
E[ sup (1 —Ty0) 7 || Iy’a(t)||€oo:| S aPPeP 4 PP 4y TP P
1€ty,0,T]

8] s =0 a0l |

t€[ty,a,

Taking ¢ small enough, we get the required bound (6.27).

7 Moment bounds for the discrete models

Let Z):" be the discrete model defined in Sect.4. In this section, we prove that this

. . . . . ,8,a
model is bounded uniformly in . Moreover, we introduce a new discrete model Z7:**°,
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defined as ZJ;* but via mollified martingales. Then we show that the distance between
these two models vanishes as § — 0, uniformly in y.

Let o : R* — R be a symmetric smooth function, supported on the ball of radius 1
(with respect to the parabolic distance ||  [|s) and satisfying [ps 0(z)dz = 1. For any
8 € (0, 1) we define its rescaling

1 r x 71
0s(t.) = 550(55. 5 )- 1)

We need to modify this function in a way that its integral over D, becomes 1. For this,
we approximate the function by its local averages as

oy,s(t,x) == 8’3/ os(t, y)dy, (7.2)
yeR3:|y—x|oo<e/2

which satisfies || D, 0.8 (z)dz = 1. We regularise the martingales in the following way:

1
rsaltx)i= =8 3 /R Oyt —5,x = y)dMy o(s.y).  (1.3)

YEAs

Then the process &, 5,q(, x) is defined on (¢, x) € R x ’]l'z, but it is not a martingale
anymore. On the other hand, a convolution with this process can be interpreted as a
stochastic integral. For example, a convolution with the kernel #"¥ may be written as

~ 1 ~
(7 xckyia) ) = 6" 3 A%f;i(x — y) AN, 4. y),
yeA,

where , is the convolution on D, and # V% = ¢ Vx:0y,5. Then we can easily
compare the two kernels as

(V- = | H7V(@-2(0y52) —1)dz,

D,

which is the main reason to mollify the noise using the function (7.1).
Using &, 5,4, we make the following definitions

(M798) () = §y5.0(0), (1)) = (77 %eby.5.0) (2).

After that we define the linear map I1”°%:® on 7 by the same recursive definitions as
in Sect. 5.1, but using the following renormalisation constants in place of (5.4), (5.5)
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and (5.8) respectively:

Cy,8 Z=f j””‘s(z)z dZ,
D:
;/5 =By, 33’6@ Cy.8»
)/3 = 2/ [ HY(@)H P (20)H T (20) (21— 2)
D De

V(25 — 7)dz dz; dza.

(7.4)

As we did in Sect. 5.2, we define a discrete model Z1;>® = (IT7+3:®, T'7:3:9) from the
map I17°%:¢, In the following proposition we provide moment bounds for this model.

Proposition 7.1 Let the constants k and k, used in (3.2) and (2.46), satisfy k > k.

Then for the discrete models Z1;" and Zliyf;a’a, there exist yy > 0 and 6 > 0 for which
the following holds: for any p > 1 and T > 0 there is C > 0 such that

3,
sup E[(1Z5 1Y) | = swp E[(1Z0% Z5009)" | < e, a5)
r€(0.y0) r€(0,0)

for any § € (0, 1). Here, we use the metrics for the discrete models, defined in
Remark 4.7.

We prove this proposition in Sect.7.2. For this, we use the framework developed
in [18], which provides moment bounds on multiple stochastic integrals with respect
to a quiet general class of martingales. We showed in Sect.6.1 that the martingales
M, q, introduced in Sect. 2.3, have the required properties.

7.1 Bounds on the discrete model

The basis elements of the regularity structure are listed in Tables 1 and 4, and in this
section we are going to prove bounds only on the map I1”>% from the discrete model
7% on the basis elements with negative homogeneities, which do not contain the
symbols £ and X;. More precisely, we consider the set

= {1, 0,0, 05, T, i, s, o02],

and prove the following bounds for its elements. We use in the statement of this
proposition and in its proof the notation from Sect. 4.3.

Proposition 7.2 Let the constants k and k, used in (3.2) and (2.46), satisfy k > k.
Then there are constants k > 0, yo > 0 and 6 > 0, such that foranyt € W, p > 1
and T > O there is C > 0 for which we have the bounds

1
(Ele(mZ ) @h)]")" = CO.v o7+, (7.6)
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1 )
(E|LS(HZV’% - nzy'a’“r)(<p§)|”) P < 80 v o)t 1.7)

uniformly inz € Dg, . € (0, 1], ¢ € Bg and y € (0, yp).

The rest of this section is devoted to the proof of this result. We are going to prove
the bounds (7.6) and (7.7) for any p sufficiently large, and the bounds for any p > 1
follow then by Holder’s inequality.

For every symbol T € W, we use the definition of the discrete model in Sect. 5.2
and the expansion [18, Eq. 2.16] to write ¢, (Hg’ar) ((pg‘) as a sum of terms of the form

/q)g@(/ Fg(zl,...,zn)dM;,u(m,...,zn))di (1.8)
D; Dn

= @?(Z)FZ(Z],,Zn)dZ dMn’u(Zl,-‘-vzn)v
; \Jp, g

where the measure M;ﬁ’ o 18 defined in Section 2.1 in [18] for the martingales 9, q,

and a function F of n space-time variables. Similarly, we write tg(HZ"S’ar)(w?) asa
sum of terms of the form

/D 9l ) (fD F(z1, .., z0) AM 50 (21, ...,z,,))dz (7.9)

= /D,? (fD 9} @) (Fxeoys) (@i, - .-, zn)d2>dM]'j’u(Z], ).

where M;’/’ ) @1s - Zp) stays for the product measure associated to the regularised
martingales &, s 4, defined in (7.3). The functions F will be typically defined in
terms of the singular part AV of the decomposition G’ = A7 + 27 done in
Appendix Appendix A.1, or in terms of the function AV = =0y, ,;*gji/ ¥ where 0, 5
is the mollifier from (7.3).

To bound the terms (7.8) and their difference with those in (7.9), we are going
to use Corollary 4.5 in [18]. For this, it is convenient to use graphical notation to
represent the function F and integrals, where nodes represent variables and arrows
represent kernels. In what follows, the vertex “®” labelled with z represents the basis
point z € D,; the arrow “ =——> " represents a test function <p?; the arrow “ ——”
represents the discrete kernel V4 ¥, and we will write two labels (a,, r.) on this arrow,
which correspond to the labels on graphs as described in [13, Sec. 4]. More precisely,
since the kernel 77 satisfies [18, Assum. 4] with a, = 3 (see Lemma A.3), we draw
“—30—"

Each Vanable z;, integrated with respect to the measure M, ; withn > 2 is denoted
by a node “®7’; the variable integrated with respect to the martmgale M, o we denote
by “O”. By the node “¢” we denote a variable integrated out in D;.
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7.1.1 Theelement7 =1

We represent the function I1}""z, defined in (5.10), diagrammatically as

ts(ng’af)((p?) = o—z.o—n(_?,

This diagram is in the form (7.8) with n = 1, where in this case, in the inner integral,
we have the generalised convolution IC?(‘;’; given by (as in [18, Eq. 4.13])

K"?(L;;;(Zvar) — / (p?(Z)«/%/y(Z _ Zvar)dz'
De

One can check that [ 18, Assum. 3] is satisfied for this Qiagram with a trivial contraction
and the bound [18, Eq. 4.16] holds with the sets V5, = I' = {1} and labeling
L = {nil}. The set B in this bound has to be ¥, while A might be either {1} or @.

From the diagram we see that anrl = 1 and WA/;\\A/;” = 1, therefore, the value of
the constant v, in [18, Eq. 4.15] is —%. Applying [18, Cor. 4.5], we get that, for any
k > 0 and any p > 2 large enough:

1 _
(E|L£(nzy*“r)(<p§)|”) P <(ave? (1 n s%—%—%).

Since ¢ ~ y3 and & &~ y*, this expression is bounded by a multiple of (1 Vv e)_% as
required in (7.6) (recall that 7| = —% —K).

In what follows, we use the notation and terminology from [18, Sec. 4] in the same
way as we did for this element t, and we prefer not to make references every time.

7.1.2 Theelement 7 =%

Using the definition (5.10) and the expansion [18, Eq. 2.16], the function sz/’ur can
be represented by the diagrams

Q O {
\3.0 3.0/ 3.{ 3.0 L]
)@ = W+ N -+t (7.10)
( ]
H ¢ "

Let us denote by “x/” the integration against the family of martingales given by
the predictable quadratic variation x — (91, q(x)), and by “<{” the integration in the
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family of martingales x — [9, o(x)] — (9, 4(x)). Then we can write (7.10) as

R N :
(MY 7) (o) = \f‘ + \f/ + \f/ -+ @
(]
[ J [ ] [ J
Z 4 Z

Let us denote the first two of these diagrams by Ls(l'[g’lr)(tp;) and LE(HZ’ZI)@?)

respectively, and let ¢, (HZ’SI) (goé) denote the expression in the brackets in (7.11).
Let us analyse the first diagram in (7.11). [18, Assum. 3] is satisfied for it with a

trivial contraction, and the bound [18, Eq. 4.16] holds with the sets @var =TI ={1,2}

and labeling L = {nil, nil}. The set B in [18, Eq. 4.16] needs to be @, while A

can be ¢, {1}, {2} or {1, 2}. Furthermore, we have anrl =2 and |\A’;\§fj| =2 and
the value of the constant v, in [18, Eq. 4.16] is —1. Applying [18, Cor. 4.5] to this
diagram, we get for any ¥ > 0 and for any p > 2 large enough

1 _ _
(Elee(M 1) @h)]")" S Gov o~ (14677573 4 2375¢79),

Recalling that || = —1 — 2«, we get the required bound (7.6).

For the second diagram in (7.11) we have Vyar = {1}, T = ¢ and the labeling
L = {¢}. However, the graph does not satisfy [18, Assum. 3]. To resolve this problem,
we note that multiplication of a kernel by ¢3¢ with a > 0 “improves” its regularity
by 3 — a, meaning that the singularity of the kernel now diverges like ¢ instead of
like ¢3. Then for 0 < a < % we can write

<>\
a0

L (727 (@) = 2@ \./ (7.12)

" @—>

and [18, Assum. 3] is satisfied. Then for any ¥ > 0 and any p > 2 large enough [18,
Cor. 4.5] yields

l -
(Bl (M220)H])" S @@ D0.v i 2 (ed 4 o35 H),
For% <a< ZTandE > 0 small enough the right-hand side is bounded by c,, (ave) L,

where ¢, vanishes as y — 0.
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The term ¢, (l'[;/’3 r) (wé‘) requires a more complicated analysis. Using the quadratic
covariation (6.2) and the definition of the renormalisation constants (5.4) and (5.5),
we can write

1 oo
(M) (el) = /D w?@(ﬁ > /0 ex/,Y_g(x—y>2(cy.a(s,&>—2+2ﬂ;«y,3y6g)ds>dz

2 b
YEA,

1 0 ~
+ 5/05 ¢§(Z)(83 > /m%t{?@ —92(Cy (=5, ) —2+2/3%y$3y6gy)d§)d2 (7.13)

e, -

forz = (¢, ) and where éy, o 18 the bracket process (6.2) for the martingale ﬁty,a used
in (5.1). This is the definition (5.1) which requires us to consider the two integrals:
for positive and negative times. Since the two terms in (7.13) are bounded in the same
way, we will derive below only a bound on the first term.

Using the rescaled process S, defined in (2.42), from formula (6.2) we then get

- -2, 3V3SV s,y tanh(ﬂzSXy (s, y)) +2(1 =5, 3) for § <71y 4,
Cy,u(s,y)—Zz ’ 6l = v/ g~ = ’ - ’
=256y 3Y°S), (8, )X}, o5, §) +2(1 = 55,,3) for § > 1y q.
From (2.32) we have 1 — 3¢, 3 = (9()/4). Moreover, the function tanh can be approx-
imated by its first-order Taylor polynomial: tanh(x) = x + O(x?), and (2.41) yields
Xy ()l < e almost surely. Hence, | tanh (88X, (3, 7)) — B8 X, (5, §)| < 8%¢°7 <
Y2+ almost surely uniformly in 7 and § < 7,.qa. Then the preceding expression
equals

C,uG.5) -2 = —256,38y°%S, (5, )X, (5, §) + Erry o5, §) for § < 14,

a0, - - ~ o~ ~ ~ ~ o~ ~

7 —236,37°8), (3. )X, o5, §) + Err, ,(5.§) for § > 1,4,
(7.14)

where the error terms are almost surely uniformly bounded on the respective time
intervals by [Err, o(5, )| <y and [Err), (5, 7)| < y*. Using (7.14), we
then write the first term in (7.13) as

Ty,a~
— Boy,37° / w?(2)<€3 > fo %/3—:5(1?—i)z(Sy(EJ)Xy(f,f)—g},)dE)dZ
De YeA,
OO~
— Bsey3v° /D wé@(é > i HY (&= (S 0E HX), 4G, ;)—gy)ds>dz
& ﬁeAg v,a

+Err), ,(2). (7.15)

where |Err)’\/’a(z)| < yo+9m almost surely, uniformly in y € (0,1] and z € D,.
In the bound on the error term we used the bounds on the error terms in (7.14), the
assumption —3 < 5 < —1 in Theorem 2.3, and the bound ngjé”’(z)2 dz < ¢!
which follows from Lemma 5.4 and the definition (5.4). We note that the assumptions
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The dynamical Ising-Kac model 729

on 1 imply 6 + 91 > 0, and hence all moments of the error term Erri‘,, «(2) vanish as
y — 0.

We denote the first two terms in (7.15) by ¢, (HZ’4T) (¢*)and (HZ T) (@) respec-
tively, and we start with bounding the first of them.

We first show that the rescaled spin field S, can be replaced in this expression by
its local average. After that we can work with the product of two spin fields in (7.15)
similarly to how we work with X )2/ We can now write

(M2 7) (¢) (7.16)
= —B,37° f % (z)( Z/ TG - DX, G DX, G ) - )ds)dz

yeA,

— By 3° / @} (z)< Z/ HY = DS G 9X, 6.9 - X, G )Xy G, y))ds)

yeAe

Using Lemma 6.3, the last term is absolutely bounded by a constant times 33137, and
it vanishes as y — 0. Using the a priori bound, provided by the stopping time (2.46),
the first term in (7.16) is absolutely bounded by a constant times

o
(xve)‘l‘ﬁeﬁ/z—l;ﬁ/ &3 Y AVG)?d5 < vy I TEE2T2)0 < vy T2,
O jea.
(7.17)

Here, we used Lemma 5.4 to bound the integral, because it coincides with the renormal-
isation constant (5.4). Since we assumed k > k, the preceding expression is bounded
by (A V&)1 < ek/2,

It is left to bound the second term in (7.15). As in (7.16), we get that ¢, (H;”Sr) (o)
equals

o0 ~ o0 _ _ B _
_,gy6/0 ey %Z(yﬁ(/r ey gog‘(t-}—s,)E—i-y)(X;,,a(t,)E)X;,,a(z,)?)—gy)dz>ds

yEA, Ve Xelg

up to an error, vanishing as y — 0. Here, the process X' ;,’a is defined as in (2.44) but
via the spin field O'}/,’a. Furthermore, we replace the constant &, by the function (6.26)
and get

— By / 3y M(yﬁ(/r

I s F 40,0 -y - gy)dt‘)ds

yehe e feAs
—ﬁyf’/o Z%y(y)z(/ 3N Q45 x4y (7.18)
yeA, xelA;

x (g;,,a(f, DX, o, 5) - €, (7 — ry,a))dz‘>ds.
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730 P. Grazieschi et al.

