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Abstract
We consider the Glauber dynamics of a ferromagnetic Ising-Kac model on a three-
dimensional periodic lattice of size (2N + 1)3, in which the flipping rate of each spin
depends on an average field in a large neighborhood of radius γ −1 << N . We study
the random fluctuations of a suitably rescaled coarse-grained spin field as N → ∞
and γ → 0; we show that near the mean-field value of the critical temperature, the
process converges in distribution to the solution of the dynamical "4

3 model on a
torus. Our result settles a conjecture from Giacomin et al. (1999). The dynamical "4

3
model is given by a non-linear stochastic partial differential equation (SPDE) which is
driven by an additive space-timewhite noise andwhich requires renormalisation of the
non-linearity. A rigorous notion of solution for this SPDE and its renormalisation is
provided by the framework of regularity structures (Hairer in InventMath 198(2):269–
504, 2014. https://doi.org/10.1007/s00222-014-0505-4). As in the two-dimensional
case (Mourrat and Weber in Commun Pure Appl Math 70(4):717–812, 2017), the
renormalisation corresponds to a small shift of the inverse temperature of the discrete
system away from its mean-field value.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
2 The dynamical Ising-Kac model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
3 The dynamical "4

3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
4 A regularity structure for the discrete equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
5 A renormalised lift of martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

B K. Matetski
matetski@msu.edu

P. Grazieschi
p.grazieschi@bath.ac.uk

H. Weber
hendrik.weber@uni-muenster.de

1 University of Bath, Bath, UK
2 Michigan State University, East Lansing, USA
3 University of Münster, Münster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-024-01316-x&domain=pdf
https://doi.org/10.1007/s00222-014-0505-4


672 P. Grazieschi et al.

6 Properties of the martingales and auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . 709
7 Moment bounds for the discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
8 A discrete solution map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
9 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
AppendixA Properties of the discrete kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

1 Introduction

We consider the Glauber dynamics of the three-dimensional Ising-Kac model on the
discrete torus Z3/(2N + 1)Z3. The spins take values +1 and −1 and flip randomly,
where the flipping rate at a site k depends on an average field in a large neighborhood
of radius γ −1 << N around k. We study the random fluctuations of a suitably rescaled
coarse-grained spin field Xγ as N → ∞ and γ → 0. We prove that there is a choice
of the inverse temperature such that if the initial states converge in a suitable topology,
then Xγ converges in distribution to the solution of the dynamical "4

3 model, which
is formally given by the SPDE

(∂t − $)X = −1
3
X3 + AX +

√
2 ξ, x ∈ T3, (1.1)

where ξ denotes a Gaussian space-time white noise.
The Ising-Kac model was introduced in the 60s to recover rigorously the van

der Waals theory of phase transition [27]. Various scaling regimes for the Glauber
dynamics were studied in the nineties [8–10, 34] and in particular, it was conjectured,
that in 1, 2 and 3 dimensions and in a very specific scaling, non-linear fluctuations
described by (1.1) can be observed [17]. For d = 4 (1.1) is not expected to have
a non-trivial meaning [1] and this is reflected in the dimension-dependent scaling
relation (2.20) below which can be satisfied in dimensions d = 1, 2, 3 but not for
d = 4. The one-dimensional convergence result was proved three decades ago in [5,
14]. The two dimensional case settled much more recently [30]. In this article we treat
the three-dimensional case, thereby completely settling the conjecture from [17].

The main difference between the one-dimensional case d = 1 and the cases d = 2
and d = 3 lies in the increased irregularity of solutions to (1.1) in higher dimensions.
In fact, for d = 1 solutions are continuous functions and a solution theory is classical
(see e.g. [12]). For d = 2, 3 solutions are Schwartz-distributions and (2.20) has to be
renormalised by adding an infinite counter-term. Formally, the equation becomes

(∂t − $)X = −1
3

(
X3 − 3∞ × X

)
+ AX +

√
2 ξ .

For d = 2 this renormalisation procedure was implemented rigorously in the influ-
ential paper by Da Prato-Debussche [11] (see also [32] for a solution theory on the
full space Rt × R2

x ). Consequently, the convergence proof for Ising-Kac for d = 2
consists of adapting their solution method to a discrete approximation (already found
in [17]). A key technical step was to show that, up to well-controlled error terms, the
renormalisation of products of martingales is similar to the Wick renormalisation of
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The dynamical Ising-Kac model 673

Gaussian processes. Moreover, the renormalisation of the non-linearity in the discrete
equation corresponds to a small shift (of order γ 2 log γ in the notation of that work)
of the inverse temperature from the critical value of the mean-field mode (in fact this
shift had already been suggested in [7]).

The solution theory for (1.1) for d = 3 is yet much more involved than the d = 2
case and was understood only much more recently. Short-time solution theories were
contained in the groundbreaking theories of regularity structures [20] and paracon-
trolled distributions [6, 16] and a solution theory is by now completely developed [6,
15, 31, 33], see Sect. 3 for a brief review. In particular, it is known that the renormali-
sation procedure is more complex—beyond the leading order “Wick” renormalisation
an additional logarithmic divergence (the “sunset diagram”) appears.

In this article we develop an analysis for the discrete approximation to (1.1) pro-
vided in [17, 30] based on the theory of regularity structures. More specifically, we
rely on the discretisation framework for regularity structures developed in [13, 22],
which of course has to be adapted to the situation at hand. A key part of this analysis is
the construction and derivation of bounds for a suitable discretemodel. Following [30]
the discrete analogue of Hairer’smodel is defined, based on a linearised version of the
discrete equation. The elements of this model can be represented as iterated stochastic
integrals with respect to a jumpmartingale. Our companion article [18] develops a sys-
tematic theory of these integrals which provides the necessary bounds. We encounter
the same “divergences” as in the continuum, and as in the two-dimensional case, these
correspond to small shifts (of order γ 3 and of order γ 6 log γ −1) to the temperature.
Additionally, we encounter an order 1 shift (corresponding to a shift of order γ 6 of
the temperature), in the analysis of the approximate Wick constant. This term, comes
from the analysis of the predictable quadratic variation of the discrete martingales and
does not have a counterpart in the continuous theory.

1.1 Structure of the article

In Sect. 2 we define the dynamical Ising-Kac model and state in Theorem 2.3 our
main convergence result. We recall the solution theory of the dynamical "4

3 model
(1.1) in Sect. 3. In Sect. 4 we construct a regularity structure for the discrete equation
describing the Ising-Kac model. Furthermore, we make the definitions of discrete
models and modelled distributions on this regularity structure, which are required to
solve the equation. A particular discrete renormalised model is constructed in Sect. 5.
Section6 contains some properties of the driving martingales and bounds on auxiliary
processes, which allow to prove moment bounds for the discrete models in Sect. 7. In
Sect. 8wewrite and solve the discrete equation on the regularity structure. Theorem2.3
is proved in Sect. 9. Appendix A contains some properties of the discrete kernels used
throughout the paper.

1.2 Notation

We use N for the set of natural numbers 1, 2, . . ., and we set N0 := N ∪ {0}. The set
of positive real numbers is denoted by R+ := [0,∞). We typically use the Euclidean
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distance |x | for points x ∈ Rd , but sometimes we need the distances |x |1 = |x1| +
· · · + |xd | and |x |∞ = max{|x1|, . . . , |xd |}. We denote by B(x, r) the open ball in R3

containing the points y such that |y − x | < r .
For an integer n ≥ 0, we denote by Cn0 the set of compactly supported Cn functions

ϕ : R3 → R. The set Bn contains all functions ϕ ∈ Cn0, which are supported on
B(0, 1), and which satisfy ∥ϕ∥Cn ≤ 1. For a function ϕ ∈ Bn , for x ∈ R3 and for
λ ∈ (0, 1], we define its rescaled and recentered version

ϕλ
x (y) :=

1
λ3

ϕ
( y − x

λ

)
. (1.2)

We define the three-dimensional torus T3 identified with [−1, 1]3, and the space
D ′(T3) of distributions onT3.We defineD ′(Rd) to be the space of distributions onRd .
When working with distribution-valued stochastic processes, we use the Skorokhod
space D(R+,D ′(T3)) of càdlàg functions [4].

For η < 0 we define the Besov space Cη
(
T3) as a completion of smooth functions

f : T3 → R, under the seminorm

∥ f ∥Cη := sup
ϕ∈Br

sup
x∈R3

sup
λ∈(0,1]

λ−η
∣∣ f
(
ϕλ
x
)∣∣ < ∞, (1.3)

for r being the smallest integer such that r > −η, where we extended f periodically
to R3, and where we write f

(
ϕλ
x
)
=
〈
f ,ϕλ

x
〉
for the duality pairing. Then the Dirac

delta δ is an element of the space C−3 (T3). It is important to define these spaces as
completions of smooth functions, because this makes the spaces separable and allows
to use various probabilistic results.

For ε > 0 we define the grid +ε := εZ3 of mesh size ε. Then it is convenient to
map a function f : +ε → R to a distribution as

(ιε f )(ϕ) := ε3
∑

x∈+ε

f (x)ϕ(x), (1.4)

for any continuous and compactly supported function ϕ.
When working on the time-space domain R4, we use the parabolic scaling s :=

(2, 1, 1, 1), where the first coordinate corresponds to the time variable and the other
three correspond to the space variables. Then for any point (t, x1, x2, x3) ∈ R4, we
introduce the parabolic distance from the origin ∥(t, x)∥s := |t | 12 + |x1| + |x2| + |x3|.
For a multiindex k = (k0, k1, k2, k3) ∈ N4

0 we define |k|s := 2k0 + k1 + k2 + k3.
We frequently use the notation a ! b, which means that a ≤ Cb for a constant

C ≥ 0 independent of the relevant quantities (such quantities are always clear from
the context). In the case a ! b and b ! a we simply write a ≈ b. For a vanishing
sequence of values e, the notation ae ∼ e−1 means that lime→0 eae exists and is finite.

We write L(V ,W ) for the space of linear bounded operators from V to W .
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2 The dynamical Ising-Kacmodel

The Ising-Kac model is a mean-field model with long range potential, which was
introduced to recover rigorously the van der Waals theory of phase transition [27].
We are interested in the three-dimensional model on a periodic domain. To define the
model, let us take N ∈ N and let T3

N := Z3/(2N + 1)Z3 be the three-dimensional
discrete torus, i.e. a discrete periodic grid with 2N + 1 points per side. It will be
convenient to identify T3

N with the set {−N ,−N + 1, . . . , 0, . . . , N }3 and allow
points to be multiplied by real numbers in such a way that r · x = r x (mod (2N + 1)),
for any x ∈ T3

N and r ∈ R, where the mod operator is taken on each component of x .
Each site of the grid k ∈ T3

N has an assigned spin value σ (k) ∈ {−1,+1}. The set of
all spin configurations is .N := {−1,+1}T3

N and we write σ =
(
σ (k) : k ∈ T3

N
)
for

an element of .N .
Let us fix a constant r⋆ > 0. The range of the interaction is represented by a real

number γ ∈ (0, γ⋆), for some γ⋆ < r−1/3
⋆ , and by a smooth, compactly supported,

rotation invariant function K : R3 → [0, 1], supported in the ball B(0, r⋆). (A high
regularity of this function is required in the proof of Lemma A.2.) We impose that
K(0) = 0 and ∫

R3
K(x) dx = 1,

∫

R3
K(x)|x |2 dx = 6, (2.1)

where |x | is the Euclidean norm. Then we define the function Kγ : T3
N → [0,∞) as

Kγ (k) = κγ ,1γ
3K(γ k) (2.2)

for k ∈ T3
N . The constantκγ ,1 is given byκ−1

γ ,1 :=
∑

k∈T3
N

γ 3K(γ k), and it guarantees
that

∑
k∈T3

N
Kγ (k) = 1. Our assumption γ < γ⋆ makes sure that the radius of inter-

action r⋆γ −1 does not exceed the size of the domain N ≈ γ −4 (the precise definition
of N is given in (2.18)). In the rest of this paper, we always consider γ < γ⋆.

The locally averaged (coarse-grained) field hγ : .N × T3
N → R is defined as

hγ (σ, k) :=
∑

j∈T3
N

Kγ (k − j)σ ( j).

Here and inwhat followswe consider the difference k− j on the torus. TheHamiltonian
of the system is the function Hγ : .N → R given by

Hγ (σ ) := −1
2

∑

j,k∈T3
N

Kγ (k − j)σ ( j)σ (k) = −1
2

∑

k∈T3
N

σ (k)hγ (σ, k). (2.3)

In other words, two spins σ ( j) and σ (k) interact if they are located at a distance
bounded by r⋆γ −1, where r⋆ is the radius of the support of K.
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For a fixed inverse temperature β > 0, the Gibbs measure λγ is the probability
measure on .N

λγ (σ ) =
1
Zγ

exp
(
− βHγ (σ )

)
for σ ∈ .N ,

with normalization constantZγ :=∑σ∈.N
exp

(
−βHγ (σ )

)
. Since we consider the

Ising-Kac model in a finite volume, the sum is finite and Zγ is always well-defined.
We are interested in the Glauber dynamics of the Ising-Kac model, in which

the spins evolve in time as a Markov process on a filtered probability space(
1,P,F , (Ft )t≥0

)
with the infinitesimal generator

Lγ f (σ ) :=
∑

j∈T3
N

cγ (σ, j)
(
f
(
σ j )− f (σ )

)
, (2.4)

acting on functions f : .N → R. The configuration σ j is obtained from σ by flipping
the spin at the site j , i.e. for any k ∈ T3

N

σ j (k) :=
{

σ (k) if k ̸= j,

− σ (k) if k = j .

The flipping rates cγ are chosen such that the Gibbs measure λγ is reversible for the
dynamics. For any σ ∈ .N and for any j ∈ T3

N , we set

cγ (σ, j) :=
λγ

(
σ j )

λγ (σ )+ λγ

(
σ j
) = 1

2

(
1 − σ ( j) tanh

(
βhγ (σ, j)

))
. (2.5)

One can readily check that the detailed balance condition is satisfied (see Proposi-
tion 5.3 in [28] and the discussion above it)

cγ (σ
j , j)λγ (σ

j ) = cγ (σ, j)λγ (σ ),

for each j ∈ T3
N , which implies that indeed the Gibbs measure λγ is reversible. Given

a time variable t ≥ 0, we denote by σ (t) =
(
σ (t, k) : k ∈ T3

N
)
the pure jump Markov

process with jump rates cγ .
We can use properties of the infinitesimal generator (see [26, App. 1.1.5]) to write

σ (t, k) = σ (0, k)+
∫ t

0
Lγ σ (s, k) ds +mγ (t, k), (2.6)

where σ (0) ∈ .N is a fixed initial configuration of spins at time 0, the generator
is applied to the function f (σ ) = σ (k) and t /→ mγ (t, k) is a family of càdlàg
martingales with jumps of size 2 (because each spin changes values from +1 to −1
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The dynamical Ising-Kac model 677

or vice versa). Moreover, the predictable quadratic covariations of these martingales
are given by the carré du champ operator [29, App. B] and may be written as

〈
mγ (•, k),mγ (•, k′)

〉
t = 4δk,k′

∫ t

0
cγ (σ (s), k) ds, (2.7)

for all k, k′ ∈ T3
N , where δk,k′ is the Kronecker delta, i.e. δk,k′ = 1 if k = k′ and

δk,k′ = 0 otherwise. We recall that the predictable quadratic covariation in (2.7) is the
unique increasing process, vanishing at t = 0 and such that t /→ mγ (t, k)mγ (t, k′)−〈
mγ (•, k),mγ (•, k′)

〉
t is a martingale. The definitions and properties of the bracket

processes for càdlàg martingales can be found in [24].
The dynamical version of the averaged field we denote by

hγ (t, k) := hγ (σ (t), k).

Remark 2.1 As we stated above, we always consider N >> γ −1, which together with
the property Kγ (0) = 0 means that there is no self-interaction of spins. In contrast
to the setting of [30], we have to avoid self-interaction by postulating K(0) = 0.
The reason for this assumption can be seen in the proof of Lemma A.2, where the
function Kγ is required to be differentiable. The weaker bounds in [30, Lem. 8.2] in
the two-dimensional setting allow this function to have a discontinuity at the origin.

2.1 Convergence of a rescaledmodel

Our main interest lies in understanding the behavior of a rescaled version of the
dynamical Ising-Kac model. For ε = 2/(2N + 1) we introduce the rescaled lattice

T3
ε :=

{
εk : k ∈ T3

N
}
.

In particular, T3
ε is a subset of the three-dimensional torus T3. In what follows, we use

the convolution on the lattice, defined for two functions f , g : T3
ε → R as

(
f ∗ε g

)
(x) := ε3

∑

y∈T3
ε

f (x − y)g(y). (2.8)

For any function g : T3
ε → R, we use the standard definition for the discrete Fourier

transform

ĝ(ω) := ε3
∑

x∈T3
ε

g(x)e−π iω·x for ω ∈ {−N , . . . , N }3. (2.9)

We fix two positive real constants δ > 0 and α > 0 and define the family of rescaled
martingales

Mγ (t, x) :=
1
δ
mγ

( t
α
,
x
ε

)
for x ∈ T3

ε, t ≥ 0, (2.10)
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678 P. Grazieschi et al.

and also
Kγ (x) :=

1
ε3

Kγ

( x
ε

)
. (2.11)

Then from (2.6) we can conclude that the rescaled process

Xγ (t, x) :=
1
δ
hγ

( t
α
,
x
ε

)
for x ∈ T3

ε, t ≥ 0, (2.12)

solves the following equation (see [30] for the derivation of an analogous equation in
the two-dimensional case)

Xγ (t, x) = X0
γ (x)+

(
Kγ ∗ε Mγ

)
(t, x) (2.13)

+
∫ t

0

(
ε2

γ 2α
$̃γ Xγ + β − 1

α
Kγ ∗ε Xγ − β3δ2

3α
Kγ ∗ε X3

γ + Eγ

)
(s, x) ds,

where X0
γ (x) = Xγ (0, x) is a rescaled initial configuration. The linear part of this

equation is given by the discrete operator

$̃γ f (x) := γ 2

ε2

(
Kγ ∗ε f − f

)
(x), (2.14)

and the “error term” Eγ is given by

Eγ (t, x) :=
1
δα

(
tanh

(
βδXγ

)
− βδXγ + 1

3

(
βδXγ

)3
)
(t, x). (2.15)

As we commented after (2.2), for all γ sufficiently small the function Kγ (x) is sup-
ported on (−1, 1)3, and its convolutions with periodic processes in (2.13) make sense.

We are going to take the limit such that all the scaling parameters in (2.12) tend to
zero. In order to prevent explosion of the multiplier (β − 1)/α in (2.13), we need to
consider the inverse temperature of the form

β = 1+ α
(
Cγ + A

)
, (2.16)

where A is a fixed constant (its value does not play any significant role and produces a
linear term in the limitingEq. (2.21)) andwhereCγ is a suitably chosen renormalisation
constant, which diverges as γ → 0 such that γ −1 << α−1. In other words, we consider
the model near the critical mean-field value of the inverse temperature βc = 1, and as
we will see later, Cγ plays a role of the renormalisation constant, which is required to
have a non-trivial limit of the non-linearity X3

γ in (2.13). The shift of the critical inverse
temperaturewas observed in [7], and in the three-dimensional case it has a significantly
more complicated structure than in two dimensions [30] (see Theorem 2.3).

From (2.5) and (2.7) we conclude that the predictable quadratic covariations of the
martingales (2.10) are

〈
Mγ (•, x),Mγ (•, x ′)

〉
t =

2ε3

δ2α
δ
(ε)
x,x ′

∫ t

0

(
1−σ

( s
α
,
x
ε

)
tanh

(
βδXγ (s, x)

))
ds, (2.17)
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The dynamical Ising-Kac model 679

for any x, x ′ ∈ T3
ε , where δ

(ε)
x,x ′ := ε−3δx,x ′ is an approximation of the Dirac’s delta.

We would like to have convergence of the operators $̃γ to the Laplacian, and of
the quadratic covariations for the martingales to those of a cylindrical Wiener process.
We also want to have a non-trivial nonlinearity in the limit (given by the cubic term),
which translates into the relations between the scaling parameters

1 ≈ ε2

γ 2α
≈ δ2

α
≈ ε3

δ2α
.

In the rest of this article, we therefore fix them to be γ -dependent as

N =
⌊
γ −4

⌋
, ε = 2

2N + 1
, α = γ 6, δ = γ 3. (2.18)

This implies ε ≈ γ 4, and such choice of ε (rather than ε = γ 4) makes the use of the
discrete Fourier transform (2.9) more convenient. Moreover, we define:

κγ ,2 :=
ε3

δ2α
≈ 1, (2.19)

which we will use in the rest of the paper, remembering that it converges to 1.
The scaling (2.18) makes the radius of interaction for the rescaled process to be

e := ε/γ ≈ γ 3. As such, the model has two scales: ε ≈ γ 4 is the distance between
points on the lattice, and e ≈ γ 3 is the distance up to which the interaction between
two spins is felt.

Remark 2.2 The dynamical Ising-Kac model can be defined for any spatial dimension
d ≥ 1, where the previous conditions on the quantities ε, δ and α become

ε ≈ γ
4

4−d , α ≈ γ
2d
4−d , δ ≈ γ

d
4−d . (2.20)

Observe that, in order tomake these quantities vanish when γ → 0, we need to impose
d < 4. This condition coincides with the local sub-criticality condition in the solution
theory of the dynamical "4

d model [20].

Our goal is to prove convergence of the rescaled processes (2.12) to the solution of
the "4

3 equation (the dynamical "4
3 model)

(∂t − $)X = −1
3
X3 + AX +

√
2 ξ, X(0, •) = X0(•), (2.21)

on R+ × T3, where ξ is space-time white noise, and A is the same as in (2.16).
The notion of solution for the singular stochastic PDE (2.21) was first provided in
[20] using the theory of regularity structures, and later in [6] using paracontrolled
distributions.

In order to solveEq. (2.21), one considers amollifiednoise ξδ , such that limδ→0 ξδ =
ξ in a suitable space of distributions. Then the Eq. (2.21), driven by the smooth noise
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680 P. Grazieschi et al.

ξδ , can be solved classically. Furthermore, one can show that there is a renormalisation
constant Cδ ∼ δ−1 such that the solution of the renormalised equation

(∂t − $)Xδ = −1
3
X3

δ +
(
Cδ + A

)
Xδ +

√
2 ξδ, Xδ(0, •) = X0

δ (•),

has a non-trivial limit X as δ → 0 in a suitable topology. Although the constant Cδ

depends on the particular mollification of the noise, the limit X is independent of
it, i.e. different mollifications give the same limit. The role of Cδ is to compensate
the divergence of the non-linear term 1

3 X
3
δ . This constant can be written explicitly in

terms of a singular part of the heat kernel, and its precise value can be found in [20,
Sec. 10.5]. The linear term AX appears in (2.21) as a consequence of our assumption
(2.16) on the discrete model.

We need to introduce the topology in which convergence of the initial states holds.
Namely, for a function fγ : T3

ε → R, for η < 0 and for the smallest integer r such
that r > −η, we define the semi-norm

∥ fγ ∥(e)Cη := sup
ϕ∈Br

sup
x∈+ε

sup
λ∈[e,1]

λ−η
∣∣(ιε fγ

) (
ϕλ
x
)∣∣+ sup

ϕ∈Br
sup
x∈+ε

sup
λ∈[ε,e)

e−η
∣∣(ιε fγ

) (
ϕλ
x
)∣∣ .

(2.22)
where we extended the function fγ periodically to +ε, the set of test functions Br

defined in Sect. 1.2 and the map ιε is defined in (1.4). This definition is similar to
(1.3), where we “measure” regularity only above the scale e. On the smaller scale, we
expect the function to be uniformly bounded by a constant multiple of eη. One can see
that this semi-norm is finite for any function fγ , but we will be always interested in
the situation when it is bounded uniformly in γ > 0. If λ < e, then the support of ϕλ

x
contains only the point x ∈ +ε, and we readily get

sup
x∈+ε

| fγ (x)| ≤ eη∥ fγ ∥(e)Cη . (2.23)

To compare this function with a distribution f ∈ Cη
(
T3), we also define

∥ fγ ; f ∥(e)Cη := sup
ϕ∈Br

sup
x∈+ε

sup
λ∈[e,1]

λ−η
∣∣(ιε fγ − f

) (
ϕλ
x
)∣∣ (2.24)

+ sup
ϕ∈Br

sup
x∈+ε

sup
λ∈[ε,e)

e−η
∣∣(ιε fγ

) (
ϕλ
x
)∣∣+ sup

ϕ∈Br
sup
x∈R3

sup
λ∈(0,e)

λ−η
∣∣ f
(
ϕλ
x
)∣∣ ,

where we extended fγ and f periodically to +ε and R3 respectively. In other words,
we compare the two functions on the scale above e, and use the simple control on the
smaller scale.

The following is the main result of this article, which is proved in Sect. 9. We refer
to Sect. 1.2 for the definitions of the involved spaces.

Theorem 2.3 Let there exist values− 4
7 < η < η̄ < − 1

2 and γ⋆ > 0, and a distribution
X0 ∈ Cη̄

(
T3) such that the rescaled initial state X0

γ of the dynamical Ising-Kac model
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satisfies
sup

γ∈(0,γ⋆)

∥X0
γ ∥(e)Cη̄ < ∞, lim

γ→0
∥X0

γ ; X0∥(e)Cη = 0. (2.25)

Then there is a choice of the constantCγ in (2.16), such that the processes t /→ ιεXγ (t)
converge in law as γ → 0 to t /→ X(t) with respect to the topology of the Skorokhod
space D

(
R+,D ′ (T3)), where X is the solution of the "4

3 Eq. (2.21) with the initial
state X0 and with the constant A from (2.16).

Furthermore, let K̂γ be the discrete Fourier transform of the function Kγ (since
Kγ is symmetric, K̂γ is real-valued). Then for all γ > 0 small enough one has the
expansion

Cγ = c(2)γ + c(1)γ + c(0)γ , (2.26)

where the constants c(2)γ ∼ e−1 and c(1)γ ∼ log e are given by

c
(2)
γ = γ 6

8

∑

0<|ω|∞≤N

|K̂γ (ω)|2
1 − K̂γ (ω)

, (2.27)

c
(1)
γ = γ 18

16

∑

0<|ω1|∞,|ω2|∞≤N

|K̂γ (ω1)|2|K̂γ (ω2)|2
(1 − K̂γ (ω1))(1 − K̂γ (ω2))

K̂γ (ω1 + ω2)

1 − K̂γ (ω1) − K̂γ (ω2)+ K̂γ (ω1 + ω2)
,

and the constant c(0)γ has a finite limit as γ → 0. All sums in (2.27) run over
{−N , . . . , N }3 with the imposed restrictions, and the denominators of the terms in
these sums are non-vanishing.

Remark 2.4 One should note that the renormalisation constant Cγ depends non-
trivially on the covariations (2.17) of the driving martingales. It can be seen from the
proof of Theorem 2.3 (more precisely, from the renormalisation of the lift in Sect. 5.1,
from the definition of the renormalisation constant (8.13) in the discrete equation and
from Lemma 5.4 which relates different renormalisation constants).

Lemma 5.4 and the definitions (5.4) and (5.8) imply that the divergent constants
c(2)γ and c(1)γ can be written as

c
(2)
γ = 2

∫

Dε

K̃ γ (z)2 dz + a(2)γ ,

c
(1)
γ = 8

∫

Dε

∫

Dε

∫

Dε

K̃ γ (z)K̃ γ (z1)K̃
γ (z2)K̃

γ (z1 − z)K̃ γ (z2 − z) dzdz1dz2 + a(1)γ

with convergent terms a(2)γ and a(1)γ , where K̃ γ is a singular part of the discrete heat
kernel. These are the standard renormalisation constants for a discrete approximation
of the "4

3 equation, which would be used if the driving martingales in (2.13) were
Gaussian with the covariance (2.17) given by

〈
Mγ (•, x),Mγ (•, x ′)

〉
t = t

2ε3

δ2α
δ
(ε)
x,x ′ . (2.28)
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The covariance (2.17) of the driving martingales in our model is non-linear and this
non-linearity requires renormalisation too. More precisely, we show that the product
of σ and tanh(βδXγ ) in (2.17) can be replaced with a product of Xγ and Xγ with a
suitable multiplier, where the process Xγ is defined similarly to Xγ . When proving
moment bounds for the discrete model defined in Sect. 5.2, we demonstrate that the
product Xγ Xγ should be renormalised and this renormalisation makes a contribution

to the constant c(0)γ (see Sect. 7.1.2 formore details). Such a contribution is not observed
in the two-dimensional case [30].

Remark 2.5 The precise value of the constant c(0)γ may be obtained from (8.13), which
does not play a significant role and we omit it here.

Remark 2.6 It is natural to consider the initial states of regularity strictly smaller than
− 1

2 , because this is the spatial regularity of the solution to (2.21) (see [20]). We make
the assumption η > − 4

7 on the regularity of the initial state. It follows from the
definition of the model that Xγ lives on the scale e ≈ γ 3. This implies that, for any
κ > 0, we expect the following a priori bound

∥Xγ (t)∥L∞(T3
ε)

! e−
1
2−κ

uniformly in γ ∈ (0, γ⋆). Hence, for κ < 1
14 we can use the Taylor expansion of order

5 for the function tanh in (2.15), with the error term bounded by a positive power of
γ . This is the reason for our restriction η = − 1

2 − κ > − 4
7 . Proving Theorem 2.3 for

lower regularity of the initial state requires some technicalities. More precisely, for
η < − 4

7 we need to have a bigger regularity structure, than the one defined in Sect. 4,
we need to control blow-ups of Xγ at time t = 0, similarly to how it was done in [20,
23], and we may need to work in more complicated spaces (see [21] for continuous
equations with irregular initial states).

2.2 Amild form of the equation

In order to define the Green’s function for the linear operator in (2.13), it is convenient
to use the discrete Fourier transform (2.9). We start with recalling some of its basic
properties. Every time when a sum runs over ω ∈ {−N , . . . , N }3, we will simply
write |ω|∞ ≤ N . For the function as in (2.9), the Fourier series is

g(x) = 1
8

∑

|ω|∞≤N

ĝ(ω)eπ iω·x . (2.29)

Then, for two functions f , g : T3
ε → R, Parseval’s theorem reads

ε3
∑

x∈T3
ε

f (x)g(x) = 1
8

∑

|ω|∞≤N

f̂ (ω) ĝ(ω), (2.30)
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where ĝ(ω) is the complex conjugation of ĝ(ω). Moreover, one has the identities

f̂ g(ω) = 1
8

∑

|ω′|∞≤N

f̂ (ω − ω′) ĝ(ω′), f̂ ∗ε g(ω) = f̂ (ω) ĝ(ω), (2.31)

where ∗ε is the convolution on T3
ε , defined in (2.8), and the subtraction ω − ω′ is

performed on the torus {−N , . . . , N }3. To have a lighter notation in the following
formulas we will write Fε f (ω) for the discrete Fourier transform f̂ (ω). One can
readily see thatFε f converges in a suitable sense as ε → 0 to the continuous Fourier
transformF f given by

F f (ω) =
∫

R3
f (x)e−π iω·xdx for ω ∈ R3.

It will be convenient to include the factor ε2/
(
γ 2α

)
in (2.13) into the definition of

the linear operator. For this, we write

ε = γ 4κγ ,3 with |κγ ,3 − 1| < γ 4, (2.32)

and we define a new operator

$γ := κ2
γ ,3$̃γ = ε2

γ 2α
$̃γ . (2.33)

One can see that $γ approximates the continuous Laplace operator $ as γ → 0,
when it is applied to a sufficiently regular function, and we can define the respective
approximate heat kernel.More precisely, we define the function Pγ

t : T3
ε → R solving

for t > 0 the ODEs
d
dt

Pγ
t = $γ P

γ
t , (2.34)

with the initial condition Pγ
0 (x) = δ

(ε)
x,0 (the latter is defined below (2.17)). Pγ is the

Green’s functions of the linear operator which appear in Eq. (2.13). This function can
alternatively be defined by its discrete Fourier transform

FεP
γ
t (ω) = exp

(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
, (2.35)

for all ω ∈ {−N , . . . , N }3. With a little ambiguity, we denote by Pγ
t the operator

acting on functions f : T3
ε → R by the convolution

(
Pγ
t f
)
(x) = ε3

∑

y∈T3
ε

Pγ
t (x − y) f (y). (2.36)

It will be also convenient to define the kernel

P̃γ
t (x) := Pγ

t ∗ε Kγ (x), (2.37)
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and the respective integral operator is defined by analogy with (2.36). We can then
rewrite the discrete Eq. (2.13) in the mild form

Xγ (t, x) = Pγ
t X0

γ (x)+
√
2 Yγ (t, x) (2.38)

+
∫ t

0
P̃γ
t−s

(
−β3

3
X3

γ +
(
Cγ + A

)
Xγ + Eγ

)
(s, x) ds,

where we have used the inverse temperature (2.16) and where

Yγ (t, x) :=
1√
2
ε3
∑

y∈T3
ε

∫ t

0
P̃γ
t−s(x − y) dMγ (s, y). (2.39)

Here and in the following, we always write stochastic integrals with respect to the
time variable (which is s in this integral).

2.3 A priori bounds

In the proof of Theorem 2.3, we are going to show convergence of Xγ (t) in a stronger
topology than D ′ (T3). For this we need to control this process using the semi-norm
(2.22). More precisely, for a fixed constant a ≥ 1 and the value η as in the statement
of Theorem 2.3 we define the stopping time

τ (1)γ ,a := inf
{
t ≥ 0 : ∥Xγ (t)∥(e)Cη ≥ a

}
. (2.40)

On the random time interval
[
0, τ (1)γ ,a

)
we have the a priori bound ∥Xγ (t)∥(e)Cη ≤ a,

while on the closed interval
[
0, τ (1)γ ,a

]
the bound is ∥Xγ (t)∥(e)Cη ≤ a + 2κγ ,1 almost

surely. The two bounds are different because there may be a jump of the process
at time τ

(1)
γ ,a, and as one can see from (2.13) the jump size of Xγ (t, x) is bounded

by the jump size of
(
Kγ ∗ε Mγ

)
(t, x), and the latter is almost surely bounded by

2ε3
δ supx∈+ε

|Kγ (x)| ≤ 2κγ ,1. Here, we used the properties that the jump size of the
martingale Mγ (t, x) is 2

δ and a jump at time t may almost surely happen only at one
x . As follows from the definition of κγ ,1 in (2.2), it converges to 1 as γ → 0. Since
we always consider γ sufficiently small, we can assume that κγ ,1 ≤ 2, and hence

∥Xγ (t)∥(e)Cη ≤ a + 4 ≤ 5a almost surely on
[
0, τ (1)γ ,a

]
. Using (2.23) we also have a

uniform bound on this process

|Xγ (t, x)| ≤ 5aeη (2.41)

almost surely. Staying on the time interval [0, τ (1)γ ,a] is also sufficient to control the
bracket process (2.17). More precisely, for t < τ

(1)
γ ,a we have (2.41) and the random
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part of (2.17) is bounded by

∣∣∣σ
( t

α
,
x
ε

)
tanh

(
βδXγ (t, x)

)∣∣∣ ! δaeη ! aγ 3(1+η),

where we used the estimate | tanh(x)| ≤ |x | for any x ∈ R, where we estimated β by a
constant andwherewe used the scaling (2.18). Sinceη > −1, the preceding expression
vanishes as γ → 0 and the bracket process (2.17) converges to the covariance of a
cylindrical Wiener process.

To control the discrete model, constructed in Sect.5, we need to introduce another
stopping time. For this we define the rescaled spin field

Sγ (t, x) :=
1
δ
σ
( t

α
,
x
ε

)
for x ∈ T3

ε, t ≥ 0. (2.42)

In Sect. 7.1.2 we will need to control the product Sγ (t, x)Xγ (t, x), appearing in the
random part of the bracket process (2.17), in a suitable space of distributions. For this,
we will show in Lemma 6.3 that the spin field Sγ can be replaced, up to an error,
by its local average. More precisely, we take any smooth, rotation invariant function
K : R3 → R, supported in the ball of radius 2 and centered at the origin, whose
continuous Fourier transform satisfiesFK(ω) = 1, for all ω ∈ R3 such that |ω|∞ ≤ 1.
Then for a fixed constant κ ∈ (0, 1

10 ) we define

Kγ (k) := cγ ,1γ
3(1−κ)K

(
γ 1−κk

)
with c−1

γ ,1 :=
∑

k∈T3
N

γ 3(1−κ)K
(
γ 1−κk

)
, (2.43)

and
Xγ (t, x) :=

(
K γ ∗ε Sγ

)
(t, x), K γ (x) :=

1
ε3

Kγ

( x
ε

)
. (2.44)

In contrast to (2.12), where the local average of the rescaled spin field Sγ is computed
in a ball of radius of order γ 3, the process Xγ (t) is defined as a local average of spins
in a ball of a smaller radius of order γ 3+κ . A precise value of κ will not play any
significant role, as soon as it is small enough. In particular, taking κ < 1

10 will later
allow us to use Lemma 8.5.

Then for η as in the statement of Theorem 2.3 and for the constant

Cγ := 2κγ ,2

∫ ∞

0
ε3
∑

x∈T3
ε

(
Pγ
t ∗ε K γ

)
(x)P̃γ

t (x) dt, (2.45)

where we use (2.19), we define the stopping time

τ (2)γ ,a := inf
{
t ≥ 0 : ∥Xγ (t)Xγ (t) − Cγ ∥(e)C−1−κ ≥ aeκ/2−1

}
, (2.46)

where e := eγ κ . Since both of the involved processes Xγ and Xγ are expected to
converge to distributions as γ → 0, the product Xγ Xγ needs to be renormalised by
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subtracting the divergent constant Cγ . From Lemma 5.5 we have |Cγ | ! e−1, and we

expect that ∥Xγ (t)Xγ (t)∥(e)C−1−κ blows up with the speed e−1. The speed of blow-up
in (2.46), after renormalising the product, is slower. It can be significantly improved,
but the presented speed is enough for our estimates in Sect. 7.1.2.

To combine the two stopping times (2.40) and (2.46), we set

τγ ,a := τ (1)γ ,a ∧ τ (2)γ ,a, (2.47)

andwe restrict the time variable to the interval [0, τγ ,a]. For this it will be convenient to
consider a stopped process σ (t), extended beyond the random time τγ ,a. To define such
extension, we introduce a new spin system σ ′

γ ,a which starts from the configuration
σ ′

γ ,a

( τγ ,a

α

)
= σ

( τγ ,a

α −
)
and which for the times t > τγ ,a

α is given by the infinitesimal
generator L ′

γ given by (2.4) with the flip rates1

c′
γ (σ, j) =

1
2

(
1 − σ ( j)hγ (σ, j)

)
.

Then we set

σγ ,a(t) :=
{

σ (t) for t < τγ ,a

α ,

σ ′
γ ,a(t) for t ≥ τγ ,a

α ,
(2.48)

where α is from (2.18). The reason to make this particular choice for the extension is
in a good control of the rescaled spin field X ′

γ ,a, defined as in (2.12) for the process
σ ′

γ ,a. More precisely, we show in Lemma 6.4 that X ′
γ ,a solves a linear equation which

allows to bound it globally in time.
We define the martingalesMγ ,a via the process σγ ,a in the same way as we defined

Mγ in (2.10) via the process σ . For t < τγ ,a the martingale Mγ ,a(t) coincides with
Mγ (t), while for t ≥ τγ ,a we denote Mγ ,a(t) = M′

γ ,a, where the latter has the
predictable quadratic covariations

〈
M′

γ ,a(•, x),M
′
γ ,a(•, x

′)
〉
t = 2κγ ,2δ

(ε)
x,x ′

∫ t

τγ ,a

(
1 − δσ ′

γ ,a

( s
α
,
x
ε

)
X ′

γ ,a(s, x)
)
ds,

(2.49)
with δ

(ε)
x,x ′ defined below (2.17) and κγ ,2 is defined in (2.19). Then for t ≥ τγ ,a we

have

〈
Mγ ,a(•, x),Mγ ,a(•, x ′)

〉
t =

〈
Mγ (•, x),Mγ (•, x ′)

〉
τγ ,a

+
〈
M′

γ ,a(•, x),M
′
γ ,a(•, x

′)
〉
t .

(2.50)
We define Xγ ,a as the solution of an analogue of equation (2.38), driven by these new
martingales

Xγ ,a(t, x) = Pγ
t X0

γ (x)+
√
2 Yγ ,a(t, x) (2.51)

1 The process σ ′ defined by the generator L ′
γ is called a “voter model” [28]. The scaling limit of the

one-dimensional Ising-Kac model near the critical temperature was proved in [14] by using a coupling of
these two models.
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+
∫ t

0
P̃γ
t−s

(
−β3

3
X3

γ ,a +
(
Cγ + A

)
Xγ ,a + Eγ ,a

)
(s, x) ds,

where

Yγ ,a(t, x) :=
1√
2
ε3
∑

y∈T3
ε

∫ t

0
P̃γ
t−s(x − y) dMγ ,a(s, y),

and the error term Eγ ,a is defined in the same way as Eγ in (2.15), but via the
process Xγ ,a. For t ≤ τγ ,a we have Xγ ,a(t) = Xγ (t), and for t > τγ ,a we have
Xγ ,a(t) = X ′

γ ,a(t).
Working with the process Xγ ,a is advantageous, because we can use the a priori

bounds provided by the stopping times (2.40) and (2.46), which guarantees conver-
gence of the martingales and their lift to a discrete model (see Proposition 7.1). To
prove Theorem 2.3, we will first prove the respective convergence result for Xγ ,a and
then we will take the limit a → ∞. In order to show that τγ ,a almost surely diverges
in these limits, we will prove that this stopping time is close to a stopping time of the
limiting process X , and the latter is almost surely infinite.

2.4 Periodic extensions

We are going to write equation (2.51) in the framework of regularity structures. For
this, we need to write this equation on the whole domain +ε rather than on the torus
T3

ε . To do this, we denote by Gγ
t : +ε → R the discrete heat kernel, which solves

equation (2.34) on +ε (one can see that for γ small enough, the discrete operator $γ

is naturally extended to functions on +ε). Then we have the identity

ε3
∑

x∈T3
ε

Pγ
t (x) f (x) = ε3

∑

x∈+ε

Gγ
t (x) f (x), (2.52)

for any f : T3
ε → R, where on the right-hand side we extended f periodically to +ε.

We define respectively

G̃γ
t (x) := ε3

∑

y∈+ε

Gγ
t (x − y)Kγ (y). (2.53)

Then equation (2.51) may be written as

Xγ ,a(t, x) = Gγ
t X

0
γ (x)+

√
2 Yγ ,a(t, x) (2.54)

+
∫ t

0
G̃γ

t−s

(
−β3

3
X3

γ ,a +
(
Cγ + A

)
Xγ ,a + Eγ ,a

)
(s, x) ds,

where we extended all the involved processes periodically to +ε.
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3 The dynamical84
3 model

In this section we recall the notion of solution to the "4 equation (2.21) on the
three-dimensional torus. Following [20], we describe the solution in the framework
of regularity structures. Throughout the section we are going to use singular modelled
distributions and their basic properties, which can be found in [20]. However, we pre-
fer to duplicate some of the definitions here to have a better motivation for the setting
of Sects. 4 and 8.

3.1 Amodel space

In this section we introduce an infinite set T and a finite-dimensional regularity struc-
ture T = (A, T,G) such that T ⊂ T and that is required to describe equation (2.21).

To define the space T, it is convenient to use some “abstract symbols” as its basis
elements. Namely, 7 will represent the driving noise in (2.21), the integration map
I will represent the space-time convolution with the heat kernel, i.e. the Green’s
function of the parabolic operator ∂t − $ on R3. The symbols Xi , i = 0, . . . , 3, will
represent the time and space variables, and for ℓ = (ℓ0, . . . , ℓ3) ∈ N4

0 we will use the
shorthand Xℓ = Xℓ0

0 Xℓ1
1 Xℓ2

2 Xℓ3
3 , with the special unit symbol 1 := X0. We define

Wpoly := {Xℓ : ℓ ∈ N4
0} to be the set of all monomials.

Then we define the minimal sets V and U of formal expressions such that 7 ∈ V,
Wpoly ⊂ V ∩ U and the following implications hold:

τ ∈ V ⇒ I(τ ) ∈ U, (3.1a)

τ1, τ2, τ3 ∈ U ⇒ τ1τ2τ3 ∈ V, (3.1b)

where the product of symbols is commutative with the convention 1τ = τ . We postu-
late I(Xℓ) = 0 and do not include such zero elements into U and V. The set U contains
the elements needed to describe the solution of (2.21), while V contains the elements
to describe the expression on the right-hand side of this equation. Namely, the rela-
tion (3.1a) means that the elements of U are obtained by integrating the elements on
the right-hand side of the equation. The rule (3.1b) means that the right-hand side of
(2.54) contains the third power of the solution (we note that since 1 ∈ U, the set V also
contains the symbols τ1 and τ1τ2 for all τ1, τ2 ∈ U).

We set W := U ∪ V, and for a fixed κ ∈
(
0, 1

14

)
we define the homogeneity

| • | : W → R of each element ofW by the recurrent relations

|Xℓ| = |ℓ|s, (3.2a)

|7| = −5
2

− κ, (3.2b)

|τ1τ2| = |τ2| + |τ2|, (3.2c)

|I(τ )| = |τ | + 2, τ /∈ Wpoly. (3.2d)
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The definition (3.2a) takes into account the parabolic scaling of space-time; (3.2b)
is the regularity of the space-time white noise; (3.2d) is motivated by the Schauder
estimate, i.e. a convolution with the heat kernel increases regularity by 2. One can
readily see that for any κ < 1

14 and for any ζ ∈ R the set {τ ∈ W : |τ | < ζ } is finite.
The restriction κ < 1

14 will be useful later in Sect. 8 and it is explained in Remark 2.6.
We define T to contain all finite linear combinations of the elements in W, and

we view I as a linear map τ /→ I(τ ), defined on the subspace generated by
{7, I(7)2, I(7)3}. Our definition of this map implies that it can be considered as
“an abstract integration map” from [20]. The set A contains the homogeneities |τ | for
all τ ∈ W.

In order to solve equation (2.21), it is enough to consider the elements in W with
negative homogeneities to describe the right-hand side, while the solution of this
equation is described by the elements of homogeneities not exceeding 1+ 3κ . Hence,
we define

W := {τ ∈ V : |τ | ≤ 0, τ ̸= 7} ∪ {τ ∈ U : |τ | ≤ 1+ 3κ}. (3.3)

This is the minimal set of the basis elements of a regularity structure, which will allow
us to solve the equation (3.10), an abstract version of (2.21). We will see in Sect. 5,
that the element7 plays a special role; namely,7 corresponds to a distribution (a time
derivative of a martingale), while the other elements correspond to functions. That is
why it will be convenient to remove 7 from the regularity structure.

As we will see, the set V contains the elements describing the right-hand side of
(3.10), except the noise element7whichwe prefer to exclude. In order to get the right-
hand side of (2.21) after reconstruction of the right-hand side of (8.6), it is enough
to use the elements of V with non-positive homogeneities. This explains why we use
only the elements {τ ∈ V : |τ | ≤ 0} in (3.3). As we explained above, we use the
elements {τ ∈ U : |τ | ≤ 1+ 3κ}, because we are going to solve equation (3.10) in a
space of modelled distributions of regularity 1+ 3κ .

We define T to be the linear span of the elements in W, and the set A contains the
homogeneities |τ | for all elements τ ∈ W.

It is convenient to represent the elements of W as trees. Namely, we denote 7 by
a node . When a map I is applied to a symbol τ , we draw an edge from the root of
the tree representing this symbol τ . For example, the symbol I(7) is represented by
the diagram . The product of symbols τ1, . . . , τn is represented by the tree, obtained
from the trees of these symbols by drawing them from the same root. For example,

and are the diagrams for I(7)2 and I(7)3 respectively. We use the symbols
for the polynomials as before. In Table 1 we provide the elements of W and their
homogeneities.

Every element f ∈ T can be uniquely written as f =∑τ∈W fτ τ for fτ ∈ R, and
we define

| f |α :=
∑

τ∈W:|τ |=α

| fτ |, (3.4)

postulating | f |α = 0 if the sum runs over the empty set. We also introduce the
projections
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Table 1 The elements ofW and their homogeneities

Element Homogeneity Element Homogeneity

1 0 Xi , i = 1, 2, 3 − 1
2 − 3κ

Xi , i = 1, 2, 3 1 1 − 2κ

− 1
2 − κ 1

2 − 3κ

−1 − 2κ −4κ

Xi , i = 1, 2, 3 −2κ −4κ

− 3
2 − 3κ − 1

2 − 5κ

Q<α f :=
∑

τ∈W:|τ |<α

fτ τ, Q≤α f :=
∑

τ∈W:|τ |≤α

fτ τ. (3.5)

Let the model space T<α contain all the elements f ∈ T satisfying f = Q<α f . All
these definitions can be immediately projected to T.

3.2 A structure group

In order to use the results of [20], we need to define a structure group G. For this, we
need to introduce another set of basis elements W+, containing 1, Xi for i = 1, 2, 3,
and the elements of W of the form I(τ ) for τ ̸= 7. Then we define T+ to be the free
commutative algebra generated by the elements ofW+.

We define a linear map $ : T → T ⊗ T+ by the identities

$1 = 1 ⊗ 1, $Xi = Xi ⊗ 1+ 1 ⊗ Xi , (3.6a)

and then recursively by (we denote by I the identity operator on T+)

$τ1τ2 = ($τ1)($τ2), (3.6b)

$I(7) = I(7) ⊗ 1, (3.6c)

$I(τ ) = (I ⊗ I )$τ + 1 ⊗ I(τ ), τ ̸= 7, (3.6d)

for respective elements τi , τ, τ̄ ∈ W. In Table 2 we write $τ for all τ ∈ W.

Remark 3.1 Since we restricted the set of basis elements (3.3), our definition of the
map $ looks much easier than in [20, Eq. 8.8b]. More precise, the general definition
of $I(τ ) should be

$I(τ ) = (I ⊗ I )$τ +
∑

k,ℓ∈N4
0

|k+ℓ|s<|τ |+2

Xk

k! ⊗ Xℓ

ℓ! Ik+ℓ(τ ),
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Table 2 The image of the operator $

$1 = 1 ⊗ 1 $ Xi = Xi ⊗ 1+ ⊗ Xi

$Xi = Xi ⊗ 1+ 1 ⊗ Xi $ = ⊗ 1+ 1 ⊗
$ = ⊗ 1 $ = ⊗ 1+ 1 ⊗
$ = ⊗ 1 $ = ⊗ 1+ ⊗
$ Xi = Xi ⊗ 1+ ⊗ Xi $ = ⊗ 1+ ⊗
$ = ⊗ 1 $ = ⊗ 1+ ⊗

Table 3 Linear transformations in G of the elements inW

Element Image Element Image

1 1 Xi , i = 1, 2, 3 Xi + ai

Xi , i = 1, 2, 3 Xi + ai1 + b1

+ c1

+ b

Xi , i = 1, 2, 3 Xi + ai + c

+ c

where Ik+ℓ are new auxiliary symbols. Our definition (3.3) implies that there is at
most one term in this sum, which yields (3.6c) and (3.6d).

For any linear functional f : T+ → R we define the map : f : T → T as

:f τ := (I ⊗ f )$τ. (3.7)

Then the structure group G is defined as G := {:f : f ∈ G+}, where G+ contains all
linear functionals f : T+ → R satisfying f (1) = 1. In general f are assumed to be
multiplicative [20], i.e. f (τ τ̄ ) = f (τ ) f (τ̄ ) for τ, τ̄ ∈ T+, but our set T+ does not
contain products of elements and hencewedonot need themultiplicativity assumption.

Since themodel spaceT is generated by a small number of elements listed in Table 1,
we can describe the structure group G explicitly. More precisely, G contains all the
transformations listed in Table 3 for any real constants ai , for i = 0, . . . , 3, b and c.

The bijection between these constants and the functionals f ∈ G+ is given by

ai = f (Xi ), b = f
( )

, c = f
( )

.

In the rest of this section we use the framework of [20] to work with the regularity
structure T = (A, T,G) just introduced.
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3.3 A solutionmap

Let G be the heat kernel, i.e. the Green’s function of the parabolic operator ∂t − $

on R3. As in [20, Sec. 5], we write it as G = K + R, where R is smooth and K
is singular, compactly supported. Let furthermore, Z = (;,:) be the model on the
regularity structure T for the equation (2.21), defined in [20, Sec. 10.5] with respect
to the kernel K . Using the value κ from (3.2b), we define the abstract integration
operator

P := Kκ + R1+3κR, (3.8)

where the operator Kκ is defined in [20, Eq. 5.15] via the kernel K for the values
β = 2 and γ = κ , the operator R1+3κ is defined in [20, Eq. 7.7] as a Taylor’s expansion
of the function R up to the order 1 + 3κ , and R is the reconstruction map for the
model Z defined in [20, Thm. 3.10]. The choice of the values κ and 1 + 3κ in (3.8)
is motivated as follows. We are going to solve an abstract version of equation (2.21)
for a modelled distribution U ∈ Dζ,η with ζ = 1 + 3κ being the minimal regularity
such that the theory can be applied. Then the non-linearity U 3 of the equation is an
element of the spaceU ∈ Dζ+2|I(7)|,η̄, for |I(7)| being the regularity of the sector in
which U takes values. Since ζ + 2|I(7)| = κ (see Table 1), the map P should act on
elements of Dκ,η̄.

Using this integral operator, we define the modelled distribution

W (z) := P1+(7)(z), (3.9)

where 1+ is the projection of modelled distributions to R+ in the time variable. We
note that, although we have not included the symbol 7 into the regularity structure,
the model Z defined in [20, Sec. 10.5] is defined also on the symbol 7. This makes
the definition (3.9) meaningful.

Using the polynomial lift of the convolution GX0, defined in [20, Lem. 7.5], we
consider the abstract equation

U = Q<ζ

(
GX0 + P1+F(U )+

√
2W

)
, (3.10)

where U ∈ Dζ,η(Z) is a modelled distribution, for ζ = 1+ 3κ and η ∈ R, and where
the non-linearity F is given by

F(U ) := Q≤0

(
−1
3
U 3 + AU

)
.

We note that the product U 3 is in general an element of T and may contain terms
which are not included into the model space T. The aim of applying the projection
Q≤0 is to remove such terms. Respectively, the right-hand side of (3.10) may contain
elements with homogeneities higher than 1, but we consider only the projection to the
homogeneities not exceeding ζ .

Let us now consider a mollified noise ξδ = ϱδ⋆ξ , where the mollifier ϱδ is defined
in (7.1) for δ > 0. Let us define X0

δ := ψδ ∗ X0, where the mollifier ψδ(x) :=
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1
δ3

ψ( xδ ) is defined for a smooth compactly supported functionψ : R3 → R, satisfying∫
R3 ψ(x)dx = 1. Let furthermoreU (δ) be the solution of equation (3.10), defined with
respect to the initial condition X0

δ and the model Z (δ) = (;(δ),:(δ)), defined in [20,
Sec. 10.5] via the mollified noise ξδ . Then from [20, Sec. 9.4] we conclude that the
process Xδ = R(δ)U (δ), whereR(δ) is the reconstruction map for the model Z (δ) from
[20, Thm. 3.10], is the classical solution of the SPDE

(
∂t − $

)
Xδ = −1

3
X3

δ +
(
Cδ + A

)
Xδ +

√
2 ξδ, (3.11)

with the initial condition X0
δ at time 0. The renormalisation constant C(δ) ∼ δ−1 is

defined in [20] and is such that the solution of (3.11) converges as δ → 0 in a suitable
space of distributions.

Theorem 3.2 For ζ = 1 + 3κ and for η as in Theorem 2.3, Eq. (3.10) has a unique
local in time solution U ∈ Dζ,η(Z), and the solution map U = S(X0, Z) is locally
Lipschitz continuous with respect to the initial state X0 ∈ Cη(T) and the model Z.

Then the solution of (2.21) is defined as X = RU, where R is the reconstruction
map associated to the model Z by [20, Thm. 3.10]. Moreover, for any T > 0 and
p ≥ 1 one has

E
[

sup
t∈[0,T ]

∥X(t)∥p
Cη

]
< ∞,

and the same bound holds for ∥(X −
√
2RW )(t)∥C3/2+3η , where W is defined in (3.9).

Finally, let Xδ be the solution of (3.11). Then there exists θ > 0 such that for any
T > 0, p ≥ 1 and for some C > 0, depending on T and p, one has

E
[

sup
t∈[0,T ]

∥(X − Xδ)(t)∥p
Cη

]
≤ Cδθ p (3.12)

uniformly over δ ∈ (0, 1].

Proof Existence of a local solution and its continuity was proved in [20, Prop. 9.10].
From [31, Thm. 1.1] we obtain the moment bounds on the processes X and X −√
2RW .

One can readily see that the solution U has the following expansion:

U (z) =
√
2 + v(z)1 − 2

√
2

3
− 2v(z) +

∑

i=1,2,3

vi (z)Xi , (3.13)

for some functions v, vi : R+ ×R3 → R. Indeed, this identity follows by writing the
integration operator in (3.10) explicitly as

U (z) = I
(
−1
3
U (z)3 + AU (z)+

√
27
)
+ v(z)1+

∑

i=1,2,3

vi (z)Xi ,
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repeating the iterative approximation of the solution several times and truncating all
terms with homogeneities strictly bigger than 1. The function v may be written as
v = X −

√
2Y , where X = RU and Y = RW , with W defined in (3.9), and it solves

the “remainder equation”

(
∂t − $

)
v = −1

3

(
v +

√
2 Y
)3+A

(
v +

√
2 Y
)
, (3.14)

with the initial condition X0 at time t = 0. Interpretation of the functions vi is more
complicated, and we do not provide it here. Theorem 3.2 implies that for any p ≥ 1
and T > 0 we have

E
[

sup
t∈[0,T ]

∥v(t)∥p
C3/2+3η

]
< ∞.

4 A regularity structure for the discrete equation

Proving convergence of the Ising-Kac model requires solving equation (2.54) using
the theory of regularity structures. For this we are going to use the framework [13],
which is suitable for solving approximate stochastic PDEs. A less general framework
developed in [22] could also be applied.

We would like to stress very clearly that the regularity structure for equation (2.54)
is very similar to the one used to solve the "4

3 equation, except for the fact that in our
setting we need to describe the additional error term Eγ defined in (2.15). As we shall
see, the local description of this error term involves the local description of the fifth
power of the solution of our equation; this is the only reason why we need to introduce
new trees which would not appear in the classical "4

3 solution theory.
In the following section we are going to define a regularity structure T ex =

(Aex, Tex,Gex)which extends the regularity structureT , defined in Sect. 3, by adding
several basis elements. Throughout this section we are going to use the notation from
Sect. 3.

4.1 Amodel space

In addition to the integration map I we introduce a new map E which will represent
the multiplication operator by e2 ≈ γ 6. Then we define the minimal sets Vex and Uex

of formal expressions by the implications

τ ∈ Vex ⇒ I(τ ) ∈ Uex, (4.1)

τ1, τ2, τ3 ∈ Uex ⇒ τ1τ2τ3 ∈ Vex, (4.2)

τ1, . . . , τ5 ∈ Uex ⇒ E(τ1 · · · τ5) ∈ Vex, (4.3)

where we postulate E(Xℓ) = 0 and do not include such zero elements into Vex. The
rule (4.3) describes the remainder (2.15), in the Taylor expansion of which the first
non-vanishing element is proportional to γ 6Xγ (t, x)5: in fact, the trees coming out
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Table 4 The elements ofWex

and their homogeneities which
are not included into Table 1

Element Homogeneity Element Homogeneity

−2 − 4κ −4κ

− 5
2 − 5κ − 1

2 − 5κ

from the rule (4.3) are those which will allow a local description of the error tern Eγ

(see also Remark 2.6).
We define the set of elementsWex := Uex∪Vex with the homogeneity | • | : Wex →

R defined by (3.2) and

|E(τ1 · · · τ5)| = |τ1| + · · · + |τ5| + 2, τ1 · · · τ5 /∈ Wpoly. (4.4)

The increase of homogeneity by 2 in (4.4) comes from the multiplier γ 6 ≈ e2.
The set Tex contains all finite linear combinations of the elements inWex, and we

view I and E as linear maps τ /→ I(τ ) and τ̄ /→ E(τ̄ ), defined on the subspaces
generated by {7, I(7)2, I(7)3} and {I(7)4, I(7)5} respectively. Our definitions of
these maps imply that they have the same properties (but, as just stated, different
domains), and both of them can be considered as “abstract integration maps” from
[20]. The set Aex contains the homogeneities |τ | for all τ ∈ Wex.

By analogy with (3.3) we define

Wex := {τ ∈ Vex : |τ | ≤ 0, τ ̸= 7} ∪ {τ ∈ Uex : |τ |
≤ 1+ 3κ} ∪ {τ : E(τ ) ∈ Vex, |τ | ≤ −2}, (4.5)

where we also add to Wex those τ such that E(τ ) ∈ Vex. This is the minimal set of
the basis elements of a regularity structure, which will allow us to solve the equation
(8.6), an abstract version of (2.54). We need the elements {τ : E(τ ) ∈ Vex, |τ | ≤ −2}
to be able to reconstruct the non-linearity (8.10).

As before, we define Tex to be the linear span of the elements in Wex, and the set
Aex contains the homogeneities |τ | for all elements τ ∈ Wex. We obviously have
W ⊂ Wex and T ⊂ Tex for the sets defined in Sect. 3.1.

As in Sect. 3.1, we use the graphical representation of the elements of Wex, where
application of the map E is represented by the double edge . For example, the diagram

represents the symbol E(I(7)4). Table 4 contains those elements of Wex which
are not included in Table 1. This setting is very similar to the one of the "4

3 solution
theory, except that here we have an extra “integration map” E.

We are going the same notations for the norms and projections for the elements in
Wex as in (3.4) and (3.5).

4.2 A structure group

We introduce the set of basis elements Wex
+ , containing 1, Xi for i = 1, 2, 3, and

the elements of Wex of the form I(τ ) and E(τ̄ ), for τ ̸= 7. Then we define Tex+ to

123



696 P. Grazieschi et al.

Table 5 The image of the
operator $ for the elements in
Wex not provided in Table 2

$ = ⊗ 1 $ = ⊗ 1

$ = ⊗ 1 $ = ⊗ 1

be the free commutative algebra generated by the elements of Wex
+ . The linear map

$ : Tex → Tex ⊗ Tex+ is define by (3.6) and

$E(τ̄ ) = (E ⊗ I )$τ̄ , (4.6)

for τ̄ ∈ { , }. Then the action of$ on the elements fromW is provided in Table 2
and the action on the other elements inWex is trivial and is provided in Table 5.

The structure group Gex is defined as Gex := {:f : f ∈ Gex+ }, where :f is given by
(3.7) and Gex+ contains all linear functionals f : Tex+ → R satisfying f (1) = 1. One
can readily see that the elements of Gex act onW as described in Table 3, and they act
on the other elements ofWex as the identity maps.

We will use the framework of [13] to work with the regularity structure T ex =
(Aex, Tex,Gex) just introduced on the discrete lattice +ε.

4.3 Discrete models

Let B2
s be the set of all test functions ϕ ∈ C2(R4), compactly supported in the ball

of radius 1 around the origin (with respect to the parabolic distance ∥ • ∥s defined in
Sect. 1.2), and satisfying ∥ϕ∥C2 ≤ 1. By analogy with (1.2), for ϕ ∈ B2

s , λ ∈ (0, 1]
and (s, y) ∈ R4 we define a rescaled and recentered function

ϕλ
(s,y)(t, x) :=

1
λ5

ϕ
( t − s

λ2
,
x − y

λ

)
. (4.7)

In the rest of the paper we use the time-space domain Dε := R×+ε, where the spatial
grid +ε is defined in Sect. 1.2.

In order to use the results of [13], we need to define a discretisation for the regularity
structure T ex according to [13, Def. 2.1].

Definition 4.1 1. We define the space Xε := L∞(Dε), and we extend the operator
(1.4) to ιε : Xε ↪→ L∞(R,D ′(R3)

)
as

(ιε f )(t, •) :=
(
ιε f (t)

)
(•)

for f ∈ Xε. For any smooth compactly supported function ϕ : R4 → R it will be
convenient to write

(ιε f )(ϕ) := ε3
∑

x∈+ε

∫

R
f (t, x)ϕ(t, x) dt . (4.8)
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2. For any ζ ∈ R, z ∈ Dε and a compact set Ke ⊂ R4 of diameter at most 2e, we
define the following seminorm f ∈ Xε:

∥ f ∥ζ ;Ke;z;e := e−ζ sup
z∈Ke∩Dε

| f (z)|. (4.9)

Obviously, this seminorm is local in the sense that if f , g ∈ Xε and (ιε f )(ϕ) =
(ιεg)(ϕ) for every ϕ ∈ C2 supported in Ke, then ∥ f − g∥ζ ;Ke;z;e = 0.

3. Let the function ϕe
z be defined by (4.7) with λ = e, and let [ϕe

z] denote its support.
Then from the definition (4.9) we readily get the bound

|(ιε f )(ϕe
z)| ≤

(
sup

z̄∈[ϕe
z ]∩Dε

| f (z̄)|
)

ε3
∑

x∈+ε

∫

R
|ϕe

z(t, x)|dt ! eζ ∥ f ∥ζ ;[ϕe
z ];z;e,

uniformly over f ∈ Xε, z ∈ Dε, ζ ∈ R, and ϕ ∈ B2
s .

4. For any function : : Dε × Dε → Gex, any compact set K ⊂ R4 and any ζ ∈ R,
we define the following seminorm on the functions f : Dε → Tex<ζ :

||| f |||ζ ;K ;e := sup
z,z̄∈K∩Dε
∥z−z̄∥s≤e

sup
m<ζ

em−ζ | f (z) − :zz̄ f (z̄)|m . (4.10)

For a second function :̄ : Dε × Dε → Gex and for f̄ : Dε → Tex<ζ we also define

||| f ; f̄ |||ζ ;K ;e := sup
z,z̄∈K∩Dε
∥z−z̄∥s≤e

sup
m<ζ

em−ζ
∣∣ f (z)−:zz̄ f (z̄)− f̄ (z)+ :̄zz̄ f̄ (z̄)

∣∣
m . (4.11)

Both seminorms depend only on the values of f and f̄ in a neighbourhood of size
ce around K , for a fixed constant c > 0.

Remark 4.2 The seminorms (4.10) and (4.11) depends on the functions : and :̄.
However, we prefer not to indicate it to have a lighter notation. The choice of these
functions will be always clear from the context.

Remark 4.3 Our definitions correspond to the “semidiscrete” case in [13, Sec. 2].

Following [13, Def. 2.5], we can define a discrete model on the regularity struc-
ture T ex.

Definition 4.4 A discrete model (;γ ,:γ ) on the regularity structure T ex consists of
a collection of maps Dε ∋ z /→ ;

γ
z ∈ L(Tex,Xε) and Dε × Dε ∋ (z, z̄) /→ :

γ
zz̄ ∈ Gex

with the following properties:

1. :
γ
zz = id (where id is the identity operator), and :

γ
zz̄:

γ
z̄ z̃ = :

γ
zz̃ for all z, z̄, z̃ ∈ Dε,

2. ;
γ
z̄ = ;

γ
z :

γ
zz̄ for all z, z̄ ∈ Dε.
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Furthermore, for any compact set K ⊂ R4 the following bounds hold

sup
ϕ∈B2

s

sup
z∈K∩Dε

∣∣(ιε;γ
z τ
)
(ϕλ

z )
∣∣ ! λ|τ |, sup

Ke⊂K
sup

z∈K∩Dε

∥;
γ
z τ∥|τ |;Ke;z;e ! 1,

(4.12a)
uniformly over λ ∈ [e, 1] and τ ∈ Wex \ { }, where the supremum in the second
bound is over compact sets Ke ⊂ K with the diameter not exceeding 2e. For the
element τ = we assume

sup
ϕ∈B2

s

sup
z∈K∩Dε

∣∣(ιε;γ
z τ
)
(ϕλ

z )
∣∣ ! γ −1λ|τ |+

1
3 , sup

Ke⊂K
sup

z∈K∩Dε

∥;
γ
z τ∥|τ |+ 1

3 ;Ke;z;e ! γ −1,

(4.12b)
uniformly over the same quantities. For the function f τ,:γ

z̄ (z) := :
γ
zz̄τ − τ one has

|:γ
zz̄τ |m ! ∥z − z̄∥|τ |−m

s , sup
z̄∈Dε

||| f τ,:γ

z̄ ||||τ |;K ;e ! 1, (4.12c)

uniformly over τ ∈ Wex, m < |τ | and z, z̄ ∈ K ∩ Dε such that ∥z − z̄∥s ∈ [e, 1]. In
the second bound in (4.12c) we consider the seminorm (4.10) with respect to the map
:γ .

Remark 4.5 The first bounds in (4.12) control the model on the scale above e similarly
to continuous models in [20], and the second bounds in (4.12) control the model on
the scale below e.

Remark 4.6 We need to assume the much weaker bounds (4.12b) for the element ,
since in our definition in Sect. 5 ;

γ
z is an approximation of an element of the

fifth Wiener chaos. The latter is undefined in three dimensions because its correlation
kernel is not integrable, which prevents us from imposing the uniform bounds (4.12a)
(see Sect. 7.1.8 for more details). This element is multiplied by γ 6 in the definition of
solution in Sect. 8, and the multiplier compensates the divergence assumed in (4.12b).
We do not need to distinguish this element in (4.12c) because :

γ
zz̄ acts trivially on it.

As we explained in Sect. 3.1, we cannot define a model on the symbol 7, because
it corresponds to a distribution (a time derivative of the martingale) which is not an
element of the space Xε introduced in Definition 4.1.

We denote by ∥;γ ∥(e)K and ∥:γ ∥(e)K the smallest proportionality constants such that
the bounds (4.12a) and (4.12c) hold respectively. Then for the model Zγ = (;γ ,:γ )

we set
|||Zγ |||(e)K := ∥;γ ∥(e)K + ∥:γ ∥(e)K .

For a second model Z̄γ = (;̄γ , :̄γ ) we define the “distance”

|||Zγ ; Z̄γ |||(e)K := ∥;γ − ;̄γ ∥(e)K + ∥:γ ; :̄γ ∥(e)K ,
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where ∥:γ ; :̄γ ∥(e)K is the smallest proportionality constant such that the following
bounds hold

∥
(
:

γ
zz̄ − :̄

γ
zz̄

)
τ∥m ! ∥z − z̄∥|τ |−m

s , sup
z̄∈Dε

||| f τ,:γ

z̄ ; f τ,:̄γ

z̄ ||||τ |;K ;e ! 1,

uniformly over the same quantities as in (4.12c), where in the second bound we
consider the distance (4.11) with respect to :γ and :̄γ .

Remark 4.7 We will often work with models on the set K = [−T , T ] × [−1, 1]3. In
this case we prefer to remove the set K from the notation and write ∥;γ ∥(e)T , ∥:γ ∥(e)T ,
etc.

4.4 Modelled distributions

By analogy with [20, Sec. 6], we are going to define a weighted norm for Tex-valued
functions with a weight at time 0. For this we define the following quantities for
z, z̄ ∈ R4:

∥z∥0 := |t | 12 ∧ 1, ∥z, z̄∥0 := ∥z∥0 ∧ ∥z̄∥0,
where z = (t, x) with t ∈ R. We also set ∥z, z̄∥e := ∥z, z̄∥0 ∨ e.

For ζ, η ∈ R and for a compact set K ⊂ R4, we define in the context of Defini-
tion 4.1(4.1) the following quantities (see [13, Eqs. 3.21, 3.22]):

||| f |||ζ,η;K ;e := sup
z∈K∩Dε
∥z∥s≤e

sup
m<ζ

| f (z)|m
e(η−m)∧0 + sup

z,z̄∈K∩Dε
∥z−z̄∥s≤e

sup
m<ζ

| f (z) − :zz̄ f (z̄)|m
eζ−m∥z, z̄∥η−ζ

e

, (4.13)

and

||| f ; f̄ |||ζ,η;K ;e := sup
z∈K∩Dε
∥z∥s≤e

sup
m<ζ

| f (z) − f̄ (z)|m
∥z∥(η−m)∧0

s

(4.14)

+ sup
z,z̄∈K∩Dε
∥z−z̄∥s≤e

sup
m<ζ

| f (z) − :zz̄ f (z̄) − f̄ (z)+ :̄zz̄ f̄ (z̄)|m
eζ−m∥z, z̄∥η−ζ

e

.