Applying Lemma 6.6 with any ¢ € (0, 1), the absolute value of the first term in (7.18)
is bounded by a constant times

yle 1f Zyﬂ(y)Z(/ Y @+ s E 4 IE - Ty.0) C/zdz>ds

yeAe xelg
(7.19)
Using the scaling properties of the involved functions, this expression is of order
y%e¢~2(1 v ¢)~¢. Recalling that ¢ ~ 3, it vanishes as y — 0.
Now, we consider the second term in (7.18). Multiplying and dividing the random
process in the brackets by (t—ry,u)’g , we estimate the absolute value of this expression
by

- By / Ze%/y(y)z(/ 3N @+ s E+ I -1, a)zdt)

yeAg XeA,

_n - - - -
X < sup (¢ — ":y,u) 2 X;,,a(ta x)X;,,a(t» X) _gy(t - Ty,a) )
re[ty,q,T]

for a sufficiently large 7. We can restrict the variable 7 by T in this formula because
SV and (pg‘ are compactly supported. Applying the Holder inequality and Lemma 6.7,
the p-th moment of this expression is bounded by a constant multiple of

I

Asin (7.19), this expression is bounded by a constant times yoele= (A ve). Recalling
that e = ey and ¢ &~ y3, this expression vanishes as y — 0.

The analysis which we performed the renormalised contraction of two vertices in
(7.10) will be used many times for the other diagrams below. In order to draw less
diagrams, we prefer to introduce a new vertex

) 2p\ 35
Y AT (/ ey |w§(z‘+s,x+y>|(z‘—ry,a)%dz‘)d] )2‘.

yelAe Ty, XeAg

7.1.3 Theelement 7 = ¢

The definition (5.10) of the renormalized model and the expansion [18, Eq. 2.16] yield
a diagrammatical representation of the map I1}"%z
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The dynamical Ising-Kac model 731

O o
O\ 3!0 /O (O\so /O 3!0
3,0 3,0 X 3,0 3,0
W) = M 3 AT (7.20)

S

Using [18, Cor. 4.5], for any ¥ > 0 and for any p > 2 large enough, we bound the
p-th moment of first diagram in (7.20) by a constant times

(A ve)” 2<1+8% * %—}—8%_'?2_5—}—5%_’2(%),

which is the required bound (7.6) with |t| = —% —3k.

We demonstrate once again how to analyse renormalised contraction of two vertices
in the second diagram in (7.20), and we prefer not to repeat analogous computation
in what follows. As in (7.11) and (7.12), we write

O O (@) O

(o A e 2
30 3.0 2(a 3) a0 ) 3.0 3.0 ) 3.0 3.0
N + AT - :

i T

forany 0 < a < % [18, Assum. 3] is satisfied for the two preceding diagrams, with
Voar = {1,2}, ' = {2} and the labeling is L. = {¢, nil} for the first diagram and
L = {V,nil} for the second. Applying [18, Cor. 4.5] to the first diagram, we get, for
any k > 0 and for any p > 2 large enough, a bound on the p-th moment of the order

9 9_~ 5
22(“_3)()»\/2)2_2“(8Z +e27%e” 2)

For % <a < % and k¥ > 0 small enough the right-hand side is bounded by ¢, (A v
¢)73/2, where ¢y vanishes as y — 0. The second diagram is analyzed similarly to the
third diagram in (7.11), and it can be also bounded by ¢, (A vV )32,

We now look at the last diagram in (7.20). By using equation (6.4), we can write

N T G- (AMy.a(D) =42y 0 Y YT G -0 Ay ()
%eT? 5eR feT} §eR
=486y—6/ %V(Z—z>3dmty,a(2)+4s?y—6/ TV (G - 23Cy a0z
D; D
As we explained at the beginning of this section, the kerneL%/ ¥ satisfies [18, Assum. 4]
with a, = 3, and hence [18, Lem. 4.2] y1elds the bound |Ji”’(z)| < (lzlls Vv &) 7.

Then we have |77 (z)3 | < (lzlls v ¢)~2 and [18, Lem. 4.2] 1mplles that jé”’(z)3
satisfies [18, Assum. 4] w1th a, = 9. This allows to write the last diagram in (7.20) as
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-0

&
=3

40y ~0e" 0y 4 4giy O /D /D Q@AY -3)3C,  ()didz,  (721)

2 (@) m—p @ <—

where we used the same trick as in (7.12) to “improve” the singularity of the kernel.
For a < 5, the first diagram in (7.21) satisfies [18, Assum. 3], and for any k¥ > 0 and
p > 2 large enough, [18, Cor. 4.5] allows to bound its p-th moment by a constant
multiple of

g%y 7% (h v e)%_“<1 + 8%_'?2_%).

For a > 3, this expression is of order ¢, (A V e)%’“, where ¢, — Oasy — 0,
which is the required bound (7.6).

Now we will analyse the second term in (7.21). Because of our extension of the
martingales (5.1), we need to bound separately the part of (7.21) with positive and
negative times. Because the bounds in the two cases are the same, we will write only
the analysis for positive times. Using (6.5) and changing the integration variables, we
can write it as a constant multiple of

y2 | 27 @3 / ¢} -(2)Cy a(2)dZdZ
D, R+><Ag

=y" iﬂ(éﬁ/

D, [Osfy.n]XAE

+y12 f Y (2)} f 9l =(3)(S) 4 (3) — X, 4(2))dzZdZ,
D [Ty,a,00) X Ag

0 @)(8, @ -y anh By’ X, (2)) )didz

(7.22)
where we used the rescaled spin field (2.42) and where S)//,a is defined by (2.42) for
the spin field o, ;.

Let us bound the first term in (7.22). From the decomposition of the kernel 5 v,
provided in the beginning of Sect.5, we get |27 ()| S (llzlls Vv ¢) 3. Then from
(22, Lem. 7.3] we get || p, X ¥(z)3dz < e=*. Approximating the function tanh by its
Taylor expansion and using (2.16), we write the first term in (7.22) as

y12 / A () / ol -(D)(Sy (@) — Xy (9))dZdZ + Erry s,  (7.23)
D, [0,7y,a]x A
where the error term Err,,  is absolutely bounded by a constant times

o e | @I (ey + AVIX, Dl + 1X, P13~ )dzdz
Dg [0,7y alx Ag

Sy sup( (6 + AVIX, Ol + 1X, Ol ),
t>0
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with 7 being the time variable in Z. Here, we used |’ D, l¢?_-(2)|dZ < 1. The a priori

bound (2.41) allows to estimate the preceding expression by y 18¢31=4 < 1,649 which
vanishes as y — 0 because n > —% in the assumptions of Theorem 2.3.

Now, we will bound the first term in (7.23). From the definitions (2.12) and (2.42)
we conclude that X, (¢, x) = & ZyeAs K, (x —y)S,(t, y). Then we can write

/IO L B(8,@ X, @) = f VLGS, G5 (1.24)

IO,Ty‘a]XAE

with Y2 (7, ¥) = ¢}_(1, %) =& 3 e, 92_=(T, y) K, (y — ). This function can be
viewed as a rescaled test function, which for any «; € [0, 1) and any k € Ng satisfies
I DXy _|lpo < e¥1A=5"Kls=*1 Then for any & > 0, Lemma 6.2 yields

K1 —K]
< aetA

‘ f Y ()8, (2)dz
D,

uniformly in A € [e!=%, 1]. For A < ¢!=% we can use IS, )] < y_3 and estimate

the left-hand side by a constant multiple of ¢~!. Since —1 < 5 < —%, from the two
preceding bounds we conclude that

1+k

< aeki(uve) T (7.25)

’ / vl 2(2)S)(2)dz
D,

Moreover, as above we have f D, 24 (z)3dz < e™*. Hence, the first term in (7.23) is

. _lg - _
absolutely bounded by a constant times ae*! (A v ¢)” =< . If we take k = 13&, we

get an estimate by ae“! (A V e)_%, which vanishes as y — 0. Taking «; close to 0 we
make « close to %, and Lemma 6.2 suggests that the test functions may be taken from
2
B;.
It is left to bound the last term in (7.22). Identity (7.24) with the time interval
[7y,a, 00) holds for the processes S)’,’a and X;,,a. Applying Lemma 6.5, we get the
same bound as (7.25), i.e.

3
/ VLGS O] Sy o
[Ty,a,00) X Ae

uniformly in A € (0, 1].
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7.1.4 The element 7 = <»

Using the definition (5.13) and the expansion [18, Eq. 2.16], we can represent the map
M)"%¢ diagrammatically as

O
O\zn 30/0 Ozn 3'0/ \3’0 Ozo mo
N N, \.J N
AN
! |
ta(HZ’aT)(%\) =0 3!1 /O + 2 O\ ?!1 30\. + O\ 3!1 /O + 3.1 —0
3,0\i/3,0 3,o\i 10 3,0\%{30 i /3 0 %
. & o &30
! ! ! !
& Z z z
( \3.0 o 30
30 30 30
\’Tl \T(\s,o \’T)
+ EX| + 2 3.1 ,:‘. + 2 30 31 0
30—0O 30 -
I Lo

N.q -«—

where the renormalisation constant c;ﬁ is defined in (5.8), and where the edge with the
label “3, 1” represents the kernel in (5.13), where “1” refers to the positive renormal-
isation (see [18, Sec. 4]).

Applying [18, Cor. 4.5], the high moments of the first and second diagrams are
bounded by a constant multiplier of (1 \V ¢)™%/2. Analysing contractions of vertices
in the same way as we did in (7.10) and (7.20), the diagrams number 3, ..., 7 are
bounded by ¢, (A v ¢) /2 with a constant ¢y vanishing as y — 0.

Regarding the eight tree, for any x > 0, we first rewrite it as (as before we use [18,
Lem. 4.2] to show that a product of singular kernels again satisfies [18, Assum. 4])

\../ .
\ 3!1 i = e_Z_ZK 3!1 N s (727)
. J

2 @) =— 0
~@
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where we multiplied some kernels by positive powers of ¢ in order to satisfy all the
hypotheses of [18, Cor. 4.5]. Once we apply it, we then get the bound

9 =~ 5 ~
2727216 RV 6)73+2K (82716 + 897/( e 4+ 8971( 675) 5 (Vv e)f3+2/< 6472K,

which vanishes as y — 0.
Recalling the definition of the positively renormalised kernel in (5.13), the expres-
sion in the brackets in (7.26) may be written as

(] ]
Ea 7°F
307 | M0 o 307 T30
e X '@ [ ) [
2 \3’0x‘l13'0/ — C;ﬁ -2 \3.0‘ 13‘0/ 30 - (7.28)
b (]
) ’ t
([ ] [ J
z z

The last diagram in (7.28) is readily bounded using [18, Cor. 4.5] by a multiple of
(AVe)™*/2 while the expression in the brackets requires some work. Using the notation
from (7.11), the expression in the brackets in (7.28) may be written as

e 7% 7%
307 | 30, 307 30, 307 a0 .
L w0 VX AV v "
2 3‘°‘ik3’0 +4 3,0\%(3,0 + 12 3,0\%{3,0 — cyT s (7.29)
L] o .
z
z z

! ! !

where the first two diagram are bounded using [18, Cor. 4.5] by ¢, (A V ¢)~*/2 with a
constant ¢,, vanishing as y — 0.

It is left to bound the expression in the brackets in (7.29). For this, let us define the
random kernel

{ )
307 | 3y
, =/ 30 Y7, 7.30
Gy (21, 22) v\.ololo/v (7.30)
[ ]

w

which may be written explicitly as

G, (1. 22) = f TG =T @ = ) F (21— 2) (731)

& DE
X A (22 — 230KV (22 — 24)Cy.a(23)Cy a(24)dz3dz4.
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where we used the bracket process (6.2). Then the expression in the brackets in (7.29)
is absolutely bounded by

dz; < sup
21€D;

2| Gy(z1,z2)dza — ¢y | .

/ |‘p?(zl)| ‘2/ Gy (z1, z2)dz2 — c;;
D¢ D, D
(7.32)

We need the following bounds on the kernel G,, .

Lemma 7.3 There exists a non-random constant C > 0, independent of y, such that

G, (21, 22)| < Cllz1 — 22lls vV ©) (7.33)

uniformly in 71 # zo. Moreover, for any 6 € (0, 1) we have
‘2/ Gy (z1,22)dza — C;; <cé, (7.34)
Dy

uniformly over zy.

Proof As we state in (6.2), we can uniformly bound C,, 4. Moreover, from the decom-
position of the kernel A, provided in Appendix Appendix A.1, we can conclude
177 (2)] < (lzlls V ¢)~>. Then the bound (7.33) follows from [22, Lem. 7.3].

Using the definitions (7.31) and (5.8), the expression in the absolute value in (7.34)
may be written explicitly as

2/ / / V(2 — 23X Y (21 — ) A Y (21 — 22)
D, /D, JD,
x A V(22 — 23) X 7 (22 — 24)(Cy,a(23) — 2)Cy a(z4)dz2dz3dz4
+4/ / / TV @1 = )7 (1 — ) A7 (21— 22)
D, JD: /D,

X AV (22— 230KV (22 — 24)(Cy,a(z4) — 2)dz2dz3dz4.