Let us now take a discrete model Zγ = (;γ ,:γ ). A discrete modelled distribution
is an element of the space Dζ,η

e (:γ ), containing the maps f : Dε → Tex<ζ such that,
for any compact set K ⊆ R4,

||| f |||(e)ζ,η;K := sup
z∈K∩Dε
∥z∥s>e

sup
m<ζ

| f (z)|m
∥z∥(η−m)∧0

s

(4.15)

+ sup
z,z̄∈K∩Dε
∥z−z̄∥s>e

sup
m<ζ

| f (z) − :
γ
zz̄ f (z̄)|m

∥z − z̄∥ζ−m
s ∥z, z̄∥η−ζ

e

+ ||| f |||ζ,η;K ;e < ∞,
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where the last term is defined by (4.13) via :γ . Sometimes it will be convenient to
write Dζ,η

e (Zγ ) for Dζ,η
e (:γ ), and when the model is clear from the context we will

omit it from the notation and will simply writeDζ,η
e . Observe that the first two terms in

(4.15) are the same as in the definition of the modelled distributions in [20, Def. 6.2],
except that we look at the scale above e. The last term measures regularity of f on
scale below e.

For another discrete model Z̄γ = (;̄γ , :̄γ ) and a modelled distribution f̄ ∈
Dζ

e (Z̄γ ), we set

||| f ; f̄ |||(e)ζ,η;K := sup
z∈K∩Dε
∥z∥s>e

sup
m<ζ

| f (z) − f̄ (z)|m
∥z∥(η−m)∧0

s

+ sup
z,z̄∈K∩Dε
∥z−z̄∥s>e

sup
m<ζ

| f (z) − :
γ
zz̄ f (z̄) − f̄ (z)+ :̄

γ
zz̄ f̄ (z̄)|m

∥z − z̄∥ζ−m
s ∥z, z̄∥η−ζ

e

+ ||| f ; f̄ |||ζ ;K ;e,

where the last term is defined by (4.14) via :γ and :̄γ .

Remark 4.8 When we work on the compact set K = [−T , T ] × [−1, 1]3, we simply
write ||| f |||(e)ζ,η;T and ||| f ; f̄ |||(e)ζ,η;T . The space of modelled distributions, restricted to

this set K we denote by Dζ,η
e,T .

4.5 The reconstruction theorem

For a discrete model (;γ ,:γ ) and for a modelled distribution f ∈ Dζ,η
e , we would

like to define a reconstruction map Rγ : Dζ,η
e → Xε, which behaves around each

point z as ;
γ
z f (z). Following the idea of [22, Def. 4.5], we define it as

(Rγ f )(z) :=
(
;

γ
z f (z)

)
(z). (4.16)

In the case η = ζ , i.e. when there is no weights in the definition (4.15), we have the
following “reconstruction theorem,” where we use the short notation Dζ

e := Dζ,ζ
e .

Proposition 4.9 For a discrete model (;γ ,:γ ), a modelled distribution f ∈ Dζ
e (:

γ )

with ζ > 0, and compact set K ⊂ R4 one has

∣∣ιε
(
Rγ f − ;

γ
z f (z)

)
(ϕλ

z )
∣∣ ! (λ ∨ e)ζ ∥;γ ∥(e)

K̄
||| f |||(e)

ζ ;[ϕλ
z ]
, (4.17)

uniformly over ϕ ∈ B2
s , λ ∈ (0, 1], z ∈ Dε, and e ∈ (0, 1]. Here, K̄ is the 1-fattening

of K , [ϕλ
z ] is the support of ϕλ

z , and we used the map (4.8).
Let (;̄γ , :̄γ ) be another discrete model with the respective reconstruction map

R̄γ
, defined by (4.16). Then for any f̄ ∈ Dζ

e (:̄
γ ) one has

∣∣ιε
(
Rγ f − ;

γ
z f (z) − R̄γ f̄ + ;̄

γ
z f̄ (z)

)
(ϕλ

z )
∣∣ (4.18)
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! (λ ∨ e)ζ
(
∥;̄γ ∥(e)

K̄
||| f ; f̄ |||(e)

ζ ;[ϕλ
z ]

+ ∥;γ − ;̄γ ∥(e)
K̄
||| f |||(e)

ζ ;[ϕλ
z ]
)
,

uniformly over the same quantities as in (4.17).

Proof For any compact set Ke ⊂ R4 of diameter smaller than 2e and for any z ∈ Dε,
from the properties of the model and modelled distribution we get

∥∥Rγ f − ;
γ
z f (z)

∥∥
ζ ;Ke;z;e = e−ζ sup

z̄∈Ke∩Dε

∣∣;γ
z̄

(
f (z̄) − :

γ
z̄z f (z)

)
(z̄)
∣∣

! sup
β<ζ

sup
z̄∈Ke∩Dε

eβ−ζ ∥;γ ∥(e)
K̄e

∣∣ f (z̄) − :
γ
z̄z f (z)

∣∣
β
.
(4.19)

Using (4.13), the latter yields

∥∥Rγ f − ;
γ
z f (z)

∥∥
ζ ;Ke;z;e ! ∥;γ ∥(e)

K̄e
||| f |||ζ ;Ke;e. (4.20)

Then (4.17) follows from [13, Thm. 3.5] and this bound.
The estimate (4.18) follows again from [13, Thm. 3.5] and from the following

bound, which can be proved similarly to (4.20),

∥∥Rγ f − ;
γ
z f (z) − R̄γ

f̄ + ;̄
γ
z f̄ (z)

∥∥
ζ ;Ke;z;e

! ∥;̄γ ∥(e)
K̄e
||| f ; f̄ |||ζ ;Ke;e + ∥;γ − ;̄γ ∥(e)

K̄e
||| f |||ζ ;Ke;e,

uniformly over the involved quantities.

Respectively, we can show that the reconstruction theorem [13, Thm. 3.13] holds
in our case. The required Assumptions 3.6 and 3.12 in [13] follow readily from our
definitions and estimates similar to (4.19). We prefer not to duplicate full statement
of this theorem, and we provide only the estimates which we are going to use later.

Proposition 4.10 In the described context, [13, Thm. 3.13] holds. In particular, let
(;γ ,:γ ) be a discrete model and let f ∈ Dζ,η

e (:γ ) be a modelled distribution, taking
values in a sector of regularity α ≤ 0 and such that ζ > 0, η ≤ ζ and α ∧ η > −2.
Then for any compact set K ⊂ R4 one has

∣∣ιε
(
Rγ f

)
(ϕλ

z )
∣∣ ! (λ ∨ e)α∧η∥;γ ∥(e)

K̄
||| f |||(e)

ζ ;[ϕλ
z ]
,

uniformly over the same quantities as in (4.17).
For a second discrete model (;̄γ , :̄γ ) and for f̄ ∈ Dζ

e (:̄
γ ) one has

∣∣ιε
(
Rγ f −R̄γ

f
)
(ϕλ

z )
∣∣ ! (λ∨e)α∧η

(
∥;̄γ ∥(e)

K̄
||| f ; f̄ |||(e)

ζ ;[ϕλ
z ]
+∥;γ −;̄γ ∥(e)

K̄
||| f |||(e)

ζ ;[ϕλ
z ]

)
,

uniformly over the same quantities.
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5 A renormalised lift of martingales

Now we will construct a discrete model Zγ ,a
lift = (;γ ,a,:γ ,a) which will be used to

write equation (2.54) on the regularity structure T ex (as in [20], we call this model a
“lift” of the random driving noiseMγ ,a). For this, we are going to use the martingales
from (2.54), such that we have the a priori bounds on the solution provided by the
stopping time (2.47).

Sincewe have only few basis elements in the regularity structure, we prefer to define
Zγ ,a

lift as a renormalised model, as opposed to [20, Sec. 8.2], where renormalisation of
a canonical lift was done separately.

It will be convenient to use the following short notation:

∫

Dε

ϕ(z) dz := ε3
∑

x∈+ε

∫

R
ϕ(t, x) dt .

Throughout this section we will use the decomposition G̃γ = K̃ γ + R̃ γ of the
discrete kernel (2.53), defined in Appendix Appendix A.1.

5.1 Definition of themap5!,a

In order to define the model (;γ ,a,:γ ,a), we first introduce an auxiliary map !γ ,a ∈
L (Tex,Xε), and then we will use the results from [20, Sec. 8.3].

It will be convenient to extend the martingales Mγ ,a(t, x) to all t ∈ R. For this,
we denote by X̃γ ,a(t, x) an independent copy of Xγ ,a(t, x), defined in Sect. 2.3. Then
X̃γ ,a solves equation (2.51) driven by amartingale M̃γ ,a(t, x).We define the extension
of Mγ ,a(t, x) to t < 0 as

Mγ ,a(t, x) = M̃γ ,a(−t, x). (5.1)

This extension does not affect equation (2.54) in anyway, and is a technical trickwhich
simplifies the following formulas. In particular, it allows to define time integrals in
(5.2) and later on wholeR rather thanR+. In what follows, the martingalesMγ ,a(t, x)
are extended periodically to x ∈ +ε.

Using the map (4.8), we start with making the following definition:

ιε
(
!γ ,a7

)
(ϕ) = 1√

2
ε3
∑

x∈+ε

∫

R
ϕ(t, x) dMγ ,a(t, x), (5.2)

for any smooth, compactly supported function ϕ : R4 → R, and for the processes
Mγ ,a just introduced. The stochastic integral is defined with respect to the martingale
t /→ Mγ ,a(t, x), which is well defined in the Stieltjes sense since the function ϕ is
smooth. We need to use the factor 1√

2
in order to have convergence of !γ ,a7 to a

white noise (as follows from (2.50), the martingale Mγ ,a converges to a cylindrical
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Wiener process with diffusion 2). For monomials we set

(
!γ ,a1

)
(t, x) = 1,

(
!γ ,aXi

)
(t, x) = xi .

Furthermore, we use the kernel K̃ γ , defined in the beginning of this section, and set

(
!γ ,a

)
(t, x) = 1√

2
ε3
∑

y∈+ε

∫

R
K̃ γ

t−s(x − y) dMγ ,a(s, y),

as well as (
!γ ,a

)
(t, x) =

(
!γ ,a

)
(t, x)2 − cγ − c′γ ,(

!γ ,a
)
(t, x) =

(
!γ ,a

)
(t, x)3 − 3cγ

(
!γ ,a

)
(t, x),

(5.3)

where
cγ :=

∫

Dε

K̃ γ (z)2 dz (5.4)

is a diverging renormalisation constant (we show in Lemma 5.4 that the divergence
speed is e−1), and

c′γ := −βκγ ,3γ
6Cγ cγ (5.5)

is a renormalisation constant which is bounded uniformly in γ , as follows from Lem-
mas 5.4 and 5.5.We used in (5.5) the constants β,κγ ,3 and Cγ defined in (2.16), (2.32)
and (2.45) respectively.

We prefer to separate the two renormalisation constants in (5.3), because they have
different origins. More precisely, the constant cγ would be the same if the driving
noise was Gaussian, while c′γ comes from the renormalisation of the non-linearity of
the bracket process (2.17). The necessity of such renormalisation will be clear from
Sect. 7.1.2.

Let Hn : R × R+ → R be the n-th Hermite polynomial, defined for n ∈ N and a
real constant c > 0 in the following recursive way:

H1(u, c) = u, Hn+1(u, c) = uHn(u, c) − cH ′
n(u, c) for any n ≥ 1, (5.6)

with H ′
n denoting the derivative of the polynomial Hn with respect to the variable u. In

particular, the first several Hermite polynomials are H1(u, c) = u, H2(u, c) = u2 −c,
H3(u, c) = u3−3cu, H4(u, c) = u4−6cu2+3c2 and H5(u, c) = u5−10cu3+15c2u.

Observe then that we have the identities
(
!γ ,a

)
(t, x) = H2

(
(!γ ,a )(t, x), cγ +

c′γ
)
and

(
!γ ,a

)
(t, x) = H3

(
(!γ ,a )(t, x), cγ

)
, which correspond to theWick renor-

malisation of models in the case of a Gaussian noise [20, Sec. 10]. Hence, in the same
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spirit we can define !γ ,a and !γ ,a in terms of the Hermite polynomials:

(
!γ ,a

)
(t, x) = H4

(
(!γ ,a )(t, x), cγ

)

=
(
!γ ,a

)
(t, x)4 − 6cγ

(
!γ ,a

)
(t, x)2 + 3c2γ ,(

!γ ,a )
(t, x) = H5

(
(!γ ,a )(t, x), cγ

)

=
(
!γ ,a

)
(t, x)5 − 10cγ

(
!γ ,a

)
(t, x)3 + 15c2γ

(
!γ ,a

)
(t, x).

(5.7)
For the elements of the form τ Xi ∈ Wex we set

(
!γ ,aτ Xi

)
(t, x) =

(
!γ ,aτ

)
(t, x)

(
!γ ,aXi

)
(t, x).

For each element E(τ ) ∈ Wex we define

(
!γ ,aE(τ )

)
(t, x) = γ 6(!γ ,aτ

)
(t, x),

and for each element I(τ ) ∈ Wex we set

(
!γ ,aI(τ )

)
(t, x) = ε3

∑

y∈+ε

∫

R
K̃ γ

t−s(x − y)
(
!γ ,aτ

)
(s, y) ds.

One can see that this recursive definition of the map !γ ,a gives its action on all the
elements from Tables 1 and 4, except the three diagrams , and . So, it is left
to define the map !γ ,a for these three elements. For the element we set

(
!γ ,a

)
(t, x) =

(
!γ ,a

)
(t, x)

(
!γ ,a

)
(t, x) − c′′γ ,

where

c′′γ := 2
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z)K̃ γ (z1)K̃ γ (z2)K̃ γ (z1 − z)K̃ γ (z2 − z) dzdz1dz2

(5.8)
is a new diverging renormalisation constant (we show in Sect. 9.1 that the divergence
order is log e). Finally, we define

(
!γ ,a

)
(t, x) =

(
!γ ,a

)
(t, x)

(
!γ ,a

)
(t, x),

(
!γ ,a

)
(t, x) =

(
!γ ,a

)
(t, x)

(
!γ ,a

)
(t, x) − 3c′′γ

(
!γ ,a

)
(t, x).

5.2 Definition of themodel

Having !γ ,a defined on the basis elements Wex, we extend it linearly to Tex, which
yields the map !γ ,a ∈ L (Tex,Xε). As we pointed out above, we had to exclude the
symbol 7 from Tex, because our definition (5.2) suggests that !γ ,a7 does not belong
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to Xε. A discrete model Zγ ,a
lift = (;γ ,a,:γ ,a) on T ex is defined via this map !γ ,a as

in [20, Sec. 8.3]. More precisely, we define

f γ ,a
z (1) = −1, f γ ,a

z (Xi ) = −xi , f γ ,a
z (I(τ )) = −

(
!γ ,aI(τ )

)
(z) for τ ̸= 7.

We extend this function linearly to f γ ,a
z : Tex+ → R, where Tex+ is defined in Sect. 4.2,

and we can use (3.7) to define
Fγ ,a
z := :f γ ,a

z
.

Since Fγ ,a
z is an element of the groupGex, it has the inverse (Fγ ,a

z )−1. Then the discrete
model (;γ ,a,:γ ,a) is defined as

;
γ ,a
z τ =

(
!γ ,a ⊗ f γ ,a

z
)
$τ, :

γ ,a
zz̄ = (Fγ ,a

z )−1 ◦ Fγ ,a
z̄ , (5.9)

where the operator $ is defined in Sect. 4.2. All the properties in Definition 4.4 follow
from the definition of the model Zγ ,a

lift . However, showing that the bounds (4.12) hold
uniformly in γ > 0 is non-trivial and we prove these bounds in Sect. 7.

Since the operator $ is simple in our case, we can write the map ;γ ,a explicitly.
Namely, we have

(
;

γ ,a
z 1

)
(z̄) = 1 and

(
;

γ ,a
z Xi

)
(z̄) = x̄i − xi , for z = (t, x) and

z̄ = (t̄, x̄). Using the same space-time points, we furthermore have

(
;

γ ,a
z
)
(z̄) = 1√

2
ε3
∑

y∈+ε

∫

R
K̃ γ

t̄−s(x̄ − y) dMγ ,a(s, y),

(
;

γ ,a
z

)
(z̄) = H2

(
(;

γ ,a
z )(z̄), cγ + c′γ

)
,

(
;

γ ,a
z

n)(z̄) = Hn
(
(;

γ ,a
z )(z̄), cγ

)
for n = 3, 4, 5.

(5.10)

For τ ∈ { , } we have
(
;

γ ,a
z τ Xi

)
(z̄) =

(
;

γ ,a
z τ

)
(z̄)
(
;

γ ,a
z Xi

)
(z̄), and for τ ∈

{ , } we have (
;

γ ,a
z E(τ )

)
(z̄) = γ 6(;γ ,a

z τ
)
(z̄). (5.11)

For the elements τ ∈ { , } the following formulas hold:

(
;

γ ,a
z I(τ )

)
(z̄) =

∫

Dε

(
K̃ γ (z̄ − z̃) − K̃ γ (z − z̃)

)(
;

γ ,a
z τ

)
(z̃) dz̃. (5.12)

Finally, we have the identities

(
;

γ ,a
z

)
(z̄) =

(
;

γ ,a
z

)
(z̄)
∫

Dε

(
K̃ γ (z̄ − z̃) − K̃ γ (z − z̃)

)(
;

γ ,a
z

)
(z̃) dz̃ − c′′γ ,

(
;

γ ,a
z

)
(z̄) =

(
;

γ ,a
z

)
(z̄)
∫

Dε

(
K̃ γ (z̄ − z̃) − K̃ γ (z − z̃)

)(
;

γ ,a
z

)
(z̃) dz̃, (5.13)

(
;

γ ,a
z

)
(z̄) =

(
;

γ ,a
z

)
(z̄)
∫

Dε

(
K̃ γ (z̄ − z̃) − K̃ γ (z − z̃)

)(
;

γ ,a
z

)
(z̃) dz̃ − 3c′′γ

(
;

γ ,a
z

)
(z̄).

Once the map ;γ ,a is defined, we can also write the map :γ ,a explicitly. The
latter can be easily obtained from the identity ;

γ ,a
z̄ = ;

γ ,a
z :

γ ,a
zz̄ , which is a part of
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Definition 4.4. Namely, for fixed z, z̄ ∈ Dε, we have that :
γ ,a
zz̄ is a linear map on Tex,

whose action on the elements ofWex is given in Table 3 with the constants

ai = −
(
;

γ ,a
z Xi

)
(z̄), b = −

(
;

γ ,a
z

)
(z̄), c = −

(
;

γ ,a
z

)
(z̄). (5.14)

Remark 5.1 From the definition of the discrete model Zγ ,a
lift and the definition of the

respective reconstruction mapRγ ,a in (4.16), we can see that Rγ ,aτ ≡ 0 if |τ | > 0.

Remark 5.2 For an element E(τ ) we obviously have Rγ ,aE(τ ) = γ 6Rγ ,aτ .

Remark 5.3 We note that in (5.2) we defined the action of the map !γ ,a also on the
symbol 7. This allows to extend the maps (5.9) on this symbol as

:
γ ,a
zz̄ 7 = 7, ιε

(
;

γ ,a
z 7

)
(ϕ) = 1√

2
ε3
∑

x∈+ε

∫

R
ϕ(t, x) dMγ ,a(t, x),

for any smooth, compactly supported function ϕ : R4 → R, and for the martingales
Mγ ,a as in (5.2). We see however that ;

γ ,a
z 7 is not a function, which explains why

we excluded the symbol 7 from the domain of discrete models in Definition 4.4. We
can also extend the reconstruction map as

ιε
(
Rγ ,a7

)
(ϕ) = 1√

2
ε3
∑

x∈+ε

∫

R
ϕ(t, x) dMγ ,a(t, x).

5.3 Asymptotics of the renormalisation constants

We can show precise speeds of divergence of the renormalisation constants.

Lemma 5.4 Let cγ and c′′γ be defined in (5.4) and (5.8) respectively. The constants c(2)γ

and c(1)γ are well-defined by (2.27) for all γ > 0 small enough. Moreover, c(2)γ ∼ e−1

and c(1)γ ∼ log e, and the expressions cγ − 1
2 c

(2)
γ and c′′γ − 1

4 c
(1)
γ converge as γ → 0.

This in particular implies the asymptotics of the renormalisation constant Cγ stated
in Theorem 2.3.

Proof The kernelK̃ γ , involved in the definitions (5.4) and (5.8), is supported in a ball
of radius c ≥ 1 (see Appendix Appendix A.1). Let Dc,ε := [0, c]×T3

ε . Then, without
any harm, we can replace the integration domains Dε by Dc,ε in these definitions.

We define new constants

c̃γ =
∫

Dc,ε

P̃γ (z)2dz, (5.15a)

c̃′′γ = 2
∫

Dc,ε

∫

Dc,ε

∫

Dc,ε

P̃γ (z)P̃γ (z1)P̃γ (z2)P̃γ (z1 − z)P̃γ (z2 − z)dzdz1dz2.

(5.15b)
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We note that if we replace at least one instance of the singular kernel K̃ γ by a
smooth function in the definitions of the renormalisation constants (5.4) and (5.8),
then we obtain convergent constants (as γ → 0). This follows from the properties of
K̃ γ from Appendix Appendix A.1. Since K̃ γ is a singular part of the discrete heat
kernel, this implies that the limits limγ→0(c̃γ − cγ ) and limγ→0(c̃

′′
γ − c′′γ ) exist and

are finite. Hence, to prove this lemma, we need to show that the required asymptotic
behaviours hold if we replace cγ and c′′γ by c̃γ and c̃′′γ respectively.

It will be convenient to write the constants (5.15) in a different form. Applying
Parseval’s identity (2.30) in the spatial variable in (5.15a), we get

c̃γ =
∫ c

0
ε3
∑

x∈T3
ε

P̃γ
t (x)

2dt = 1
8

∫ c

0

∑

|ω|∞≤N

exp
(
2κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
|K̂γ (ω)|2dt,

where we used the Fourier transform (2.35). From the properties of the function
(2.2) we have ε3

∑
x∈T3

ε
Kγ (x) = 1, which yields K̂γ (0) = 1. Furthermore, from

Lemma A.2 we can conclude that there exists γ0 > 0 such that K̂γ (ω) ̸= 1 for γ < γ0
and all ω ∈ Z3 satisfying 0 < |ω|∞ ≤ N . Then we have

c̃γ = c
8
+ 1

8

∫ c

0

∑

0<|ω|∞≤N

exp
(
2κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
|K̂γ (ω)|2dt

= c
8
+ 1

16

∑

0<|ω|∞≤N

α|K̂γ (ω)|2
κ2

γ ,3

(
1 − K̂γ (ω)

)
(
1 − exp

(
2κ2

γ ,3
(
K̂γ (ω) − 1

) c
α

))
.

Let us write c̃γ = c
8 + c̃(2)γ − c̃(1)γ , where

c̃(2)γ = 1
16

∑

0<|ω|∞≤N

α|K̂γ (ω)|2
κ2

γ ,3

(
1 − K̂γ (ω)

) ,

c̃(1)γ = 1
16

∑

0<|ω|∞≤N

α|K̂γ (ω)|2
κ2

γ ,3

(
1 − K̂γ (ω)

) exp
(
2κ2

γ ,3
(
K̂γ (ω) − 1

) c
α

)
.

From Lemma A.2 for 0 < γ < γ0 we have the bounds 1− K̂γ (ω) ≥ C1
(
|γ 3ω|2 ∧ 1

)
,

|K̂γ (ω)| ≤ 1 for |ω| ≤ γ −3, and |K̂γ (ω)| ≤ C2|γ 3ω|−k for |ω| ≥ γ −3 and for any
k ∈ N. Using these bounds and (2.32), we conclude that c̃(2)γ diverges as γ → 0 with

the rate e−1. Moreover, the constant κγ ,3 in the definition of c̃
(2)
γ can be replaced by 1,

which produces a convergent error, i.e. c̃(2)γ − 1
2 c

(2)
γ has a finite limit as γ → 0, where

the constant c(2)γ is defined in (2.27). Similarly, we can conclude that c̃(1)γ is bounded
uniformly in 0 < γ < γ0, and moreover it converges as γ → 0. Thus, we have that
cγ − 1

2 c
(2)
γ converges as γ → 0, which finishes the proof of the asymptotic behaviours

from the statement of this lemma which involve cγ and c(2)γ .
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The constant c′′γ is analysed in a similar way. Namely, we can show that

c′′γ − 1
32

∑

0<|ω1|∞,|ω2|∞≤N

α3|K̂γ (ω1)|2|K̂γ (ω2)|2
(1 − K̂γ (ω1))(1 − K̂γ (ω2))

K̂γ (ω1 + ω2)

1 − K̂γ (ω1) − K̂γ (ω2)+ K̂γ (ω1 + ω2)

converges as γ → 0. This expression equals c′′γ − 1
4 c

(1)
γ and the double sum diverges

with the rate log e.

Similarly, we can study the asymptotic behaviour of the renormalisation constant
(2.45)

Lemma 5.5 The constant (2.45) satisfies |Cγ | ! e−1.

Proof Applying identities (2.30) and (2.31) to (2.45) we get

Cγ = κγ ,2

4

∫ ∞

0

∑

|ω|∞≤N

exp
(
2κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
K̂ γ (ω)K̂γ (ω) dt,

where we used the Fourier transform (2.35). As in the proof of Lemma 5.4, for all
γ > 0 small enough we can compute the integral, which yields

Cγ = κγ ,2

8

∑

0<|ω|∞≤N

α K̂ γ (ω)K̂γ (ω)

κ2
γ ,3

(
1 − K̂γ (ω)

) . (5.16)

From Lemma A.2 for all γ > 0 small enough we have 1− K̂γ (ω) ≥ C1
(
|γ 3ω|2 ∧ 1

)
,

|K̂γ (ω)| ≤ 1 for |ω| ≤ γ −3, and |K̂γ (ω)| ≤ C2|γ 3ω|−k for |ω| ≥ γ −3 and for any
k ∈ N. Since the kernel K γ has the same properties as Kγ , except that it is rescaled by
γ 3+κ rather than γ 3, we have the respective bounds |K̂ γ (ω)| ≤ C3 for |ω| ≤ γ −3−κ ,
and |K̂ γ (ω)| ≤ C4|γ 3+κω|−k for |ω| ≥ γ −3−κ and for any k ∈ N. Then the part of
the sum in (5.16) running over 0 < |ω|∞ ≤ γ −3 is bounded by a constant multiple of

∫

0<|ω|∞≤γ −3
α|γ 3ω|−2dω ! γ −3,

where we made use of (2.32). The part of the sum running over γ −3 < |ω|∞ ≤ N is
bounded by a constant times

∫

γ −3<|ω|∞≤N
α|γ 3ω|−kdω ! γ 3.

Hence, we have the required bound |Cγ | ! e−1.
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Table 6 Auxiliary processes used in this section

Process Reference Comment

Sγ Eq. (2.42) A rescaled spin field of σ

Xγ Eq. (2.44) A local average of Sγ , defined via the kernel
K γ

σ ′
γ ,a P. 12 A spin system used to extend the stopped

Ising-Kac model beyond the stopping time

S′
γ ,a Eq. (6.18) A rescaled spin field of σ ′

γ ,a

X ′
γ ,a Eq. (6.2) A rescaled coarse-grained spin field, defined

by (2.12) for σ ′
γ ,a

X ′
γ ,a P. 37 An averaged spin field defined by (2.44) for

S′
γ ,a

Qγ ,a Eq. (6.10) A random function which appears in the
zeroth-order chaos in Sect. 7.1.2

Q
γ ,a

Eq. (6.11) An analogue of Qγ ,a in which the spin field
Sγ is replaced by its average Xγ

6 Properties of themartingales and auxiliary results

In this section we collect several result which will be used to prove moment bounds
for the discrete models constructed above. We are using several auxiliary processes
throughout this section, and we list them for reader’s convenience in Table 6.

We first show that the martingales
(
Mγ ,a(•, x)

)
x∈T3

ε
satisfy Assumption 1 in [18].

6.1 Properties of themartingales

The required properties of the predictable quadratic covariations, stated in Assump-
tion 1(1) in [18], follow from (2.50) and (2.17):

〈
Mγ ,a(•, x),Mγ ,a(•, x ′)

〉
t = 0 for

x ̸= x ′, and in the case x = x ′ we have

〈
Mγ ,a(•, x)

〉
t = ε−3

∫ t

0
Cγ ,a(s, x) ds, (6.1)

with an adapted process t /→ Cγ ,a(t, x), given by

Cγ ,a(t, x) :=

⎧
⎨

⎩
2κγ ,2

(
1 − σ

( t
α ,

x
ε

)
tanh

(
βδXγ (t, x)

))
for t < τγ ,a,

2κγ ,2

(
1 − δσ ′

γ ,a

( t
α ,

x
ε

)
X ′

γ ,a(t, x)
)

for t ≥ τγ ,a,
(6.2)

where X ′
γ ,a is defined as in (2.12) via the process σ ′

γ ,a and where the constant
κγ ,2, which is closed to 1, was introduced in (2.19). We observe that the inequal-
ity |Cγ ,a(s, x)| ≤ 2 holds uniformly over γ ∈ (0, 1) and x ∈ T3

ε .
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710 P. Grazieschi et al.

Assumption 1(2) in [18] follows readily from the definition of the martingales,
because every time a spin of the Ising-Kac model flips, only one of the martingales
Mγ ,a(•, x) changes its value, while the others stay unchanged.

We see that themartingaleMγ ,a(•, x), for any fixed x ∈ T3
ε , has jumps of size 2γ −3,

because the martingale mγ (•, x) from (2.6) has jumps of size 2. Therefore, given that
ε ≈ γ 4, Assumption 1(3) in [18] holds with any value of the constant k bigger than
3
4 .

For a càdlàg process f , we denote by f (t−) its left limit at time t and we define
the jump size at time t as

$t f := f (t) − f (t−). (6.3)

The process t /→ σt (k) is pure jump, and from equation (2.6) we have $tσ (k) =
$tmγ (k). Moreover, from (2.4) and (2.5) we have Lγ σ (k) = tanh

(
βhγ (σ, k)

)
−

σ (k). Hence, using the definition (2.48) and rescaling Eq. (2.6) we get

Mγ ,a(t, x) = Jγ ,a(t, x)+ εk−3
∫ t

0
Cγ ,a(s, x)ds, (6.4)

where t /→ Jγ ,a(t, x) =
∑

0≤s≤t $sMγ ,a(x) is a pure jump process and

Cγ ,a(t, x) =
{

σ
( t

α ,
x
ε

)
− tanh

(
βδXγ (t, x)

)
for t < τγ ,a

α ,

σ ′
γ ,a

( t
α ,

x
ε

)
− δX ′

γ ,a(t, x) for t ≥ τγ ,a

α .
(6.5)

The process t /→ Cγ ,a(t, x) is adapted and is bounded uniformly in x and t , and
Assumption 1(4) in [18] is satisfied.

6.2 Besov spaces of distributions

In this section we recall the definition of the Besov spaces using the Littlewood-Paley
theory.

According to [3, Prop. 2.10] there exist two smooth functions χ̃ ,χ : R3 → R,
taking values in [0, 1], such that χ̃ is supported on B

(
0, 4

3

)
, χ is supported on

B
(
0, 8

3

)
\B
(
0, 3

4

)
, and for every ω ∈ R3 they satisfy

χ̃(ω)+
∞∑

k=0

χ(2−kω) = 1.

Then we define χ−1(ω) := χ̃(ω) and χk(ω) := χ
(
2−kω

)
for k ≥ 0, and set ϱk :=

F−1χk , where F−1 is the inverse Fourier transform on R3. Then for k ≥ 0 we have
ϱk(ω) = 23kϱ(2kω) where ϱ := ϱ0. The k-th Littlewood-Paley block of a function or
tempered distribution f is defined as

δk f := ϱk ∗ f = F−1(χk F f
)
. (6.6)
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Then one can show that f =∑k≥−1 δk f in the sense of distributions for any tempered
distribution f .

For η ∈ R and p, q ∈ [1,∞] the Besov space Bη
p,q
(
T3) is defined as a completion

of the the space of smooth functions f : T3 → R under the norm

∥ f ∥Bη
p,q

:=
∥∥∥
(
2ηk∥δk f ∥L p

)

k≥−1

∥∥∥
ℓq
,

where we extended f periodically on the right-hand side and where we write
∥(ak)k≥−1∥ℓq for the ℓq norm of the sequence (ak)k≥−1.

It is not hard to see that Bη
∞,∞

(
T3) coincides with the space Cη

(
T3) defined in

Sect. 1.2.

6.3 Controlling the processes X̂! and S!

We need to prove some auxiliary bounds which will be used in the proof of Proposi-
tion 7.2. The following result provides bounds on the high frequency Fourier modes
of the process Xγ .

Lemma 6.1 For any κ̄ > 0 and M > 0, there is a non-random constant C > 0, such
that

|X̂γ (t,ω)| ≤ Cγ M , (6.7)

uniformly in t ∈ R+, γ −3−κ̄ ≤ |ω|∞ ≤ N and γ ∈ (0, 1).

Proof Using (2.12) and (2.42), wemaywrite Xγ = Kγ ∗ε Sγ . Then Parseval’s identity
(2.30) then yields X̂γ (t,ω) = K̂γ (ω)Ŝγ (t,ω). Using the trivial bound |Sγ (t, x)| ≤
γ −3 we get |Ŝγ (t,ω)| ! γ −3 and the absolute value of X̂γ (t,ω) is bounded by
C1γ

−3|K̂γ (ω)|. Furthermore, we use (A.5) to bound it by C2γ
−3|γ 3ω|−m for any

integer m ≥ 0, where the constant C2 depends on m. Hence, for any κ̄ > 0 and
|ω|∞ ≥ γ −3−κ̄ we have |X̂γ (t,ω)| ≤ C3γ

κ̄m−3, which is the required bound (6.7)
with M = κ̄m − 3.

The following result shows that the a priori bound, provided by the stopping time
(2.40), yields a bound on the process Sγ defined in (2.42). The bound on Sγ is however
slightly worse than for the process Xγ . Namely, while we consider the average values
of Xγ on the scales above e (see the definition (2.22) of the seminorm), we bound Sγ

on strictly larger scales.

Lemma 6.2 Let η be as in the statement of Theorem 2.3, let us fix any κ̃ ∈ (0, 1)
and let r be the smallest integer satisfying r > 1+η

κ̃
− η and r ≥ 2. Then there exist

non-random γ0 > 0 and C > 0 such that

sup
t∈
[
0,τ (1)γ ,a

] sup
x∈+ε

∣∣(ιεSγ (t)
) (

ϕλ
x
)∣∣ ≤ Caλη,

uniformly over λ ∈
[
e1−κ̃ , 1

]
, ϕ ∈ Br and γ ∈ (0, γ0). We recall that the stopping

time τ
(1)
γ ,a is defined in (2.40).
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Proof From the definitions (2.11) and (2.2) we have FεKγ (ω) = κγ ,1FγK(εω/γ ),
where Fε is the discrete Fourier transform defined in (2.9) and Fγ is defined by
replacing ε with γ . The first property in (2.1) implies that there are a, c > 0 such that
FK(ω) ≥ a for |ω|∞ ≤ c, and for all γ > 0 small enough we haveFγK(ω) ≥ a/2 for
|ω|∞ ≤ c. Hence,FεKγ (ω) ≥ aκγ ,1/2 for |ω|∞ ≤ cγ −3, and (2.32) yields aκγ ,1/2 ≥
a/4 for all γ > 0 small enough. We define the function ψγ (x) by its discrete Fourier
transform ψ̂γ (ω) = 1/K̂γ (ω) for |ω|∞ ≤ cγ −3 and ψ̂γ (ω) = 0 for |ω|∞ > cγ −3.
Then |ψ̂γ (ω)| ≤ 4/a for |ω|∞ ≤ cγ −3, which implies that ψγ is a rescaled function
with the scaling parameter γ (in the sense of (1.2)).

Let n0 be the smallest integer such that 2n0 > cγ −3. Then we use the Littlewood-
Paley blocks, defined in Appendix 6.2, to write

(
ιεSγ (t)

) (
ϕλ
x
)
=
(
ιεS

(1)
γ (t)

) (
ϕλ
x
)
+(

ιεS
(2)
γ (t)

) (
ϕλ
x
)
, where

(
ιεS(1)γ (t)

) (
ϕλ
x
)
=
∑

k≥n0

(
δk ιεSγ (t)

) (
ϕλ
x
)
,

(
ιεS(2)γ (t)

) (
ϕλ
x
)

=
∑

−1≤k<n0

(
δk ιεSγ (t)

) (
ϕλ
x
)
.

We first bound the process S(1)γ . We note that we can write
(
δk ιεSγ (t)

)
(δkϕ

λ
x ) in

the sum. From the definition (2.42) we have |Sγ (t, x)| ≤ γ −3. Let us fix any integer
r > 1+η

κ̃
− η such that r ≥ 2 and κ = r + η − 1+η

κ̃
. Then we have 0 < κ < r .

Moreover, if we take ϕ ∈ Br , then ∥δkϕ
λ
x ∥L1 ! (λ2k)−r+κ , because Br is embedded

into the Besov space Br−κ
∞,∞. Then we have

∣∣(ιεS(1)γ (t)
) (

ϕλ
x
)∣∣ ! γ −3

∑

k≥n0

(λ2k)−r+κ ! γ −3(λ2n0)−r+κ ! λ−r+κer−1−κ .

If λ ≥ e1−κ̃ , then the latter is bounded by λη.
Now, we will bound S(2)γ . We note that for k < n0 we can express Sγ (t) in terms

of ψγ ∗ε Xγ (t), and using (6.6) we may write

(
ιεS(2)γ (t)

) (
ϕλ
x
)
=
(
ιεXγ (t)

)(
"

γ ,λ
x
)
, (6.8)

where
"

γ ,λ
x (y) =

∫

R3
ε3
∑

z∈+ε

ϕλ
x (z)ψγ (z − v)

∑

−1≤k<n0

ϱk(v − y) dv. (6.9)

This is a convolution of three rescaled functions and hence it can be viewed as a
function rescaled by λ. Then the definition (2.40) yields |(ιεXγ (t))("

γ ,λ
x )| ! a2−kη

for t ∈ [0, τ (1)γ ,a].We note that the functionA
γ ,λ
x is not compactly supported, as required

in the definition of the seminorm (2.22). This however does not play any role since
the process Xγ (t) is periodic and the function has a fast decay at infinity (because the
function ϕ involved in the definition (6.9) is compactly supported and the functions
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ψγ and ϱk have fast decays at infinity). Then (6.8) is absolutely bounded by a constant
multiple of aλη, as required. ⊓⊔

6.4 Controlling the bracket process of themartingales

In Sect. 7.1.2 we need to analyse the process

Qγ ,a(t, x) := ε3
∑

y∈+ε

∫ τγ ,a

0
K̃ γ

t−s(x − y)2Sγ (s, y)Xγ (s, y)ds, (6.10)

where we used the stopping time (2.47). In the following lemma we estimate the error
after replacing Sγ by its local average, i.e. we estimate how close Qγ ,a is to

Q
γ ,a

(t, x) := ε3
∑

y∈+ε

∫ τγ ,a

0
K̃ γ

t−s(x − y)2Xγ (s, y)Xγ (s, y)ds, (6.11)

where the process Xγ is defined in (2.44).

Lemma 6.3 For every T > 0 there exist deterministic constants γ0 > 0 and C > 0,
depending also on the constant κ fixed in (2.44), such that

sup
t∈[0,T ]

sup
x∈+ε

|Qγ ,a(t, x) − Q
γ ,a

(t, x)| ≤ Caγ 3(η−1), (6.12)

uniformly in γ ∈ (0, γ0). The value η is as in the statement of Theorem 2.3.

Proof As we stated in the beginning of Sect. 5, G̃γ = K̃ γ + R̃γ . Replacing K̃ γ in
the definitions of Qγ ,a by G̃γ , and using (2.41) and the trivial bound |Sγ (s, y)| ≤ γ −3,
we obtain

Qγ ,a(t, x) = ε3
∑

y∈+ε

∫ τγ ,a

0
G̃γ

t−s(x − y)2Sγ (s, y)Xγ (s, y) ds +O
(
γ 3(η−1)),

and an analogous formula holds for Q
γ ,a

. Here, we made use of the estimates

ε3
∑

y∈+ε

∫ τγ ,a

0
K̃ γ

t−s(y)R̃
γ
t−s(y) ds ! 1, ε3

∑

y∈+ε

∫ τγ ,a

0
R̃γ

t−s(y)
2 ds ! 1

which follow from smoothness of the functionRγ and an integrable singularity ofK̃ γ

(see Appendix A). We note that the value of the stopping time τγ ,a does not play a role
in this bound, because the kernel G̃γ

t−s vanishes for s ≥ t and the integration interval
is contained in [0, t]. That is why the error term O

(
γ 3(η−1)) is bounded uniformly in

t ∈ [0, T ] and x ∈ +ε.
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Using the spatial periodicity of the processes we can write furthermore

Qγ ,a(t, x) = ε3
∑

y∈T3
ε

∫ τγ ,a

0
"

γ
t−s(x − y)Sγ (s, y)Xγ (s, y) ds +O

(
γ 3(η−1)),

where by analogy with (2.52) the function "γ is defined by

ε3
∑

x∈T3
ε

"
γ
t (x) f (x) = ε3

∑

x∈+ε

G̃γ
t (x)

2 f (x), (6.13)

for any f : T3
ε → R, where on the right-hand side we extended f periodically to +ε.

Then we can write Qγ ,a(t, x) = Q
γ ,a

(t, x)+ Eγ ,a(t, x)+O(γ 3(η−1)) with the error
term

Eγ ,a(t, x) = ε3
∑

y∈T3
ε

∫ τγ ,a

0
"

γ
t−s(x − y)

(
Sγ − Xγ

)
(s, y)Xγ (s, y) ds,

and we need to show that this error term is absolutely bounded by the right-hand side
of (6.12). Applying Parseval’s identity (2.30) we get

Eγ ,a(t, x) =
1
8

∫ τγ ,a

0

∑

|ω|∞≤N

Fε"
γ
t−s(ω)Fε

(
(Sγ − Xγ )Xγ

)
(s,ω) e−π iω·x ds.

We expect that the high frequency Fourier modes of "
γ
t−s decay very fast, which

allows to have a good control of the whole expression in the integral. To separate low
and high Fourier modes of the function "

γ
t−s , we take κ1 > 0, whose precise value

will be fixed later, and write

Eγ ,a(t, x) =
1
8

∫ τγ ,a

0

∑

γ −3−κ1<|ω|∞≤N

Fε"
γ
t−s(ω)Fε

(
(Sγ − Xγ )Xγ

)
(s,ω) e−π iω·x ds

+ 1
8

∫ τγ ,a

0

∑

|ω|∞≤γ −3−κ1

Fε"
γ
t−s(ω)Fε

(
(Sγ − Xγ )Xγ

)
(s,ω) e−π iω·x ds.

We denote these two terms by E (1)
γ ,a(t, x) and E (2)

γ ,a(t, x) respectively.
We start with analysing the term E (1)

γ ,a. The processes Sγ and Xγ can be uniformly
bounded by γ −3, while for the process Xγ we have the bound (2.41). Then

|E (1)
γ ,a(t, x)| ! aγ 3(η−1)

∫ t

0

∑

γ −3−κ1<|ω|∞≤N

|Fε"
γ
s (ω)| ds,
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where we used the property "
γ
s ≡ 0 for s < 0 to extend the integral to [0, t]. The

definition (6.13), the Poisson summation formula and the identity (2.35) yield

Fε"
γ
s (ω) =

∑

|ω′|∞≤N

Fε P̃
γ
s (ω − ω′)Fε P̃

γ
s (ω

′)

=
∑

|ω′|∞≤N

exp
(
γ −6κ2

γ ,3
(
K̂γ (ω − ω′)+ K̂γ (ω

′) − 2
)
s
)
K̂γ (ω − ω′)K̂γ (ω

′).

from which we readily get

∫ t

0
|Fε"

γ
s (ω)| ds ≤ tγ 6κ−2

γ ,3

∑

|ω′|∞≤N

|K̂γ (ω − ω′)K̂γ (ω
′)|, (6.14)

where we made use of (A.6) to bound the exponential by 1. Estimating K̂γ by (A.4c)
and (A.5), for any k ≥ 4 we bound the preceding expression by a constant multiple of

γ 6
∑

|ω′|∞≤N

(|γ 3(ω − ω′)| ∨ 1)−2k(|γ 3ω′| ∨ 1)−2k . (6.15)

Then we have

|E (1)
γ ,a(t, x)| ! aγ 3(η+1)

∑

γ −3−κ1<|ω|∞≤N

∑

|ω′|∞≤N

(|γ 3(ω − ω′)| ∨ 1)−2k(|γ 3ω′| ∨ 1)−2k

! aγ 3(η−5)
∫

γ −κ1<|ω|∞≤γ 3N

∫

|ω′|∞≤γ 3N
(|ω − ω′| ∨ 1)−2k(|ω′| ∨ 1)−2kdω′dω.

(6.16)

In order to bound this integral, we split the domain of integration into two subdomains.
If |ω′|∞ ≤ |ω|∞/2, then |ω − ω′|∞ ≥ |ω|∞/2. We also have |ω|∞ ≥ 1. Then the part

of the double integral (6.16), in which the integration variables satisfy |ω′|∞ ≤ |ω|∞/2,
is bounded by a constant times

∫

γ −κ1<|ω|∞≤γ 3N

∫

|ω′|∞≤|ω|∞/2
|ω|−2k

∞
(|ω′|∞∨1)−2kdω′dω !

∫

γ −κ1<|ω|∞≤γ 3N
|ω|−2k

∞
dω,

and the latter is of order γ (2k−3)κ1 . Taking k large enough, we can make the power of
γ arbitrarily big.

If |ω′|∞ > |ω|∞/2, then we simply bound |ω − ω′|∞ ∨ 1 ≥ 1, and the respective part
of the double integral (6.16) is bounded by

∫

γ −κ1<|ω|∞≤γ 3N

∫

|ω|∞/2<|ω′|∞≤γ 3N
|ω′|−2k

∞
dω′dω !

∫

γ −κ1<|ω|∞≤γ 3N
|ω|3−2k

∞
dω,

which is of order γ (2k−6)κ1 . Combining the preceding bounds, we get |E (1)
γ ,a(t, x)| ! a.
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Now, we will analyse the term E (2)
γ ,a. We have

E (2)
γ ,a(t, x) =

∫ τγ ,a

0

∑

|ω|∞≤γ −3−κ1

Fε"
γ
t−s(ω)Fε

(
(Sγ − Xγ )Xγ

)
(s,ω) e−π iω·x ds.

(6.17)
Furthermore, (2.31) yields

Fε

(
(Sγ − Xγ )Xγ

)
(s,ω) =

∑

|ω′|∞≤N

(
Ẑγ − X̂γ

)
(s,ω′)X̂γ (s,ω − ω′)

=
∑

|ω′|∞≤N

(
1 − K̂ γ (ω)

)
Ẑγ (s,ω′)X̂γ (s,ω − ω′).

We assumed in Sect. 2.3 that FK(ω) = 1 for all ω ∈ R3 such that |ω|∞ ≤ 1, from
which we conclude that the terms in the preceding sum may be non-vanishing only
for |ω′|∞ > γ −3−κ . Then the variables in these sums satisfy |ω − ω′|∞ ≥ cγ −3−κ for
some c > 0, if we take κ1 = κ/2. From Lemma 6.1 we have |X̂γ (s,ω − ω′)| ! γ M

for any M > 0, where the proportionality constant depends on κ and M . Applying
the preceding estimate to (6.17), we get

|E (2)
γ ,a(t, x)| ! γ M−3

∫ t

0

∑

|ω|∞≤γ −3−κ1

∣∣Fε"
γ
s (ω)

∣∣ ds,

where as before we used the bound |Ẑγ (s,ω′)| ! γ −3 and extended the integral to
the interval [0, t]. Using (6.14) and (6.15), this expression is bounded as

|E(2)
γ ,a(t, x)| ! γ M+3

∑

|ω|∞≤γ −3−κ1

∑

|ω′|∞≤N

(|γ 3(ω − ω′)|∞ ∨ 1)−2k(|γ 3ω′|∞ ∨ 1)−2k

! γ M−15
∫

|ω|∞≤γ 3γ −3−κ1

∫

|ω′|∞≤γ 3N
(|ω − ω′|∞ ∨ 1)−2k(|ω′|∞ ∨ 1)−2kdω′dω.

This expression is of order γ M−15 which can be made arbitrarily small by taking M
large.

6.5 Controlling the process X′
!,a

We recall that X ′
γ ,a is defined below (2.48) via the spin field σ ′

γ ,a, and let us define

S′
γ ,a(t, x) :=

1
δ
σ ′

γ ,a

( t
α
,
x
ε

)
for x ∈ T3

ε, t ≥ 0. (6.18)

We need to control these two processes.
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Lemma 6.4 Let η be as in Theorem 2.3. There exists γ0 > 0 such that for every p ≥ 1
and T > 0 one has

E
[

sup
t∈[τγ ,a,T ]

∣∣(ιεX ′
γ ,a(t)

) (
ϕλ
x
)∣∣p
]

≤ Cap(λ ∨ e)ηp, (6.19)

uniformly over γ ∈ (0, γ0), ϕ ∈ B1, x ∈ +ε and λ ∈ (0, 1]. The constant C depends
only on p, T and γ0.

Proof By the definition in Sect. 2.3 we have X ′
γ ,a(τγ ,a) = Xγ (τγ ,a), and in the same

way as we derived equation (2.38), we get for t ≥ τγ ,a

X ′
γ ,a(t, x) =

(
Pγ
t−τγ ,a

Xγ

)
(τγ ,a, x)+ ε3

∑

y∈T3
ε

∫ t

τγ ,a

P̃γ
t−s(x − y) dM′

γ ,a(s, y). (6.20)

Extending the processes periodically to x ∈ +ε and using (2.52), we replace Pγ , P̃γ

and T3
ε in the preceding equation by Gγ , G̃γ and +ε respectively. Then, for a test

function ϕ ∈ B1 we have

(
ιεX ′

γ ,a(t)
) (

ϕλ
x
)
=
(
ιεG

γ
t−τγ ,a

Xγ (τγ ,a)
) (

ϕλ
x
)
+ ε3

∑

y∈+ε

∫ t

τγ ,a

(
G̃γ

t−s ∗ε ϕλ
x
)
(y) dM′

γ ,a(s, y). (6.21)

We denote the two terms on the right-hand side by Aγ ,λ(t) and Bγ ,λ(t) respectively.
Then the first term may be written as

Aγ ,λ(t) = ε3
∑

y∈+ε

Gγ
t−τγ ,a

(y)
(
ιεXγ (τγ ,a)

)
(ϕλ

x−y).

Using the a priori bound on Xγ , provided by the stopping time (2.40), we get
|
(
ιεXγ (τγ ,a)

)
(ϕλ

x−y)| ! a(λ ∨ e)η where we used the definition of the seminorm
(2.22). Then since the kernel Gγ

t integrates to 1, we get

∣∣Aγ ,λ(t)
∣∣ ! a(λ ∨ e)η, (6.22)

with a proportionality constant independent of the involved values. Here, we used the
fact that the discrete heat kernel Gγ

t is absolutely summable over +ε and the sum is
bounded uniformly in γ and t , which follows from Lemma A.3.

Now, we will bound the last term in (6.21). For this, we define

Bγ ,λ(t ′, t) := ε3
∑

y∈+ε

∫ t ′

τγ ,a

(
G̃γ

t−s ∗ε ϕλ
x
)
(y) dM′

γ ,a(s, y),
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718 P. Grazieschi et al.

so that Bγ ,λ(t) = Bγ ,λ(t, t) and the process t ′ /→ Bγ ,λ(t ′, t) is a martingale on
[τγ ,a, t]. In order to apply the Burkholder-Davis-Gundy inequality [18, Prop. A.2] to
this martingale, we need to bound its jumps and bracket process. The jump times of
Bγ ,λ coincide with those ofM′

γ ,a, and we get

∣∣$s Bγ ,λ(•, t)
∣∣ ≤ ε3

∑

y∈+ε

∣∣(G̃γ
t−s ∗ε ϕλ

x
)
(y)
∣∣|$sM

′
γ ,a(•, y)|,

for s ∈ [τγ ,a, t], where we use the jump of the martingale $sM
′
γ ,a defined in (6.3).

Moreover, the jump size of M′
γ ,a is bounded by 2γ −3 and if M′

γ ,a(s, y) has a jump,
it happens almost surely at the points {y∗ + k : k ∈ Z3} for a unique y∗ ∈ T3

ε (recall
Sect. 6.1 and periodicity of the martingale). Thus, we get almost surely

∣∣$s Bγ ,λ(•, t)
∣∣ ≤ 2γ −3ε3 sup

y∗∈T3
ε

∑

k∈Z3

∣∣(G̃γ
t−s ∗ε ϕλ

x
)
(y∗ + k)

∣∣ ! γ −3ε3 ! γ 9. (6.23)

The sum is bounded, because the discrete heat kernel decays very fast at infinity (see
Lemma A.3).

Recalling (2.49), the bracket process of Bγ ,λ(t ′, t) equals

〈
Bγ ,λ(•, t)

〉
t ′ = 2κγ ,2

∑

y∈+ε

∫ t ′

τγ ,a

(
G̃γ

t−s ∗ε ϕλ
x
)
(y)2

(
1 − δσ ′

γ ,a

( s
α
,
x
ε

)
X ′

γ ,a(s, x)
)
ds.

The process in the parentheses is bounded by a constant, and the definition (2.18)
yields

∣∣〈Bγ ,λ(•, t)
〉
t ′
∣∣ ! ε3

∑

y∈+ε

∫ t

0

(
G̃γ

s ∗ε ϕλ
x
)
(y)2ds,

where we used t ′ ≤ t . Similarly to how we estimated (5.4), we can show that

∣∣〈Bγ ,λ(•, t)
〉
t ′
∣∣ ! (λ ∨ e)−1. (6.24)

Applying the Burkholder-Davis-Gundy inequality [18, Prop. A.2] and using the
bounds (6.23) and (6.24), we get

(
E
[

sup
t∈[τγ ,a,T ]

∣∣Bγ ,λ(t)
∣∣p
]) 1

p ! (λ ∨ e)−
1
2 + γ 9. (6.25)

Using then the Minkowski inequality and the bounds (6.22) and (6.25), we obtain
from (6.21) the required result (6.19).

Using the preceding result, the following one is proved in exactly the same way as
Lemma 6.2.
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Lemma 6.5 For any κ̃ ∈ (0, 1) there exist γ0 > 0 such that for any γ ∈ (0, γ0),
T > 0, ϕ ∈ Br and λ ∈ [e1−κ̃ , 1] one has

sup
t∈[τγ ,a,T ]

sup
x∈+ε

∣∣(ιεS′
γ ,a(t)

) (
ϕλ
x
)∣∣ ≤ Caλη,

where the values η and r is the same as in the statement of Lemma 6.2. The non-random
proportionality constant C depends on T and is independent of γ , ϕ and λ.

6.6 Controlling the process X′
!,a

Let us define by analogy with (2.45) the renormalisation term, which is a function of
the time variable,

Cγ (t) := 2κγ ,2

∫ t

0
ε3
∑

x∈T3
ε

Pγ
s (x)P̃

γ
s (x) ds, (6.26)

where Pγ
t := Pγ

t ∗ε K γ and κγ ,2 was defined in (2.19). The following result will be
useful later.

Lemma 6.6 The constant (2.45) and the function (6.26) satisfy |Cγ − Cγ (t)| !
t−c/2ec−1 for any c ∈ [0, 1).

Proof The proof of the bound goes along the lines of the proof of Lemma 5.5. More
precisely, as in (5.16) we get

Cγ − Cγ (t) =
κγ ,2

8

∑

0<|ω|∞≤N

α K̂ γ (ω)K̂γ (ω)

κ2
γ ,3

(
1 − K̂γ (ω)

) exp
(
2κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
.

Since the power of the exponential is negative, we can use the simple bound e−x !
x−c/2 for any x > 0 and any c > 0, to estimate

|Cγ − Cγ (t)| !
∑

0<|ω|∞≤N

α|K̂ γ (ω)||K̂γ (ω)|
1 − K̂γ (ω)

((
1 − K̂γ (ω)

) t
α

)−c/2
.

Proceeding as in the proof of Lemma 5.5, we get the desired bound.

Let us define the process X ′
γ ,a as in (2.44), but via the spin field σ ′

γ ,a. The following
result will be used in Sect. 7.1.2.

Lemma 6.7 Let η be as in Theorem 2.3 and let κ and e be as in (2.46). There exists
γ0 > 0 such that for every p ≥ 1 and T > 0 one has

E
[

sup
t∈[τγ ,a,T ]

(t − τγ ,a)
− ηp

2
∥∥X ′

γ ,a(t)X
′
γ ,a(t) − Cγ (t − τγ ,a)

∥∥p
L∞

]
≤ Ca2peηp, (6.27)
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uniformly over γ ∈ (0, γ0). The constant C depends only on p, T , γ0 and κ .

Proof Let Iγ ,a(t, x) := X ′
γ ,a(t, x)X

′
γ ,a(t, x) − Cγ (t − τγ ,a) be the function, which

we need to bound. From the proof of Lemma 6.4 we know that X ′
γ ,a solves equation

(6.20). Similarly, we can show that

X ′
γ ,a(t, x) =

(
Pγ
t−τγ ,a

Xγ

)
(τγ ,a, x)+ ε3

∑

y∈T3
ε

∫ t

τγ ,a

Pγ
t−s(x − y) dM′

γ ,a(s, y). (6.28)

Here, we need to take γ small enough so that the radius of the support of the function
K γ gets smaller than one. Let us denote by Y ′

γ ,a(t, x) and Y
′
γ ,a(t, x) the last terms in

(6.20) and (6.28) respectively, and let us define

Y ′
γ ,a(r , t, x) := ε3

∑

y∈T3
ε

∫ r

τγ ,a

P̃γ
t−s(x − y) dM′

γ ,a(s, y),

Y ′
γ ,a(r , t, x) := ε3

∑

y∈T3
ε

∫ r

τγ ,a

Pγ
t−s(x − y) dM′

γ ,a(s, y).
(6.29)

Then these two processes are càdlàg martingales in r ∈ [τγ ,a, t], and Y ′
γ ,a(t, x) =

Y ′
γ ,a(t, t, x) and Y ′

γ ,a(t, x) = Y ′
γ ,a(t, t, x). Since these martingales have finite total

variation, their quadratic covariation may be written as (see [24])

[
Y ′

γ ,a(•, t, x), Y
′
γ ,a(•, t, x)

]
r =

∑

τγ ,a≤s≤r

$sY ′
γ ,a(•, t, x)$sY ′

γ ,a(•, t, x), (6.30)

where $sY ′
γ ,a(•, t, y) is the jumps size of the martingale at time s. Moreover, the

process

N′
γ ,a(r , t, x) :=

[
Y ′

γ ,a(•, t, x), Y
′
γ ,a(•, t, x)

]
r − ⟨Y ′

γ ,a(•, t, x), Y
′
γ ,a(•, t, x)⟩r (6.31)

is a martingale for r ∈ [τγ ,a, t], where from (6.1) we have

⟨Y ′
γ ,a(•, t, x), Y

′
γ ,a(•, t, x)⟩r = ε3

∑

y∈T3
ε

∫ r

τγ ,a

Pγ
t−s(x − y)P̃γ

t−s(x − y)Cγ ,a(s, y) ds.

We denote N′
γ ,a(t, x) = N′

γ ,a(t, t, x). Then we multiply (6.20) and (6.28), to get

Iγ ,a(t, x) =
(
Pγ
t−τγ ,a

Xγ

)
(τγ ,a, x) X ′

γ ,a(t, x)+ Y ′
γ ,a(t, x)

(
Pγ
t−τγ ,a

Xγ
)
(τγ ,a, x)+N′

γ ,a(t, x)

+
(

ε3
∑

y∈T3
ε

∫ t

τγ ,a

Pγ
t−s(x − y)P̃γ

t−s(x − y)Cγ ,a(s, y) ds − Cγ (t − τγ ,a)

)
.

(6.32)
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We denote the four terms on the right-hand side by I (i)γ ,a(t, x), for i = 1, . . . , 4, and
we will bound them one by one.

Expanding the discrete kernel as in Appendix Appendix A.1 and using the a priori
bound provided by the stopping time (2.40), we obtain from Lemma A.5

|(Pγ
t−τγ ,a

Xγ )(τγ ,a, x)| ! a(t − τγ ,a)
η/2, |(Pγ

t−τγ ,a
Xγ )(τγ ,a, x)| ! a(t − τγ ,a)

η/2.

Then the first term in (6.32) we bound as

E
[

sup
t∈[τγ ,a,T ]

(t − τγ ,a)
− ηp

2
∣∣I (1)γ ,a(t, x)

∣∣p
]

≤ apE
[

sup
t∈[τγ ,a,T ]

∣∣X ′
γ ,a(t, x)

∣∣p
]
.

Applying Lemma 6.19, the preceding expression is bounded by a constant times
a2peηp. The term I (2)γ ,a(t, x) can be bounded similarly. Indeed, Y ′

γ ,a coincides with
X ′

γ ,a, when the initial condition is 0, and Lemma 6.19 holds for X ′
γ ,a where e is used

in place of e. Hence, we have

E
[

sup
t∈[τγ ,a,T ]

(t − τγ ,a)
− ηp

2
∣∣I (2)γ ,a(t, x)

∣∣p
]

! apeηp.

To bound the third term in (6.32), we use the Burkholder-Davis-Gundy inequality
and get

E
[

sup
t∈[τγ ,a,T ]

∣∣I (3)γ ,a(t, x)
∣∣p
]

!
(
E
[[
N′

γ ,a(•, t, x)
]
t

]) p
2

, (6.33)

where the quadratic variation is computed for themartingale (6.31). From the definition
of the martingale, we get

[
N′

γ ,a(•, t, x)
]
t =

∑

τγ ,a≤s≤t

(
$sN

′
γ ,a(•, t, x)

)2
. (6.34)

Moreover, (6.30) yields $sN
′
γ ,a(•, t, x) = $sY ′

γ ,a(•, t, x)$sY ′
γ ,a(•, t, x). Further-

more, the definitions (6.29) allow to bound the jumps of Y ′
γ ,a and Y ′

γ ,a in terms of
jumps ofM′

γ ,a. Since the jumps size of the latter is bounded by 2γ −3 (as follows from
the scaling (2.10)) and almost surely M′

γ ,a(s, y) has a jump at a unique point y, we
get

∣∣$sY ′
γ ,a(•, t, x)

∣∣ ≤ 2γ −3ε3
∥∥P̃γ

t−s

∥∥
L∞ ,

∣∣$sY ′
γ ,a(•, t, x)

∣∣ ≤ 2γ −3ε3
∥∥Pγ

t−s

∥∥
L∞ .

From Lemma A.4 we have
∥∥P̃γ

t−s

∥∥
L∞ ! (t − s + e2)−3/2 and

∥∥Pγ
t−s

∥∥
L∞ ! (t − s +

e2)−3/2. Using these bounds in (6.34) yields

[
N′

γ ,a(•, t, x)
]
t ! γ 18

∑

τγ ,a≤s≤t

(t − s + e2)−31{s:M′
γ ,a(s,x)−M′

γ ,a(s−,x) ̸=0},

123



722 P. Grazieschi et al.

where 1 is the indicator function and so the sum runs over the jump times of the
martingales M′

γ ,a. The moments of the number of jumps of the martingales are of
order γ −6, and hence the p-th moment of the preceding expression is bounded by a
constant times

γ 12
∫ t

τγ ,a

(t − s + e2)−3ds ! γ 12e−4 ! γ −4κ .

Then the right-hand side of (6.33) is bounded by a constant multiple of γ −2κ p.
It is left to bound the last term in (6.32). Using (6.2) and (6.26), we have

I (4)γ ,a(t, x) = −2ε6

α

∑

y∈T3
ε

∫ t

τγ ,a

Pγ
t−s(x − y)P̃γ

t−s(x − y)S′
γ ,a(s, y)X

′
γ ,a(s, y) ds.

Let I (5)γ ,a(t, x) be defined by this formula, where we replace S′
γ ,a by X ′

γ ,a. From
Lemma 6.4 we have |X ′

γ ,a(s, y)| ! eη and we have |S′
γ ,a(s, y)| ! e−1. Then, is

we replace the kernels Pγ and P̃γ in I (5)γ ,a by K γ and K̃ γ , we get an error of order
e1+η. Then Lemma 6.3 yields |I (4)γ ,a(t, x)− I (5)γ ,a(t, x)| ! γ 3η uniformly in x and locally
uniformly in t . To bound I (5)γ ,a we write

I (5)γ ,a(t, x) = −2ε6

α

∑

y∈T3
ε

∫ t

τγ ,a

Pγ
t−s(x − y)P̃γ

t−s(x − y)Iγ ,a(s, y) ds

+ 2ε6

α

∑

y∈T3
ε

∫ t

τγ ,a

Pγ
t−s(x − y)P̃γ

t−s(x − y)Cγ (s − τγ ,a) ds,

and we denote these two terms by I (6)γ ,a(t, x) and I (7)γ ,a(t, x). Since |Cγ (s)| ! e−1 (what

follows fromLemma 5.5), we get |I (7)γ ,a(t, x)| ! 1. Furthermore, we have |I (6)γ ,a(t, x)| !
e sups∈[τγ ,a,t] ∥Iγ ,a(s)∥L∞ .

Combining all the previous bounds, we get

E
[

sup
t∈[τγ ,a,T ]

(t − τγ ,a)
− ηp

2
∥∥Iγ ,a(t)

∥∥p
L∞

]
! a2peηp + apeηp + γ −2κ p + γ 3ηp

+ epE
[

sup
t∈[τγ ,a,T ]

(t − τγ ,a)
− ηp

2
∥∥Iγ ,a(t)

∥∥p
L∞

]
.

Taking e small enough, we get the required bound (6.27).

7 Moment bounds for the discrete models

Let Zγ ,a
lift be the discrete model defined in Sect. 4. In this section, we prove that this

model is bounded uniformly in γ .Moreover, we introduce a newdiscretemodel Zγ ,δ,a
lift ,
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defined as Zγ ,a
lift but via mollified martingales. Then we show that the distance between

these two models vanishes as δ → 0, uniformly in γ .
Let ϱ : R4 → R be a symmetric smooth function, supported on the ball of radius 1

(with respect to the parabolic distance ∥ • ∥s) and satisfying
∫
R4 ϱ(z)dz = 1. For any

δ ∈ (0, 1) we define its rescaling

ϱδ(t, x) :=
1
δ5

ϱ
( t

δ2
,
x
δ

)
. (7.1)

We need to modify this function in a way that its integral over Dε becomes 1. For this,
we approximate the function by its local averages as

ϱγ ,δ(t, x) := ε−3
∫

y∈R3:|y−x |∞≤ε/2
ϱδ(t, y)dy, (7.2)

which satisfies
∫
Dε

ϱγ ,δ(z)dz = 1.We regularise themartingales in the followingway:

ξγ ,δ,a(t, x) :=
1√
2
ε3
∑

y∈+ε

∫

R
ϱγ ,δ(t − s, x − y) dMγ ,a(s, y). (7.3)

Then the process ξγ ,δ,a(t, x) is defined on (t, x) ∈ R × T3
ε , but it is not a martingale

anymore. On the other hand, a convolution with this process can be interpreted as a
stochastic integral. For example, a convolution with the kernelK̃ γ may be written as

(
K̃ γ ⋆εξγ ,δ,a

)
(t, x) = 1√

2
ε3
∑

y∈+ε

∫

R
K̃ γ ,δ

t−s(x − y) dMγ ,a(s, y),

where ⋆ε is the convolution on Dε and K̃ γ ,δ := K̃ γ ⋆εϱγ ,δ . Then we can easily
compare the two kernels as

(
K̃ γ ,δ − K̃ γ

)
(z) =

∫

Dε

K̃ γ (z − z̄)
(
ϱγ ,δ(z̄) − 1

)
dz̄,

which is the main reason to mollify the noise using the function (7.1).
Using ξγ ,δ,a, we make the following definitions

(
!γ ,δ,a7

)
(z) = ξγ ,δ,a(z),

(
!γ ,δ,a )(z) =

(
K̃ γ ⋆εξγ ,δ,a

)
(z).

After that we define the linear map !γ ,δ,a on T by the same recursive definitions as
in Sect. 5.1, but using the following renormalisation constants in place of (5.4), (5.5)
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and (5.8) respectively:

cγ ,δ :=
∫

Dε

K̃ γ ,δ(z)2 dz,

c′γ ,δ := −βκγ ,3γ
6Cγ cγ ,δ,

c′′γ ,δ := 2
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z)K̃ γ ,δ(z1)K̃ γ ,δ(z2)K̃ γ ,δ(z1 − z)

K̃ γ ,δ(z2 − z) dz dz1 dz2.

(7.4)

As we did in Sect. 5.2, we define a discrete model Zγ ,δ,a
lift = (;γ ,δ,a,:γ ,δ,a) from the

map !γ ,δ,a. In the following proposition we provide moment bounds for this model.

Proposition 7.1 Let the constants κ and κ , used in (3.2) and (2.46), satisfy κ ≥ κ .
Then for the discrete models Zγ ,a

lift and Zγ ,δ,a
lift , there exist γ0 > 0 and θ > 0 for which

the following holds: for any p ≥ 1 and T > 0 there is C > 0 such that

sup
γ∈(0,γ0)

E
[(
|||Zγ ,a

lift |||(e)T
)p] ≤ C, sup

γ∈(0,γ0)
E
[(
|||Zγ ,a

lift ; Zγ ,δ,a
lift |||(e)T

)p] ≤ Cδθ p, (7.5)

for any δ ∈ (0, 1). Here, we use the metrics for the discrete models, defined in
Remark 4.7.

We prove this proposition in Sect. 7.2. For this, we use the framework developed
in [18], which provides moment bounds on multiple stochastic integrals with respect
to a quiet general class of martingales. We showed in Sect. 6.1 that the martingales
Mγ ,a, introduced in Sect. 2.3, have the required properties.

7.1 Bounds on the discrete model

The basis elements of the regularity structure are listed in Tables 1 and 4, and in this
section we are going to prove bounds only on the map ;γ ,a from the discrete model
Zγ ,a

lift on the basis elements with negative homogeneities, which do not contain the
symbols E and Xi . More precisely, we consider the set

W̄ =
{
, , , , , , ,

}
,

and prove the following bounds for its elements. We use in the statement of this
proposition and in its proof the notation from Sect. 4.3.

Proposition 7.2 Let the constants κ and κ , used in (3.2) and (2.46), satisfy κ ≥ κ .
Then there are constants κ̄ > 0, γ0 > 0 and θ > 0, such that for any τ ∈ W̄, p ≥ 1
and T > 0 there is C > 0 for which we have the bounds

(
E
∣∣ιε
(
;

γ ,a
z τ

)
(ϕλ

z )
∣∣p
) 1

p ≤ C(λ ∨ e)|τ |+κ̄ , (7.6)
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(
E
∣∣ιε
(
;

γ ,a
z τ − ;

γ ,δ,a
z τ

)
(ϕλ

z )
∣∣p
) 1

p ≤ Cδθ (λ ∨ e)|τ |+κ̄−θ , (7.7)

uniformly in z ∈ Dε, λ ∈ (0, 1], ϕ ∈ B2
s and γ ∈ (0, γ0).

The rest of this section is devoted to the proof of this result. We are going to prove
the bounds (7.6) and (7.7) for any p sufficiently large, and the bounds for any p ≥ 1
follow then by Hölder’s inequality.