Moreover, we can write the difference C, o — 2 as in (7.14). After that, we apply
Lemma 6.3 to replace the product Sy, X, by X, X, up to an error term. Then the
preceding expression equals

—4/31/6/ / / HY (2 —3)H Y (@ — ) H Y (21— 22)
D¢ JDg J Dg
x KV (22 — 230X 7 (22 — 24)X,, (23) Xy (23)Cy,a(z4)dz2dz3d24

- 8/31/6/ / / KV (21 —3) A (21 — ) H Y (21 — 22)
D, JD. J D,

x AV (20 — 230 (20 — 24)X, (24) Xy (z4)dz2dz3dzg + Exry 5,
(7.35)
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where the error term satisfies

3.0] V7\3\0

6+3n | o~ 3,
\3.0
~

=3

~
(]
e
3,0

V's

|Erry,)\| 5 14 1
[ J
0
Using the bounds on singular kernels derived in [22, Lem. 7.3], we obtain |Exx,, ;| <
yO+3=¥ for any k > 0. From (2.46) we have the a priori bound 1X, )Xy ()]l <
/22 fort < 7y.q, Which allows to bound the first two terms in (7.35) by a constant

multiple of y0—3@—«/2=k — ,,3k/2=¥ Taking i sufficiently small, this gives the
required bound (7.34).

Applying (7.34), we bound (7.32) by a positive power of y. This finishes the proof
of the required bound (7.6) for the element 7.
7.1.5 The element 7 = "Tﬂ-

The definition (5.13) and the expansion [18, Eq. 2.16] allow to represent the map
117"t diagrammatically as

O O
SN 3!0 P O\ 3!0 (O o /O
3.0\l/3,0 3'0\l/ 30 30
: Y N
-
[S(H]Z/’ar)(q)?) = 3!1 O +3 3!1 3’0\. + 3 3!1 P (7.36)
l/3,0 i‘( e i/x,o
| t t
[ ] ([ J ([ J
z z z
([ J [ J
O~ [ I o | [I
( 30 ( 30 ] 3,0 30
30 l 30 20 30 l 30 30 30
N> 1 e« e e
+ 3 3'1 |

where as before the arrow “ —31— ” represents the positively renormalised kernel in
(5.13).

[18, Cor. 4.5] allows to bound the moments of the first two diagrams in (7.36) by a
constant multiple of (A Vv ¢)™*, which yields the required bound (7.6). Analysing the
contractions of two and three vertices as before, all the other diagrams, except the last
one, are bounded using [18, Cor. 4.5] by ¢, (A v ¢)™* for a vanishing ¢, as y — 0.
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To bound the last diagram in (7.36), we use a positive power of ¢ to improve the
singularity of the kernel:

* ?
xf(/ L)

1:/ — a9 3.1:/

t

z

“@—>

fora < % Then [18, Cor. 4.5] allows to bound the right-hand side by a constant times
P VRV R (89_’z ¢S 4ol 4 8277>,

for any ¥ > 0. Choosing appropriate values of a and k, we can estimate this by
¢y (A Vv e)™*, where ¢, vanishes as y — 0.

7.1.6 The element 7 = 7>

Using (5.13) and [18, Eq. 2.16] we can write

@) @) @)
© /O O\ 3!0 (O\W ? O\ ! /O
3.0 30 3,0 30 3l 3.0 30
\%A/ \%\ \)T/ f
(17 2) (0}) =O\.‘0 3.1 zo/o + 60\ . 3.1 :. + SO\.‘0 3.1 zo/o + M—0 (7.37)
v L e W s
t 1 t t
[ (] [ [
z z z z
O
O~ | O~
( 3,0 30 ( 3,0
30 3.0 30
A ; of Y
13 ! 132 PUMAIN 7301 4 60 AN
1 _ ® 31 ® l EN ®
3.0 O ~ e 3,0 e
i{_,z.o/ 3,0\{130 f \ikm
t t . t
[ ] [ J z [ ]
z z z
o O ([ J
30 |\30 | .\20 OA | 30
3.0 N (3 / 30
v \i 30 30 \;&(j
. 0., 10 \)o/ .
+ O\ 3!1 /O + 3 3!1 30,:\. + 6 3!1 /o + 3,1 30—O
3.0 30 . 30 —
\lA/ i/ 30/ ("4 l‘/ %0/
t t tf
[ ] [ ] [ ] (]
z z z z
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o b @@
R

Using [18, Cor. 4.5], the moments of the first two diagrams are bounded by a constant
multiple of (A Vv ¢)~* for any & > 0. Analysing contracted vertices as before, all the
other diagrams, except the expression in the brackets, are bounded by ¢, (A V e) 7
for any & > 0 and for vanishing ¢, as y — 0. Here, the contraction of five vertices
is analysed in the same way as a contraction of three, with the only difference in the
powers of ¢ in multipliers.

Now, we will bound the expression in the brackets in (7.37). Recalling the definition
of the kernel in (5.13), we can write

(@) (@) (@)
3!0 3!0 3!0
% 0 | 0 i
2 /3,0”}'1\3,0\ _ c// zl() — 2 /3,0}'"3,0\ _ c// 3!() _ 2 /3 0/, \30
o’ e y o » e y o’ ()

21 (@) m— @ <—:

Applying [18, Cor. 4.5], the moments of the last diagram are bounded by a constant
multiple of (A v ¢)™* for any ¥ > 0. Similarly to (7.29), we can write the expression
in the brackets as

(@) (@) (@)
PR EAAS B
207 N AT+ 2T N = o L a8
<>\3.0 l/ 20/<> V\B,O l 30/<> V\:’i,o l 3,0/v Y
NI N N

" o—>

" —

O e
©@—>e2—0

where the first two diagram are bounded using [18, Cor. 4.5] by ¢, (A V ¢) /2 with a
constant ¢,, vanishing as y — 0.
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Now, we will bound the expression in the brackets in (7.38). We write

O O
3!0 3!0
; 0 ; o
AR PARS
257 N g = 22T S = Y+ Erru) (739

where the error term Exr ; is defined via random kernel (7.30) and can be bounded
as

sup ‘O—3,o—>.

|Exr, a(2)] S sup
22€D; 2

2| Gy(z1,z2)dza — ¢
z1€D,

D,

(we recall the renormalisation constant (5.8)). Using [18, Cor. 4.5] we can bound the

high moments of the last supremum by a constant multiple of e 2 , while Lemma 7.3
allows to bound the first supremum by a constant multiple of ¢/ with 6 e (%, 1).
Hence, all high moments of the error term vanish as y — 0.

It is left to bound the expression in the brackets in (7.39). For this, we define the

kernel
2

3.01?‘3,0
Gy(z1,22) = 30 e,
3,n‘lK3,n
[ ]
Z1
and we define for any smooth, compactly supported function ¥ : R* x R* — Rits
“negative renormalisation”

(%, Gy) () ::/D /D Gy (z1,22) (¥ (21, 22) — ¥ (21, 21))dz1dza.

This identity defined %, G, as a distribution on R* x R* (more precisely, %, G, is a
function in the first variable and a distribution in the second one). Then the expression
in the brackets in (7.39) may be written as

/D /D /D ¢?(Z1)(f%)yGy)(Z1,zz)i/V(Z3 — 22)d9M,, 4(23)dz1dza.

We note that this expression is well defined, because the distribution %, G, is con-
volved with smooth functions. It will be convenient to represent this expression as a
diagram. For this, we denote the random kernel G, by an edge “ wsow 7, and we
denote #,, G, by “ ss-1wv”. Here, the label ““5” refers to the order of singularity of
G, (which can be proved similarly to (7.33)), and the label “—1" refers to the order
of negative renormalisation (see [18, Sec. 4]). Then the preceding expression can be
represented as

@—> e W5 - 1We<«30—- -
z
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Applying [18, Cor. 4.5], the high enough moments of this expression are bounded by
constant multiples of (A V ¢)™* for any k > 0.

7.1.7 The element 7 = ¥

The definition (5.7) and the expansion [18, Eq. 2.16] yield a diagrammatical repre-
sentation of the map IT}"“¢

3 7 ?
@) O O3y O @ o @)
N, 3030 : N
\ 30 / ( 30 )
LS(HZ’“t)(@) = \,i/ + 6 30\_7}‘(//3\0 + 4 “)\3.)(_/30
[ J [ J [ J
z z z
N s
+ \_,.Z/ + 3 3’0\}‘/4/3'0

no—>s

i

The high enough moments of the first diagram are bounded using [18, Cor. 4.5] by
a constant multiplier of (A Vv ¢)~2, which is the required bound (7.6). Reducing the
singularity of kernels in the same way as we did above, [18, Cor. 4.5] allows to bound

the moments of the other diagrams by ¢, (A v ¢)”>7, for any k¥ > 0 and where cy
vanishes as y — 0.

7.1.8 The element 7 =

Similarly to the previous element, we can write

O
O\ 3'0 /O O~,, >,0 ) .:\ C]>
o 30 | 30 o \ \J 50 O 30 )/m /O
(M%) l) = \30\},i{/20 +10 30\)1( 3,0 +10 30\3. 3,0
(] ([ J [ ]
z z z
- - ¢
\303 .\—\30} o 3,043!0%30 ?\30 30 ? O
o 30 \){30\0” (10\)} 30/+ &)iep +15 30\). 050
TK;()/ 10_/K/ T Tﬁ/
[ J [ ] ([ J [ J
z z z z

The first diagram does not satisfy Assumption 3(2) in [18], which means that we cannot
bound it uniformly in y. This is the reason why we assumed a weaker bound on this
element in Definition 4.4. Multiplying the diagram by y ~ ¢!/3, we can decrease the
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order of singularity of one of the kernels:
Cl) O
le/ O‘S/so l zo’o

1

Then Assumption 3 in [18] is satisfied and by [18, Cor. 4.5], the moments of the
first diagram are bounded by a constant multiple of (1 v ¢)~'3/6, and, reducing the
singularity of kernels as before, the moments of the other diagrams, multiplied by y,
are bounded by ¢, (A vV ¢)~3/6 with ¢y vanishing when y — 0.

7.1.9 Proof of the bounds (7.7)

We draw * --30- >  for the kernel 7%, because it has the same singularity asji/ Y (see
Appendix Appendix A.1), and we draw “—s300—> " for the difference 5~ -0 (Jif v o—
V%) because it satisfies [18, Assum. 4] with a, = 3 + 6, for any 6 > 0 small
enough (see Appendix Appendix A.1).

We start with proving the bound (7.7) for the element 7 = T. As we described in
the beginning of Sect.7.1, the difference Y — AV satisfies [18, Assum. 4] with
a, =340, for any & > 0 small enough, and we represent this difference by the edge
s00—> " with the multiplier 87. Then we write the function ITY""¢ — I"I)Z/’S’ar as

LE(HZ’ar — H’Z/’S’ar)(tpé) = 8’0—s0—>ee—eo,
z

with the kernel given by
K5o @) = / L@ (A = A7) (@~ 7 dz.
D,

Applying [18, Cor. 4.5], we get for any £ > 0 and p > 2 large enough

1
(Elee(m2r=n2 > 0)@h)|") " S 87 Gveo 27 (1427 Fe73) S o Gve) 377,

which is the required bound (7.7) for the element .
Now, we will prove the bound (7.7) for the element T = **. Similarly to (7.11) we
can write

Q o o RPN O,

/
3,0 3+6.0 3460 30 3,0 34600 34600 3,0

w00y = 8f NV f Ny \,.J + 80 \n«" (7.40)

i

" @—>

[ ] ([ ]
z z
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/V\ /’V\

3()

+ . G +cy)T s.(x - (c%(;-%—c;_a)T .
®

Z

" @—>

The moments of the first four terms in (7.40) are bounded using [18, Cor. 4.5] by a
constant multiple of 7 (A v ¢) "' ~¢ in the same way as we bounded the respective terms
in (7.11). We prefer to provide more details for the two expressions in parentheses in
(7.40). In the same way as in (7.13), we can write the whole expression in the last line
in (7.40) as

1
E/ (PZ(Z)( Z/ %V = )—Ji/ya(x y))
yeA,
(CaG.5) —2+ Zﬁ%y,gyﬁgy)d§>dz
1 0o -
+3 /D ¢§<z>(e3 > / (ﬂ_§<f—&>2—%,¥;§@—i>2)
£ &eAg —0o0

(Cya(=5,5) — 2+ 2B5,37°C )ds)dz

We bound this expression in the same way as we bounded (7.13), with the only
difference that now we bound the difference of the two kernels as

5 3967179

fD (;ny(z)2 —j{fﬂ(z)z) dz

(see explanations at the beginning of this section). Hence, the expression in the last
line in (7.40) is bounded by constant times 8% (A v e)~ 170 as required.

The bound (7.7) for the other elements in YV can be proved by analogy, and we
prefer to provide only the idea of the proof. For any element t € JV we can write

(M0 — 207 (@) = Y e (MY e = 12 r) (o),
ieA

for a finite set A, and where the new maps I1)"' ¢ and Hg’(s)’lr are coming from

expanding products of martingales [18, Eq. 5.1]. These two maps can be represented
by diagrams, as we did above, with the only difference that the edges in the diagram

of H)Z/’(a)’i T incident to the noise nodes are given by the kernels V3. We can further

write
: o .y
(e =) ) = 3 (O ) o), (7.41)
J€B;
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where the diagram for ¢, (I1}" (O T)(¢?}) is obtained from Ls(l'[y (8.4 T)(¢}) by

replacing one of the kernels incident to noise nodes by AV — 73 and some other
nodes by v,

Applying [18, Cor. 4.5] to each element in (7.41), in the same way as we did in the
previous sections, we get the required bound (7.7).

7.2 Proof of Proposition 7.1

We start with proving the required bounds on the maps I17>® and I1"-%®. From the
preceding sections we conclude that in the setting of this proposition, for k > 0

sufficiently small and for every T € W&\ {«0= ¥, '%, %, ¥ with |z| < 0, we have

E[| (om0 @h[P] S 20400, g0 @] £ ITHOr, (420)
and

E[| (1T — LSHZV""%)(@)\”] < (TP gop, (7.42b)

E[|(H§”ar _ ng’s’“r)(z)i”] < ot+DP 5P (7.42¢)

uniformly over z € [T, T] x [—1, 1], ||z — zlls < e and other quantities as in
(4.12a). For the element T = *¥* these bounds hold with |t| replaced by || + %
and the proportionality constants of order y ~”. In these and the following bounds the
proportionality constants depends on p and 7', but are independent of all the other
quantities. These bounds readily yield the respective bounds for the elements 'Y' and
'ﬁ?‘, because of the definition (5.11) and the simple bounds % < ¢ < (A Vv ¢)? and
7/6 /S V22_1/3 Sj )/()\, V. 2)2—1/3_

It is left to prove these bounds for the symbols " and . We will prove stronger

bounds o
E[[(M7°9)@"] S (12 = 2lls v &) 7,

$ (1E|+7) (7.43)
E[|(7° - M2 0)@)|"] < (I - 2l v o) HEPa,

for T € {'Y', "T’}, from which the requjvred bounds (7.42) follow at once. From the
definition (5.12) and the expansion of JZ7, provided in Appendix Appendix A.1, we
have

1

(E[|(l‘[ya )@ " ])% z_:( [|Ls (M%) (K7 (z =) — K""(z = 9)|" ])7

(7.44)
forz € {**, ). In order to estimate this sum, we need to consider two cases: ||z—2z||s >
27" and ||z — zZ|ls < 27".
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If |z — zlls = 27", then we apply the Minkowski inequality to bound the n-th term
in (7.44) by

(E[Jue (2 "2) (R7 "z - -))|”])% + (E[|ee (M2 e) (R7 2 - -))|”])%. (7.45)

Moreover, from the identities IT7"* = TIY*I and Tt = 7 for T € {%, ¥} (the
first identity follows from the definition of the model, and the second identity follows
from Table 3), we can replace ITY"® in the first term in (7.45) by I'IJZ-/’a. Then the bounds

(A.19) and (7.42a) allow to estimate (7.45) by a constant multiple of 2~ (%I+n Then
the part of the sum in (7.44) over n satisfying ||z —z||s > 27" is bounded by a constant

times o I
> 27O gz — 2l v )T

0<n<M:

lz=Zls=27"

If |z — zZ|ls < 27", then we need to distinguish the two cases n < M andn =M.
For n < M we can write

3
Krmz—5-K"z-7 = Z/ 8, K7 (2 +u — D)du,
i=0 vV Li

for line segments L;, parallel to the coordinate axes, such that their union is a path
connecting the origin and z — z. In particular, the length of each L; is bounded by
lz — zll, where so = 2 and s; = 1 fori = 1, 2, 3. Then we have

3
(M) (K" @ =) = K" (2 =) = ) / te (235, 7) (8, K" (2 + u =) du,
i=0 v Li
where we replaced IT)"® by H;’fu in the same was as we did in (7.45). The bounds
(A.19) and (7.42a) yield
3

< Zz-(lfl—ﬁﬁ-l?)nnz _ z“:;'
i=0

S =

(EI:|(3(HZ’G‘[)(KV”’(Z — ) — KV (7 — ))|p])

Since |T| —s; < 0, we can take ¥ > 0 small enough, such that |T| —s; + k¥ < O.
Then the part of the sum in (7.44) over n satisfying ||z — z||s < 27" is bounded by a
constant times

3

s (178 4R - T|+ic
lez—zllﬁ’ Z 2= (ITl=si+i)n §(||Z—Z||5Ve)m 3
i=0

O§n<1171:
lz—zlls<27"

In the case n = 1\71~we have ||z — z||s < ¢, and the radius of support of the function
KYM iz —%) — KM (7 — %) in % is of order ¢. Then (A.19) and the second bound in
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(7.42a) yield

- . 1
(B[l (mz ) (R & = — RrH o =) ])7
S f K7 G —2) - R (o - 7)]dz < o7
Dy

S (I —Zlls v )
This finishes the proof of the first bound in (7.43).
The second bound in (7.43) can be proved by analogy, but instead of (A.19) we
need to use - -
|Dk(Ky,n _ Ky’n*sz,S)(Z)| < C892n(3+\k\5—9)’

for respective n and k. This bound follows readily from the properties of K7 and

0y,8-
The bounds on I[1":% yield the bounds on I'”*%. Indeed, the definition provided above
(5.14) yields 2%t = v — (Y1) (2)1 for T = V", and from (7.43) we get

E[[rzee]s] = B[|(M0) @[] < (1 — 2l v )97,

EI:’(FZ);(J _ Fzyz,a,a)_[|g] _ E[|(I—I;’a‘t _ HJZ/,(S,aT)(z)’P:I /S (||Z —Z|s Vv e)(\r|+l?)[189p,

which is the required bound. In the same way we get bounds for all other elements
T € W such that T ¢ # .

Now we will use a Kolmogorov-type result to show that the bounds (7.42) and

(7.43) yield (7.5), with a small loss of regularity. For every T € W\ (s, *¥", 'ﬁrf'}
with |7| < O the bounds

E|: sup sup sup A"T'P|(18H§’“r)(¢§)|p} <1
rele,1] pep? z€K ’

E|: sup sup sup A~ 1P| (i, T — LSHZ"S’GI)(@)}’?} < 80,
rele.1] gep? z€K

uniformly in y > 0, can be proved in exactly the same way as [20, Lem. 10.2]. For the
element T = *W» these bounds hold with ||+ % in place of |t| and the proportionality

constant of order 7. These bounds for the elements '?' and ‘Y‘ readily follow as
in (7.42). Furthermore, from (7.43) and the Kolmogorov continuity criterion [25] we
conclude that

sup H sup z H
zzek (lz = zlls V &)IFIP zzek Uz —2zlls ve)lFl?

~

E[ ((M7°2)(@)1” }q E[ |<H§'“f—nzy’8’°f><2)|ﬂ]<59,,,

for 7 e {Y, '\T’} and for any compact set K C R*. Finally, we get the required bounds
on the maps I'”>® and I'"-%-%, because they are defined in (5.14) via [T1"-% and I17-%:%,
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8 A discrete solution map

In order to prove the desired convergence in Theorem 2.3, we first need to write
equation (2.54) in the framework of regularity structures.

We use the discrete model ZJ:* construction in Sect.5, and define the integration
operators on the space of modelled distributions via the kernel G? as in [13, Sec. 4].
More precisely, we write G? =AY+ asin the beginning of Sect. 5. Then we use
the singular partjif Y to define the map KC} as in [13, Eq. 4.6] for the value 8 = 2. We
use the regularity « by analogy with (3.8). We note that we do not need to consider
the map AY from [13, Eﬂ 4.16], since it vanishes in our case (see [13, Rem. 4.10]).
We lift the smooth part 7 to a modelled distribution R’ 143« by a Taylor’s expansion
as in [22, Eq. 5.17]. Then we define the map

PV =Kl + R} 5 R"® (8.1)

on a suitable space of modelled distributions, where R"*" is the reconstruction map
associated to the model by (4.16). In order to use Theorem 4.8 and Lemma 6.2 in [13],
we need to show that the respective assumptions in [13] are satisfied. Assumptions 4.1
and 4.4 hold trivially, because the action of the model Z};" on polynomials coincides
with the canonical continuous polynomial model. Assumption 4.3 follows from our
definition of the space X in Sect.4.3 and properties of the kernel A, Assump-
tion 4.7 can be shown by brutal bounds of the terms in [13, Eq. 4.6], combined with
the definitions of discrete models and modelled distributions from Sects.4.3 and 4.4.
Finally, Assumption 6.1 follows readily from the Taylor’s approximations and smooth-
ness of the function JZV. As we said above, the map A" vanishes in our case and
Assumption 6.3 trivially holds.

Our goal is to write the solution of (2.54) as a reconstruction of an abstract equa-
tion of the form (3.10). However, the complicated non-linearity in (2.54) makes the
definition of this equation more difficult.

As follows from (4.4), applying £ increases homogeneity by 2. However, applying
& to a modelled distribution f € D¢ does not give in general an element of D5*2,
because £ vanishes on polynomials. To resolve this problem, we define the domain of
this map

Domg := {2, «0», 1}

and consider a modelled distribution of the form

o= Y f@r (82)
teDomg
Then we define the map
& )@ =E(f@) +v* A1 (8.3)

We need to consider f of the form (8.2), because f should be in the domain of the
map E. If RV*® is the reconstruction map for the model ZJ;°, then we use Remark 5.2
to conclude
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RE @D =y Y. @R )@) =y (R f)@). (84

teDomg

Moreover, we can show that this map increases regularity. Throughout this section we
are going to use the time-dependent norms on modelled distributions introduced in
Remark 4.8.

As we showed in Remark 5.3, the model and the reconstruction map are extended
to the symbol E. Then the map (8.1) can be applied to this symbol and we define the
modelled distribution

Wy a(2) == P"14(E)(2). (8.5)

Furthermore, for ¢ = 1 + 3« and n € R we define the abstract equation

Uya= Q< (GVX;Q + P1(Fy (Uy.a) + Ey) (Uy.) + EP Uy.a)) + ﬁWV’“)’
(8.6)
for a modelled distribution U, o € D" (Z1:"), where G¥ X 3 is the polynomial lift of
the operator (2.36) applied to X 3 where the discrete heat kernel G is defined on A,
by (2.52). The function F, describes the non-linearity in (2.54) and is defined as

F,(Uy.q) i= Q50<(—%3 + By U3 o + (Ay + A)Uya), 8.7)

for constants A, and B, whose values will be chosen in Lemma 8.1. We need to
consider these constants because of our definition of the renormalised products in
(5.7). As we will see in the following lemma, we need to take constants A, and By, in
(8.7), vanishing as y — 0, in order to obtain exactly (2.54) after reconstruction of (8.6).
The function E)(/l) in (8.6) describes the remainder after the Taylor’s approximation
of the function tanh in (2.15), and is given by

1
EM(Uy.q) = o R (BY*R"°U, )1, (8.8)

where R”'® is the reconstruction map, defined in (4.16), and Rs : R — R is the
remainder in the Taylor’s approximation of the fifth order of the function tanh, i.e.

3 5
Rs(x) = tanhx — x 4+ — — =, (8.9)
3 5
The function E )(,2) in (8.6) is defined as
EPU,.,) = ’35? S —(RV4Q.U3 )1)+Hs(R""*U, 4, 2¢,)1
y ( y,a) ~—? y Z (QrUy,a_( QrUy,a) >+ 5( Uy,cu Cy) s
TE{*Wr, 0}

(8.10)
where Q- is the projection from the model space to the span of 7, Hs is the 5-th
Hermite polynomial (5.6) and the renormalisation constant ¢, is defined in (5.4). The
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expression in the brackets in (8.10) is spanned by the elements of Domg¢, which allows
us to apply the map Ey.

A natural definition of the non-linearity (8.10) could be %S QSOE}, QSOUSM. This
definition however uses elements of negative homogeneities which appear in the prod-
uct U S,a‘ We can make sense of it only if we add extra elements into the model space
7* and define the map Z’y on these elements. In order to have the dimension of
7°* minimal, we have to make a more complicated definition (8.10). More precisely,
in the brackets in (8.10) we keep only the two elements of U;a with the smallest
homogeneities (these are Q; U;’a with T € {*¥», «®¥}). The other parts of U;’u we
reconstruct and write in (8.10) as a multiplier of 1. Then if we apply the reconstruc-
tion map R”"® to the expression in the brackets in (8.10), we get Hs (Ry’aUy,a, 2cy),
which is a renormalised fifth power of the solution R?"*U,, 5. We use the renormalisa-
tion constant 2c,,, because of the multiplier /2 of the force term Yy, qin(2.54) and a
scaling property of Hermite polynomials. More precisely, in order to renormalise the
fifth power of V2 Y, a, we need to use Hs («/E Yy.a 2cy).

We can show that reconstruction of (8.6) recovers the discrete equation (2.54).

Lemma 8.1 Let Z1:* be the model constructed in Sect.5, and let the reconstruction
map RV'® be defined for the model Zfi/f;a in (4.16). Let U, 4 € Dl+3k’"(Zliyf;a) be a
solution of (8.6). Then it may be written as

3
Uy,a(z)=f2T+vy,a(z)1+(—%+By)(2ﬁ*?+6vy,a(z)‘f)+ > @)X,
i=1,2,3
(8.11)

for some functions vy q, U)(/l,)a TR, x ’]I‘g — R. More precisely, we have vy, ¢ = Xy q —
V2Yy.q where Xy q i= RV%Uy.q, Yya = RV, and v, 4 solves the “remainder
equation”

[ ’33 3
vy.alt, x) =P/ X0 (x) + /0 P,V_S((—? - By)(vy,a +v2Y,4) (8.12)

(€ + A)(vy.a+ V2V, 0) + Ey,a) (s, x) ds,

where E., o is given by (2.15) with X, o replaced by v, o + «/EY),,Q.
Furthermore, there exist A, and B, vanishing as y — 0, such that the function
Xy.a = RYV*U, 4 solves (2.54) with the renormalisation constant
¢y =2(cy +¢, —2cy), (8.13)
where ¢, c;/ and c;ﬁ are defined in (5.4), (5.5) and (5.8) respectively.

Proof The expansion (8.11) is obtained in the same way as (3.13), by iteration of (8.6).
If we define the functions X, = R"%U, 4 and Y, o = R?*?, then we obtain

X,.a(2) = V2V, 4(2) + vy.0(2), (8.14)
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where the reconstructions of the elements with strictly positive homogeneities vanish
(see Remark 5.1). Using (8.11), we can write

3
Q0Us 4(2) =224 + 6v,, a(2) ¥ + 12&(—’% + BV)QK- +3v20y,4(2)%?

+ 24(—’%3 + By )vy.a(@) P+ 36(—'3; + By )y.a(2)

+4 30 v @XiV + vy0()°L
i=1,2,3

From our definition of the model in Sect.5.2 and the reconstruction map in (4.16)
we have (R"*1)(z) = 1, (R"*™)(2) = H2(Yy.a(2), ¢y + ), (R7*M)(2) =

Hy(Yya(2),¢y) for n # 2, (R¥*X¥)(2) = 0, (RV*P)(2) = =3¢, Yy.a(2),

(R%“%) (z) = 0 and (RV%»)(z) = —c;ﬁ. Applying the reconstruction map to the
preceding expansion, we get

(R"*Q<0U; ) (2) =2v2(Yy,a(2)* = 3¢, ¥y.a(2)) + 6Vy.a(2) (Vy.a(2)* — ¢ — ¢},

3
— 36«/5(3; (—% + By)Yy,a(Z) + 3“/§Uy,a(z)2yy,a(z)

183
— 36C§; (—? + By)vy,u(z) + vy,a(Z)3

=X,.q(2)° — 6(cy + ¢, —2¢c, B - 3B)))Xy.qa(2),

where we used (8.14). Hence, the reconstruction (RV’“F}, (Uy,a))(z) of the function
(8.7) gives

3
(=5 4 B,) (X0 =66y ¢, 265 = 3B,)) X0 + (Ay +4) X, 0(2).

Reconstruction of the function (8.8) is trivial: (RV"IE)(,U(U},,Q)) (2) = 55Rs (/3)/3

1
o
Xy, a(Z)) .
Now, we turn to reconstruction of the function (8.10). Expansion (8.11) yields

Uy a(2)? = 428 + 200, 4(2) ¥* + U,y 4(2), (8.15)

where the remainder ﬁyya(z) takes values in the span of elements with homogeneities

greater than —% — 3. Then the expression in the brackets in (8.10) is

43/248% 4+ 200, (2) W — (ME (RY-%) (2) + 200, 4(2) (R *“¥*)(z)

—H5(X,.a(2), 2cy))1.
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Using (8.3), the function (8.10) equals

5
EY Uy (@) = % <4ﬁ‘ﬁ?' +2005.0)" "

- y6(4ﬁ (RY922%) (2) + 200y q(2) (RY %) (2) — Hs(Xy.a(2), 2cy))1),

and applying the reconstruction map gives

5
(R7EP (Uy0)(2) = y6%Hs (Xy.a(2), 2¢7)

’35
- yﬁ?(xm(zf —20¢, X, 4(2)> + 60c§Xy,a(z)).