For every symbol τ ∈ W̄, we use the definition of the discrete model in Sect.5.2
and the expansion [18, Eq. 2.16] to write ιε

(
;

γ ,a
z τ

)
(ϕλ

z ) as a sum of terms of the form

∫

Dε

ϕλ
z (z̄)

(∫

Dn
ε

Fz̄(z1, . . . , zn) dMn
γ ,a(z1, . . . , zn)

)
dz̄ (7.8)

=
∫

Dn
ε

(∫

Dε

ϕλ
z (z̄)Fz̄(z1, . . . , zn) dz̄

)
dMn

γ ,a(z1, . . . , zn),

where the measure Mn
γ ,a is defined in Section 2.1 in [18] for the martingales Mγ ,a,

and a function F of n space-time variables. Similarly, we write ιε(;
γ ,δ,a
z τ )(ϕλ

z ) as a
sum of terms of the form

∫

Dε

ϕλ
z (z̄)

(∫

Dn
ε

Fz̄(z1, . . . , zn) dMn
γ ,a,(δ)(z1, . . . , zn)

)
dz̄ (7.9)

=
∫

Dn
ε

(∫

Dε

ϕλ
z (z̄)

(
Fz̄⋆εϱγ ,δ

)
(z1, . . . , zn) dz̄

)
dMn

γ ,a(z1, . . . , zn),

whereMn
γ ,a,(δ)(z1, . . . , zn) stays for the product measure associated to the regularised

martingales ξγ ,δ,a, defined in (7.3). The functions F will be typically defined in
terms of the singular part K̃ γ of the decomposition G̃γ = K̃ γ + R̃ γ done in
Appendix Appendix A.1, or in terms of the function K̃ γ ,δ := ϱγ ,δ⋆εK̃ γ where ϱγ ,δ

is the mollifier from (7.3).
To bound the terms (7.8) and their difference with those in (7.9), we are going

to use Corollary 4.5 in [18]. For this, it is convenient to use graphical notation to
represent the function F and integrals, where nodes represent variables and arrows
represent kernels. In what follows, the vertex “ ” labelled with z represents the basis
point z ∈ Dε; the arrow “ ” represents a test function ϕλ

z ; the arrow “ ”
represents the discrete kernelK̃ γ , and we will write two labels (ae, re) on this arrow,
which correspond to the labels on graphs as described in [18, Sec. 4]. More precisely,
since the kernel K̃ γ satisfies [18, Assum. 4] with ae = 3 (see Lemma A.3), we draw
“ 3,0 ”.

Each variable zi , integrated with respect to the measureMn
γ ,a with n ≥ 2 is denoted

by a node “ ”; the variable integrated with respect to the martingaleMγ ,a we denote
by “ ”. By the node “ ” we denote a variable integrated out in Dε.
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7.1.1 The element " =

We represent the function ;
γ ,a
z τ , defined in (5.10), diagrammatically as

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =
z

3,0 .

This diagram is in the form (7.8) with n = 1, where in this case, in the inner integral,
we have the generalised convolution Kλ,e

G,z given by (as in [18, Eq. 4.13])

Kλ,e
G,z(z

var) =
∫

Dε

ϕλ
z (z̄)K̃

γ (z̄ − zvar) dz̄.

One can check that [18, Assum. 3] is satisfied for this diagramwith a trivial contraction
and the bound [18, Eq. 4.16] holds with the sets Ṽvar = : = {1} and labeling
L = {nil}. The set B in this bound has to be ∅, while A might be either {1} or ∅.
From the diagram we see that |Ṽvar| = 1 and |V̂⋆̄\V̂

↑
⋆ | = 1; therefore, the value of

the constant νγ in [18, Eq. 4.15] is − 1
2 . Applying [18, Cor. 4.5], we get that, for any

κ̄ > 0 and any p ≥ 2 large enough:

(
E
∣∣ιε
(
;

γ ,a
z τ

)
(ϕλ

z )
∣∣p
) 1

p ! (λ ∨ e)−
1
2

(
1+ ε

9
4−κ̄e−

5
2

)
.

Since e ≈ γ 3 and ε ≈ γ 4, this expression is bounded by a multiple of (λ ∨ e)−
1
2 as

required in (7.6) (recall that |τ | = − 1
2 − κ).

In what follows, we use the notation and terminology from [18, Sec. 4] in the same
way as we did for this element τ , and we prefer not to make references every time.

7.1.2 The element " =

Using the definition (5.10) and the expansion [18, Eq. 2.16], the function ;
γ ,a
z τ can

be represented by the diagrams

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0

+

z

3,03,0

− (cγ + c′γ )

z

. (7.10)

Let us denote by “ ” the integration against the family of martingales given by
the predictable quadratic variation x /→ ⟨Mγ ,a(x)⟩, and by “ ” the integration in the
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family of martingales x /→ [Mγ ,a(x)] − ⟨Mγ ,a(x)⟩. Then we can write (7.10) as

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0

+

z

3,03,0

+

⎛

⎜⎜⎜⎝

z

3,03,0

− (cγ + c′γ )

z

⎞

⎟⎟⎟⎠
. (7.11)

Let us denote the first two of these diagrams by ιε
(
;

γ ,1
z τ

)
(ϕλ

z ) and ιε
(
;

γ ,2
z τ

)
(ϕλ

z )

respectively, and let ιε
(
;

γ ,3
z τ

)
(ϕλ

z ) denote the expression in the brackets in (7.11).
Let us analyse the first diagram in (7.11). [18, Assum. 3] is satisfied for it with a

trivial contraction, and the bound [18, Eq. 4.16] holds with the sets Ṽvar = : = {1, 2}
and labeling L = {nil,nil}. The set B in [18, Eq. 4.16] needs to be ∅, while A

can be ∅, {1}, {2} or {1, 2}. Furthermore, we have |V̂var| = 2 and |V̂⋆̄\V̂
↑
⋆ | = 2 and

the value of the constant νγ in [18, Eq. 4.16] is −1. Applying [18, Cor. 4.5] to this
diagram, we get for any κ̄ > 0 and for any p ≥ 2 large enough

(
E
∣∣ιε
(
;

γ ,1
z τ

)
(ϕλ

z )
∣∣p
) 1

p ! (λ ∨ e)−1
(
1+ ε

9
4−κ̄e−

5
2 + ε

9
2−κ̄e−5

)
.

Recalling that |τ | = −1 − 2κ , we get the required bound (7.6).
For the second diagram in (7.11) we have Ṽvar = {1}, : = ∅ and the labeling

L = {⋄}. However, the graph does not satisfy [18, Assum. 3]. To resolve this problem,
we note that multiplication of a kernel by e3−a with a > 0 “improves” its regularity
by 3 − a, meaning that the singularity of the kernel now diverges like ea instead of
like e3. Then for 0 < a < 5

2 we can write

ιε
(
;

γ ,2
z τ

)
(ϕλ

z ) = e2(a−3)

z

a,0a,0

, (7.12)

and [18, Assum. 3] is satisfied. Then for any κ̄ > 0 and any p ≥ 2 large enough [18,
Cor. 4.5] yields

(
E
∣∣ιε
(
;

γ ,2
z τ

)
(ϕλ

z )
∣∣p
) 1

p ! e2(a−3)(λ ∨ e)
5
2−2a

(
ε

9
4 + ε

9
2−κ̄e−

5
2

)
.

For 3
2 < a ≤ 7

4 and κ̄ > 0 small enough the right-hand side is bounded by cγ (λ∨e)−1,
where cγ vanishes as γ → 0.
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The term ιε
(
;

γ ,3
z τ

)
(ϕλ

z ) requires a more complicated analysis. Using the quadratic
covariation (6.2) and the definition of the renormalisation constants (5.4) and (5.5),
we can write

ιε
(
;

γ ,3
z τ

)
(ϕλ

z ) =
1
2

∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ ∞

0
K̃

γ

t̄−s̃(x̄ − ỹ)2
(
Cγ ,a(s̃, ỹ) − 2+ 2βκγ ,3γ

6Cγ

)
ds̃
)
dz̄

+ 1
2

∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ 0

−∞
K̃

γ

t̄−s̃(x̄ − ỹ)2
(
C̃γ ,a(−s̃, ỹ) − 2+ 2βκγ ,3γ

6Cγ

)
ds̃
)
dz̄ (7.13)

for z̄ = (t̄, x̄) and where C̃γ ,a is the bracket process (6.2) for the martingale M̃γ ,a used
in (5.1). This is the definition (5.1) which requires us to consider the two integrals:
for positive and negative times. Since the two terms in (7.13) are bounded in the same
way, we will derive below only a bound on the first term.

Using the rescaled process Sγ , defined in (2.42), from formula (6.2) we then get

Cγ ,a(s̃, ỹ) − 2 =
{

−2κγ ,3γ
3Sγ (s̃, ỹ) tanh

(
βδXγ (s̃, ỹ)

)
+ 2(1 − κγ ,3) for s̃ < τγ ,a,

−2κγ ,3γ
6S′

γ ,a(s̃, ỹ)X
′
γ ,a(s̃, ỹ)+ 2(1 − κγ ,3) for s̃ ≥ τγ ,a.

From (2.32) we have 1− κγ ,3 = O(γ 4). Moreover, the function tanh can be approx-
imated by its first-order Taylor polynomial: tanh(x) = x +O(x3), and (2.41) yields
∥Xγ (·)∥L∞ ! eη almost surely. Hence, | tanh

(
βδXγ (s̃, ỹ)

)
−βδXγ (s̃, ỹ)| ! δ3e3η !

γ 9(1+η) almost surely uniformly in ỹ and s̃ < τγ ,a. Then the preceding expression
equals

Cγ ,a(s̃, ỹ) − 2 =
{

−2κγ ,3βγ 6Sγ (s̃, ỹ)Xγ (s̃, ỹ)+ Errγ ,a(s̃, ỹ) for s̃ < τγ ,a,

−2κγ ,3γ
6S′

γ ,a(s̃, ỹ)X
′
γ ,a(s̃, ỹ)+ Err′

γ ,a(s̃, ỹ) for s̃ ≥ τγ ,a,

(7.14)
where the error terms are almost surely uniformly bounded on the respective time
intervals by |Errγ ,a(s̃, ỹ)| ! γ 9(1+η)∧4 and |Err′

γ ,a(s̃, ỹ)| ! γ 4. Using (7.14), we
then write the first term in (7.13) as

− βκγ ,3γ
6
∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ τγ ,a

0
K̃ γ

t̄−s̃(x̄ − ỹ)2
(
Sγ (s̃, ỹ)Xγ (s̃, ỹ) − Cγ

)
ds̃
)
dz̄

− βκγ ,3γ
6
∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ ∞

τγ ,a

K̃ γ
t̄−s̃(x̄ − ỹ)2

(
S′
γ ,a(s̃, ỹ)X

′
γ ,a(s̃, ỹ) − Cγ

)
ds̃
)
dz̄

+ Errλ
γ ,a(z), (7.15)

where |Errλ
γ ,a(z)| ! γ 6+9η almost surely, uniformly in γ ∈ (0, 1] and z ∈ Dε.

In the bound on the error term we used the bounds on the error terms in (7.14), the
assumption − 4

7 < η < − 1
2 in Theorem 2.3, and the bound

∫
Dε

K̃ γ (z)2 dz ! e−1

which follows from Lemma 5.4 and the definition (5.4). We note that the assumptions
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on η imply 6+ 9η > 0, and hence all moments of the error term Errλ
γ ,a(z) vanish as

γ → 0.
We denote the first two terms in (7.15) by ιε

(
;

γ ,4
z τ

)
(ϕλ

z ) and ιε
(
;

γ ,5
z τ

)
(ϕλ

z ) respec-
tively, and we start with bounding the first of them.

We first show that the rescaled spin field Sγ can be replaced in this expression by
its local average. After that we can work with the product of two spin fields in (7.15)
similarly to how we work with X2

γ . We can now write

ιε
(
;

γ ,4
z τ

)
(ϕλ

z ) (7.16)

= −βκγ ,3γ
6
∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ τγ ,a

0
K̃

γ

t̄−s̃(x̄ − ỹ)2
(
Xγ (s̃, ỹ)Xγ (s̃, ỹ) − Cγ

)
ds̃
)
dz̄

− βκγ ,3γ
6
∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ τγ ,a

0
K̃

γ

t̄−s̃(x̄ − ỹ)2
(
Sγ (s̃, ỹ)Xγ (s̃, ỹ) − Xγ (s̃, ỹ)Xγ (s̃, ỹ)

)
ds̃
)
dz̄.

Using Lemma 6.3, the last term is absolutely bounded by a constant times γ 3+3η, and
it vanishes as γ → 0. Using the a priori bound, provided by the stopping time (2.46),
the first term in (7.16) is absolutely bounded by a constant times

(λ∨ e)−1−κ eκ/2−1γ 6
∫ ∞

0
ε3
∑

ỹ∈+ε

K̃ γ
s̃ (ỹ)

2ds̃ ! (λ∨ e)−1−κ eκ/2−2γ 6 ! (λ∨ e)−1−κ eκ/2.

(7.17)
Here,we usedLemma5.4 to bound the integral, because it coincideswith the renormal-
isation constant (5.4). Since we assumed κ ≥ κ , the preceding expression is bounded
by (λ ∨ e)−1−κeκ/2.

It is left to bound the second term in (7.15). As in (7.16), we get that ιε
(
;

γ ,5
z τ

)
(ϕλ

z )

equals

−βγ 6
∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)

2
(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

ϕλ
z (t̄+s, x̄+y)

(
X ′

γ ,a(t̄, x̄)X
′
γ ,a(t̄, x̄)−Cγ

)
dt̄
)
ds

up to an error, vanishing as γ → 0. Here, the process X ′
γ ,a is defined as in (2.44) but

via the spin field σ ′
γ ,a. Furthermore, we replace the constant Cγ by the function (6.26)

and get

− βγ 6
∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)

2
(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

ϕλ
z (t̄ + s, x̄ + y)

(
Cγ (t̄ − τγ ,a) − Cγ

)
dt̄
)
ds

− βγ 6
∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)

2
(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

ϕλ
z (t̄ + s, x̄ + y) (7.18)

×
(
X ′

γ ,a(t̄, x̄)X
′
γ ,a(t̄, x̄) − Cγ (t̄ − τγ ,a)

)
dt̄
)
ds.
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Applying Lemma 6.6 with any c ∈ (0, 1), the absolute value of the first term in (7.18)
is bounded by a constant times

γ 6ec−1
∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)2

(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

|ϕλ
z (t̄ + s, x̄ + y)|(t̄ − τγ ,a)

−c/2dt̄
)
ds.

(7.19)
Using the scaling properties of the involved functions, this expression is of order
γ 6ec−2(λ ∨ e)−c. Recalling that e ≈ γ 3, it vanishes as γ → 0.

Now, we consider the second term in (7.18). Multiplying and dividing the random
process in the brackets by (t−τγ ,a)

− η
2 ,we estimate the absolute value of this expression

by

− βγ 6
∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)2

(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

|ϕλ
z (t̄ + s, x̄ + y)|(t − τγ ,a)

η
2 dt̄
)
ds

×
(

sup
t̄∈[τγ ,a,T ]

(t − τγ ,a)
− η

2

∣∣∣X ′
γ ,a(t̄, x̄)X

′
γ ,a(t̄, x̄) − Cγ (t̄ − τγ ,a)

∣∣∣
)

for a sufficiently large T . We can restrict the variable t̄ by T in this formula because
K̃ γ and ϕλ

z are compactly supported. Applying the Hölder inequality and Lemma 6.7,
the p-th moment of this expression is bounded by a constant multiple of

γ 6eη
(
E
[∫ ∞

0
ε3
∑

y∈+ε

K̃ γ
s (y)

2
(∫ ∞

τγ ,a

ε3
∑

x̄∈+ε

|ϕλ
z (t̄ + s, x̄ + y)|(t̄ − τγ ,a)

η
2 dt̄
)
ds
]2p) 1

2p
.

As in (7.19), this expression is bounded by a constant times γ 6eηe−1(λ∨e)η. Recalling
that e = eγ κ and e ≈ γ 3, this expression vanishes as γ → 0.

The analysis which we performed the renormalised contraction of two vertices in
(7.10) will be used many times for the other diagrams below. In order to draw less
diagrams, we prefer to introduce a new vertex

3,03,0 := 3,03,0 − cγ .

7.1.3 The element " =

The definition (5.10) of the renormalized model and the expansion [18, Eq. 2.16] yield
a diagrammatical representation of the map ;

γ ,a
z τ :
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ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0
3,0

+ 3

z

3,0

3,0 3,0 +

z

3,03,0
3,0

. (7.20)

Using [18, Cor. 4.5], for any κ̄ > 0 and for any p ≥ 2 large enough, we bound the
p-th moment of first diagram in (7.20) by a constant times

(λ ∨ e)−
3
2

(
1+ ε

9
4−κ̄e−

5
2 + ε

9
2−κ̄e−5 + ε

27
4 −κ̄e−

15
2

)
,

which is the required bound (7.6) with |τ | = − 3
2 − 3κ .

We demonstrate once again how to analyse renormalised contraction of two vertices
in the second diagram in (7.20), and we prefer not to repeat analogous computation
in what follows. As in (7.11) and (7.12), we write

z

3,0

3,0 3,0 = e2(a−3)

z

a,0

a,0 3,0 +

⎛

⎜⎜⎜⎝

z

3,0

3,0 3,0 − cγ

z

3,0

⎞

⎟⎟⎟⎠
,

for any 0 < a < 5
2 . [18, Assum. 3] is satisfied for the two preceding diagrams, with

Ṽvar = {1, 2}, : = {2} and the labeling is L = {⋄,nil} for the first diagram and
L = {▽,nil} for the second. Applying [18, Cor. 4.5] to the first diagram, we get, for
any κ̄ > 0 and for any p ≥ 2 large enough, a bound on the p-th moment of the order

e2(a−3)(λ ∨ e)2−2a
(
ε

9
4 + ε

9
2−κ̄e−

5
2

)
.

For 3
2 < a ≤ 7

4 and κ̄ > 0 small enough the right-hand side is bounded by cγ (λ ∨
e)−3/2, where cγ vanishes as γ → 0. The second diagram is analyzed similarly to the
third diagram in (7.11), and it can be also bounded by cγ (λ ∨ e)−3/2.

We now look at the last diagram in (7.20). By using equation (6.4), we can write

ε9
∑

x̃∈T3
ε

∑

s̃∈R
K̃ γ

t̄−s̃(x̄ − x̃)3
(
$s̃Mγ ,a(x̃)

)3 = 4ε9γ −6
∑

x̃∈T3
ε

∑

s̃∈R
K̃ γ

t̄−s̃(x̄ − x̃)3$s̃Mγ ,a(x̃)

= 4ε6γ −6
∫

Dε

K̃ γ (z̄ − z̃)3dMγ ,a(z̃)+ 4ε
15
4 γ −6

∫

Dε

K̃ γ (z̄ − z̃)3Cγ ,a(z̃)dz̃.

Aswe explained at the beginning of this section, the kernelK̃ γ satisfies [18,Assum. 4]
with ae = 3, and hence [18, Lem. 4.2] yields the bound |K̃ γ (z)| ! (∥z∥s ∨ e)−3.
Then we have |K̃ γ (z)3| ! (∥z∥s ∨ e)−9 and [18, Lem. 4.2] implies that K̃ γ (z)3

satisfies [18, Assum. 4] with ae = 9. This allows to write the last diagram in (7.20) as
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4ε6γ −6ea−9

z

a,0

+ 4ε
15
4 γ −6

∫

Dε

∫

Dε

ϕλ
z (z̄)K̃

γ (z̄ − z̃)3Cγ ,a(z̃)dz̃dz̄, (7.21)

where we used the same trick as in (7.12) to “improve” the singularity of the kernel.
For a < 5, the first diagram in (7.21) satisfies [18, Assum. 3], and for any κ̄ > 0 and
p ≥ 2 large enough, [18, Cor. 4.5] allows to bound its p-th moment by a constant
multiple of

ε6γ −6ea−9(λ ∨ e)
5
2−a
(
1+ ε

9
4−κ̄e−

5
2

)
.

For a > 3, this expression is of order cγ (λ ∨ e)
5
2−a , where cγ → 0 as γ → 0,

which is the required bound (7.6).
Now we will analyse the second term in (7.21). Because of our extension of the

martingales (5.1), we need to bound separately the part of (7.21) with positive and
negative times. Because the bounds in the two cases are the same, we will write only
the analysis for positive times. Using (6.5) and changing the integration variables, we
can write it as a constant multiple of

γ 12
∫

Dε

K̃ γ (z̄)3
∫

R+×+ε

ϕλ
z−z̄(z̃)Cγ ,a(z̃)dz̃dz̄

= γ 12
∫

Dε

K̃ γ (z̄)3
∫

[0,τγ ,a]×+ε

ϕλ
z−z̄(z̃)

(
Sγ (z̃) − γ −3 tanh

(
βγ 3Xγ (z̃)

))
dz̃dz̄

+ γ 12
∫

Dε

K̃ γ (z̄)3
∫

[τγ ,a,∞)×+ε

ϕλ
z−z̄(z̃)

(
S′

γ ,a(z̃) − X ′
γ ,a(z̃)

)
dz̃dz̄,

(7.22)
where we used the rescaled spin field (2.42) and where S′

γ ,a is defined by (2.42) for
the spin field σ ′

γ ,a.
Let us bound the first term in (7.22). From the decomposition of the kernel K̃ γ ,

provided in the beginning of Sect. 5, we get |K̃ γ (z)| ! (∥z∥s ∨ e)−3. Then from
[22, Lem. 7.3] we get

∫
Dε

K̃ γ (z̄)3dz̄ ! e−4. Approximating the function tanh by its
Taylor expansion and using (2.16), we write the first term in (7.22) as

γ 12
∫

Dε

K̃ γ (z̄)3
∫

[0,τγ ,a]×+ε

ϕλ
z−z̄(z̃)

(
Sγ (z̃) − Xγ (z̃)

)
dz̃dz̄ + Errγ ,λ, (7.23)

where the error term Errγ ,λ is absolutely bounded by a constant times

γ 18
∫

Dε

K̃ γ (z̄)3
∫

[0,τγ ,a]×+ε

|ϕλ
z−z̄(z̃)|

((
cγ + A

)
∥Xγ (t̃)∥L∞ + ∥Xγ (t̃)∥3L∞

)
dz̃dz̄

! γ 18e−4 sup
t≥0

((
cγ + A

)
∥Xγ (t)∥L∞ + ∥Xγ (t)∥3L∞

)
,

123



The dynamical Ising-Kac model 733

with t̃ being the time variable in z̃. Here, we used
∫
Dε

|ϕλ
z−z̄(z̃)|dz̃ ! 1. The a priori

bound (2.41) allows to estimate the preceding expression by γ 18e3η−4 ! γ 6+9η, which
vanishes as γ → 0 because η > − 2

3 in the assumptions of Theorem 2.3.
Now, we will bound the first term in (7.23). From the definitions (2.12) and (2.42)

we conclude that Xγ (t, x) = ε3
∑

y∈+ε
Kγ (x − y)Sγ (t, y). Then we can write

∫

[0,τγ ,a]×+ε

ϕλ
z−z̄(z̃)

(
Sγ (z̃) − Xγ (z̃)

)
dz̃ =

∫

[0,τγ ,a]×+ε

ψλ
z−z̄(z̃)Sγ (z̃)dz̃, (7.24)

with ψλ
z−z̄(t̃, x̃) = ϕλ

z−z̄(t̃, x̃)− ε3
∑

y∈+ε
ϕλ
z−z̄(t̃, y)Kγ (y − x̃). This function can be

viewed as a rescaled test function, which for any κ1 ∈ [0, 1) and any k ∈ N4
0 satisfies

∥Dkψλ
z−z̄∥L∞ ! eκ1λ−5−|k|s−κ1 . Then for any κ̃ > 0, Lemma 6.2 yields

∣∣∣∣

∫

Dε

ψλ
z−z̄(z̃)Sγ (z̃)dz̃

∣∣∣∣ ! aeκ1λη−κ1

uniformly in λ ∈ [e1−κ̃ , 1]. For λ < e1−κ̃ we can use |Sγ (z̃)| ≤ γ −3 and estimate
the left-hand side by a constant multiple of e−1. Since −1 < η < − 1

2 , from the two
preceding bounds we conclude that

∣∣∣∣

∫

Dε

ψλ
z−z̄(z̃)Sγ (z̃)dz̃

∣∣∣∣ ! aeκ1(λ ∨ e)−
1+κ1
1−κ̃ . (7.25)

Moreover, as above we have
∫
Dε

K̃ γ (z̄)3dz̄ ! e−4. Hence, the first term in (7.23) is

absolutely bounded by a constant times aeκ1(λ ∨ e)−
1+κ1
1−κ̃ . If we take κ̃ = 1−2κ1

3 , we

get an estimate by aeκ1(λ ∨ e)−
3
2 , which vanishes as γ → 0. Taking κ1 close to 0 we

make κ̃ close to 1
2 , and Lemma 6.2 suggests that the test functions may be taken from

B2
s .
It is left to bound the last term in (7.22). Identity (7.24) with the time interval

[τγ ,a,∞) holds for the processes S′
γ ,a and X ′

γ ,a. Applying Lemma 6.5, we get the
same bound as (7.25), i.e.

∣∣∣∣

∫

[τγ ,a,∞)×+ε

ψλ
z−z̄(z̃)S

′
γ ,a(z̃)dz̃

∣∣∣∣ ! eκ1(λ ∨ e)−
3
2

uniformly in λ ∈ (0, 1].
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7.1.4 The element " =

Using the definition (5.13) and the expansion [18, Eq. 2.16], we can represent the map
;

γ ,a
z τ diagrammatically as

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0

3,1
3,03,0

+ 2

z

3,0

3,0
3,1

3,03,0
+

z

3,03,0

3,1
3,03,0

+

z

3,0 3,0

3,1
3,0

3,0

+

z

3,0

3,0

3,1
3,0

3,0

+ 2

z

3,0

3,0

3,1
3,0

3,0

+ 2

z

3,0

3,0

3,1

3,0

3,0

(7.26)

+

z

3,03,0

3,1

3,03,0 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,1

3,03,0
− c′′γ

z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the renormalisation constant c′′γ is defined in (5.8), and where the edge with the
label “3, 1” represents the kernel in (5.13), where “1” refers to the positive renormal-
isation (see [18, Sec. 4]).

Applying [18, Cor. 4.5], the high moments of the first and second diagrams are
bounded by a constant multiplier of (λ ∨ e)−κ/2. Analysing contractions of vertices
in the same way as we did in (7.10) and (7.20), the diagrams number 3, . . . , 7 are
bounded by cγ (λ ∨ e)−κ/2 with a constant cγ vanishing as γ → 0.

Regarding the eight tree, for any κ > 0, we first rewrite it as (as before we use [18,
Lem. 4.2] to show that a product of singular kernels again satisfies [18, Assum. 4])

z

3,03,0

3,1

3,03,0 = e−2−2κ

z

5-κ ,0

3,1

5-κ ,0

, (7.27)
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where we multiplied some kernels by positive powers of e in order to satisfy all the
hypotheses of [18, Cor. 4.5]. Once we apply it, we then get the bound

e−2−2κ(λ ∨ e)−3+2κ(ε
9
2−κ̃ + ε9−κ̃e−

5
2 + ε9−κ̃e−5) ! (λ ∨ e)−3+2κe4−2κ ,

which vanishes as γ → 0.
Recalling the definition of the positively renormalised kernel in (5.13), the expres-

sion in the brackets in (7.26) may be written as

⎛

⎜⎜⎜⎜⎜⎜⎝
2

z

3,0 3,0
3,0

3,03,0 − c′′γ
z

⎞

⎟⎟⎟⎟⎟⎟⎠
− 2

z

3,0 3,0

3,03,0 3,0 . (7.28)

The last diagram in (7.28) is readily bounded using [18, Cor. 4.5] by a multiple of
(λ∨e)−κ/2,while the expression in the brackets requires somework.Using the notation
from (7.11), the expression in the brackets in (7.28) may be written as

2

z

3,0 3,0
3,0

3,03,0 + 4

z

3,0 3,0
3,0

3,03,0 +

⎛

⎜⎜⎜⎜⎜⎜⎝
2

z

3,0 3,0
3,0

3,03,0 − c′′γ
z

⎞

⎟⎟⎟⎟⎟⎟⎠
, (7.29)

where the first two diagram are bounded using [18, Cor. 4.5] by cγ (λ ∨ e)−κ/2 with a
constant cγ vanishing as γ → 0.

It is left to bound the expression in the brackets in (7.29). For this, let us define the
random kernel

Gγ (z1, z2) =

z2

z1

3,0 3,0
3,0

3,03,0
, (7.30)

which may be written explicitly as

Gγ (z1, z2) =
∫

Dε

∫

Dε

K̃ γ (z1 − z3)K̃ γ (z1 − z4)K̃ γ (z1 − z2) (7.31)

× K̃ γ (z2 − z3)K̃ γ (z2 − z4)Cγ ,a(z3)Cγ ,a(z4)dz3dz4.
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where we used the bracket process (6.2). Then the expression in the brackets in (7.29)
is absolutely bounded by

∫

Dε

|ϕλ
z (z1)|

∣∣∣∣2
∫

Dε

Gγ (z1, z2)dz2 − c′′γ

∣∣∣∣ dz1 ≤ sup
z1∈Dε

∣∣∣∣2
∫

Dε

Gγ (z1, z2)dz2 − c′′γ

∣∣∣∣ .

(7.32)
We need the following bounds on the kernel Gγ .

Lemma 7.3 There exists a non-random constant C > 0, independent of γ , such that

∣∣Gγ (z1, z2)
∣∣ ≤ C

(
∥z1 − z2∥s ∨ e

)−5
, (7.33)

uniformly in z1 ̸= z2. Moreover, for any θ ∈ (0, 1) we have

∣∣∣∣2
∫

Dε

Gγ (z1, z2)dz2 − c′′γ

∣∣∣∣ ≤ Ceθ , (7.34)

uniformly over z1.

Proof As we state in (6.2), we can uniformly boundCγ ,a. Moreover, from the decom-
position of the kernel K̃ γ , provided in Appendix Appendix A.1, we can conclude
|K̃ γ (z)| ! (∥z∥s ∨ e)−3. Then the bound (7.33) follows from [22, Lem. 7.3].

Using the definitions (7.31) and (5.8), the expression in the absolute value in (7.34)
may be written explicitly as

2
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z1 − z3)K̃ γ (z1 − z4)K̃ γ (z1 − z2)

× K̃ γ (z2 − z3)K̃ γ (z2 − z4)
(
Cγ ,a(z3) − 2

)
Cγ ,a(z4)dz2dz3dz4

+ 4
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z1 − z3)K̃ γ (z1 − z4)K γ (z1 − z2)

× K̃ γ (z2 − z3)K̃ γ (z2 − z4)
(
Cγ ,a(z4) − 2

)
dz2dz3dz4.

Moreover, we can write the difference Cγ ,a − 2 as in (7.14). After that, we apply
Lemma 6.3 to replace the product Sγ Xγ by Xγ Xγ , up to an error term. Then the
preceding expression equals

− 4βγ 6
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z1 − z3)K̃
γ (z1 − z4)K̃

γ (z1 − z2)

× K̃ γ (z2 − z3)K̃
γ (z2 − z4)Xγ (z3)Xγ (z3)Cγ ,a(z4)dz2dz3dz4

− 8βγ 6
∫

Dε

∫

Dε

∫

Dε

K̃ γ (z1 − z3)K̃
γ (z1 − z4)K̃

γ (z1 − z2)

× K̃ γ (z2 − z3)K̃
γ (z2 − z4)Xγ (z4)Xγ (z4)dz2dz3dz4 + Errγ ,λ,

(7.35)
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where the error term satisfies

|Errγ ,λ| ! γ 6+3η

∣∣∣∣∣∣
0

3,0 3,0
3,0

3,03,0

∣∣∣∣∣∣
.

Using the bounds on singular kernels derived in [22, Lem. 7.3], we obtain |Errγ ,λ| !
γ 6+3η−κ̄ for any κ̄ > 0. From (2.46) we have the a priori bound ∥Xγ (t)Xγ (t)∥L∞ !
eκ/2−2 for t < τγ ,a, which allows to bound the first two terms in (7.35) by a constant
multiple of γ 6−3(2−κ/2)−κ̄ = γ 3κ/2−κ̄ . Taking κ̄ sufficiently small, this gives the
required bound (7.34).

Applying (7.34), we bound (7.32) by a positive power of γ . This finishes the proof
of the required bound (7.6) for the element τ .

7.1.5 The element " =

The definition (5.13) and the expansion [18, Eq. 2.16] allow to represent the map
;

γ ,a
z τ diagrammatically as

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0
3,0

3,1
3,0

+ 3

z

3,0
3,0

3,1
3,0

3,0

+ 3

z

3,0

3,0 3,0

3,1
3,0

(7.36)

+ 3

z

3,0

3,0

3,0
3,1

3,0

+ 3

z

3,0

3,0 3,0

3,1

3,0

+

z

3,03,0
3,0

3,1
3,0

+

z

3,03,0
3,0

3,1

3,0

,

where as before the arrow “ 3,1 ” represents the positively renormalised kernel in
(5.13).

[18, Cor. 4.5] allows to bound the moments of the first two diagrams in (7.36) by a
constant multiple of (λ ∨ e)−κ , which yields the required bound (7.6). Analysing the
contractions of two and three vertices as before, all the other diagrams, except the last
one, are bounded using [18, Cor. 4.5] by cγ (λ ∨ e)−κ for a vanishing cγ as γ → 0.
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To bound the last diagram in (7.36), we use a positive power of e to improve the
singularity of the kernel:

z

3,03,0
3,0

3,1

3,0 = e3a−9

z

a,0a,0
a,0

3,1

3,0

,

for a < 5
3 . Then [18, Cor. 4.5] allows to bound the right-hand side by a constant times

e3a−9(λ ∨ e)4−3a
(
ε9−κ̄e−5 + ε

9
2−κ̄ + ε

27
4

)
,

for any κ̄ > 0. Choosing appropriate values of a and κ̄ , we can estimate this by
cγ (λ ∨ e)−κ , where cγ vanishes as γ → 0.

7.1.6 The element " =

Using (5.13) and [18, Eq. 2.16] we can write

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0 3,0
3,0

3,1
3,03,0

+ 6

z

3,0
3,0

3,0
3,1

3,03,0
+ 3

z

3,0

3,0 3,0

3,1
3,03,0

+

z

3,0 3,0
3,0

3,1
3,0

3,0

(7.37)

+ 3

z

3,0

3,0

3,1
3,0

3,0

3,0

+ 3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,1

3,03,0

− c′′γ

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 6

z

3,0

3,0

3,0
3,1

3,03,0

+

z

3,03,0
3,0

3,1
3,03,0

+ 3

z

3,0

3,0

3,0

3,1
3,0

3,0

+ 6

z

3,0

3,0 3,0

3,1

3,0

3,0
+

z

3,03,0
3,0

3,1
3,0

3,0
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+ 6

z

3,0

3,0

3,0
3,1

3,0

3,0 + 3

z

3,0

3,0

3,0

3,1
3,0

3,0

+ 2

z

3,03,0
3,0

3,1

3,0

3,0
+

z

3,03,0
3,0

3,1

3,03,0

.

Using [18, Cor. 4.5], the moments of the first two diagrams are bounded by a constant
multiple of (λ ∨ e)−κ̄ for any κ̄ > 0. Analysing contracted vertices as before, all the
other diagrams, except the expression in the brackets, are bounded by cγ (λ ∨ e)−κ̄

for any κ̄ > 0 and for vanishing cγ as γ → 0. Here, the contraction of five vertices
is analysed in the same way as a contraction of three, with the only difference in the
powers of e in multipliers.

Now, wewill bound the expression in the brackets in (7.37). Recalling the definition
of the kernel in (5.13), we can write

2

z

3,0 3,0

3,0

3,1

3,03,0

− c′′γ

z

3,0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,0

3,03,0

− c′′γ

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2

z

3,0 3,0

3,0

3,03,0
3,0

.

Applying [18, Cor. 4.5], the moments of the last diagram are bounded by a constant
multiple of (λ ∨ e)−κ̄ for any κ̄ > 0. Similarly to (7.29), we can write the expression
in the brackets as

2

z

3,0 3,0

3,0

3,0

3,03,0

+ 4

z

3,0 3,0

3,0

3,0

3,03,0

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,0

3,03,0

− c′′γ

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.38)

where the first two diagram are bounded using [18, Cor. 4.5] by cγ (λ ∨ e)−κ/2 with a
constant cγ vanishing as γ → 0.