Here, we used the definition of the reconstruction map (4.16) and Remark 5.2.
Applying the reconstruction map to both sides of equation (8.6), using the property
RY%PY = G and using all previous identities, we obtain

Xya(t,x) = G X0(x) + V2 Y, a(t, x)
> B’ 6 a5 3
e [ O B -y )
+(¢) +A4) Xy o+ Ey,a)(S, x)ds,
where the error term Ey, 4 is the same as in (2.54) and where
¢, =2(8* = 3B,)(cy +¢, —2,(8* = 3B,)) + 122y°° + A, (8.16)
In order to have this equation equal to (2.54), we need to take B, = 4y ,35c), and
A, from the previous identity. Lemma 5.4 suggests that |B, | < e which vanishes as
y — 0.
It is left to show that if we take €, of the form (8.13), then the constant A,,, defined
via (8.16), vanish as y — 0. We recall that 8 depends on €, via (2.16). From (8.13)
and (8.16) we have

Ay ==2(8" = )(c, +¢,) +4(B° — D, +6(cy +¢,)B,
—12¢) B, (2% — 3B,) — 126 y°B°. (8.17)

Using (2.16) and (8.13), we can write

3
B-1= > <k>y6’<(2(cy+c’y—2c’y/)+c+A)",

k=1,2,3

B—1= > <2>y6k(2(cy+c’y—2c;)+c+A)’<.
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From Lemma 5.4 we have ¢, = cy¢”! + ¢, and ¢, = ciloge + ¢, where
[¢,] < Clloge| and |E;ﬁ| < C for some constant C > 0 independent of y.
Moreover, the definition (5.5) boundedness of c;, uniformly in y € (0, 1]. From
(2.32) we furthermore have ¢ = y3%y,3 and hence ¢~! = y‘3 + y‘3c%3, where
lcy,3] < y*/(1 —y* — 0as y — 0. Using these bounds in (8.17), we can see that
A, vanishes as y — 0.

Remark 8.2 In what follows we will always consider equation (8.6) with the values
A, and B, from Lemma 8.1, which makes the reconstructed solution of (8.6) coincide
with the solution of (2.54).

Let Z,’i/f;a’a be another random discrete model constructed in Sect.7 and let us con-
sider equation

3
Uy.s.a= Q< (GV X9 s +P"1,.00 (—%( y5.0) +(Ays +A)Uy,5,a) +\/5Wy75,a),
(8.18)
which is defined in the same way as (8.6), but with respect to the model Zliyf;a’a. The
initial condition at time O is

XD 500) =6 Y Y — NX) (), (8.19)
YEA,

where X 3 is defined in the statement of Theorem 2.3 and the function v, 5 is a discrete
approximation of the function s from (3.11):

Yy s(x) i=e73 / ¥s(y)dy.

ly—x|<e/2

As in Lemma 8.1 we can readily conclude that there is a choice of A, s such that the
function X, 5.4 = RY*%U, 5 4 solves

3

' B 3
Xy 5.a(t,x) = P[VX)(zga(x)—i--/(; P}LS(—?(X),,S,Q) +(Cs +A)xy,5,a+f25y,3,a)

(s, x) ds. (8.20)

where the driving noise is defined in (7.3). This equation is a modification of the
Ising-Kac equation (2.54), driven by a mollified noise and without the error term. The
renormalisation €,, 5 we take to be in the form (8.13), but defined via the constants
.85 C;/,s and c;;’(; introduced in (7.4).

Now we will study the solution map of (8.6). In particular, we need to show that it
is continuous with respect to the model and the initial state.

Proposition 8.3 Let Z:" be the random discrete model constructed in Sect.5 and
let the initial state X 3 satisfy the assumptions of Theorem 2.3. Then for almost every

realisation of Z1;" there exists (possibly infinite) Ty o > O such that (8.6) has a unique
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solution Uy, 4 € D£ "(Zl,ﬂ ) on the time interval [0, T, o), where { = 1 + 3k and the
constant n is from Theorem 2.3.

Let moreover X, q = RV’C‘U%u where RY"% is the reconstruction map (4.16)
associated to the model. Then for every L > 0 there is T)/La € (0, Ty,a), such that

limy — oo T)fa = T,.q almost surely, and
sup [1X,.a0IS < C. 8.21)
1€[0,TATE,]

forany T > 0, provided ||X ||(e) < L and || ZIlft Il (Tel_l < L, where we use the norm
(2.22). The constant C depends on L and is independent of y.

Let fof;é’a be the model defined in Sect.’l. Then there is a solution Uy, s, €
Dg "(Zl}:ﬁs ¢ ) of equation (8.18) on an interval [0, T, s o). Let furthermore X, s o =

RY ’aU 5.00 Where RY"%% is the respective reconstruction map Then there exist

o > O, 9 > 0 and T),L,g,a € (0, Ty 5,a), such that limp_, T% 5.0 = Iys.a almost
surely and
sup 1(Xya — Xy 5.0 OIS < €87, (8.22)
te[O,TATyIjaATVIja,q]
uniformly over 8 € (0,80), provided | X9 415 < L N1ZE NSy, < L. 1X0, —

X0 5 oIS < 8% and N2l 21N, < 5,
Proof To prove existence of a local solution, we use a purely deterministic argument.
For this, we take 7 > 0 and any realisation of the discrete model Z};, such that
Nz |||(e) 1 is finite. Proposition 7.1 suggests that it happens almost surely. The spaces
of modelled distributions are considered below with respect to ZJ;.

We proved in Lemma 8.1 that if a solution U,, 4 exists, then it has the form (8.11).
Hence, in this proof we will be looking for a solution in this form.

Let My’a(U,, «) be the right-hand side of (8.6), restricted to the time interval [0, T'].
We need to prove that /\/ly’ is a contraction map on D§ 7, uniformly in y, for T > 0
small enough (see Remark 4.8 for the definition of the time- -dependent space). More

precisely, let us take Uy q, U,,,Cl € DE,T' Then we will prove that for some v > 0 we
have

) 5
WM Uy DS, SIXDUS + T (14 10y ol ) (8.232)
—_ 4 —_
WM Uy 0); ME Ty DI S T (1 MUy all) ) WUy 03 Uy allS) 7
(8.23b)

Then for any 7" > 0 small enough, My’a is a contraction map on Dg? The propor-

tionality constants in these bounds are multiples of || Z}: |||(Tezrl, which implies that

()

0<T <T,,, forsome T, o > 0, depending on |||Zﬁffta|||T+1.
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We first prove the bound (8.23a). For ¢ > 0 and 7 > —2, we apply [13, Thm. 4.22]
and get

MUy NS SNGY XN 7+ Wy all) . (8.24)

e (L T |||E;1><Uy,a>|||§f)ﬁ;r +IED W, IS ).

for some v > 0. We are going to bound the terms on the right-hand side one by one,
and a precise choice of ¢ and 1 will be clear from these bounds.

Similarly to [20, Lem. 7.5], we get ||GY X0 |||§f)n r S ||X0 ||g,7) Furthermore, from
[18, Lem. 2.3] and [13, Thm. 4.22] we have the bound || W),,a|||§e)77 7 < TV on the term
(8.5).

Now, we will bound the function (8.7). From [20, Sec. 4 and 6.2] we get

3
WEy Wy DI 7 S MU 00yl 7 S (U all )+ Uy all

for ¢ <¢ —1—2«kand n; <n—1— 2«. Here, we used the fact that U, 4 lives in a
sector of regularity o = —% — k. Recalling that { = 1 4+ 3k and k¥ < ﬁ, the ranges
of ¢ and 7 allow to chose ¢ and 7 as in (8.24).

Now we will bound the function (8.8). From Proposition 4.10 we get |(RV'°U),,G) (2)

| < @MU, alll“) . Then for r € (6, 7) the definition (8.9) yields

RS (BRI o(0)| S - 87 RY U e

3r—9 —9-3
Sy U, 1) 4 <y O IS,

From this we obtain the following bound on the function (8.8):

IES Uyl Sy I U, all ) -

Ifk < 1 4, then there is a value of r such that the last term vanishes as y — 0.

In order to bound the function (8.10), we need to. bound the modelled distribution
inside the brackets in (8.10), which we denote by V), 4. Using the expansion (8.15),
we can write ~

Uy a(2)° = 428 + 200, o(2) ¥ + U, 4 (2), (8.25)

where the elements spanning L~/y « have homogeneities greater than —5 — 7. We note
that UV «(2) does not belong to 7°*, but is rather an element of T (see Sect. 4.1 for

the definition of this space). In particular, we cannot apply the model to Uy a(2) and
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hence we cannot measure the regularity of lNJ,,,a(z) as a modelled distribution. Instead,
we write

Vy.a(2) = 4v/2° 4200y 4(2) -&m(ﬂs (RV%Uy a(2). 2¢))— Y. (RV°Q, U;’a)(z)>1,
TE{*Q, W}

(8.26)
and we are gomg to show that this is a modelled distribution in a suitable space. Table 3
suggests that Fy Vya(2) = Vy a(2), and hence the second term in the definition (4.15)
of modelled ¢ dlStrlbuthIlS contains the difference VV a(2)— Vy a(2). Now, we will derive
bounds on Vy «(2) and Vy a(@) = V,.a(2).

For the first term in (8.26) we have

V) a(2) | ) = 442, 1Vy.a(2) = Vy o@D = O. (8.27)

Since Uy o € Df; and the expansion (8.11) holds, we conclude that

1 n ©
1vy.a(2)] = ﬁwy,u(zno < (Izlls v &) NUy I - (8.28)
[vy,a(2) — vy = 2,33 |Uy,a(z) — Uy,u(z)h\ﬂ
< (lz—zlls v e)‘ T 2Nl (829

where we used the definition of the modelled distribution (4.15). Hence, for the second
term in (8.26) we have

V0@l S (1zlls v )" Uy ol 7

- V] . © (8.30)
[Vy.a(z) — Vy a@Dlpwr S (lz—2ls v e) lz, ZII¢ WUy.all; 5.7

Now, we will bound the last term in (8.26). From the expansion (8.11) and
Remark 5.1, we get

RV, o(2) = V2 Y,.0(2) + v,.4(2),

where Y, o = R”*?. Using then the expansion (8.25), the definition of the reconstruc-
tion map (4.16) and the definition of the model (5.7), the last term in (8.26) may be
written as

H5(RVUya(2),2¢)) — Y (R"°Q:U; )(2) (8.31)
T, oW}
= Hs(R"*Uy 4(2), 2¢,) — 4v/2 (R %) (2) — 200, o(z) (RY""*%*)(2)
= Hs(vV2Y,.0(2) + vy,0(2), 2¢y) — 4v2 Hs5(Yy.a(2), ¢y)
—20vy,4(2) Ha(Yy,a(2), cy).
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The following expansion holds for the Hermite polynomials

n

H,(u+v,¢c)= Z (Z)Hm(u, o',

m=0

which can be found in [2]. Moreover, from the definition (5.6) we get the scaling iden-
tity Hy(au, a*c) = a"H,(u, ¢) for any a > 0. Applying these identities, expression
(8.31) turns to

H5(RVUya(2),2¢)) = Y (RV°Q:U; ) () (8.32)
T {8, o0}
3
Z ( )22H Yy.a(2) ¢y)vya(@ " =Y (:)2'5’(R%“wm)(z)v%a(zf—m.
m=0 m=0

where we postulate (RV’“TO) (z) = 1. Form € {1, 2, 3}, the definitions (4.16) and the

bound (4.12a) yield [(R”*1")(2)| < e }| %1%, ,. Combining this with the bound
on the function v, in (8.28), we estimate expression (8.32) as

3
~ 5—
1Vya@lo £ Y e (lzlls v e) O, (8.33)

m=0

where the proportionality constant is a multiple of (14| Z};" || (TQZFI Y(A+IUy all ?)n ) .

Using the derived bounds, we can now estimate the function (8.10). From Table 3 we
conclude that FV u(c‘f VV D@ = (5 Vy ) (), and the second term in the definition

of the norm (4. 15) contams only the dlfference (SV Vy, ) () — (5 Vy a)(2). Hence, we
need to bound (5 .a)(2) and (5 Vy @) — (5 Vy.a)(@).
From (8.27) we get

|(/gy i7}/,0) (Z)||-§T}'l+2 = 4\/5’ |(2y vy,a)(z) - (/gy Vy,u)(2)||'§¢'|+2 =0.

Similarly, from (8.30) we have

1E Vy )@ lpr2 S Ulzlls v Uy allf) -

& V) @) = € Vy )@l S Uz = Zlls v O iz, 21 WUy all )7

Finally, (8.33) yields

3
~ ~ 5— _
G V@10 S v0 Y M (lzlls v o) ST < ¥ (flzls v )2,
m=0
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forany 0 < ¢ < 5 — 3« and n2 = 51 + 2 (recall that |?| = —5 — « and Y =
1 —2k), and where the proportionality constant is a multiple of (1 + I Zliyﬂa||| (Tel]) (1 +

|||UV»0|||§)7;;T)5' Using this bound, we get furthermore

1E V0@ = &V @lo < 1€, Vy.d)@lo + 1Ey Vy.) Do

&7,
-9 = -0 -0 = Sy, zm=0
S e (Wlzlle v o™ + (Ells v "™ ) S Pz = 2o v Iz, 2 E

for any 0 < © < 1. Combining the preceding bounds on :‘3,, Vy,a, we conclude that
the following bound holds for the function (8.10):

5
NEL Wy S, S (L IZEM) (L + 10yallE ) . (8.34)

for any ¢3 and n3 satisfying ¢3 < 0,83 < ¢ — [V + ¥+ 2,13 < ;2 — 0,
m<n—|YVI4+ 1 +2,13 -8 <n—¢andn; — &3 < mp — 0. Taking ¥ = 2«,
Y =k, =k and n3 = n — 1 — 2k, all these conditions are satisfied and moreover
we have 73 > 0 and n3 > —2, which allows to take ¢ and 7 as in (8.24). We note that
(8.34) vanishes as y — 0, because the power of ¢ is strictly positive.

We have just finished the proof of the bound (8.24), from which (8.23a) follows.
The bound (8.23b) can be proved similarly and we prefer to omit the details. Then
the Banach fixed point theorem yields existence of a fixed point of the map M;’a,
and hence we get a local solution of equation (8.6). By patching the local solution in
the standard way, we get the maximal time 7}, 4 such that the solution exists on the
time interval [0, T} o). One can see that the time 7, q is the one at which || X, 4(¢) ||(e)
diverges. Applying Proposition 4.10 to the function X, o = R"**U,, 4, we then get
the required bound (8.21).

A bound on the solutions U, 5.4 can be proved respectively. Furthermore, in the
same way as we proved (8.21), we get the bound (8.22).

Proposition 8.3 gives a local solution X, 4, and by analogy with (3.14) we can also
study the respective solution vy, 4 of the remainder equation (8.12). More precisely, we
define it as vy.q = X,.a — v/2 Yy q, where Y, o = R”**!. Then from Proposition 8.3
we can conclude that in the setting of (8.21) we have

sup ||vy,a(t)”(ce3)/z+3n <C. (8.35)
1€[0.T AT

In the same way, for a local solution X, 5. we set ¥, 54 = R”*% and vy 5, =
Xy5,0— V2 Y, s,q. Then in the setting of (8.22) we have

sup 1@Wy0 = Vy.5.2) Ol i, < 8. (8.36)
1€[0,TATf o AT )5 ]
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8.1 Controlling the process X, |

Similarly to X, 4, we can also control the process X. X, o defined in (2.44). For this, we

define the discrete kernel P} (x) := (P} *; K )(x) on x € T2 and by analogy with
(2.38) we then get

X, (t.x) = P,VX0 () + V27, (1, %)

y (_B s
+ £t 9( 3Xy+(¢V+A)XV+Ey)(S,X)ds,
0

where

Y, (@t x) = —e3 Zf PI(x = y) I, (s, ).

We defined the respective kernel GV (x) on x € A, by (2.52). This kernel is different
from G only by the scale, which is e for the latter and ¢ := ey for the former. Hence,
in the same way as we did in Appendix Appendix A.1, we may write G¥ = #7Y + %Y
and we may defined the respective abstract map P? as in (8.1). We also define the
respective lift of the martingales Z);", which is defined in the same way as Z}:" in
Sect.5.2, but where in the definitions (5.10) and (5.12) we use the kernel £ 7. We
note that we need to use the norms on scale ¢ to work with these objects, i.e. we have
Nz |||<T) bounded and P” acts on suitable spaces D 7+ If Uy q is a solution of (8.6),
then we define

U, .= (GV&‘; + P14 (Fy(Uya) + ES (Uy0) + EF (Uy.0)) + ﬁm,a),

(8.37)
where E%a(z) = PY1,(E)(z). We have from Lemma 8.1 that the solution of (2.54)
is obtained as X, o = R”"U, 4. Recalling that X, ; equals X, the solution of
(2.38), on the time interval [0, 7, 4], we conclude that Xy = EVQM on [0, 7y 4]
Furthermore, we may get a bound on X, | = RYU v

Proposition 8.4 Let X, o be the local solution defined in Proposition 8.3, and let X,
be as above. Then in the setting of (8.21) one has

sup [1X, OIS < C,
te[0,TATE,]

where we use the norm (2.22) with the scale ¢ := ey*.

Proof For any 0 < ¢ < ¢ we have ||X0 ||gn) < ||XO ||(e) Taking ¢ < ¢ < ¢, Lemma 6.2

yields [(ceS, () (0})| < AT[IX) ||((;,7) for any smooth compactly supported ¢ and
A € [¢, 1]. From the assumption (2.25) on the initial condition, the last quantity is
bounded uniformly in y € (0, y4). Since the function K, is smooth and rescaled

by e, we get sup,, (g ,,) IIX ;(3 ||(C%-7) < oo. Estimating then the right-hand side of (8.37)
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in exactly the same way as we bounded (8.23a), we get ||U. V’a|||§)n;T < 1, for any
T € (0, T} o), where the proportionality constant is independent of y and T'. Recalling
that X, , = R"U ».a» the bound (8.21) follows from Proposition 4.10 and moment
bounds for the model.

Let us define v, o :== X, ; — ﬁzy’a with Y, . = R"*1. Then by bounding the

right-hand side of (8.37) without the term /2 W, 4 in the same way as we did in the
proof of Proposition 8.4, in the setting of (8.21) we get

sup ||yy,a(t)ll((§)/z+3n <C. (8.38)
te[0,TATE,]

We also need to control the process X, X, which appears in the definition of
the stopping time (2.46). In what follows, when using the norm || + ||z of these
processes, we compute the norm on T>. Writing as before X, 4 = /2 ¥y o +vy,q and
X, o= «/Ezy,a + v, WithY), o =R and Y, , =R, we get

[(X, aXya =2, a¥y.a) 0] Saia, (8.39)

SYy a@lzellvy,a®llzee + vy, o Ol (1Yy,a @l + vy,a@)l o).

Propositions 7.1 and 4.10 yield E[sup, (0. 71 | Yy.a ()]« ] S e!"P forall p > 1 large

enough, and respectively E[sup,e[O,T] IIXy,a(t)Ilzoo] S E\Tlp. Moreover, from (8.35)
and (8.38) we get

3 3
3243 343
sup  [lvya@llzee S e, sup [ly, (Dl Ser i
te[0,TATE,] te[0,TATE,)

Using these bounds and Minkowski inequality, we get from (8.39)

sup  [[(X, aXya = 2Y, o Yya) O] o S lT3+3n,, M (8.40)
t€[0,TATy q]

where we used the definition ¢ = ey and the bounds on 75 in the statement of The-
orem 2.3. If we take k < k¥ < 11—0, where « is the value used in the definition of the
regularity structure (3.2), the preceding expression is bounded by Ce“~!. Furthermore,
for any n < —1 we get the estimate

p
E[ sp (I1Y,,4(0Yy.a(0) = 3€, 015 ) } <1,
+€[0,T]

for any p > 1 large enough and any 7 > 0. This estimate is obtained in the same way
as Lemma 6.7, because the difference in the processes involved in these estimates is
only in the initial states. Moreover, we have | gy — ZQV ()| < 1 where the constant (_‘Zy
is defined in (2.45). Combining this bound with (8.40), we get the following result.
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Lemma 8.5 Let k < k, where k is the value used in (3.2) and « is from (2.43). For
anyn < —1, T > 0and any p > 1 large enough, in the setting of (8.21) one has

X P ~
E|: sup (”Xy,a(t) yoalt) — €V||(%)) i| < =Dp,
te[0,TATE ]

where 1 is from the statement of Theorem 2.3 and ¢ = ey*“.

9 Proof of Theorem 2.3

Let X, be the rescaled spin field of the Ising-Kac model (2.12), and let X be the
solution of the Cbg equation (2.21). Our goal is to prove that

limOE[F(tsXy)] =E[F(X)], 9.1
}I*)

for any bounded, uniformly continuous function F : D([0, T1, 2’ (T3 )) = R. We
note that the processes X,, and X are not required to be coupled, and the expectations
in (9.1) may be on different probability spaces. We fix the value 7 > 0 throughout
this section. The limit (9.1) follows if for some yy > 0 we have

1im0E[F(¢5Xy,a)] =E[F(X)], (9.2a)
y—)

lim sup E|F(.:X,)— F(tXy.a)| =0, (9.2b)
470y e(0,0)

where (9.2a) holds for each fixed a > 1. Note that the two processes in (9.2b) are
defined on the same probability space.

It will be convenient to introduce some intermediate processes. More precisely, for
d > 0 we define X; to be the solution of the SPDE (3.11) and we define X, 5 q to be
the solution of equation (8.20). Then (9.2a) follows if for some §p > 0 we have

girrz)E|F(X,;) - F(X)| =0, (9.3a)

}}igloE[F(LsXy,é,a)] =E[F(Xy)], (9.3b)
lim sup E|F(.Xy.a) — F(t:Xy.50)| =0, (9.3¢)
820 €(0.10)

where (9.3b) holds forevery fixed 6 € (0, §p). Again we used that the pairs of processes
in (9.3a) and (9.3c) are defined on the same probability spaces. The limit (9.3a) follows
from a much stronger convergence stated in Theorem 3.2. The limit (9.3b) is proved
in Lemma 9.2.
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In order to compare the discrete and continuous heat kernels, we introduce the
metric

IGT: Gl = > |G (x) — G/(&)|di. ©.4)

L= _
xeA, Y IxF—xl=e

Here, we use the heat kernel G,(x) = (2m1)~3/ 2e“"'s/ ’ and the ~discrete kernel Gg/ :
A, — R defined in (2.52). We will also use the discrete kernel G? defined in (2.53).

Lemma9.1 Forany (0 <t < 1 one has
lim I1G}'; G 19 =0, lim 167’ G/l =o. 9.5)
Proof From the explicit formula for the heat kernel we can get (see [20, Lem. 7.4])

G (x) — G (D) < C(1"* + (x| A 1ED) 7 1 — %17,

for any 6 € [0, 1]. Similarly, from the bounds on the discrete kernels provided at the
end of Appendix Appendix A.1 we get

IGY (x) — Gi(0)| < Ce® (2 + x| +6) 7, (9.6)
Then the integral in (9.4) is estimated by a constant multiple of £? (+1/2 + | x|+ ¢) 30
and the whole expression (9.4) can be estimated by a constant times £?. This gives the
first limit in (9.5), and the second follows in the same way, where the bounds for G;’
are of the form (9.6) with ¢ being replaced by e.

s

Lemma9.2 Foranya > 1,6 € (0,1) and T > O, the process X 5 a(t) is almost
surely uniformly bounded on [0, T]. Moreover, the limit (9.3b) holds.

Proof We note that the formula (7.3) makes sense on R x T3 (and not just R x Tg).
Let then &, 5 4 be defined by (7.3) on R x T>. In will be convenient to introduce an

additional process X y.8,a on R x T3, which is the solution of the SPDE

—_ 3 —_ —_ -
(3 — A)Xy 50 = —%X;M + (€5 4+ A) Xy 5.0 +V2E, 5.0, 9.7)

with the initial condition Xg, the same as for equation (3.11). Then the limit (9.3b)
follows from

yligloE[F(Xy,g,a)] =E[F(Xs)], (9.8a)

lim E|F (t:Xy.5,0) — F(Xy.5.0)| =0, (9.8b)
y—0

and we are going to prove these two limits.
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For T > 0 we will use the shorthand notation L7 := L*°([0, T'] x T3), and we
will consider all the spaces and norms on T° in the spatial variable, which we prefer
not to write every time.

We start with analysing the second term in (9.8a). For this we will show the contin-
uous dependence of the solution of equation (9.7) on the driving noise and the initial
state. More precisely, for fo € L°°, for T > 0 and for a function ¢ € L‘;o we consider
the PDE

,83

(3t—A)f=—?f3+(€a+A)f+~/5§ 9.9)

on[0, T]x T3 with an initial condition fo € L*® (’]T3) at time 0. Of course, the solution
f depends on § and y through the constants €5 and B (see (2.16)), but we prefer not to
indicate this dependence to have a lighter notation. By our assumptions, there exists
L > O such that || follpc < L and || ||L;° < L. We are going to prove that there is a
unique solution f € L2°, and the solution map f = Sr (¢, fo) is locally continuous
from L3 x L™ to LY.

Let P : Ry x T3 be the heat kernel, i.e., the Green’s function of the parabolic
operator 9; — A. Then, with a little ambiguity, we write P, for the semigroup, whose
action on functions is given by the convolution with the heat kernel P; on T3. Then
the mild form of (9.9) is

ﬁ3

t
70 = 2o+ [P (50 @+ A VG wds 010

We denote by M, (f)(x) the right-hand side, and we are going to prove that M, (f)isa
contractionmap on By ; := {f : || flle < L+ 1} forasufficiently small0 <7 < 7.
Taking f € B ;, using the Young inequality and using the identity || P||;1 = 1,
we get
M (Dl < Wfollss + 1 F I + 118 + Al f e + tv211E Nl e
SL+1((L+1D°+18+ AL+ 1D +V2L),

where we estimated 83 < 3, which follows from (2.16) for all y > 0 sufficiently
small. Taking ¢ > 0 small enough, we get

M ()l =L +1,

which means that M; maps By ; to itself. .
Let us now take f, f € B, with fy = fo. Then

3 t t
(M (=M (H))x) = —%/0 Pt-s(ff—ff)(x)ds+(€a+A)/0 Pi—s(fs — fs)(x)ds,
which yields similarly to how we did above
IMi(f) = Mi(Hllze < tlf? = Pl + 1€ + Al f — Fllzee
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<1(3L% + ¢+ ANl S — Fllzg.

Taking ¢t > 0 small enough, we get t(3 L2 4|5+ A|) < 1, which means that M; is a
contraction on By, ;. By the Banach fixed point theorem, there exists a unique solution
f € L{° of equation (9.10).

Let us now denote by f = S;(¢, fo) the solution map of (9.10) on Bz ;. We are
going to show thatitis continuous withrespectto ¢ and fo, satisfying || fo||L~ < L and
I¢llzse < L. For this we take | follze < L and [|¢ || s < L, and for f = S (&, fo)
we have

3

(i = )00 = Biho — foro = 5 / By (2 - ) wds
+ (€5 + A) fot Py (fs — f5)(x)ds + ﬁ/ot Py (g5 — &) (x)ds.
Computing the norms as above, we get
If = Fflize < 1 fo— folleo + (3L +1€s + AN f — fllre + V2118 = Ellpee.

Since ¢ is such that t(3 L+ |Cs + A|) < 1, we can move the term proportional to
If— 7l L2 to the left-hand side and get

If = Fllzze < Cllfo = follzee + ClIE = e,

where the proportionality constant C depends on § and L. Thus, we have a locally
Lipschitz continuity of the solution map.

The extension of the solution to longer time intervals [0, T'] is the standard proce-
dure, and is done by patching local solutions. Since the function V : R — R given
by V (u) = u? is a Lyapunov function for equation (9.9), the solution is global in time
and T can be taken arbitrary (this standard result can be found for example in [19,
Prop. 6.23]).

Let us now look back at (9.8a). Using the constructed solution map we can write
Xs = S, X)) and Xy 5.0 = S50, X9). By Lemma 2.3 in [18] we have the
convergence in law in the topology of the Skorokhod space D(Ry, 2’ (’]1‘3 )) of the
family of martingales (MM, o(-, x)), er3 t0 2 cylindrical Wiener process on L? (T3).

For any T' > 0, we therefore get convergence in law of éy s.ato&s,as y — 0, in the
topology of L>([0, T'] x T3). Then from continuity of the solution map S we conclude
that X, 5 o converges in law to X5, as y — 0, in the topology of L*>([0, T] x T3).
This yields the required limit (9.8a).