123



740 P. Grazieschi et al.

Now, we will bound the expression in the brackets in (7.38). We write

2

z

3,0 3,0

3,0

3,0

3,03,0

− c′′γ

z

3,0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,0

3,03,0

− c′′γ

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ Errγ ,λ(z) (7.39)

where the error term Errγ ,λ is defined via random kernel (7.30) and can be bounded
as

|Errγ ,λ(z)| ! sup
z1∈Dε

∣∣∣∣2
∫

Dε

Gγ (z1, z2)dz2 − c′′γ

∣∣∣∣ sup
z2∈Dε

∣∣∣
z2

3,0

∣∣∣

(we recall the renormalisation constant (5.8)). Using [18, Cor. 4.5] we can bound the
high moments of the last supremum by a constant multiple of e−

1
2 , while Lemma 7.3

allows to bound the first supremum by a constant multiple of eθ with θ ∈ ( 12 , 1).
Hence, all high moments of the error term vanish as γ → 0.

It is left to bound the expression in the brackets in (7.39). For this, we define the
kernel

Gγ (z1, z2) =

z2

z1

3,0 3,0
3,0

3,03,0
,

and we define for any smooth, compactly supported function ψ : R4 × R4 → R its
“negative renormalisation”

(
Rγ Gγ

)
(ψ) :=

∫

Dε

∫

Dε

Gγ (z1, z2)
(
ψ(z1, z2) − ψ(z1, z1)

)
dz1dz2.

This identity definedRγ Gγ as a distribution on R4 ×R4 (more precisely,Rγ Gγ is a
function in the first variable and a distribution in the second one). Then the expression
in the brackets in (7.39) may be written as

∫

Dε

∫

Dε

∫

Dε

ϕλ
z (z1)

(
Rγ Gγ

)
(z1, z2)K̃ γ (z3 − z2)dMγ ,a(z3)dz1dz2.

We note that this expression is well defined, because the distribution Rγ Gγ is con-
volved with smooth functions. It will be convenient to represent this expression as a
diagram. For this, we denote the random kernel Gγ by an edge “ 5,0 ”, and we
denote Rγ Gγ by “ 5,-1 ”. Here, the label “5” refers to the order of singularity of
Gγ (which can be proved similarly to (7.33)), and the label “−1” refers to the order
of negative renormalisation (see [18, Sec. 4]). Then the preceding expression can be
represented as

z
3,05,-1 .

123



The dynamical Ising-Kac model 741

Applying [18, Cor. 4.5], the high enough moments of this expression are bounded by
constant multiples of (λ ∨ e)−κ̄ for any κ̄ > 0.

7.1.7 The element " =

The definition (5.7) and the expansion [18, Eq. 2.16] yield a diagrammatical repre-
sentation of the map ;

γ ,a
z τ :

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0
3,0 3,0

3,0

+ 6

z

3,0

3,0

3,0

3,0 + 4

z

3,0

3,0

3,0
3,0

+

z

3,03,0
3,03,0

+ 3

z

3,0
3,0 3,0

3,0

.

The high enough moments of the first diagram are bounded using [18, Cor. 4.5] by
a constant multiplier of (λ ∨ e)−2, which is the required bound (7.6). Reducing the
singularity of kernels in the same way as we did above, [18, Cor. 4.5] allows to bound
the moments of the other diagrams by cγ (λ ∨ e)−2−κ̄ , for any κ̄ > 0 and where cγ

vanishes as γ → 0.

7.1.8 The element " =

Similarly to the previous element, we can write

ιε
(
;

γ ,a
z τ

)
(ϕλ

z ) =

z

3,0

3,0 3,0

3,0

3,0

+ 10

z

3,0

3,0

3,0

3,0

3,0

+ 10

z

3,0

3,0

3,0

3,0

3,0

+ 10

z

3,0

3,0

3,0

3,0

3,0 + 5

z

3,0

3,0

3,0

3,0
3,0 +

z

3,0 3,0
3,03,0

3,0

+ 15

z

3,0

3,0 3,0

3,0

3,0 .

The first diagramdoes not satisfyAssumption 3(2) in [18], whichmeans thatwe cannot
bound it uniformly in γ . This is the reason why we assumed a weaker bound on this
element in Definition 4.4. Multiplying the diagram by γ ≈ e1/3, we can decrease the
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order of singularity of one of the kernels:

γ

z

3,0

3,0 3,0

3,0

3,0

=

z

8/3,0

3,0 3,0

3,0

3,0

Then Assumption 3 in [18] is satisfied and by [18, Cor. 4.5], the moments of the
first diagram are bounded by a constant multiple of (λ ∨ e)−13/6, and, reducing the
singularity of kernels as before, the moments of the other diagrams, multiplied by γ ,
are bounded by cγ (λ ∨ e)−3/6 with cγ vanishing when γ → 0.

7.1.9 Proof of the bounds (7.7)

Wedraw“ 3,0 ” for the kernelK̃ γ ,δ , because it has the same singularity asK̃ γ (see
Appendix Appendix A.1), and we draw “ 3+θ ,0 ” for the difference δ−θ (K̃ γ −
K̃ γ ,δ), because it satisfies [18, Assum. 4] with ae = 3 + θ , for any θ > 0 small
enough (see Appendix Appendix A.1).

We start with proving the bound (7.7) for the element τ = . As we described in
the beginning of Sect. 7.1, the difference K̃ γ − K̃ γ ,δ satisfies [18, Assum. 4] with
ae = 3+ θ , for any θ > 0 small enough, and we represent this difference by the edge
“ 3+θ ,0 ” with the multiplier δθ . Then we write the function ;

γ ,a
z τ − ;

γ ,δ,a
z τ as

ιε
(
;

γ ,a
z τ − ;

γ ,δ,a
z τ

)
(ϕλ

z ) = δθ

z
3+θ ,0 ,

with the kernel given by

Kλ,e,δ
G,z (zvar) =

∫

Dε

ϕλ
z (z̄)

(
K̃ γ − K̃ γ ,δ

)
(z̄ − zvar) dz̄.

Applying [18, Cor. 4.5], we get for any κ̄ > 0 and p ≥ 2 large enough

(
E
∣∣ιε
(
;

γ ,a
z τ −;

γ ,δ,a
z τ

)
(ϕλ

z )
∣∣p
) 1

p ! δθ (λ∨e)−
1
2−θ
(
1+ε

9
4−κ̄e−

5
2

)
! δθ (λ∨e)−

1
2−θ ,

which is the required bound (7.7) for the element τ .
Now, we will prove the bound (7.7) for the element τ = . Similarly to (7.11) we

can write

ιε
(
;

γ ,a
z τ − ;

γ ,δ,a
z τ

)
(ϕλ
z ) = δθ

z

3,0 3+θ ,0

+ δθ

z

3+θ ,0 3,0

+ δθ

z

3+θ ,03,0

+ δθ

z

3,03+θ ,0

(7.40)
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+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

z

3,03,0

− (cγ + c′γ )

z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

z

3,03,0

− (cγ ,δ + c′γ ,δ )

z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The moments of the first four terms in (7.40) are bounded using [18, Cor. 4.5] by a
constant multiple of δθ (λ∨e)−1−θ in the sameway as we bounded the respective terms
in (7.11). We prefer to provide more details for the two expressions in parentheses in
(7.40). In the same way as in (7.13), we can write the whole expression in the last line
in (7.40) as

1
2

∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ ∞

0

(
K̃ γ

t̄−s̃(x̄ − ỹ)2 − K̃ γ ,δ

t̄−s̃(x̄ − ỹ)2
)

(
Cγ ,a(s̃, ỹ) − 2+ 2βκγ ,3γ

6Cγ

)
ds̃
)
dz̄

+ 1
2

∫

Dε

ϕλ
z (z̄)

(
ε3
∑

ỹ∈+ε

∫ 0

−∞

(
K̃ γ

t̄−s̃(x̄ − ỹ)2 − K̃ γ ,δ

t̄−s̃(x̄ − ỹ)2
)

(
C̃γ ,a(−s̃, ỹ) − 2+ 2βκγ ,3γ

6Cγ

)
ds̃
)
dz̄.

We bound this expression in the same way as we bounded (7.13), with the only
difference that now we bound the difference of the two kernels as

∣∣∣∣

∫

Dε

(
K̃ γ (z)2 − K̃ γ ,δ(z)2

)
dz
∣∣∣∣ ! δθ e−1−θ

(see explanations at the beginning of this section). Hence, the expression in the last
line in (7.40) is bounded by constant times δθ (λ ∨ e)−1−θ , as required.

The bound (7.7) for the other elements in W̄ can be proved by analogy, and we
prefer to provide only the idea of the proof. For any element τ ∈ W̄ we can write

ιε
(
;

γ ,a
z τ − ;

γ ,δ,a
z τ

)
(ϕλ

z ) =
∑

i∈A

ιε
(
;

γ ,i
z τ − ;

γ ,(δ),i
z τ

)
(ϕλ

z ),

for a finite set A, and where the new maps ;
γ ,i
z τ and ;

γ ,(δ),i
z τ are coming from

expanding products of martingales [18, Eq. 5.1]. These two maps can be represented
by diagrams, as we did above, with the only difference that the edges in the diagram
of ;

γ ,(δ),i
z τ incident to the noise nodes are given by the kernelsK̃ γ ,δ . We can further

write
ιε
(
;

γ ,i
z τ − ;

γ ,(δ),i
z τ

)
(ϕλ

z ) =
∑

j∈Bi
ιε
(
;

γ ,(δ),i, j
z τ

)
(ϕλ

z ), (7.41)
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where the diagram for ιε
(
;

γ ,(δ),i, j
z τ

)
(ϕλ

z ) is obtained from ιε
(
;

γ ,(δ),i
z τ

)
(ϕλ

z ) by
replacing one of the kernels incident to noise nodes by K̃ γ −K̃ γ ,δ , and some other
nodes by K̃ γ ,δ .

Applying [18, Cor. 4.5] to each element in (7.41), in the same way as we did in the
previous sections, we get the required bound (7.7).

7.2 Proof of Proposition 7.1

We start with proving the required bounds on the maps ;γ ,a and ;γ ,δ,a. From the
preceding sections we conclude that in the setting of this proposition, for κ̄ > 0
sufficiently small and for every τ ∈ Wex\{ , , , , }with |τ | < 0, we have

E
[∣∣(ιε;γ ,a

z τ
)
(ϕλ

z )
∣∣p
]

! λ(|τ |+κ̄)p, E
[∣∣(;γ ,a

z τ
)
(z̄)
∣∣p
]

! e(|τ |+κ̄)p, (7.42a)

and

E
[∣∣(ιε;γ ,a

z τ − ιε;
γ ,δ,a
z τ

)
(ϕλ

z )
∣∣p
]

! λ(|τ |+κ̄)pδθ p, (7.42b)

E
[∣∣(;γ ,a

z τ − ;
γ ,δ,a
z τ

)
(z̄)
∣∣p
]

! e(|τ |+κ̄)pδθ p, (7.42c)

uniformly over z ∈ [−T , T ] × [−1, 1]3, ∥z̄ − z∥s ≤ e and other quantities as in
(4.12a). For the element τ = these bounds hold with |τ | replaced by |τ | + 1

3
and the proportionality constants of order γ −p. In these and the following bounds the
proportionality constants depends on p and T , but are independent of all the other
quantities. These bounds readily yield the respective bounds for the elements and

, because of the definition (5.11) and the simple bounds γ 6 ! e2 ! (λ ∨ e)2 and
γ 6 ! γ e2−1/3 ! γ (λ ∨ e)2−1/3.

It is left to prove these bounds for the symbols and . We will prove stronger
bounds

E
[∣∣(;γ ,a

z τ̄
)
(z̄)
∣∣p
]

!
(
∥z − z̄∥s ∨ e

)(|τ̄ |+κ̄)p
,

E
[∣∣(;γ ,a

z τ̄ − ;
γ ,δ,a
z τ̄

)
(z̄)
∣∣p
]

!
(
∥z − z̄∥s ∨ e

)(|τ̄ |+κ̄)p
δθ p,

(7.43)

for τ̄ ∈ { , }, from which the required bounds (7.42) follow at once. From the
definition (5.12) and the expansion of K̃ γ , provided in Appendix Appendix A.1, we
have

(
E
[∣∣(;γ ,a

z τ̄
)
(z̄)
∣∣p
]) 1

p !
M̃∑

n=0

(
E
[∣∣ιε
(
;

γ ,a
z τ

)(
K̃ γ ,n(z̄ − •) − K̃ γ ,n(z − •)

)∣∣p
]) 1

p
,

(7.44)
for τ ∈ { , }. In order to estimate this sum,we need to consider two cases: ∥z−z̄∥s ≥
2−n and ∥z − z̄∥s < 2−n .
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If ∥z − z̄∥s ≥ 2−n , then we apply the Minkowski inequality to bound the n-th term
in (7.44) by

(
E
[∣∣ιε
(
;

γ ,a
z τ

)(
K̃ γ ,n(z̄ − •)

)∣∣p
]) 1

p +
(
E
[∣∣ιε
(
;

γ ,a
z τ

)(
K̃ γ ,n(z − •)

)∣∣p
]) 1

p
. (7.45)

Moreover, from the identities ;
γ ,a
z = ;

γ ,a
z̄ :

γ ,a
z̄z and :

γ ,a
z̄z τ = τ for τ ∈ { , } (the

first identity follows from the definition of the model, and the second identity follows
from Table 3), we can replace;

γ ,a
z in the first term in (7.45) by;

γ ,a
z̄ . Then the bounds

(A.19) and (7.42a) allow to estimate (7.45) by a constant multiple of 2−(|τ̄ |+κ̄)n . Then
the part of the sum in (7.44) over n satisfying ∥z− z̄∥s ≥ 2−n is bounded by a constant
times ∑

0≤n≤M :
∥z−z̄∥s≥2−n

2−(|τ̄ |+κ̄)n !
(
∥z − z̄∥s ∨ e

)|τ̄ |+κ̄
.

If ∥z − z̄∥s < 2−n , then we need to distinguish the two cases n < M̃ and n = M̃ .
For n < M̃ we can write

K̃ γ ,n(z̄ − z̃) − K̃ γ ,n(z − z̃) =
3∑

i=0

∫

Li

∂ui K̃
γ ,n(z + u − z̃)du,

for line segments Li , parallel to the coordinate axes, such that their union is a path
connecting the origin and z̄ − z. In particular, the length of each Li is bounded by
∥z − z̄∥sis , where s0 = 2 and si = 1 for i = 1, 2, 3. Then we have

ιε
(
;

γ ,a
z τ

)(
K̃ γ ,n(z̄ − •)− K̃ γ ,n(z − •)

)
=

3∑

i=0

∫

Li

ιε
(
;

γ ,a
z+uτ

)(
∂ui K

γ ,n(z + u − •)
)
du,

where we replaced ;
γ ,a
z by ;

γ ,a
z+u in the same was as we did in (7.45). The bounds

(A.19) and (7.42a) yield

(
E
[∣∣ιε
(
;

γ ,a
z τ

)(
K γ ,n(z̄ − •) − K γ ,n(z − •)

)∣∣p
]) 1

p !
3∑

i=0

2−(|τ̄ |−si+κ̄)n∥z − z̄∥sis .

Since |τ̄ | − si < 0, we can take κ̄ > 0 small enough, such that |τ̄ | − si + κ̄ < 0.
Then the part of the sum in (7.44) over n satisfying ∥z − z̄∥s < 2−n is bounded by a
constant times

3∑

i=0

∥z − z̄∥sis
∑

0≤n<M̃ :
∥z−z̄∥s<2−n

2−(|τ̄ |−si+κ̄)n !
(
∥z − z̄∥s ∨ e

)|τ̄ |+κ̄
.

In the case n = M̃ we have ∥z − z̄∥s < e, and the radius of support of the function
K̃ γ ,M̃ (z̄ − z̃) − K̃ γ ,M̃ (z − z̃) in z̃ is of order e. Then (A.19) and the second bound in
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(7.42a) yield

(
E
[∣∣ιε
(
;

γ ,a
z τ

)(
K̃ γ ,M̃ (z̄ − •) − K̃ γ ,M̃ (z − •)

)∣∣p
]) 1

p

! e|τ |+κ̄

∫

Dε

∣∣K̃ γ ,M̃ (z̄ − z̃) − K̃ γ ,M̃ (z − z̃)
∣∣dz̃ ! e|τ̄ |+κ̄

!
(
∥z − z̄∥s ∨ e

)|τ̄ |+κ̄
.

This finishes the proof of the first bound in (7.43).
The second bound in (7.43) can be proved by analogy, but instead of (A.19) we

need to use ∣∣Dk(K̃ γ ,n − K̃ γ ,n⋆εϱγ ,δ

)
(z)
∣∣ ≤ Cδθ2n(3+|k|s−θ),

for respective n and k. This bound follows readily from the properties of K̃ γ ,n and
ϱγ ,δ .

The bounds on;γ ,a yield the bounds on:γ ,a. Indeed, the definition provided above
(5.14) yields :

γ ,a
zz̄ τ = τ − (;

γ ,a
z τ )(z̄)1 for τ = , and from (7.43) we get

E
[∣∣:γ ,a

zz̄ τ
∣∣p
0

]
= E

[∣∣(;γ ,a
z τ

)
(z̄)
∣∣p
]

!
(
∥z − z̄∥s ∨ e

)(|τ |+κ̄)p
,

E
[∣∣(:γ ,a

zz̄ − :
γ ,δ,a
zz̄

)
τ
∣∣p
0

]
= E

[∣∣(;γ ,a
z τ − ;

γ ,δ,a
z τ

)
(z̄)
∣∣p
]

!
(
∥z − z̄∥s ∨ e

)(|τ |+κ̄)p
δθ p,

which is the required bound. In the same way we get bounds for all other elements
τ ∈ Wex such that :

γ ,a
zz̄ τ ̸= τ .

Now we will use a Kolmogorov-type result to show that the bounds (7.42) and
(7.43) yield (7.5), with a small loss of regularity. For every τ ∈ Wex\{ , , }
with |τ | < 0 the bounds

E
[

sup
λ∈[e,1]

sup
ϕ∈B2

s

sup
z∈K

λ−|τ |p∣∣(ιε;γ ,a
z τ

)
(ϕλ

z )
∣∣p
]

! 1,

E
[

sup
λ∈[e,1]

sup
ϕ∈B2

s

sup
z∈K

λ−|τ |p∣∣(ιε;γ ,a
z τ − ιε;

γ ,δ,a
z τ

)
(ϕλ

z )
∣∣p
]

! δθ p,

uniformly in γ > 0, can be proved in exactly the same way as [20, Lem. 10.2]. For the
element τ = these bounds hold with |τ |+ 1

3 in place of |τ | and the proportionality
constant of order γ p. These bounds for the elements and readily follow as
in (7.42). Furthermore, from (7.43) and the Kolmogorov continuity criterion [25] we
conclude that

E
[
sup
z,z̄∈K

|(;γ ,a
z τ̄ )(z̄)|p

(∥z − z̄∥s ∨ e)|τ̄ |p

]
! 1, E

[
sup
z,z̄∈K

|(;γ ,a
z τ̄ − ;

γ ,δ,a
z τ̄ )(z̄)|p

(∥z − z̄∥s ∨ e)|τ̄ |p

]
! δθ p,

for τ̄ ∈ { , } and for any compact set K ⊂ R4. Finally, we get the required bounds
on the maps :γ ,a and :γ ,δ,a, because they are defined in (5.14) via ;γ ,a and ;γ ,δ,a.
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8 A discrete solutionmap

In order to prove the desired convergence in Theorem 2.3, we first need to write
equation (2.54) in the framework of regularity structures.

We use the discrete model Zγ ,a
lift construction in Sect. 5, and define the integration

operators on the space of modelled distributions via the kernel G̃γ as in [13, Sec. 4].
More precisely, we write G̃γ = K̃ γ +R̃ γ as in the beginning of Sect. 5. Then we use
the singular partK̃ γ to define the mapKγ

κ as in [13, Eq. 4.6] for the value β = 2. We
use the regularity κ by analogy with (3.8). We note that we do not need to consider
the map Aγ from [13, Eq. 4.16], since it vanishes in our case (see [13, Rem. 4.10]).
We lift the smooth part R̃ γ to a modelled distribution Rγ

1+3κ by a Taylor’s expansion
as in [22, Eq. 5.17]. Then we define the map

Pγ := Kγ
κ + Rγ

1+3κR
γ ,a (8.1)

on a suitable space of modelled distributions, where Rγ ,a is the reconstruction map
associated to the model by (4.16). In order to use Theorem 4.8 and Lemma 6.2 in [13],
we need to show that the respective assumptions in [13] are satisfied. Assumptions 4.1
and 4.4 hold trivially, because the action of the model Zγ ,a

lift on polynomials coincides
with the canonical continuous polynomial model. Assumption 4.3 follows from our
definition of the space Xε in Sect. 4.3 and properties of the kernel K̃ γ . Assump-
tion 4.7 can be shown by brutal bounds of the terms in [13, Eq. 4.6], combined with
the definitions of discrete models and modelled distributions from Sects. 4.3 and 4.4.
Finally, Assumption 6.1 follows readily from the Taylor’s approximations and smooth-
ness of the function K̃ γ . As we said above, the map Aγ vanishes in our case and
Assumption 6.3 trivially holds.

Our goal is to write the solution of (2.54) as a reconstruction of an abstract equa-
tion of the form (3.10). However, the complicated non-linearity in (2.54) makes the
definition of this equation more difficult.

As follows from (4.4), applying E increases homogeneity by 2. However, applying
E to a modelled distribution f ∈ Dζ does not give in general an element of Dζ+2,
because E vanishes on polynomials. To resolve this problem, we define the domain of
this map

DomE := { , , 1}
and consider a modelled distribution of the form

f (z) =
∑

τ∈DomE

fτ (z)τ. (8.2)

Then we define the map

(̂
Eγ f

)
(z) := E

(
f (z)

)
+ γ 6 f1(z)1. (8.3)

We need to consider f of the form (8.2), because f should be in the domain of the
map E. IfRγ ,a is the reconstruction map for the model Zγ ,a

lift , then we use Remark 5.2
to conclude
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Rγ ,a
(̂
Eγ f

)
(z) = γ 6

∑

τ∈DomE

fτ (z)
(
Rγ ,aτ

)
(z) = γ 6(Rγ ,a f

)
(z). (8.4)

Moreover, we can show that this map increases regularity. Throughout this section we
are going to use the time-dependent norms on modelled distributions introduced in
Remark 4.8.

As we showed in Remark 5.3, the model and the reconstruction map are extended
to the symbol 7. Then the map (8.1) can be applied to this symbol and we define the
modelled distribution

Wγ ,a(z) := Pγ 1+(7)(z). (8.5)

Furthermore, for ζ = 1+ 3κ and η ∈ R we define the abstract equation

Uγ ,a = Q<ζ

(
Gγ X0

γ + Pγ 1+
(
Fγ (Uγ ,a)+ E (1)

γ (Uγ ,a)+ E (2)
γ (Uγ ,a)

)
+

√
2Wγ ,a

)
,

(8.6)
for a modelled distributionUγ ,a ∈ Dζ,η

ε (Zγ ,a
lift ), where Gγ X0

γ is the polynomial lift of
the operator (2.36) applied to X0

γ where the discrete heat kernel Gγ
t is defined on +ε

by (2.52). The function Fγ describes the non-linearity in (2.54) and is defined as

Fγ (Uγ ,a) := Q≤0

((
−β3

3
+ Bγ

)
U 3

γ ,a + (Aγ + A)Uγ ,a

)
, (8.7)

for constants Aγ and Bγ whose values will be chosen in Lemma 8.1. We need to
consider these constants because of our definition of the renormalised products in
(5.7). As we will see in the following lemma, we need to take constants Aγ and Bγ in
(8.7), vanishing asγ → 0, in order to obtain exactly (2.54) after reconstructionof (8.6).
The function E (1)

γ in (8.6) describes the remainder after the Taylor’s approximation
of the function tanh in (2.15), and is given by

E (1)
γ (Uγ ,a) :=

1
δα

R5
(
βγ 3Rγ ,aUγ ,a

)
1, (8.8)

where Rγ ,a is the reconstruction map, defined in (4.16), and R5 : R → R is the
remainder in the Taylor’s approximation of the fifth order of the function tanh, i.e.

R5(x) := tanh x − x + x3

3
− x5

5
. (8.9)

The function E (2)
γ in (8.6) is defined as

E (2)
γ (Uγ ,a) :=

β5

5
Êγ

( ∑

τ∈{ , }

(
QτU 5

γ ,a−
(
Rγ ,aQτU 5

γ ,a

)
1
)
+H5

(
Rγ ,aUγ ,a, 2cγ

)
1
)
,

(8.10)
where Qτ is the projection from the model space to the span of τ , H5 is the 5-th
Hermite polynomial (5.6) and the renormalisation constant cγ is defined in (5.4). The
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expression in the brackets in (8.10) is spanned by the elements of DomE, which allows
us to apply the map Êγ .

A natural definition of the non-linearity (8.10) could be β5

5 Q≤0ÊγQ≤0U 5
γ ,a. This

definition however uses elements of negative homogeneities which appear in the prod-
uct U 5

γ ,a. We can make sense of it only if we add extra elements into the model space
Tex and define the map Êγ on these elements. In order to have the dimension of
Tex minimal, we have to make a more complicated definition (8.10). More precisely,
in the brackets in (8.10) we keep only the two elements of U 5

γ ,a with the smallest
homogeneities (these are QτU 5

γ ,a with τ ∈ { , }). The other parts of U 5
γ ,a we

reconstruct and write in (8.10) as a multiplier of 1. Then if we apply the reconstruc-
tion mapRγ ,a to the expression in the brackets in (8.10), we get H5

(
Rγ ,aUγ ,a, 2cγ

)
,

which is a renormalised fifth power of the solutionRγ ,aUγ ,a. We use the renormalisa-
tion constant 2cγ , because of the multiplier

√
2 of the force term Yγ ,a in (2.54) and a

scaling property of Hermite polynomials. More precisely, in order to renormalise the
fifth power of

√
2 Yγ ,a, we need to use H5

(√
2 Yγ ,a, 2cγ

)
.

We can show that reconstruction of (8.6) recovers the discrete equation (2.54).

Lemma 8.1 Let Zγ ,a
lift be the model constructed in Sect.5, and let the reconstruction

map Rγ ,a be defined for the model Zγ ,a
lift in (4.16). Let Uγ ,a ∈ D1+3κ,η

e (Zγ ,a
lift ) be a

solution of (8.6). Then it may be written as

Uγ ,a(z) =
√
2 +vγ ,a(z)1+

(
−β3

3
+Bγ

)(
2
√
2 +6vγ ,a(z)

)
+
∑

i=1,2,3

v(i)γ ,a(z)Xi ,

(8.11)
for some functions vγ ,a, v

(i)
γ ,a : R+ ×T3

ε → R. More precisely, we have vγ ,a = Xγ ,a −√
2 Yγ ,a, where Xγ ,a := Rγ ,aUγ ,a, Yγ ,a = Rγ ,a , and vγ ,a solves the “remainder

equation”

vγ ,a(t, x) =Pγ
t X0

γ (x)+
∫ t

0
P̃γ
t−s

((
−β3

3
+ Bγ

)(
vγ ,a +

√
2 Yγ ,a

)3 (8.12)

+ (Cγ + A)
(
vγ ,a +

√
2 Yγ ,a

)
+ Eγ ,a

)
(s, x) ds,

where Eγ ,a is given by (2.15) with Xγ ,a replaced by vγ ,a +
√
2 Yγ ,a.

Furthermore, there exist Aγ and Bγ , vanishing as γ → 0, such that the function
Xγ ,a = Rγ ,aUγ ,a solves (2.54) with the renormalisation constant

Cγ = 2
(
cγ + c′γ − 2c′′γ

)
, (8.13)

where cγ , c′γ and c′′γ are defined in (5.4), (5.5) and (5.8) respectively.

Proof The expansion (8.11) is obtained in the sameway as (3.13), by iteration of (8.6).
If we define the functions Xγ ,a = Rγ ,aUγ ,a and Yγ ,a = Rγ ,a , then we obtain

Xγ ,a(z) =
√
2 Yγ ,a(z)+ vγ ,a(z), (8.14)

123



750 P. Grazieschi et al.

where the reconstructions of the elements with strictly positive homogeneities vanish
(see Remark 5.1). Using (8.11), we can write

Q≤0U 3
γ ,a(z) =2

√
2 + 6vγ ,a(z) + 12

√
2
(
−β3

3
+ Bγ

)
+ 3

√
2vγ ,a(z)2

+ 24
(
−β3

3
+ Bγ

)
vγ ,a(z) + 36

(
−β3

3
+ Bγ

)
vγ ,a(z)

+ 4
∑

i=1,2,3

v(i)γ ,a(z)Xi + vγ ,a(z)31.

From our definition of the model in Sect. 5.2 and the reconstruction map in (4.16)
we have (Rγ ,a1)(z) = 1, (Rγ ,a )(z) = H2(Yγ ,a(z), cγ + c′γ ), (Rγ ,a n)(z) =
Hn(Yγ ,a(z), cγ ) for n ̸= 2, (Rγ ,aXi )(z) = 0, (Rγ ,a )(z) = −3c′′γ Yγ ,a(z),

(Rγ ,a )(z) = 0 and (Rγ ,a )(z) = −c′′γ . Applying the reconstruction map to the
preceding expansion, we get

(
Rγ ,aQ≤0U 3

γ ,a

)
(z) =2

√
2
(
Yγ ,a(z)3 − 3cγ Yγ ,a(z)

)
+ 6vγ ,a(z)

(
Yγ ,a(z)2 − cγ − c′γ

)

− 36
√
2c′′γ
(
−β3

3
+ Bγ

)
Yγ ,a(z)+ 3

√
2vγ ,a(z)2Yγ ,a(z)

− 36c′′γ
(
−β3

3
+ Bγ

)
vγ ,a(z)+ vγ ,a(z)3

=Xγ ,a(z)3 − 6
(
cγ + c′γ − 2c′′γ (β

3 − 3Bγ )
)
Xγ ,a(z),

where we used (8.14). Hence, the reconstruction
(
Rγ ,aFγ (Uγ ,a)

)
(z) of the function

(8.7) gives

(
−β3

3
+ Bγ

)(
Xγ ,a(z)3 −6

(
cγ + c′γ −2c′′γ (β

3 −3Bγ )
)
Xγ ,a(z)

)
+ (Aγ + A)Xγ ,a(z).

Reconstruction of the function (8.8) is trivial:
(
Rγ ,aE (1)

γ (Uγ ,a)
)
(z) = 1

δα R5
(
βγ 3

Xγ ,a(z)
)
.

Now, we turn to reconstruction of the function (8.10). Expansion (8.11) yields

Uγ ,a(z)5 = 4
√
2 + 20vγ ,a(z) + Ũγ ,a(z), (8.15)

where the remainder Ũγ ,a(z) takes values in the span of elements with homogeneities
greater than − 3

2 − 3κ . Then the expression in the brackets in (8.10) is

4
√
2 + 20vγ ,a(z) −

(
4
√
2
(
Rγ ,a )

(z)+ 20vγ ,a(z)
(
Rγ ,a )

(z)

−H5
(
Xγ ,a(z), 2cγ

))
1.
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Using (8.3), the function (8.10) equals

E(2)
γ (Uγ ,a)(z) =

β5

5

(
4
√
2 + 20vγ ,a(z)

− γ 6
(
4
√
2
(
Rγ ,a )

(z)+ 20vγ ,a(z)
(
Rγ ,a )

(z) − H5
(
Xγ ,a(z), 2cγ

))
1
)
,

and applying the reconstruction map gives

(
Rγ ,aE (2)

γ (Uγ ,a)
)
(z) = γ 6 β5

5
H5
(
Xγ ,a(z), 2cγ

)

= γ 6 β5

5

(
Xγ ,a(z)5 − 20cγ Xγ ,a(z)3 + 60c2γ Xγ ,a(z)

)
.

Here, we used the definition of the reconstruction map (4.16) and Remark 5.2.
Applying the reconstruction map to both sides of equation (8.6), using the property

Rγ ,aPγ = G̃γ and using all previous identities, we obtain

Xγ ,a(t, x) = Gγ
t X

0
γ (x)+

√
2 Yγ ,a(t, x)

+
∫ t

0
G̃γ

t−s

((
−β3

3
+ Bγ − 4γ 6β5cγ

)
X3

γ ,a

+
(
Cγ + A

)
Xγ ,a + Eγ ,a

)
(s, x) ds,

where the error term Eγ ,a is the same as in (2.54) and where

Cγ = 2
(
β3 − 3Bγ

)(
cγ + c′γ − 2c′′γ (β

3 − 3Bγ )
)
+ 12c2γ γ 6β5 + Aγ . (8.16)

In order to have this equation equal to (2.54), we need to take Bγ = 4γ 6β5cγ and
Aγ from the previous identity. Lemma 5.4 suggests that |Bγ | ! e which vanishes as
γ → 0.

It is left to show that if we take Cγ of the form (8.13), then the constant Aγ , defined
via (8.16), vanish as γ → 0. We recall that β depends on Cγ via (2.16). From (8.13)
and (8.16) we have

Aγ = −2(β3 − 1)(cγ + c′γ )+ 4(β6 − 1)c′′γ + 6(cγ + c′γ )Bγ

−12c′′γ Bγ (2β3 − 3Bγ ) − 12c2γ γ 6β5. (8.17)

Using (2.16) and (8.13), we can write

β3 − 1 =
∑

k=1,2,3

(
3
k

)
γ 6k(2(cγ + c′γ − 2c′′γ )+ c + A

)k
,

β6 − 1 =
∑

k=1,...,6

(
6
k

)
γ 6k(2(cγ + c′γ − 2c′′γ )+ c + A

)k
.
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From Lemma 5.4 we have cγ = c2e−1 + c̃γ and c′′γ = c1 log e + c̃′′γ , where
|c̃γ | ≤ C | log e| and |c̃′′γ | ≤ C for some constant C > 0 independent of γ .
Moreover, the definition (5.5) boundedness of c′γ uniformly in γ ∈ (0, 1]. From
(2.32) we furthermore have e = γ 3κγ ,3 and hence e−1 = γ −3 + γ −3cγ ,3, where
|cγ ,3| ≤ γ 4/(1 − γ 4) → 0 as γ → 0. Using these bounds in (8.17), we can see that
Aγ vanishes as γ → 0.

Remark 8.2 In what follows we will always consider equation (8.6) with the values
Aγ and Bγ from Lemma 8.1, whichmakes the reconstructed solution of (8.6) coincide
with the solution of (2.54).

Let Zγ ,δ,a
lift be another random discrete model constructed in Sect. 7 and let us con-

sider equation

Uγ ,δ,a = Q<ζ

(
Gγ X0

γ ,δ +Pγ ,δ1+Q≤0

(
−β3

3

(
Uγ ,δ,a

)3+ (Aγ ,δ + A)Uγ ,δ,a

)
+

√
2Wγ ,δ,a

)
,

(8.18)
which is defined in the same way as (8.6), but with respect to the model Zγ ,δ,a

lift . The
initial condition at time 0 is

X0
γ ,δ(x) := ε3

∑

y∈+ε

ψγ ,δ(x − y)X0
γ (y), (8.19)

where X0
γ is defined in the statement of Theorem 2.3 and the functionψγ ,δ is a discrete

approximation of the function ψδ from (3.11):

ψγ ,δ(x) := ε−3
∫

|y−x |≤ε/2
ψδ(y)dy.

As in Lemma 8.1 we can readily conclude that there is a choice of Aγ ,δ such that the
function Xγ ,δ,a = Rγ ,δ,aUγ ,δ,a solves

Xγ ,δ,a(t, x) = Pγ
t X0

γ ,δ(x)+
∫ t

0
P̃γ
t−s

(
−β3

3

(
Xγ ,δ,a

)3 + (Cγ ,δ + A)Xγ ,δ,a +
√
2 ξγ ,δ,a

)

(s, x) ds. (8.20)

where the driving noise is defined in (7.3). This equation is a modification of the
Ising-Kac equation (2.54), driven by a mollified noise and without the error term. The
renormalisation Cγ ,δ we take to be in the form (8.13), but defined via the constants
cγ ,δ , c′γ ,δ and c′′γ ,δ introduced in (7.4).

Now we will study the solution map of (8.6). In particular, we need to show that it
is continuous with respect to the model and the initial state.

Proposition 8.3 Let Zγ ,a
lift be the random discrete model constructed in Sect.5 and

let the initial state X0
γ satisfy the assumptions of Theorem 2.3. Then for almost every

realisation of Zγ ,a
lift there exists (possibly infinite) Tγ ,a > 0 such that (8.6) has a unique
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solution Uγ ,a ∈ Dζ,η
e (Zγ ,a

lift ) on the time interval [0, Tγ ,a), where ζ = 1+ 3κ and the
constant η is from Theorem 2.3.