Now, we will prove the limit (9.8b). We observe that these two processes are driven
by the same noise and the live on the same probability space. It will be convenient to
define an analogue of the L°° norm to compare a discrete and continuous functions.
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Namely, for f, : A, — Rand f : R? — R we set

Ify; FIS% = sup | f,(0) — £

x€Ag,x€R3
[X—x|.<e/2

If moreover functions depend on the time variable, then set || f,; f ||(e)

sup;jo.7) Ify (1) £ ()% Then the limit (9.8b) holds if we show

lim El1X,.5.0 Xysalle =0. (9.11)

Now, we will prove the limit (9.11). The mild form of (9.7) is

_ t
Xy5.0(t.%) = PXJ(0)+ /O P,_s(—’g3 5.0t @+ AR .04V 2Ey.5.0) 5. 2)ds.

9.12)
As a consequence of our analysis of equation (9.9), if we take ||XO||L°o < L and
||§,, s, a||L°° < L, then for 0 < ¢t < T small enough we have ||Xy sallpe < L+ 1. We
will use thls value ¢ in what follows. We can perform the same analys1s as above and
conclude that if ||Xg||Loc < L then || Xy 5allLc < L + 1. We prefer not to repeat the
same argument twice.

We extend the processes periodically in the spatial variables. This means that we
need to replace PY and PY by G” and G respectively; and we need to replace P by
G in (9.12). In what follows we are going to work with these periodic extensions.

Using the metric (9.4), one can readily get the bound

IGY X°

G XS < NGILIXY 5.0 XN + 1GT 5 GAISNIXDN L. (9.13)

y(Sa’ y&a’

We have [|G;[|.1 = 1, and from Lemma 9.1 we have that Q] := |G G,||*"] and

é,V = ||G G,|| | ) vanish as y — 0. Using then the bound ||Xy5 allee < L +1,
subtracting equatlons and using the bound similarly to (9.13), we get

1Xy.5.0: Xy sallfe < 1K 5.0 XONE% + OF L+ 132118y,5.0 &y.5.0l 5k
1 (15 .1 35,0115 + 1€ + AlXy .05 Kysall % + 1€, — €5IL)

+ 007 (L +17° +1€ + AL + 1) + V2 L),

We can readily show that || X3 I(e) < 3L%X, 5.0 Xy, a” and the

LOO b

choice of ¢ allows to absorb the term proportional to || X, 5.q; X y’a,aH L°° to the left-
t

hand side and get the bound

ySa’ y3a|

1Xy.5.0: Xy sallie S IXD 505 X§Ni% + OF L+ 118y.5.0: &.5.allfk +11€,5 — 1L
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+ 107 ((L+1° +1¢ + AL+ 1) ++21L),

where the proportionality constant depends on ¢ and L. From our assumptions in
Theorem 2.3 on the initial states we conclude that lim,, ¢ 1 x° X0||(e) = 0.

(Lego = 0. Finally, from the definitions
t

of the renormalisation constants we get lim, o €, 5 = €5, because the constants are

defined in terms of the heat kernels and these converge uniformly as y — 0 (see

Lemma A.3). Then from the preceding inequality we obtain

Y,0, a’
Furthermore, we have lim,, 0 E||&} 5,4 E},,g,an

ElXy5.0 Xysallfh < Cp (L, 1),

where lim,, o C}, (L, t) = 0. Since éy,g’a is almost surely bounded, the process )_(},,g,a
almost surely does not blow up in a finite time (see the argument above), and we
conclude that the same is true for X, 5 o and (9.11) holds for any T > 0.

Our next aim is to prove the limit (9.3c). It will be convenient to prove the
required convergence in probability. For this we need to restrict the time interval
to [0, TL A TL «J» where the stopping times TL and TL o are defined in Proposi-
tion 8. 3 Moreover we need to introduce aux111ary stoppmg tlmes providing a bound
on the models. More precisely, for L > 0 we define

ohe=intle = 0025 = L) AT,
, 5,
t)f,S,a = 1nf{t >0: |||Zhyfl a“lfil z L} A TL

Then forany A > 0, L > O and T > O we have

P( sup [[(X,.6.0 — ya)(t)||(°>>A)

tel0,T]

< P( sup 1(Xy 50— Xy OIS = A) +P(hy Aths < T).

L L
tE[O,T/\TyvaA‘[y,B,a]

(9.14)

From the assumptions of Theorem 2.3 we conclude that there exists L, > 0 such
that ||X0 ||(°) < L, uniformly in y € (0, y.). Moreover, the definition (8.19) yields
SUP,, ¢ (0,7, ||Xy — X0 8”(2) < 8% for any n < 77 and any @ > 0 small enough. We fix

0 < Y0 < ¥4 such that the result of Proposition 7.1 holds. Then from Proposition 8.3
we conclude that

lim lim sup P< sup 1(Xy,5,a — Xy,a)(t)||g,,) > A) =0. (9.15
Sl

L—0086—0
v€(0,%0) 0,7 Atk u/\ry s.al
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Furthermore, we have

P(th nths s <T) <P(TE ATEs o <T) +P(IZLANS,, = L)

.0,
+P(IZ5> N, = L). (9.16)

Markov’s inequality yields P(IZJ;* I, = L) < L~PE(IZ}:*II%),,)". for any
p > 1. From Proposition 7.1 we conclude that for any p the preceding expectation is
bounded uniformly in y € (0, yp). In the same way from Proposition 7.1 we conclude
that P(|||Zliyf;8’u|||(Te1rl > L) is bounded uniformly in y € (0, yp) and 6 € (0, 1), and
hence from (9.16) we get

: L L . L L
Jm un b Pliartroe <T) < fim sup | sup P Tysa <T)
9.17)
Lemma 9.2 implies that the living time T, s o of the process X, 5 q is almost surely
infinite, and hence Proposition 8.3 yields limy _, o TVL’ 5.0 = 100 almost surely. Then
the right-hand side of (9.17) equals

lim sup sup P(T}/La<T). (9.18)
L=095¢(0,1) y&(0.y0) ’

Furthermore, as we stated after (2.51), we have X,, () = X, (¢t) fort < 1), ¢ and
Xy o) =X ;//,u(t) fort > 1) 4. Then X, 4 is almost surely bounded on each bounded
time interval, because for ¢t < 7, o the process is bounded due to the definition of the
stopping times (2.40)-(2.47),and fort > 7, 4 the processis bounded due to Lemma 6.4.
Hence, we conclude that the living time of the process X, q is almost surely infinite,
and limy _, oo Tyfu = +o00 almost surely. This implies that (9.18) vanishes.

From the preceding argument we conclude that the expression in (9.14) vanishes,
which yields convergence of the process X, 5.4 t0 X, 4 as § — 0 in probability in the

topology as in (9.14).

We have proved the limit (9.2a) and it is left to prove (9.2b). We are going to prove
this limit in probability. Recalling the definition of X, 4, for any A > 0 we get

P<%%M&w—&wm®2A)sﬂwﬂ<m, 9.19)
tell,

where the supremum vanishes if 7, o > 7. From the definition (2.47) we have

P(t,q <T) <P(r{) < T)+P(c) < T). (9.20)
The stopping time (2.40) we write as ‘L')Elgl = inf{r > 0 : ||X),,a(t)||g,,) > a}, and
hence it coincides with the stopping time T)f o defined in Proposition 8.3 with a
suitable values L,, depending on a and such that lim,_, o, Ly = oco. Then we have
limg 00 SUP,, (0.1 P(t)ﬁlgl < T) = 0. Convergence of the last term in (9.20) to zero
uniformly in y € (0, 1) as a — oo follows from Lemma 8.5.
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9.1 The renormalisation constant

We readily conclude from Lemma 5.4 that the renormalisation constant (8.13) may
be written in the form (2.26).

Appendix A Properties of the discrete kernels

The main result of this appendix is provided in Lemma A.3, which provides bounds
on continuous extensions of the functions G¥ and GV defined in (2.52) and (2.53).

Before proving these main results, we need to prove several bounds on the func-
tion K, . By the definitions (2.2) and (2.14) we conclude that there exists yp > 0
(depending on the radius of support of the function £) such that for y € (0, yp) and
we{—N,...,NP

I’(\y(a)) =g Z Ky(x)e*i”‘”'x = %),’1)/3 Z ﬁ(x)eiiﬂyz""x, (A1)

xeT? xeyZ?

where we used the fact that £ is compactly supported to extend the sum to all x € yZ>.

In what follows we will always consider y € (0, yp). Furthermore, it will be convenient
to view K as a function of a continuous argument by evaluating (A.1) forallw € R’.In
this way, the function K (w) is smooth and we will use the notation w = (a)l, wy, w3)
and 0; for the partlal demvatwe with respect to w;. For a multiindex k € N0 we will

write DX = ]_[ i=1 9% ; ' for a mixed derivative.

Lemma A.1 For any ¢ > O there exists a constant C > 0 such that

(1 = Ky (@) — 72| < C1y ol (A.2a)
ly=09; K, (@) + 27%0;| < C1y° |0l (A.2b)

uniformly over y € (0, y), || < cy_3 and j € {1, 2, 3}.

3

Proof For |w| < ¢y~ a Taylor expansion and (A.1) yield

= Ky@) = s5.7° 3 (177707
xeyZ?
=1 Y R@(inyie-x + Y(rrie - x)’) + Brr, ),

xeyZ3
(A3)

where the error term satisfies |Err,(w)| < %y,1%3y12|w|3 eryZ3 xPR(x) <
¥°|w]3. In the first identity in (A.3) we used the definition of the constant #y,1 in
(2.2). By the symmetry of the kernel £(x), we have eryzz RKx)(w-x) = 0 and

> veyz3 XixjR(x) = 0 for i # j. Furthermore, the sums y3 D oveyz? R(x)sz con-

verge to fRs ﬁ(x)xlz.dx =2 as y — 0 with an error O(y?). The last identity follows
from (2.1) and symmetry of the function £. Then from (A.3) we obtain (A.2a).
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The remaining bound (A.2b) follows in a similar manner. More precisely, using a
Taylor expansion we write

~3; Ky @) = s51imy® Y xpR)(e TN 1)
xeyZ?
= %},,17[2)/90)]- Z sz»ﬁ(x) + Err;, (w),
xey?

for an error term satisfying |Err;, ()| < y°|w|?. Here, we have used the symmetry of
the kernel £ to add the term —1 in the first equality and to remove the sums containing
the products x;x; for i # j in the Taylor expansion in the second line. The bound
(A.2b) then follows similarly to (A.2a).

LemmaA.2 Foranyk € N(3) and m € Ny there are constants C1, C2, C3 > 0 (where
only Cy and C3 depend on k, and only C3 depends on m) such that the following

estimates hold uniformly over y € (0, yp), w € [—N - %, N+ %]3 and j € {1,2,3}:

1. (Most useful for |o| < y~3)

1K, ()] <1, (A.4a)
10, Ky (@)] < C1y’ (1wl A1), (A.4b)
ID*K, ()| < Coy* kI, (Adc)
2. (Most useful for |w| > y ™)
30| D*K, (@)| < Cap 3, (A5)

Furthermore, the value of yy > 0 can be chosen small enough so that
1=Ky (@) = (10l A1), (A.6)

uniformly over the same values of y and w, for some C4 > 0.

Proof We can get (A.4a) from (A.1) as |I?,, (w)] < %y,1y3 eryzz RK(x) =1, where
we used the definition of the constant s, 1 in (2.2). Similarly, from (A.1) we get

~ k .
DRy (@) = 5517 Y (—iny3x) A(x)e~ o, (A7)
xeyZ?
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with the notation x* = ]_[j 1 x /. Then we can prove (A.4c) as follows

|DkKy(a))| 5 %y’1y3(|k|1+1) Z ﬁ(x”x'\k\] S y}‘k‘l’
xeyZ?

where we estimated the sum by an integral, which is bounded because £ is bounded
and compactly supported. For |w| > y 3, the estimate (A.4b) is a particular case of
(A.4c), and for |w| < y 3 it follows from (A.2b).

The proof of (A.5) is more involved. If |o| < y_3, then the bound (A.5) follows
from (A.4c), and we need to prove it for |w| > y 3. For any function f: yZ? > R,
we define the discrete Laplacian

A, f®) =y (f) = f).

y~x

where the sum runs over y € yZ>, which are nearest neighbours of x, i.e. |y — x| = 1.
. i .
For a fixed w € R? we define the function @y : X > e Y@ X for which we have

3
A, () = fy(@e,®)  with f,(@) =2y (1 - cos (ny3wj)).
j=1

We note that for w # 0 we have fy (w) # 0, and this identity allows to write (A.1) as
Z ﬁ(x) Am @w)(x)
xey23

for any integer m > (. After a summation by parts we get

3
-~ Hy 1Y
K = 2: (ar 8/ » A8
y (@) i (@ =, R)(x) €6 (x). (A.8)

The function A} R(x) converges uniformly to A" R as y — 0, where A is the three-
dimensional Laplace operator (recall that £ is smooth). Hence, y> >, eyZ? (Am ﬁ)
(x)e(x) can be absolutely estimated by an integral of | A" R(x)|. Recalling the scaling
(2.18), one can see that there is a constant C > O such that [f,, (@)™ | < C(y- 3w ~2m
uniformly over y > O and |wj| < N + 5 L for j € {1,2,3}. Then from (A.8) we get
the required bound (A.5) for k = 0.

For k # 0, we use (A.7) and similarly to (A.8) we get

%}/,1( _ i]T)/3)|k||

Py ==
Y

y (A R () ew (),

xeyZ?
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where ﬁk(x) = xkR(x). Estimating the sum and the function f, as before, we get
(A.5) for any k.

Let us proceed to the proof of (A.6). From (A.5), we conclude that there exists
¢ > 0 such that for |w| > ¢y~ we have |I?V (w)] < % Hence, (A.6) holds for such
o. Next, we consider w such that |w| < ¢y~ for a constant ¢ > 0 to be fixed below.
For such w, (A.2a) implies the existence of C such that

1 - K, (@) = 72ol?y® = Clol}y’® = (7 - Cc)lwl*y®,

which can be bounded from below by 7%|w|?y%/2 if we choose ¢ small enough.
Finally, in order to treat the case cy -3 < lw| <cy =3, we observe that the Riemann
sums

Ky(y o) =077 Y Rx)e T
xeyZ?

approximate (.% K) (w) uniformly for |w| € [c, ¢], where .% R is the continuous Fourier
transform on R>. On the other hand, .7 & is the Fourier transform of a probability
measure with a density on R>, and as such, it is continuous and |(Z 8)(w)| < 1 if
 # 0. In particular, |(% &) (w)| is bounded away from 1 uniformly for |w| € [c, c].
Combining these facts, we see that for y small enough, K, (w) is bounded away from
1 uniformly in ¢y =3 < |w| < ¢y 3.

The next lemma provides estimates on the kernels G¥ and G, defined in (2.52) and
(2.53) respectively. One way to extend the function G} off the grid is by its Fourier
transform

(ZG!)(w) = exp(%z (K () — 1)5)1 -
y,3\ By o) 1e=N
for all w € R?, where .Z is the Fourier transform on R? (this formula follows from
(2.35), (2.52) and the Poisson summation formula). However, such extension is not
convenient to work with because its Fourier transform is not smooth, which in partic-
ular does not allow to get the bounds in Lemma A.3 below.

In order to define an extension of G} with a smooth Fourier transform we use the
idea of [22, Sec. 5.1]. Namely, from (2.52) and (2.34) we conclude that the function
G/ solves the equation

d

dtG,V(x) =A,Gl(x), xe€A,,

with the initial condition GE)’ x) = 8;82) (the latter is defined below (2.17) and A, is
defined in (2.33)). Then we can write

Gl (x) = (™8) (). x €A,

where e/ 27 is the semigroup generated by the bounded operator A, acting on the space
of bounded functions on A.. We applied the semigroup to the function x > § )(f)o We
take a Schwartz function ¢ : R?® — R, such that ¢(0) = 1 and ¢(x) = O for all
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X € Z3\{O}, and such that (% ¢)(w) = 0 for |w|. > %.2 We note that the formula
(2.14) makes sense for all functions f from Cp (R3), which is the space of bounded
continuous functions on R?, equipped with the supremum norm. Then (2.33) allows
to view A, as a bounded operator acting on Cp (R>). Setting ¢*(x) := e 30 x)
we then define the extension of G} off the grid by

G/ (x) == ("7 ¢)(x), xeR’. (A9)

The respective extension of the function 5;’ is given by (2.53) for all x € R>. The
advantage of such definition of the extension is that its Fourier transform is smooth.

It will be convenient to treat these functions on the space-time domain Ry x R3.
For this, we write GV (z) where z = (¢, x) witht € Ry and x € R3, and we write
D¥*GY (z) for the mixed derivative of order k = (ko, . .., k3) € Ng, where the index ko
corresponds to the time variable # and the other indices k; correspond to the respective
spatial variables. We recall the parabolically rescaled quantities |k|s and ||z||; defined
in Sect. 1.2.

Lemma A.3 Let the constant yo > 0 be as in the statement of Lemma A.2, and let
tla = |t|"? +aforanya > 0. Then foreveryr € N, k € Né withkg < randn € Ny
there is C > 0 such that
|D*GY (1, )] < Clel 73 Wt (ji¢e, x)lls +6) 7", (A.10a)
|DEGY (1,3)] < Clet M (1, )l + )" (A.10b)

uniformly over (t,x) € R* witht > 0 and y € (0, y0)-

From the bounds (A.10) we can apply [22, Lem. 5.4] and get the expansion as
described in the beginning of Sect.5. For this, we note that the bounds (A.10b) imply
that G” is a Schwartz function in x, which satisfies

|DEGY (1, )| < C(Ilt, )15 +¢) .

Morez)ver, we can smoothly extend G” to R* in the same way as in [22, Sect. 5.1], so
that GV (t) = 0 fort < 0.

Proof (of Lemma A.3) We start with proving (A.10a). Using (2.35), the Fourier trans-
form of (A.9) equals

(TG ) = (F¢") @ exp(323(Ry @)~ 1)),

3 sin(nxj)
j=1 TX |

2 We can define ¢ by its Fourier transform .F¢ = (D) * ¥, where D(x) = is the

Dirichlet kernel and ¥ € C*°(R3) is supported in the ball of radius % with center at the origin and satisfies
fR3 ¥(x)dx = 1. Then (% ¢)(w) is smooth and vanishes for |w|. > %, because the Fourier transform of
® vanishes for |w|. > % Moreover, ¢ is Schwartz, because its Fourier transform is Schwartz. Finally, ¢

takes the required values at the integer points, because © takes the same values.
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where (7 ¢%)(w) = (F ¢)(ew). Then the inverse Fourier transform yields
DG (1, x) = /3 F) (0)e? % dw (A.11)
R
with

. 3% 3\ k
Fl @) = (Fg)(e0) ((Ry @) - 1)%’3) " (rio) exp(52 5 (Ry (@) — 1)

(A, 12)

-3 -3

To bound the integral, we consider two cases: |w| <y~ and |w| > y
In the case |w| < y 3, according to (A.2a) and (A.6), there exists ¢ > 0 such that
for all y € (0, yp) we have

IFY ()] S (Jo? + ¥ o) |of | exp(—clol*) < lol*s exp(—clol*),

where we used the scaling variables (2.18) and the bound (2.32). Here, we bounded
the Fourier transform of ¢ by a constant. Restricting the domain of the integration in
(A.11) to |w| < y 3, we estimate the integral by a constant times

f . || exp(—clow|*t)dw
o<y

If t > y°, then we change the variable of integration to u = /7w and the integral
can be estimated by Cr~G+/¥ls)/2_On the other hand, if r < y°, then we change the
variable to u = y3w and the integral gets bounded by Ce™3/¥ls (recall that ¢ &~ y3).

Now we will consider the case || > y 3. Since ¢ is Schwartz, the same is true
for its Fourier transform, and for any m € Ny we have |(9 ©) (8a))| S (1 +elw))™™.
Using then (A.5) and (A.6), we get

IFY (@) < (1 +elo))™ ((1 + |y3w|*8)/a)k°|a)’5| exp(—ct /) (A.13)

<y 0 + elol) ol F exp(—cy ~61).

Then the part of the integral (A.11), with the domain of integration restricted to |w| >

y =3, is estimated by a constant times

y ko exp(—cyfﬁt)/ 3(1 + elw) " w|"dw < y %03k exp(—cy ~0).
ey (A.14)
The integral is finite as soon as we take m > |I€|1 +3.Ifr < y4, then this expres-
sion is bounded by Cy ~0k0g=3=lkli < Ce=3=IKls (recall that ¢ ~ y=*). If r > y*,
then we bound exp(—cy %) < exp(—cy~2/2)exp(—cy ~%1/2) and the exponen-
tials can be estimated by rational functions as exp(—cy ~2/2) < y(3+|k")/2 and
exp(—cy ~01/2) < (y=0r)=CG+Ikl9)/2 Then (A.14) is bounded by Cr=GHkl)/2,
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From the preceding analysis we conclude that

—3= ks (A.15)

|DEGY (1, )| < C(It1'* + )
and to complete the proof of (A.10a) we need to bound this function with respect
to x. For this, we need to consider |x| > r!/2 v ¢ (the required bound (A.10b) for
lx| < t1/2 v & follows from (A.15)).

For the function ey : @ > €271®¥ we have Aye, (w) = |27ix|*ey(w), where A,
is the Laplace operator with respect to . Then the function 27/“** in (A.11) can be
replaced by |27ix|~%¢ Aﬁ)ex (w) for any ¢ > 0. Applying a repeated integration by
part we get

DFGY (1, x) = |2mix| ™% /w ALF) () ey (0) do. (A.16)

There are no boundary terms in the integration by parts, because F, (w) and its deriva-
tives decay at infinity. The Faa di Bruno formula allows to absolutely bound the
function inside the integral by a constant multiple of

max  |elmihpm (%p)(sw)])"z((l? () — 1)@)k0 (A17)
e Ingl =26 v o '

bl

ny k n = 4
X (D *a)k)D 4 exp(%}%’\;(Ky(a)) — 1)&)

where the maximum is over ny,...,nq4 € N(3) with n3 < k. As before, we need to
consider two cases: || < y‘3 and |w| > y‘3.
In the case |w| < y 3 from (A.4) we conclude that

—2 2—|n|
~ b4 3 . w 1 for n|, < 2,
‘Dn((K)/ (w) — 1) ; )‘ ,S Py,n(a)) with py,n(a)) — {' | |n|

y30mh= for fnl, > 3,

and Faa di Bruno formula yields

‘D” ((1’(\}, (w) — 1)%)/{0

2
%)/,3

Inl, 2

max ]‘[)D’i((l?y(w) — 1)%)‘

rite ) =0
i=1

~ (ko—|n[)VO
SRy @) - =22

o
Inl,

< ||?ko=Inl)VO max l_[ ().
< lol o o L@
1=

Combining this bound with Faa di Bruno formula and (A.6), we get
)D" exp(%2 3(fy (w) — l)i) ’
v o
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< exp( (K (w) — 1) )gl+ H}&ihin Inl, ‘DZ (% 3(K (w) — 1) )‘
Il

< 1"l exp(—clol*t) oo max nnp},g ().
n| =

Using these bounds and | D" (.% ¢) (a)) < 1, the expression inside the maximum in
(A.17) is estimated by a constant times

8‘”1 i |w|2(k0_‘"2|1)\/0+|k|1—|n3||t|n4\1 Fnz,n4 (0)) exp(—cla)lzt),

with

[nal [n4l

F, (w) := max H (w) max 1_[ ¢; (@)
2,114 ri+eFringy | =n2 o1 Py.ri Lt +Ly ) =n4 i1 Py,

Hence, the part of the integral (A.16), in which the integration variables is restricted
to |w| < y 3, is bounded by a multiple of

|x|72€8\n1\1tln4|1 / 3 |w|2(k0*|n2|.)V0+\k\17\n3\1Fnz’m(w) exp(—c|a)|2t)da)
lwl<y

If r > ¥, then we change the variable to u = /2

o and estimate this expression by
Clxl_nte_%(‘k‘5+3). Ifr < y6, then we change the variable to u = y3a) and estimate
the preceding expression by a multiple of |x|~>¢g2¢—(IKls+3),

In the case |o| > y > we use (A.6) and | D" (F¢)(w) < (14 |w)™™ to bound

the function inside the maximum in (A.17) by a constant multiple of

t|"4|1

1l ,3(nali+Ingl) —m |kl —|n3]; _
gy, (1 4+ |ew))™|w| exp( cr/a)ako+|n4||

— el 30na=Insh=260) (1t [ego]) = |oo] Kb =1l sl expp(—cy=6y).

-3

Then the part of the integral (A.16) for |w| > y ™~ is bounded by a multiple of

|x|*258|"||1y3(|n2\|*\"4\1*2k0)t|n4lu exp(—cyfﬁt)/ 1+ |Ea)|)7m|a)||l;"7|"3“da).
lw|>y 3

This integral is finite if we take m sufficiently large. We proceed in the same way as in
(A.14). For t < y* this expression is bounded by x| 72ty 3C2=Ikls=3) Forr > y* we
estimate the exponential by a rational function and bound the preceding expression
by C|x|‘2‘t£‘%“k|s+3).

Taking n = 2¢, we have just proved that for |x| > |¢]1/2

V € we have
|DEGY (2, x)| < Cle| 37 Wt x|
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which together with (A.15) gives the required bound (A.10a).
The bound (A.10b) can be proved in a similar way. More precisely, from (A.11)
we get

Dkéy(t,x)zf Ey(w)Fty(w)e2”iw'xdw.
R3

The rest of the proof goes in the same way as before, with the only difference that now
we use the fact that K, (w) is Schwartz and for every m > 0 it satisfies |[D" K, ()| <
e/li (1 + e|w|) ™. Hence, all the scalings ¢ should be replaced by e.

As a corollary of the previous lemma, we can obtain a bound on the periodic heat
kernel PY.

Lemma A.4 In the setting of Lemma A.3 one has the following bound uniformly in
t>0:
1P Nl < Clrl. (A.18)

Proof From (2.52) we have 132’ X)) =073 C~?3/ (x + m). Using (A.10b) with any
n > 3 and estimating the sum by an integral, we get the required bound (A.18).

Appendix A.1 Decompositions of discrete kernels

Lemma B.3 in [18] allows to apply [22, Lem. 5.4] for any integer r > 2 and to write
the discrete kernel as G¥ = #Y + %7, where

1. 2" is compactly supported and anticipative, i.e. Z¥ (t,x) = 0 for t < 0, and
I ZY ¢ is bounded uniformly in y € (0, 1].

2. 7 is anticipative and may be written as ¢V = Y M kv with M =
—log, €], where the functions {K""}o<,<py are defined on R* and have the
following properties:

(a) the function K" (z) is supported on the set {z : ||z]|s < ¢27"} for a constant

¢ > 1 used in the supports of all functions {K?""}o<n<m;
(b) for some C > 0, independent of y, one has

ID¥K7V"(2)| < €2"CHIKls), (A.19)

uniformly in z, k € Ng such that |k|s < r,and 0 < n < M; forn = M the
bound (A.19) holds only for k = 0 (in particular, the function K ¥ does not
have to be differentiable);

(c) forall0 <n < M and k € N?, such that |k|; < r, one has

/ XKV (z)dz = 0;

€

for n = M this identity holds only for k = 0.

Throughout the article we use interchangeably the notations .27 (z) and %, Y (x) (and
respectively for other kernels) for a point z = (¢, x) with t € R and x € R>.
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In the same way we can write GY =AY +R7, where the last two functions have
the same properties as above, with the only dlfference that 7 is decomposed into a
sum of M = — |log, ¢| functions as AV = ano Kr,

This decomposition in particular allows to bound function convolved with a discrete
heat kernel.

LemmaA.5 For a function f : Tg — R and for n < 0 the following bound holds
uniformly in y € (0, 1) and locally uniformly int > 0:

1P e fllzee < ClIZIFIS)-

Proof Using (2.52) we write P . f = G! % f, where f is extended periodically
on the right-hand side. Using the decomposition of GV as in the beginning of this
section, we get G! %, f = Z,},W:O K" % f 4+ % %, f.Since KV" is bounded in
a ball of radius ¢27", for a fixed t > 0 we have K" = 0if |¢|!/?> > ¢27". Then the
preceding sum can be restricted to 0 < n < M satisfying |¢|'/> < ¢27". Furthermore,
the definition (2.22) yields

1K) " %e fllzee S 27 FIIG, 1] *e fllre SIS

Then for n < 0 we have

14 - (¢) n (¢)
Gy *e fllLe S § 27 fllor S lelefllgn s
0<n<M:
[1]}/2 <2

as required.

Using the function ¢, s defined in (7.2), we introduce new kernels Gv® .=
GV x:0y,5 and Gr? = G x:0y,5. Then the decompositions of the kernels yield

G" = %M Z7 and GV8 = v L%’V‘S,wheref}i/ya_znzol(y‘s”and

VS = ano K71 and all the functions have the same properties as described
above. Moreover, from the definition (7.2) we have the bounds

’Dk(K]/,é‘,n _ K}/,n)(z)| S C882H(3+9+|kls),
|Dk(§y,8,n _ E}/,l’l)(z)| 5 C892n(3+0+‘k\5)’

forany 6 € (0, 1], as well as | 270 — B || 1 < C8° and | #V> =R || 1 < C8°.
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