Let moreover Xγ ,a = Rγ ,aUγ ,a where Rγ ,a is the reconstruction map (4.16)
associated to the model. Then for every L > 0 there is T L

γ ,a ∈ (0, Tγ ,a), such that
limL→∞ T L

γ ,a = Tγ ,a almost surely, and

sup
t∈[0,T∧T L

γ ,a]
∥Xγ ,a(t)∥(e)Cη ≤ C, (8.21)

for any T > 0, provided ∥X0
γ ,a∥(e)Cη ≤ L and |||Zγ ,a

lift |||(e)T+1 ≤ L, where we use the norm
(2.22). The constant C depends on L and is independent of γ .

Let Zγ ,δ,a
lift be the model defined in Sect.7. Then there is a solution Uγ ,δ,a ∈

Dζ,η
e (Zγ ,δ,a

lift ) of equation (8.18) on an interval [0, Tγ ,δ,a). Let furthermore Xγ ,δ,a =
Rγ ,δ,aUγ ,δ,a, where Rγ ,δ,a is the respective reconstruction map. Then there exist
δ0 > 0, θ > 0 and T L

γ ,δ,a ∈ (0, Tγ ,δ,a), such that limL→∞ T L
γ ,δ,a = Tγ ,δ,a almost

surely and
sup

t∈[0,T∧T L
γ ,a∧T L

γ ,δ,a]
∥(Xγ ,a − Xγ ,δ,a)(t)∥(e)Cη ≤ Cδθ , (8.22)

uniformly over δ ∈ (0, δ0), provided ∥X0
γ ,a∥(e)Cη ≤ L, |||Zγ ,a

lift |||(e)T+1 ≤ L, ∥X0
γ ,a −

X0
γ ,δ,a∥

(e)
Cη ≤ δθ and |||Zγ ,a

lift ; Zγ ,δ,a
lift |||(e)T+1 ≤ δθ .

Proof To prove existence of a local solution, we use a purely deterministic argument.
For this, we take T > 0 and any realisation of the discrete model Zγ

lift such that
|||Zγ ,a

lift |||(e)T+1 is finite. Proposition 7.1 suggests that it happens almost surely. The spaces
of modelled distributions are considered below with respect to Zγ

lift .
We proved in Lemma 8.1 that if a solution Uγ ,a exists, then it has the form (8.11).

Hence, in this proof we will be looking for a solution in this form.
LetMγ ,a

T (Uγ ,a) be the right-hand side of (8.6), restricted to the time interval [0, T ].
We need to prove thatMγ ,a

T is a contraction map on Dζ,η
e,T , uniformly in γ , for T > 0

small enough (see Remark 4.8 for the definition of the time-dependent space). More
precisely, let us take Uγ ,a, Ūγ ,a ∈ Dζ,η

e,T . Then we will prove that for some ν > 0 we
have

|||Mγ ,a
T (Uγ ,a)|||(e)ζ,η;T ! ∥X0

γ ∥(e)Cη + T ν
(
1+ |||Uγ ,a|||(e)ζ,η;T

)5
, (8.23a)

|||Mγ ,a
T (Uγ ,a);Mγ ,a

T (Ūγ ,a)|||(e)ζ,η;T ! T ν
(
1+ |||Uγ ,a|||(e)ζ,η;T

)4|||Uγ ,a; Ūγ ,a|||(e)ζ,η;T .
(8.23b)

Then for any T > 0 small enough, Mγ ,a
T is a contraction map on Dζ,η

e,T . The propor-

tionality constants in these bounds are multiples of |||Zγ ,a
lift |||(e)T+1, which implies that

0 < T < Tγ ,a, for some Tγ ,a > 0, depending on |||Zγ ,a
lift |||(e)T+1.
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We first prove the bound (8.23a). For ζ̄ > 0 and η̄ > −2, we apply [13, Thm. 4.22]
and get

|||Mγ ,a
T (Uγ ,a)|||(e)ζ,η;T ! |||Gγ X0

γ |||(e)ζ,η;T + |||Wγ ,a|||(e)ζ,η;T (8.24)

+ T ν
(
|||Fγ (Uγ ,a)|||(e)ζ̄ ,η̄;T + |||E (1)

γ (Uγ ,a)|||(e)ζ̄ ,η̄;T + |||E (2)
γ (Uγ ,a)|||(e)ζ̄ ,η̄;T

)
,

for some ν > 0. We are going to bound the terms on the right-hand side one by one,
and a precise choice of ζ̄ and η̄ will be clear from these bounds.

Similarly to [20, Lem. 7.5], we get |||Gγ X0
γ |||(e)ζ,η;T ! ∥X0

γ ∥(e)Cη . Furthermore, from

[18, Lem. 2.3] and [13, Thm. 4.22] we have the bound |||Wγ ,a|||(e)ζ,η;T ! T ν on the term
(8.5).

Now, we will bound the function (8.7). From [20, Sec. 4 and 6.2] we get

|||Fγ (Uγ ,a)|||(e)ζ1,η1;T ! |||U 3
γ ,a|||(e)ζ1,η1;T+|||Uγ ,a|||(e)ζ1,η1;T !

(
|||Uγ ,a|||(e)ζ,η;T

)3+|||Uγ ,a|||(e)ζ,η;T ,

for ζ1 ≤ ζ − 1 − 2κ and η1 ≤ η − 1 − 2κ . Here, we used the fact that Uγ ,a lives in a
sector of regularity α = − 1

2 − κ . Recalling that ζ = 1 + 3κ and κ < 1
14 , the ranges

of ζ1 and η1 allow to chose ζ̄ and η̄ as in (8.24).
Nowwewill bound the function (8.8). FromProposition 4.10we get |(Rγ ,aUγ ,a)(z)

| ! eα∧η|||Uγ ,a|||(e)ζ,η;T . Then for r ∈ (6, 7) the definition (8.9) yields

∣∣∣
1
δα

R5
(
βγ 3Rγ ,aUγ ,a(z)

)∣∣∣ ! 1
δα

|βγ 3Rγ ,aUγ ,a(z)|r

! γ 3r−9er(α∧η)|||Uγ ,a|||(e)ζ,η;T ! γ
3r
2 −9−3rκ |||Uγ ,a|||(e)ζ,η;T .

From this we obtain the following bound on the function (8.8):

|||E (1)
γ (Uγ ,a)|||(e)ζ̄ ,η̄;T ! γ

3r
2 −9−3rκ |||Uγ ,a|||(e)ζ,η;T .

If κ < 1
14 , then there is a value of r such that the last term vanishes as γ → 0.

In order to bound the function (8.10), we need to bound the modelled distribution
inside the brackets in (8.10), which we denote by Ṽγ ,a. Using the expansion (8.15),
we can write

Uγ ,a(z)5 = 4
√
2 + 20vγ ,a(z) + Ũγ ,a(z), (8.25)

where the elements spanning Ũγ ,a have homogeneities greater than− 3
2 −7κ . We note

that Ũγ ,a(z) does not belong to Tex, but is rather an element of Tex (see Sect. 4.1 for
the definition of this space). In particular, we cannot apply the model to Ũγ ,a(z) and
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hence we cannot measure the regularity of Ũγ ,a(z) as a modelled distribution. Instead,
we write

Ṽγ ,a(z) = 4
√
2 +20vγ ,a(z) +

(
H5
(
Rγ ,aUγ ,a(z), 2cγ

)
−

∑

τ∈{ , }

(
Rγ ,aQτU5

γ ,a
)
(z)
)
1,

(8.26)
andwe are going to show that this is a modelled distribution in a suitable space. Table 3
suggests that:γ ,a

z̄z Ṽγ ,a(z) = Ṽγ ,a(z), and hence the second term in the definition (4.15)
ofmodelled distributions contains the difference Ṽγ ,a(z)−Ṽγ ,a(z̄). Now,wewill derive
bounds on Ṽγ ,a(z) and Ṽγ ,a(z) − Ṽγ ,a(z̄).

For the first term in (8.26) we have

|Ṽγ ,a(z)|| | = 4
√
2, |Ṽγ ,a(z) − Ṽγ ,a(z̄)|| | = 0. (8.27)

Since Uγ ,a ∈ Dζ,η
e,T and the expansion (8.11) holds, we conclude that

|vγ ,a(z)| =
1

2β3 |Uγ ,a(z)|0 !
(
∥z∥s ∨ e

)η|||Uγ ,a|||(e)ζ,η;T , (8.28)

|vγ ,a(z) − vγ ,a(z̄)| =
1

2β3 |Uγ ,a(z) − :
γ ,a
zz̄ Uγ ,a(z̄)|| |

!
(
∥z − z̄∥s ∨ e

)ζ−| |∥z, z̄∥η−ζ
e |||Uγ ,a|||(e)ζ,η;T , (8.29)

where we used the definition of themodelled distribution (4.15). Hence, for the second
term in (8.26) we have

|Ṽγ ,a(z)|| | !
(
∥z∥s ∨ e

)η|||Uγ ,a|||(e)ζ,η;T ,

|Ṽγ ,a(z) − Ṽγ ,a(z̄)|| | !
(
∥z − z̄∥s ∨ e

)ζ−| |∥z, z̄∥η−ζ
e |||Uγ ,a|||(e)ζ,η;T .

(8.30)

Now, we will bound the last term in (8.26). From the expansion (8.11) and
Remark 5.1, we get

Rγ ,aUγ ,a(z) =
√
2 Yγ ,a(z)+ vγ ,a(z),

where Yγ ,a = Rγ ,a . Using then the expansion (8.25), the definition of the reconstruc-
tion map (4.16) and the definition of the model (5.7), the last term in (8.26) may be
written as

H5
(
Rγ ,aUγ ,a(z), 2cγ

)
−

∑

τ∈{ , }

(
Rγ ,aQτU 5

γ ,a

)
(z) (8.31)

= H5
(
Rγ ,aUγ ,a(z), 2cγ

)
− 4

√
2
(
Rγ ,a

)
(z) − 20vγ ,a(z)

(
Rγ ,a

)
(z)

= H5
(√

2 Yγ ,a(z)+ vγ ,a(z), 2cγ
)
− 4

√
2 H5

(
Yγ ,a(z), cγ

)

− 20vγ ,a(z) H4
(
Yγ ,a(z), cγ

)
.
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The following expansion holds for the Hermite polynomials

Hn(u + v, c) =
n∑

m=0

(
n
m

)
Hm(u, c)vn−m,

which can be found in [2]. Moreover, from the definition (5.6) we get the scaling iden-
tity Hn(au, a2c) = anHn(u, c) for any a > 0. Applying these identities, expression
(8.31) turns to

H5
(
Rγ ,aUγ ,a(z), 2cγ

)
−

∑

τ∈{ , }

(
Rγ ,aQτU 5

γ ,a

)
(z) (8.32)

=
3∑

m=0

(
5
m

)
2

m
2 Hm

(
Yγ ,a(z), cγ

)
vγ ,a(z)5−m =

3∑

m=0

(
5
m

)
2

m
2
(
Rγ ,a m)(z)vγ ,a(z)5−m .

where we postulate
(
Rγ ,a 0)(z) = 1. For m ∈ {1, 2, 3}, the definitions (4.16) and the

bound (4.12a) yield |(Rγ ,a m)(z)| ! e| |m |||Zγ ,a
lift |||(e)T+1. Combining this with the bound

on the function vγ in (8.28), we estimate expression (8.32) as

|Ṽγ ,a(z)|0 !
3∑

m=0

e| |m
(
∥z∥s ∨ e

)(5−m)η
, (8.33)

where the proportionality constant is amultiple of
(
1+|||Zγ ,a

lift |||(e)T+1

)(
1+|||Uγ ,a|||(e)ζ,η;T

)5.
Using the derived bounds,we can nowestimate the function (8.10). FromTable 3we

conclude that :
γ ,a
z̄z (̂Eγ Ṽγ ,a)(z) = (̂Eγ Ṽγ ,a)(z), and the second term in the definition

of the norm (4.15) contains only the difference (̂Eγ Ṽγ ,a)(z)− (̂Eγ Ṽγ ,a)(z̄). Hence, we
need to bound (̂Eγ Ṽγ ,a)(z) and (̂Eγ Ṽγ ,a)(z) − (̂Eγ Ṽγ ,a)(z̄).

From (8.27) we get

|(̂Eγ Ṽγ ,a)(z)|| |+2 = 4
√
2, |(̂Eγ Ṽγ ,a)(z) − (̂Eγ Ṽγ ,a)(z̄)|| |+2 = 0.

Similarly, from (8.30) we have

|(̂Eγ Ṽγ ,a)(z)|| |+2 ! (∥z∥s ∨ e)η|||Uγ ,a|||(e)ζ,η;T ,

|(̂Eγ Ṽγ ,a)(z) − (̂Eγ Ṽγ ,a)(z̄)|| |+2 ! (∥z − z̄∥s ∨ e)ζ−| |∥z, z̄∥η−ζ
e |||Uγ ,a|||(e)ζ,η;T .

Finally, (8.33) yields

|(̂Eγ Ṽγ ,a)(z)|0 ! γ 6
3∑

m=0

e| |m
(
∥z∥s ∨ e

)(5−m)η ! eϑ (∥z∥s ∨ e)η2−ϑ ,
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for any 0 < ϑ ≤ 1
2 − 3κ and η2 = 5η + 2 (recall that | | = − 1

2 − κ and | | =
1−2κ), and where the proportionality constant is a multiple of

(
1+|||Zγ ,a

lift |||(e)T+1

)(
1+

|||Uγ ,a|||(e)ζ,η;T
)5. Using this bound, we get furthermore

|(̂Eγ Ṽγ ,a)(z) − (̂Eγ Ṽγ ,a)(z̄)|0 ≤ |(̂Eγ Ṽγ ,a)(z)|0 + |(̂Eγ Ṽγ ,a)(z̄)|0
! eϑ

(
(∥z∥s ∨ e)η2−ϑ + (∥z̄∥s ∨ e)η2−ϑ

)
! eϑ−ϑ̄ (∥z − z̄∥s ∨ e)ϑ̄∥z, z̄∥η2−ϑ

e ,

for any 0 < ϑ̄ < ϑ . Combining the preceding bounds on Êγ Ṽγ ,a, we conclude that
the following bound holds for the function (8.10):

|||E (2)
γ (Uγ ,a)|||(e)ζ3,η3;T ! eϑ−ϑ̄

(
1+ |||Zγ ,a

lift |||(e)T+1

)(
1+ |||Uγ ,a|||(e)ζ,η;T

)5
, (8.34)

for any ζ3 and η3 satisfying ζ3 ≤ ϑ̄ , ζ3 ≤ ζ − | | + | | + 2, η3 ≤ η2 − ϑ ,
η3 ≤ η − | | + | | + 2, η3 − ζ3 ≤ η − ζ and η3 − ζ3 ≤ η2 − ϑ . Taking ϑ = 2κ ,
ϑ̄ = κ , ζ3 = κ and η3 = η − 1 − 2κ , all these conditions are satisfied and moreover
we have ζ3 > 0 and η3 > −2, which allows to take ζ̄ and η̄ as in (8.24). We note that
(8.34) vanishes as γ → 0, because the power of e is strictly positive.

We have just finished the proof of the bound (8.24), from which (8.23a) follows.
The bound (8.23b) can be proved similarly and we prefer to omit the details. Then
the Banach fixed point theorem yields existence of a fixed point of the map Mγ ,a

T ,
and hence we get a local solution of equation (8.6). By patching the local solution in
the standard way, we get the maximal time Tγ ,a such that the solution exists on the
time interval [0, Tγ ,a). One can see that the time Tγ ,a is the one at which ∥Xγ ,a(t)∥(e)Cη

diverges. Applying Proposition 4.10 to the function Xγ ,a = Rγ ,aUγ ,a, we then get
the required bound (8.21).

A bound on the solutions Uγ ,δ,a can be proved respectively. Furthermore, in the
same way as we proved (8.21), we get the bound (8.22).

Proposition 8.3 gives a local solution Xγ ,a, and by analogy with (3.14) we can also
study the respective solution vγ ,a of the remainder equation (8.12). More precisely, we
define it as vγ ,a = Xγ ,a −

√
2 Yγ ,a, where Yγ ,a = Rγ ,a . Then from Proposition 8.3

we can conclude that in the setting of (8.21) we have

sup
t∈[0,T∧T L

γ ,a]
∥vγ ,a(t)∥(e)C3/2+3η ≤ C . (8.35)

In the same way, for a local solution Xγ ,δ,a we set Yγ ,δ,a = Rγ ,δ,a and vγ ,δ,a =
Xγ ,δ,a −

√
2 Yγ ,δ,a. Then in the setting of (8.22) we have

sup
t∈[0,T∧T L

γ ,a∧T L
γ ,δ,a]

∥(vγ ,a − vγ ,δ,a)(t)∥(e)C3/2+3η ≤ Cδθ . (8.36)
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8.1 Controlling the process X!,a

Similarly to Xγ ,a, we can also control the process Xγ ,a defined in (2.44). For this, we
define the discrete kernel Pγ

t (x) :=
(
Pγ
t ∗ε K γ

)
(x) on x ∈ T3

ε and by analogy with
(2.38) we then get

Xγ (t, x) = Pγ
t X0

γ (x)+
√
2 Y γ (t, x)

+
∫ t

0
Pγ
t−s

(
−β3

3
X3

γ +
(
Cγ + A

)
Xγ + Eγ

)
(s, x) ds,

where

Y γ (t, x) :=
1√
2
ε3
∑

y∈T3
ε

∫ t

0
Pγ
t−s(x − y) dMγ (s, y).

We defined the respective kernel Gγ
t (x) on x ∈ +ε by (2.52). This kernel is different

from G̃γ only by the scale, which is e for the latter and e := eγ κ for the former. Hence,
in the same way as we did in Appendix Appendix A.1, wemay writeGγ = K γ +Rγ

and we may defined the respective abstract map Pγ as in (8.1). We also define the
respective lift of the martingales Zγ ,a

lift , which is defined in the same way as Zγ ,a
lift in

Sect. 5.2, but where in the definitions (5.10) and (5.12) we use the kernel K γ . We
note that we need to use the norms on scale e to work with these objects, i.e. we have
|||Zγ ,a

lift |||(e)T bounded and Pγ acts on suitable spacesDζ,η
e,T . IfUγ ,a is a solution of (8.6),

then we define

Uγ ,a = Q<ζ

(
Gγ X0

γ + Pγ 1+
(
Fγ (Uγ ,a)+ E (1)

γ (Uγ ,a)+ E (2)
γ (Uγ ,a)

)
+

√
2W γ ,a

)
,

(8.37)
whereW γ ,a(z) := Pγ 1+(7)(z). We have from Lemma 8.1 that the solution of (2.54)
is obtained as Xγ ,a = Rγ ,aUγ ,a. Recalling that Xγ ,a equals Xγ , the solution of
(2.38), on the time interval [0, τγ ,a], we conclude that Xγ = RγU γ ,a on [0, τγ ,a].
Furthermore, we may get a bound on Xγ ,a = RγUγ ,a.

Proposition 8.4 Let Xγ ,a be the local solution defined in Proposition 8.3, and let Xγ ,a
be as above. Then in the setting of (8.21) one has

sup
t∈[0,T∧T L

γ ,a]
∥Xγ ,a(t)∥

(e)
Cη ≤ C,

where we use the norm (2.22) with the scale e := eγ κ .

Proof For any 0 < ẽ ≤ e we have ∥X0
γ ∥(ẽ)Cη̄ ≤ ∥X0

γ ∥(e)Cη̄ . Taking e < ẽ < e, Lemma 6.2

yields
∣∣(ιεSγ (t)

) (
ϕλ
x
)∣∣ ! λη̄∥X0

γ ∥(e)Cη̄ for any smooth compactly supported ϕ and
λ ∈ [e, 1]. From the assumption (2.25) on the initial condition, the last quantity is
bounded uniformly in γ ∈ (0, γ⋆). Since the function K γ is smooth and rescaled

by e, we get supγ∈(0,γ⋆)
∥X0

γ ∥(e)Cη̄ < ∞. Estimating then the right-hand side of (8.37)
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in exactly the same way as we bounded (8.23a), we get |||Uγ ,a|||
(e)
ζ,η;T ! 1, for any

T ∈ (0, Tγ ,a), where the proportionality constant is independent of γ and T . Recalling
that Xγ ,a = RγU γ ,a, the bound (8.21) follows from Proposition 4.10 and moment
bounds for the model.

Let us define vγ ,a := Xγ ,a −
√
2 Y γ ,a with Y γ ,a = Rγ ,a . Then by bounding the

right-hand side of (8.37) without the term
√
2W γ ,a, in the same way as we did in the

proof of Proposition 8.4, in the setting of (8.21) we get

sup
t∈[0,T∧T L

γ ,a]
∥vγ ,a(t)∥

(e)

C3/2+3η ≤ C . (8.38)

We also need to control the process Xγ Xγ which appears in the definition of
the stopping time (2.46). In what follows, when using the norm ∥ • ∥L∞ of these
processes, we compute the norm on T3

ε . Writing as before Xγ ,a =
√
2 Yγ ,a+ vγ ,a and

Xγ ,a =
√
2 Y γ ,a + vγ ,a with Yγ ,a = Rγ ,a and Y γ ,a = Rγ ,a , we get

∥∥(Xγ ,aXγ ,a − 2 Y γ ,aYγ ,a
)
(t)
∥∥(e)
C3/2+3η (8.39)

! ∥Y γ ,a(t)∥L∞∥vγ ,a(t)∥L∞ + ∥vγ ,a(t)∥L∞
(
∥Yγ ,a(t)∥L∞ + ∥vγ ,a(t)∥L∞

)
.

Propositions 7.1 and 4.10 yield E
[
supt∈[0,T ] ∥Yγ ,a(t)∥p

L∞
]

! e| |p for all p ≥ 1 large

enough, and respectively E
[
supt∈[0,T ] ∥Y γ ,a(t)∥p

L∞
]

! e| |p. Moreover, from (8.35)
and (8.38) we get

sup
t∈[0,T∧T L

γ ,a]
∥vγ ,a(t)∥L∞ ! e

3
2+3η, sup

t∈[0,T∧T L
γ ,a]

∥vγ ,a(t)∥L∞ ! e
3
2+3η.

Using these bounds and Minkowski inequality, we get from (8.39)

sup
t∈[0,T∧Tγ ,a]

∥∥(Xγ ,aXγ ,a − 2 Y γ ,aYγ ,a
)
(t)
∥∥
L∞ ! e| |+ 3

2+3ηγ | |κ , (8.40)

where we used the definition e = eγ κ and the bounds on η in the statement of The-
orem 2.3. If we take κ ≤ κ < 1

10 , where κ is the value used in the definition of the
regularity structure (3.2), the preceding expression is bounded byCeκ−1. Furthermore,
for any η < −1 we get the estimate

E
[

sup
t∈[0,T ]

(
∥Y γ ,a(t)Yγ ,a(t) − 1

2Cγ (t)∥
(e)
Cη

)p]
! 1,

for any p ≥ 1 large enough and any T > 0. This estimate is obtained in the same way
as Lemma 6.7, because the difference in the processes involved in these estimates is
only in the initial states. Moreover, we have |Cγ −2Cγ (t)| ! 1 where the constant Cγ

is defined in (2.45). Combining this bound with (8.40), we get the following result.
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760 P. Grazieschi et al.

Lemma 8.5 Let κ ≤ κ , where κ is the value used in (3.2) and κ is from (2.43). For
any η < −1, T > 0 and any p ≥ 1 large enough, in the setting of (8.21) one has

E
[

sup
t∈[0,T∧T L

γ ,a]

(
∥Xγ ,a(t)Xγ ,a(t) − Cγ ∥(e)Cη

)p]
! e(κ−1)p,

where η is from the statement of Theorem 2.3 and e = eγ κ .

9 Proof of Theorem 2.3

Let Xγ be the rescaled spin field of the Ising-Kac model (2.12), and let X be the
solution of the "4

3 equation (2.21). Our goal is to prove that

lim
γ→0

E
[
F(ιεXγ )

]
= E

[
F(X)

]
, (9.1)

for any bounded, uniformly continuous function F : D
(
[0, T ],D ′ (T3)) → R. We

note that the processes Xγ and X are not required to be coupled, and the expectations
in (9.1) may be on different probability spaces. We fix the value T > 0 throughout
this section. The limit (9.1) follows if for some γ0 > 0 we have

lim
γ→0

E
[
F(ιεXγ ,a)

]
= E

[
F(X)

]
, (9.2a)

lim
a→∞ sup

γ∈(0,γ0)
E
∣∣F(ιεXγ ) − F(ιεXγ ,a)

∣∣ = 0, (9.2b)

where (9.2a) holds for each fixed a ≥ 1. Note that the two processes in (9.2b) are
defined on the same probability space.

It will be convenient to introduce some intermediate processes. More precisely, for
δ > 0 we define Xδ to be the solution of the SPDE (3.11) and we define Xγ ,δ,a to be
the solution of equation (8.20). Then (9.2a) follows if for some δ0 > 0 we have

lim
δ→0

E
∣∣F(Xδ) − F(X)

∣∣ = 0, (9.3a)

lim
γ→0

E
[
F(ιεXγ ,δ,a)

]
= E

[
F(Xδ)

]
, (9.3b)

lim
δ→0

sup
γ∈(0,γ0)

E
∣∣F(ιεXγ ,a) − F(ιεXγ ,δ,a)

∣∣ = 0, (9.3c)

where (9.3b) holds for every fixed δ ∈ (0, δ0). Againwe used that the pairs of processes
in (9.3a) and (9.3c) are defined on the same probability spaces. The limit (9.3a) follows
from a much stronger convergence stated in Theorem 3.2. The limit (9.3b) is proved
in Lemma 9.2.
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In order to compare the discrete and continuous heat kernels, we introduce the
metric

∥Gγ
t ;Gt∥(e)L1 :=

∑

x∈+ε

∫

|x̄−x |≤ε

∣∣Gγ
t (x) − Gt (x̄)

∣∣dx̄ . (9.4)

Here, we use the heat kernel Gt (x) = (2π t)−3/2e−|x |3/t and the discrete kernel Gγ
t :

+ε → R defined in (2.52). We will also use the discrete kernel G̃γ defined in (2.53).

Lemma 9.1 For any 0 < t ≤ 1 one has

lim
γ→0

∥Gγ
t ;Gt∥(e)L1 = 0, lim

γ→0
∥G̃γ

t ;Gt∥(e)L1 = 0. (9.5)

Proof From the explicit formula for the heat kernel we can get (see [20, Lem. 7.4])

|Gt (x) − Gt (x̄)| ≤ C
(
t1/2 + (|x | ∧ |x̄ |)

)−3−θ |x − x̄ |θ ,

for any θ ∈ [0, 1]. Similarly, from the bounds on the discrete kernels provided at the
end of Appendix Appendix A.1 we get

|Gγ
t (x) − Gt (x)| ≤ Cεθ

(
t1/2 + |x | + ε

)−3−θ
, (9.6)

Then the integral in (9.4) is estimated by a constant multiple of εθ
(
t1/2+|x |+ε

)−3−θ ,
and the whole expression (9.4) can be estimated by a constant times εθ . This gives the
first limit in (9.5), and the second follows in the same way, where the bounds for G̃γ

t
are of the form (9.6) with ε being replaced by e.

Lemma 9.2 For any a ≥ 1, δ ∈ (0, 1) and T > 0, the process Xγ ,δ,a(t) is almost
surely uniformly bounded on [0, T ]. Moreover, the limit (9.3b) holds.

Proof We note that the formula (7.3) makes sense on R × T3 (and not just R × T3
ε).

Let then ξ̄γ ,δ,a be defined by (7.3) on R × T3. In will be convenient to introduce an
additional process X̄γ ,δ,a on R × T3, which is the solution of the SPDE

(
∂t − $

)
X̄γ ,δ,a = −β3

3
X̄3

γ ,δ,a +
(
Cδ + A

)
X̄γ ,δ,a +

√
2 ξ̄γ ,δ,a, (9.7)

with the initial condition X0
δ , the same as for equation (3.11). Then the limit (9.3b)

follows from

lim
γ→0

E
[
F(X̄γ ,δ,a)

]
= E

[
F(Xδ)

]
, (9.8a)

lim
γ→0

E
∣∣F(ιεXγ ,δ,a) − F(X̄γ ,δ,a)

∣∣ = 0, (9.8b)

and we are going to prove these two limits.
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For T > 0 we will use the shorthand notation L∞
T := L∞([0, T ] × T3), and we

will consider all the spaces and norms on T3 in the spatial variable, which we prefer
not to write every time.

We start with analysing the second term in (9.8a). For this we will show the contin-
uous dependence of the solution of equation (9.7) on the driving noise and the initial
state. More precisely, for f0 ∈ L∞, for T > 0 and for a function ζ ∈ L∞

T we consider
the PDE

(∂t − $) f = −β3

3
f 3 + (Cδ + A) f +

√
2 ζ (9.9)

on [0, T ]×T3 with an initial condition f0 ∈ L∞ (T3) at time 0. Of course, the solution
f depends on δ and γ through the constants Cδ and β (see (2.16)), but we prefer not to
indicate this dependence to have a lighter notation. By our assumptions, there exists
L > 0 such that ∥ f0∥L∞ ≤ L and ∥ζ∥L∞

T
≤ L . We are going to prove that there is a

unique solution f ∈ L∞
T , and the solution map f = ST (ζ, f0) is locally continuous

from L∞
T × L∞ to L∞

T .
Let P : R+ × T3 be the heat kernel, i.e., the Green’s function of the parabolic

operator ∂t − $. Then, with a little ambiguity, we write Pt for the semigroup, whose
action on functions is given by the convolution with the heat kernel Pt on T3. Then
the mild form of (9.9) is

ft (x) = Pt f0(x)+
∫ t

0
Pt−s

(
−β3

3
f 3s + (Cδ + A) fs +

√
2 ζs

)
(x)ds. (9.10)

We denote byMt ( f )(x) the right-hand side, andwe are going to prove thatMt ( f ) is a
contraction map on BL,t := { f : ∥ f ∥L∞

t
≤ L+1} for a sufficiently small 0 < t < T .

Taking f ∈ BL,t , using the Young inequality and using the identity ∥Pt∥L1 = 1,
we get

∥Mt ( f )∥L∞ ≤ ∥ f0∥L∞ + t∥ f ∥3L∞
t
+ t |Cδ + A|∥ f ∥L∞

t
+ t

√
2 ∥ζ∥L∞

t

≤ L + t
(
(L + 1)3 + |Cδ + A|(L + 1)+

√
2 L
)
,

where we estimated β3 ≤ 3, which follows from (2.16) for all γ > 0 sufficiently
small. Taking t > 0 small enough, we get

∥Mt ( f )∥L∞ ≤ L + 1,

which means that Mt maps BL,t to itself.
Let us now take f , f̄ ∈ BL,t with f0 = f̄0. Then

(
Mt ( f )−Mt ( f̄ )

)
(x) = −β3

3

∫ t

0
Pt−s

(
f 3s − f̄ 3s

)
(x)ds+ (Cδ + A)

∫ t

0
Pt−s

(
fs − f̄s

)
(x)ds,

which yields similarly to how we did above

∥Mt ( f ) − Mt ( f̄ )∥L∞ ≤ t∥ f 3 − f̄ 3∥L∞
t
+ t |Cδ + A|∥ f − f̄ ∥L∞

t
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≤ t
(
3L2 + |Cδ + A|

)
∥ f − f̄ ∥L∞

t
.

Taking t > 0 small enough, we get t
(
3 L2+|Cδ + A|

)
< 1, which means thatMt is a

contraction on BL,t . By the Banach fixed point theorem, there exists a unique solution
f ∈ L∞

t of equation (9.10).
Let us now denote by f = St (ζ, f0) the solution map of (9.10) on BL,t . We are

going to show that it is continuouswith respect to ζ and f0, satisfying ∥ f0∥L∞ ≤ L and
∥ζ∥L∞

T
≤ L . For this we take ∥ f̄0∥L∞ ≤ L and ∥ζ̄∥L∞

T
≤ L , and for f̄ = St (ζ̄ , f̄0)

we have

(
ft − f̄t

)
(x) = Pt ( f0 − f̄0)(x) − β3

3

∫ t

0
Pt−s

(
f 3s − f̄ 3s

)
(x)ds

+ (Cδ + A)
∫ t

0
Pt−s

(
fs − f̄s

)
(x)ds +

√
2
∫ t

0
Pt−s

(
ζs − ζ̄s

)
(x)ds.

Computing the norms as above, we get

∥ f − f̄ ∥L∞
t

≤ ∥ f0 − f̄0∥L∞ + t
(
3L + |Cδ + A|

)
∥ f − f̄ ∥L∞

t
+ t

√
2 ∥ζ − ζ̄∥L∞

t
.

Since t is such that t
(
3 L + |Cδ + A|

)
< 1, we can move the term proportional to

∥ f − f̄ ∥L∞
t
to the left-hand side and get

∥ f − f̄ ∥L∞
t

≤ C∥ f0 − f̄0∥L∞ + C∥ζ − ζ̄∥L∞
t
,

where the proportionality constant C depends on δ and L . Thus, we have a locally
Lipschitz continuity of the solution map.

The extension of the solution to longer time intervals [0, T ] is the standard proce-
dure, and is done by patching local solutions. Since the function V : R → R given
by V (u) = u2 is a Lyapunov function for equation (9.9), the solution is global in time
and T can be taken arbitrary (this standard result can be found for example in [19,
Prop. 6.23]).

Let us now look back at (9.8a). Using the constructed solution map we can write
Xδ = S(ξδ, X0

δ ) and X̄γ ,δ,a = S(ξ̄γ ,δ,a, X0
δ ). By Lemma 2.3 in [18] we have the

convergence in law in the topology of the Skorokhod space D(R+,D ′ (T3)) of the
family of martingales (Mγ ,a(•, x))x∈T3

ε
to a cylindrical Wiener process on L2 (T3).

For any T > 0, we therefore get convergence in law of ξ̄γ ,δ,a to ξδ , as γ → 0, in the
topology of L∞([0, T ]×T3). Then from continuity of the solutionmap Swe conclude
that X̄γ ,δ,a converges in law to Xδ , as γ → 0, in the topology of L∞([0, T ] × T3).
This yields the required limit (9.8a).

Now, we will prove the limit (9.8b). We observe that these two processes are driven
by the same noise and the live on the same probability space. It will be convenient to
define an analogue of the L∞ norm to compare a discrete and continuous functions.
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Namely, for fγ : +ε → R and f : R3 → R we set

∥ fγ ; f ∥(e)L∞ := sup
x∈+ε,x̄∈R3

|x̄−x |∞≤ε/2

∣∣ fγ (x) − f (x̄)
∣∣.

If moreover functions depend on the time variable, then set ∥ fγ ; f ∥(e)L∞
T

:=
supt∈[0,T ] ∥ fγ (t); f (t)∥(e)L∞ . Then the limit (9.8b) holds if we show

lim
γ→0

E∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
T
= 0. (9.11)

Now, we will prove the limit (9.11). The mild form of (9.7) is

X̄γ ,δ,a(t, x) = Pt X0
δ (x)+

∫ t

0
Pt−s

(
−β3

3
X̄3

γ ,δ,a+(Cδ+A)X̄γ ,δ,a+
√
2 ξ̄γ ,δ,a

)
(s, x)ds.

(9.12)
As a consequence of our analysis of equation (9.9), if we take ∥X0

δ∥L∞ ≤ L and
∥ξ̄γ ,δ,a∥L∞

T
≤ L , then for 0 < t ≤ T small enough we have ∥X̄γ ,δ,a∥L∞

t
≤ L + 1. We

will use this value t in what follows. We can perform the same analysis as above and
conclude that if ∥X0

δ∥L∞ ≤ L then ∥Xγ ,δ,a∥L∞
t

≤ L + 1. We prefer not to repeat the
same argument twice.

We extend the processes periodically in the spatial variables. This means that we
need to replace Pγ and P̃γ by Gγ and G̃γ respectively; and we need to replace P by
G in (9.12). In what follows we are going to work with these periodic extensions.

Using the metric (9.4), one can readily get the bound

∥Gγ
t X

0
γ ,δ,a;Gt X0

δ∥(e)L∞ ≤ ∥Gt∥L1∥X0
γ ,δ,a; X0

δ∥(e)L∞ + ∥Gγ
t ;Gt∥(e)L1∥X0

δ∥L∞ . (9.13)

We have ∥Gt∥L1 = 1, and from Lemma 9.1 we have that Qγ
t := ∥Gγ

t ;Gt∥(e)L1 and

Q̃γ
t := ∥G̃γ

t ;Gt∥(e)L1 vanish as γ → 0. Using then the bound ∥X̄γ ,δ,a∥L∞
t

≤ L + 1,
subtracting equations, and using the bound similarly to (9.13), we get

∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
t

≤ ∥X0
γ ,δ,a; X0

δ∥(e)L∞ + Qγ
t L + t

√
2 ∥ξγ ,δ,a; ξ̄γ ,δ,a∥(e)L∞

t

+ t
(
∥X3

γ ,δ,a; X̄3
γ ,δ,a∥(e)L∞

t
+ |Cδ + A|∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞

t
+ |Cγ ,δ − Cδ|L

)

+ t Q̃γ
t

(
(L + 1)3 + |Cδ + A|(L + 1)+

√
2 L
)
.

We can readily show that ∥X3
γ ,δ,a; X̄3

γ ,δ,a∥
(e)
L∞
t

≤ 3 L2∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
t
, and the

choice of t allows to absorb the term proportional to ∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
t

to the left-
hand side and get the bound

∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
t

! ∥X0
γ ,δ,a; X0

δ∥(e)L∞ + Qγ
t L + t∥ξγ ,δ,a; ξγ ,δ,a∥(e)L∞

t
+ t |Cγ ,δ − Cδ|L
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+ t Q̃γ
t

(
(L + 1)3 + |Cδ + A|(L + 1)+

√
2 L
)
,

where the proportionality constant depends on t and L . From our assumptions in
Theorem 2.3 on the initial states we conclude that limγ→0 ∥X0

γ ,δ,a; X0
δ∥

(e)
L∞ = 0.

Furthermore, we have limγ→0 E∥ξγ ,δ,a; ξ̄γ ,δ,a∥(e)L∞
t

= 0. Finally, from the definitions
of the renormalisation constants we get limγ→0 Cγ ,δ = Cδ , because the constants are
defined in terms of the heat kernels and these converge uniformly as γ → 0 (see
Lemma A.3). Then from the preceding inequality we obtain

E∥Xγ ,δ,a; X̄γ ,δ,a∥(e)L∞
t

≤ Cγ (L, t),

where limγ→0 Cγ (L, t) = 0. Since ξ̄γ ,δ,a is almost surely bounded, the process X̄γ ,δ,a

almost surely does not blow up in a finite time (see the argument above), and we
conclude that the same is true for Xγ ,δ,a and (9.11) holds for any T > 0.

Our next aim is to prove the limit (9.3c). It will be convenient to prove the
required convergence in probability. For this we need to restrict the time interval
to [0, T L

γ ,a ∧ T L
γ ,δ,a], where the stopping times T L

γ ,a and T L
γ ,δ,a are defined in Proposi-

tion 8.3. Moreover, we need to introduce auxiliary stopping times providing a bound
on the models. More precisely, for L > 0 we define

τ L
γ ,a := inf

{
t ≥ 0 : |||Zγ ,a

lift |||(e)t+1 ≥ L
}

∧ T L
γ ,a,

τ L
γ ,δ,a := inf

{
t ≥ 0 : |||Zγ ,δ,a

lift |||(e)t+1 ≥ L
}

∧ T L
γ ,δ,a.

Then for any A > 0, L > 0 and T > 0 we have

P
(

sup
t∈[0,T ]

∥(Xγ ,δ,a − Xγ ,a)(t)∥(e)Cη ≥ A
)

≤ P
(

sup
t∈[0,T∧τ L

γ ,a∧τ L
γ ,δ,a]

∥(Xγ ,δ,a − Xγ ,a)(t)∥(e)Cη ≥ A
)
+ P

(
τ L
γ ,a ∧ τ L

γ ,δ,a < T
)
.

(9.14)

From the assumptions of Theorem 2.3 we conclude that there exists L⋆ > 0 such
that ∥X0

γ ∥(e)Cη̄ ≤ L⋆ uniformly in γ ∈ (0, γ⋆). Moreover, the definition (8.19) yields

supγ∈(0,γ⋆)
∥X0

γ − X0
γ ,δ∥

(e)
Cη ! δθ for any η < η̄ and any θ > 0 small enough. We fix

0 < γ0 ≤ γ⋆ such that the result of Proposition 7.1 holds. Then from Proposition 8.3
we conclude that

lim
L→∞

lim
δ→0

sup
γ∈(0,γ0)

P
(

sup
t∈[0,T∧τ L

γ ,a∧τ L
γ ,δ,a]

∥(Xγ ,δ,a − Xγ ,a)(t)∥(e)Cη ≥ A
)
= 0. (9.15)
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Furthermore, we have

P
(
τ L
γ ,a ∧ τ L

γ ,δ,a < T
)

≤ P
(
T L

γ ,a ∧ T L
γ ,δ,a < T

)
+ P

(
|||Zγ ,a

lift |||(e)T+1 ≥ L
)

+P
(
|||Zγ ,δ,a

lift |||(e)T+1 ≥ L
)
. (9.16)

Markov’s inequality yields P
(
|||Zγ ,a

lift |||(e)T+1 ≥ L
)

≤ L−p E
(
|||Zγ ,a

lift |||(e)T+1

)p, for any
p ≥ 1. From Proposition 7.1 we conclude that for any p the preceding expectation is
bounded uniformly in γ ∈ (0, γ0). In the same way from Proposition 7.1 we conclude
that P

(
|||Zγ ,δ,a

lift |||(e)T+1 ≥ L
)
is bounded uniformly in γ ∈ (0, γ0) and δ ∈ (0, 1), and

hence from (9.16) we get

lim
L→∞

sup
δ∈(0,1)

sup
γ∈(0,γ0)

P
(
τ L
γ ,a∧τ L

γ ,δ,a < T
)

≤ lim
L→∞

sup
δ∈(0,1)

sup
γ∈(0,γ0)

P
(
T L

γ ,a∧T L
γ ,δ,a < T

)
.

(9.17)
Lemma 9.2 implies that the living time Tγ ,δ,a of the process Xγ ,δ,a is almost surely

infinite, and hence Proposition 8.3 yields limL→∞ T L
γ ,δ,a = +∞ almost surely. Then

the right-hand side of (9.17) equals

lim
L→∞

sup
δ∈(0,1)

sup
γ∈(0,γ0)

P
(
T L

γ ,a < T
)
. (9.18)

Furthermore, as we stated after (2.51), we have Xγ ,a(t) = Xγ (t) for t ≤ τγ ,a and
Xγ ,a(t) = X ′

γ ,a(t) for t > τγ ,a. Then Xγ ,a is almost surely bounded on each bounded
time interval, because for t ≤ τγ ,a the process is bounded due to the definition of the
stopping times (2.40)-(2.47), and for t > τγ ,a the process is boundeddue toLemma6.4.
Hence, we conclude that the living time of the process Xγ ,a is almost surely infinite,
and limL→∞ T L

γ ,a = +∞ almost surely. This implies that (9.18) vanishes.
From the preceding argument we conclude that the expression in (9.14) vanishes,

which yields convergence of the process Xγ ,δ,a to Xγ ,a as δ → 0 in probability in the
topology as in (9.14).

We have proved the limit (9.2a) and it is left to prove (9.2b). We are going to prove
this limit in probability. Recalling the definition of Xγ ,a, for any A > 0 we get

P
(

sup
t∈[0,T ]

∥(Xγ ,a − Xγ )(t)∥(e)Cη ≥ A
)

≤ P
(
τγ ,a < T

)
, (9.19)

where the supremum vanishes if τγ ,a ≥ T . From the definition (2.47) we have

P
(
τγ ,a < T

)
≤ P

(
τ (1)γ ,a < T

)
+ P

(
τ (2)γ ,a < T

)
. (9.20)

The stopping time (2.40) we write as τ
(1)
γ ,a = inf

{
t ≥ 0 : ∥Xγ ,a(t)∥(e)Cη ≥ a

}
, and

hence it coincides with the stopping time T La
γ ,a defined in Proposition 8.3 with a

suitable values La, depending on a and such that lima→∞ La = ∞. Then we have
lima→∞ supγ∈(0,1) P

(
τ
(1)
γ ,a < T

)
= 0. Convergence of the last term in (9.20) to zero

uniformly in γ ∈ (0, 1) as a → ∞ follows from Lemma 8.5.
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9.1 The renormalisation constant

We readily conclude from Lemma 5.4 that the renormalisation constant (8.13) may
be written in the form (2.26).

Appendix A Properties of the discrete kernels

The main result of this appendix is provided in Lemma A.3, which provides bounds
on continuous extensions of the functions Gγ and G̃γ defined in (2.52) and (2.53).

Before proving these main results, we need to prove several bounds on the func-
tion Kγ . By the definitions (2.2) and (2.14) we conclude that there exists γ0 > 0
(depending on the radius of support of the function K) such that for γ ∈ (0, γ0) and
ω ∈ {−N , . . . , N }3

K̂γ (ω) = ε3
∑

x∈T3
ε

Kγ (x)e−iπω·x = κγ ,1γ
3
∑

x∈γZ3

K(x)e−iπγ 3ω·x , (A.1)

where we used the fact thatK is compactly supported to extend the sum to all x ∈ γZ3.
Inwhat followswewill always consider γ ∈ (0, γ0). Furthermore, itwill be convenient
to view K̂γ as a functionof a continuous argument by evaluating (A.1) for allω ∈ R3. In
this way, the function K̂γ (ω) is smooth and we will use the notation ω = (ω1,ω2,ω3)

and ∂ j for the partial derivative with respect to ω j . For a multiindex k ∈ N3
0 we will

write Dk =∏3
j=1 ∂

k j
j for a mixed derivative.

Lemma A.1 For any c > 0 there exists a constant C > 0 such that

∣∣γ −6(1 − K̂γ (ω)
)
− π2|ω|2

∣∣ ≤ C1γ
3|ω|3, (A.2a)

∣∣γ −6∂ j K̂γ (ω)+ 2π2ω j
∣∣ ≤ C1γ

3|ω|2, (A.2b)

uniformly over γ ∈ (0, γ0), |ω| ≤ cγ −3 and j ∈ {1, 2, 3}.
Proof For |ω| ≤ cγ −3 a Taylor expansion and (A.1) yield

1 − K̂γ (ω) = κγ ,1γ
3
∑

x∈γZ3

K(x)
(
1 − e−iπγ 3ω·x)

= κγ ,1γ
3
∑

x∈γZ3

K(x)
(
iπγ 3ω · x + 1

2

(
πγ 3ω · x

)2)+ Errγ (ω),

(A.3)
where the error term satisfies |Errγ (ω)| ≤ κγ ,1

π3

6 γ 12|ω|3∑x∈γZ3 |x |3K(x) !
γ 9|ω|3. In the first identity in (A.3) we used the definition of the constant κγ ,1 in
(2.2). By the symmetry of the kernel K(x), we have

∑
x∈γZ3 K(x)(ω · x) = 0 and

∑
x∈γZ3 xi x jK(x) = 0 for i ̸= j . Furthermore, the sums γ 3∑

x∈γZ3 K(x)x2j con-
verge to

∫
R3 K(x)x2j dx = 2 as γ → 0 with an error O(γ 3). The last identity follows

from (2.1) and symmetry of the function K. Then from (A.3) we obtain (A.2a).
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The remaining bound (A.2b) follows in a similar manner. More precisely, using a
Taylor expansion we write

−∂ j K̂γ (ω) = κγ ,1iπγ 6
∑

x∈γZ3

x jK(x)
(
e−iπγ 3ω·x − 1

)

= κγ ,1π
2γ 9ω j

∑

x∈γZ3

x2jK(x)+ Err′
γ (ω),

for an error term satisfying |Err′
γ (ω)| ! γ 9|ω|2. Here, we have used the symmetry of

the kernel K to add the term−1 in the first equality and to remove the sums containing
the products xi x j for i ̸= j in the Taylor expansion in the second line. The bound
(A.2b) then follows similarly to (A.2a).

Lemma A.2 For any k ∈ N3
0 and m ∈ N0 there are constants C1,C2,C3 > 0 (where

only C2 and C3 depend on k, and only C3 depends on m) such that the following
estimates hold uniformly over γ ∈ (0, γ0), ω ∈

[
−N − 1

2 , N + 1
2

]3 and j ∈ {1, 2, 3}:
1. (Most useful for |ω| ! γ −3)

|K̂γ (ω)| ≤ 1, (A.4a)

|∂ j K̂γ (ω)| ≤ C1γ
3(|γ 3ω| ∧ 1

)
, (A.4b)

|Dk K̂γ (ω)| ≤ C2γ
3|k|1, (A.4c)

2. (Most useful for |ω| # γ −3)

|γ 3ω|2m
∣∣Dk K̂γ (ω)

∣∣ ≤ C3γ
3|k|1 . (A.5)

Furthermore, the value of γ0 > 0 can be chosen small enough so that

1 − K̂γ (ω) ≥ C4
(
|γ 3ω|2 ∧ 1

)
, (A.6)

uniformly over the same values of γ and ω, for some C4 > 0.

Proof We can get (A.4a) from (A.1) as |K̂γ (ω)| ≤ κγ ,1γ
3∑

x∈γZ3 K(x) = 1, where
we used the definition of the constant κγ ,1 in (2.2). Similarly, from (A.1) we get

Dk K̂γ (ω) = κγ ,1γ
3
∑

x∈γZ3

(
−iπγ 3x

)k
K(x)e−iπγ 3ω·x , (A.7)
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with the notation xk =∏3
j=1 x

k j
j . Then we can prove (A.4c) as follows

|Dk K̂γ (ω)| ! κγ ,1γ
3(|k|1+1)

∑

x∈γZ3

K(x)|x ||k|1 ! γ 3|k|1,

where we estimated the sum by an integral, which is bounded because K is bounded
and compactly supported. For |ω| ≥ γ −3, the estimate (A.4b) is a particular case of
(A.4c), and for |ω| ≤ γ −3 it follows from (A.2b).

The proof of (A.5) is more involved. If |ω| ≤ γ −3, then the bound (A.5) follows
from (A.4c), and we need to prove it for |ω| ≥ γ −3. For any function f : γZ3 → R,
we define the discrete Laplacian

$γ f (x) := γ −2
∑

y∼x

(
f (y) − f (x)

)
,

where the sum runs over y ∈ γZ3, which are nearest neighbours of x , i.e. |y− x | = 1.
For a fixed ω ∈ R3 we define the function eω : x /→ e−iπγ 3ω·x , for which we have

$γ eω(x) = fγ (ω)eω(x) with fγ (ω) := −2γ −2
3∑

j=1

(
1 − cos

(
πγ 3ω j

))
.

We note that for ω ̸= 0 we have fγ (ω) ̸= 0, and this identity allows to write (A.1) as

K̂γ (ω) =
κγ ,1γ

3

fγ (ω)
m

∑

x∈γZ3

K(x)
(
$m

γ eω

)
(x),

for any integer m ≥ 0. After a summation by parts we get

K̂γ (ω) =
κγ ,1γ

3

fγ (ω)
m

∑

x∈γZ3

(
$m

γ K
)
(x) eω(x). (A.8)

The function $m
γ K(x) converges uniformly to $mK as γ → 0, where $ is the three-

dimensional Laplace operator (recall that K is smooth). Hence, γ 3∑
x∈γZ3

(
$m

γ K
)

(x)eω(x) can be absolutely estimated by an integral of |$mK(x)|. Recalling the scaling
(2.18), one can see that there is a constantC > 0 such that |fγ (ω)−m | ≤ C(γ 3|ω|)−2m

uniformly over γ > 0 and |ω j | ≤ N + 1
2 for j ∈ {1, 2, 3}. Then from (A.8) we get

the required bound (A.5) for k = 0.
For k ̸= 0, we use (A.7) and similarly to (A.8) we get

Dk K̂γ (ω) =
κγ ,1

(
− iπγ 3)|k|1

fγ (ω)
m γ 3

∑

x∈γZ3

(
$m

γ K̃k
)
(x) eω(x),
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where K̃k(x) := xkK(x). Estimating the sum and the function fγ as before, we get
(A.5) for any k.

Let us proceed to the proof of (A.6). From (A.5), we conclude that there exists
c > 0 such that for |ω| ≥ cγ −3 we have |K̂γ (ω)| ≤ 1

2 . Hence, (A.6) holds for such
ω. Next, we consider ω such that |ω| < cγ −3 for a constant c > 0 to be fixed below.
For such ω, (A.2a) implies the existence of C such that

1 − K̂γ (ω) ≥ π2|ω|2γ 6 − C |ω|3γ 9 ≥
(
π2 − C c

)
|ω|2γ 6,

which can be bounded from below by π2|ω|2γ 6/2 if we choose c small enough.
Finally, in order to treat the case cγ −3 ≤ |ω| ≤ cγ −3, we observe that the Riemann

sums
Kγ (γ

−3ω) = κγ ,1γ
3
∑

x∈γZ3

K(x)e−iπω·x

approximate (FK)(ω) uniformly for |ω| ∈ [c, c], whereFK is the continuous Fourier
transform on R3. On the other hand, FK is the Fourier transform of a probability
measure with a density on R3, and as such, it is continuous and |(FK)(ω)| < 1 if
ω ̸= 0. In particular, |(FK)(ω)| is bounded away from 1 uniformly for |ω| ∈ [c, c].
Combining these facts, we see that for γ small enough, Kγ (ω) is bounded away from
1 uniformly in cγ −3 ≤ |ω| ≤ cγ −3.

The next lemma provides estimates on the kernelsGγ and G̃γ , defined in (2.52) and
(2.53) respectively. One way to extend the function Gγ

t off the grid is by its Fourier
transform

(FGγ
t )(ω) = exp

(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
1|ω|∞≤N

for all ω ∈ R3, where F is the Fourier transform on R3 (this formula follows from
(2.35), (2.52) and the Poisson summation formula). However, such extension is not
convenient to work with because its Fourier transform is not smooth, which in partic-
ular does not allow to get the bounds in Lemma A.3 below.

In order to define an extension of Gγ
t with a smooth Fourier transform we use the

idea of [22, Sec. 5.1]. Namely, from (2.52) and (2.34) we conclude that the function
Gγ

t solves the equation

d
dt

Gγ
t (x) = $γ G

γ
t (x), x ∈ +ε,

with the initial condition Gγ
0 (x) = δ

(ε)
x,0 (the latter is defined below (2.17) and $γ is

defined in (2.33)). Then we can write

Gγ
t (x) =

(
et$γ δ

(ε)
·,0
)
(x), x ∈ +ε,

where et$γ is the semigroupgenerated by the boundedoperator$γ , acting on the space
of bounded functions on +ε. We applied the semigroup to the function x /→ δ

(ε)
x,0. We

take a Schwartz function ϕ : R3 → R, such that ϕ(0) = 1 and ϕ(x) = 0 for all
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x ∈ Z3\{0}, and such that (Fϕ)(ω) = 0 for |ω|∞ ≥ 3
4 .
2 We note that the formula

(2.14) makes sense for all functions f from Cb(R3), which is the space of bounded
continuous functions on R3, equipped with the supremum norm. Then (2.33) allows
to view $γ as a bounded operator acting on Cb(R3). Setting ϕε(x) := ε−3ϕ(ε−1x)
we then define the extension of Gγ

t off the grid by

Gγ
t (x) :=

(
et$γ ϕε

)
(x), x ∈ R3. (A.9)

The respective extension of the function G̃γ
t is given by (2.53) for all x ∈ R3. The

advantage of such definition of the extension is that its Fourier transform is smooth.
It will be convenient to treat these functions on the space-time domain R+ × R3.

For this, we write Gγ (z) where z = (t, x) with t ∈ R+ and x ∈ R3, and we write
DkGγ (z) for the mixed derivative of order k = (k0, . . . , k3) ∈ N4

0, where the index k0
corresponds to the time variable t and the other indices ki correspond to the respective
spatial variables. We recall the parabolically rescaled quantities |k|s and ∥z∥s defined
in Sect. 1.2.

Lemma A.3 Let the constant γ0 > 0 be as in the statement of Lemma A.2, and let
|t |a := |t |1/2+a for any a > 0. Then for every r ∈ N, k ∈ N4

0 with k0 ≤ r and n ∈ N0
there is C > 0 such that

∣∣DkGγ (t, x)
∣∣ ≤ C |t |−3−|k|s+n

ε

(
∥(t, x)∥s + ε

)−n
, (A.10a)

∣∣DkG̃γ (t, x)
∣∣ ≤ C |t |−3−|k|s+n

e

(
∥(t, x)∥s + e

)−n
, (A.10b)

uniformly over (t, x) ∈ R4 with t > 0 and γ ∈ (0, γ0).

From the bounds (A.10) we can apply [22, Lem. 5.4] and get the expansion as
described in the beginning of Sect. 5. For this, we note that the bounds (A.10b) imply
that G̃γ is a Schwartz function in x , which satisfies

∣∣DkG̃γ (t, x)
∣∣ ≤ C

(
∥(t, x)∥s + e

)−3−|k|s .

Moreover, we can smoothly extend G̃γ to R4 in the same way as in [22, Sect. 5.1], so
that G̃γ (t) ≡ 0 for t < 0.

Proof (of Lemma A.3)We start with proving (A.10a). Using (2.35), the Fourier trans-
form of (A.9) equals

(FGγ
t )(ω) = (Fϕε)(ω) exp

(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
,

2 We can define ϕ by its Fourier transform Fϕ = (FD) ∗ ψ , where D(x) = ∏3
j=1

sin(πx j )
πx j

is the

Dirichlet kernel and ψ ∈ C∞(R3) is supported in the ball of radius 1
4 with center at the origin and satisfies∫

R3 ψ(x)dx = 1. Then (Fϕ)(ω) is smooth and vanishes for |ω|∞ ≥ 3
4 , because the Fourier transform of

D vanishes for |ω|∞ > 1
2 . Moreover, ϕ is Schwartz, because its Fourier transform is Schwartz. Finally, ϕ

takes the required values at the integer points, because D takes the same values.
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where (Fϕε)(ω) = (Fϕ)(εω). Then the inverse Fourier transform yields

DkGγ (t, x) =
∫

R3
Fγ
t (ω)e

2π iω·x dω (A.11)

with

Fγ
t (ω) := (Fϕ)

(
εω
)((

K̂γ (ω) − 1
)κ2

γ ,3

α

)k0(
2π iω

)k̄ exp
(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
.

(A.12)
To bound the integral, we consider two cases: |ω| ≤ γ −3 and |ω| > γ −3.

In the case |ω| ≤ γ −3, according to (A.2a) and (A.6), there exists c > 0 such that
for all γ ∈ (0, γ0) we have

|Fγ
t (ω)| !

(
|ω|2 + γ 3|ω|3

)k0 |ωk̄ | exp
(
−c|ω|2t

)
! |ω||k|s exp

(
−c|ω|2t

)
,

where we used the scaling variables (2.18) and the bound (2.32). Here, we bounded
the Fourier transform of ϕ by a constant. Restricting the domain of the integration in
(A.11) to |ω| ≤ γ −3, we estimate the integral by a constant times

∫

|ω|≤γ −3
|ω||k|s exp

(
−c|ω|2t

)
dω.

If t ≥ γ 6, then we change the variable of integration to u = √
tω and the integral

can be estimated by Ct−(3+|k|s)/2. On the other hand, if t < γ 6, then we change the
variable to u = γ 3ω and the integral gets bounded by Ce−3−|k|s (recall that e ≈ γ 3).

Now we will consider the case |ω| > γ −3. Since ϕ is Schwartz, the same is true
for its Fourier transform, and for any m ∈ N0 we have

∣∣(Fϕ)
(
εω
)∣∣ ! (1+ ε|ω|)−m .

Using then (A.5) and (A.6), we get

|Fγ
t (ω)| ! (1+ ε|ω|)−m

((
1+ |γ 3ω|−8)/α

)k0 |ωk̄ | exp
(
−ct/α

)
(A.13)

! γ −6k0(1+ ε|ω|)−m |ω||k̄|1 exp
(
−cγ −6t

)
.

Then the part of the integral (A.11), with the domain of integration restricted to |ω| >
γ −3, is estimated by a constant times

γ −6k0 exp
(
−cγ −6t

) ∫

|ω|>γ −3
(1+ ε|ω|)−m |ω||k̄|1dω ! γ −6k0ε−3−|k̄|1 exp

(
−cγ −6t

)
.

(A.14)
The integral is finite as soon as we take m > |k̄|1 + 3. If t ≤ γ 4, then this expres-
sion is bounded by Cγ −6k0ε−3−|k̄|1 ! Cε−3−|k|s (recall that ε ≈ γ −4). If t ≥ γ 4,
then we bound exp(−cγ −6t) ≤ exp(−cγ −2/2) exp(−cγ −6t/2) and the exponen-
tials can be estimated by rational functions as exp(−cγ −2/2) ! γ (3+|k̄|1)/2 and
exp(−cγ −6t/2) ! (γ −6t)−(3+|k|s)/2. Then (A.14) is bounded by Ct−(3+|k|s)/2.
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From the preceding analysis we conclude that

∣∣DkGγ (t, x)
∣∣ ≤ C

(
|t |1/2 + ε

)−3−|k|s, (A.15)

and to complete the proof of (A.10a) we need to bound this function with respect
to x . For this, we need to consider |x | ≥ t1/2 ∨ ε (the required bound (A.10b) for
|x | ≤ t1/2 ∨ ε follows from (A.15)).

For the function ex : ω /→ e2π iω·x we have $ωex (ω) = |2π i x |2ex (ω), where $ω

is the Laplace operator with respect to ω. Then the function e2π iω·x in (A.11) can be
replaced by |2π i x |−2ℓ$ℓ

ωex (ω) for any ℓ ≥ 0. Applying a repeated integration by
part we get

DkGγ (t, x) = |2π i x |−2ℓ
∫

R3
$ℓ

ωF
γ
t (ω) ex (ω) dω. (A.16)

There are no boundary terms in the integration by parts, because Fγ
t (ω) and its deriva-

tives decay at infinity. The Faà di Bruno formula allows to absolutely bound the
function inside the integral by a constant multiple of

max
|n1|1+···+|n4|1=2ℓ

∣∣∣∣ε
|n1|1Dn1(Fϕ)

(
εω
)
Dn2
((

K̂γ (ω) − 1
)κ2

γ ,3

α

)k0
(A.17)

×
(
Dn3ωk̄)Dn4 exp

(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)∣∣∣∣,

where the maximum is over n1, . . . , n4 ∈ N3
0 with n3 ≤ k̄. As before, we need to

consider two cases: |ω| ≤ γ −3 and |ω| > γ −3.
In the case |ω| ≤ γ −3 from (A.4) we conclude that

∣∣∣Dn
((

K̂γ (ω)− 1
)κ2

γ ,3

α

)∣∣∣ ! pγ ,n(ω) with pγ ,n(ω) =
{
|ω|2−|n|1 for |n|1 ≤ 2,
γ 3(|n|1−2) for |n|1 ≥ 3,

and Faà di Bruno formula yields

∣∣∣Dn
((

K̂γ (ω) − 1
)κ2

γ ,3

α

)k0 ∣∣∣

!
∣∣∣
(
K̂γ (ω) − 1

)κ2
γ ,3

α

∣∣∣
(k0−|n|1)∨0

max
r1+···+r|n|1=n

|n|1∏

i=1

∣∣∣Dri
((

K̂γ (ω) − 1
)κ2

γ ,3

α

)∣∣∣

! |ω|2(k0−|n|1)∨0 max
r1+···+r|n|1=n

|n|1∏

i=1

pγ ,ri (ω).

Combining this bound with Faà di Bruno formula and (A.6), we get

∣∣∣Dn exp
(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)∣∣∣
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! exp
(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)
max

ℓ1+···+ℓ|n|1=n

|n|1∏

i=1

∣∣∣Dℓi
(
κ2

γ ,3
(
K̂γ (ω) − 1

) t
α

)∣∣∣

! t |n|1 exp
(
−c|ω|2t

)
max

ℓ1+···+ℓ|n|1=n

|n|1∏

i=1

pγ ,ℓi (ω).

Using these bounds and |Dn1(Fϕ)
(
ω
)

! 1, the expression inside the maximum in
(A.17) is estimated by a constant times

ε|n1|1 |ω|2(k0−|n2|1)∨0+|k̄|1−|n3|1 t |n4|1Fn2,n4(ω) exp
(
−c|ω|2t

)
,

with

Fn2,n4(ω) :=

⎛

⎝ max
r1+···+r|n2 |1=n2

|n2|1∏

i=1

pγ ,ri (ω)

⎞

⎠

⎛

⎝ max
ℓ1+···+ℓ|n4|1=n4

|n4|1∏

i=1

pγ ,ℓi (ω)

⎞

⎠ .

Hence, the part of the integral (A.16), in which the integration variables is restricted
to |ω| ≤ γ −3, is bounded by a multiple of

|x |−2ℓε|n1|1 t |n4|1
∫

|ω|≤γ −3
|ω|2(k0−|n2|1)∨0+|k̄|1−|n3|1Fn2,n4(ω) exp

(
−c|ω|2t

)
dω.

If t ≥ γ 6, then we change the variable to u = t1/2ω and estimate this expression by
C |x |−2ℓtℓ−

1
2 (|k|s+3). If t < γ 6, then we change the variable to u = γ 3ω and estimate

the preceding expression by a multiple of |x |−2ℓε2ℓ−(|k|s+3).
In the case |ω| > γ −3 we use (A.6) and |Dn1(Fϕ)

(
ω
)

! (1 + |ω|)−m to bound
the function inside the maximum in (A.17) by a constant multiple of

ε|n1|1γ 3(|n2|1+|n4|1)(1+ |εω|)−m |ω||k̄|1−|n3|1 exp
(
−ct/α

) t |n4|1

αk0+|n4|1

= ε|n1|1γ 3(|n2|1−|n4|1−2k0)(1+ |εω|)−m |ω||k̄|1−|n3|1 t |n4|1 exp
(
−cγ −6t

)
.

Then the part of the integral (A.16) for |ω| > γ −3 is bounded by a multiple of

|x |−2ℓε|n1|1γ 3(|n2|1−|n4|1−2k0)t |n4|1 exp
(
−cγ −6t

) ∫

|ω|>γ −3
(1+|εω|)−m |ω||k̄|1−|n3|1dω.

This integral is finite if we takem sufficiently large. We proceed in the same way as in
(A.14). For t ≤ γ 4 this expression is bounded by |x |−2ℓγ 3(2ℓ−|k|s−3). For t ≥ γ 4 we
estimate the exponential by a rational function and bound the preceding expression
by C |x |−2ℓtℓ−

1
2 (|k|s+3).

Taking n = 2ℓ, we have just proved that for |x | ≥ |t |1/2 ∨ ε we have

∣∣DkGγ (t, x)
∣∣ ≤ C |t |−3−|k|s+n

ε |x |−n,
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which together with (A.15) gives the required bound (A.10a).
The bound (A.10b) can be proved in a similar way. More precisely, from (A.11)

we get

DkG̃γ (t, x) =
∫

R3
K̂γ (ω)F

γ
t (ω)e

2π iω·xdω.

The rest of the proof goes in the same way as before, with the only difference that now
we use the fact that K̂γ (ω) is Schwartz and for every m ≥ 0 it satisfies |Dn K̂γ (ω)| !
e|n|1(1+ e|ω|)−m . Hence, all the scalings ε should be replaced by e.

As a corollary of the previous lemma, we can obtain a bound on the periodic heat
kernel P̃γ .

Lemma A.4 In the setting of Lemma A.3 one has the following bound uniformly in
t ≥ 0:

∥P̃γ
t ∥L∞ ≤ C |t |−3

e . (A.18)

Proof From (2.52) we have P̃γ
t (x) =

∑
m∈2Z3 G̃γ

t (x + m). Using (A.10b) with any
n > 3 and estimating the sum by an integral, we get the required bound (A.18).

Appendix A.1 Decompositions of discrete kernels

Lemma B.3 in [18] allows to apply [22, Lem. 5.4] for any integer r ≥ 2 and to write
the discrete kernel as Gγ = K γ +Rγ , where

1. Rγ is compactly supported and anticipative, i.e. Rγ (t, x) = 0 for t < 0, and
∥Rγ ∥Cr is bounded uniformly in γ ∈ (0, 1].

2. K γ is anticipative and may be written as K γ = ∑M
n=0 K

γ ,n with M =
−⌊log2 ε⌋, where the functions {K γ ,n}0≤n≤M are defined on R4 and have the
following properties:

(a) the function K γ ,n(z) is supported on the set {z : ∥z∥s ≤ c2−n} for a constant
c ≥ 1 used in the supports of all functions {K γ ,n}0≤n≤M ;

(b) for some C > 0, independent of γ , one has

|DkK γ ,n(z)| ≤ C2n(3+|k|s), (A.19)

uniformly in z, k ∈ N4
0 such that |k|s ≤ r , and 0 ≤ n < M ; for n = M the

bound (A.19) holds only for k = 0 (in particular, the function K γ ,M does not
have to be differentiable);

(c) for all 0 ≤ n < M and k ∈ N4
0, such that |k|s ≤ r , one has

∫

Dε

zk K γ ,n(z) dz = 0;

for n = M this identity holds only for k = 0.

Throughout the article we use interchangeably the notationsK γ (z) andK γ
t (x) (and

respectively for other kernels) for a point z = (t, x) with t ∈ R and x ∈ R3.
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In the same way we can write G̃γ = K̃ γ +R̃ γ , where the last two functions have
the same properties as above, with the only difference that K̃ γ is decomposed into a
sum of M̃ = −⌊log2 e⌋ functions as K̃ γ =∑M̃

n=0 K̃
γ ,n .

This decomposition in particular allows to bound function convolvedwith a discrete
heat kernel.

Lemma A.5 For a function f : T3
ε → R and for η < 0 the following bound holds

uniformly in γ ∈ (0, 1) and locally uniformly in t ≥ 0:

∥Pγ
t ∗ε f ∥L∞ ≤ C |t |ηε∥ f ∥(e)Cη .

Proof Using (2.52) we write Pγ
t ∗ε f = Gγ

t ∗ε f , where f is extended periodically
on the right-hand side. Using the decomposition of Gγ as in the beginning of this
section, we get Gγ

t ∗ε f = ∑M
n=0 K

γ ,n
t ∗ε f +Rγ

t ∗ε f . Since K γ ,n is bounded in
a ball of radius c2−n , for a fixed t ≥ 0 we have K γ ,n

t ≡ 0 if |t |1/2 > c2−n . Then the
preceding sum can be restricted to 0 ≤ n ≤ M satisfying |t |1/2 ≤ c2−n . Furthermore,
the definition (2.22) yields

∥K γ ,n
t ∗ε f ∥L∞ ! 2−ηn∥ f ∥(e)Cη , ∥Rγ

t ∗ε f ∥L∞ ! ∥ f ∥(e)Cη .

Then for η < 0 we have

∥Gγ
t ∗ε f ∥L∞ !

∑

0≤n≤M :
|t |1/2≤c2−n

2−ηn∥ f ∥(e)Cη ! |t |ηe ∥ f ∥(e)Cη ,

as required.

Using the function ϱγ ,δ defined in (7.2), we introduce new kernels Gγ ,δ :=
Gγ ⋆εϱγ ,δ and G̃γ ,δ := G̃γ ⋆εϱγ ,δ . Then the decompositions of the kernels yield
Gγ ,δ = K γ ,δ +Rγ ,δ and G̃γ ,δ = K̃ γ ,δ + R̃ γ ,δ , where K γ ,δ =∑M

n=0 K
γ ,δ,n and

K̃ γ ,δ = ∑M̃
n=0 K̃

γ ,δ,n , and all the functions have the same properties as described
above. Moreover, from the definition (7.2) we have the bounds

∣∣Dk(K γ ,δ,n − K γ ,n)(z)
∣∣ ≤ Cδθ2n(3+θ+|k|s),

∣∣Dk(K̃ γ ,δ,n − K̃ γ ,n)(z)
∣∣ ≤ Cδθ2n(3+θ+|k|s),

for any θ ∈ (0, 1], as well as ∥Rγ ,δ −Rγ ∥Cr−1 ≤ Cδθ and ∥R̃ γ ,δ −R̃ γ ∥Cr−1 ≤ Cδθ .
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