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Abstract
We consider multiple stochastic integrals with respect to càdlàg martingales, which
approximate a cylindrical Wiener process. We define a chaos expansion, analogous
to the case of multiple Wiener stochastic integrals, for these integrals and use it
to show moment bounds. Key tools include an iteration of the Burkholder–Davis–
Gundy inequality and a multi-scale decomposition similar to the one developed in
Hairer and Quastel (Forum Math Pi 6:e3, 2018). Our method can be combined with
the recently developed discretisation framework for regularity structures (Hairer and
Matetski in Ann Probab 46(3):1651–1709, 2018, Erhard and Hairer in Ann Inst Henri
Poincaré Probab Stat 55(4):2209–2248, 2019) to prove convergence of interacting
particle systems to singular stochastic PDEs. A companion article (Grazieschiet al.
in The dynamical Ising–Kac model in 3D converges to !4

3, 2023. arXiv:2303.10242)
applies the results of this paper to prove convergence of a rescaled Glauber dynamics
for the three-dimensional Ising–Kac model near criticality to the !4

3 dynamics on a
torus.
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1 Introduction

We consider a class of càdlàg martingales which approximate a cylindrical Wiener
process over a d-dimensional spatial domain, i.e. integrated-in-time space-time white
noise. We develop a theory of iterated integrals with respect to these martingales and
derive moment bounds.

Our results serve as a technical tool for proving the convergence of Interacting Par-
ticle Systems (IPSs) to solutions of non-linear stochastic partial differential equations
(SPDEs). The limiting SPDEs are usually of the form

Lu = F(u,∇u)+ σ (u)ξ, (1.1)

where L is a linear parabolic operator (e.g. L = ∂t − %), ξ is an irregular random
noise (e.g. a Gaussian white noise) and F and σ are local non-linearities. There are by
now a number of convergence results of this type. These include 1 + 1-dimensional
surface growth models rescaling to the KPZ equation

∂t h − ∂2x h = −(∂xh)2 + ξ, (1.2)

e.g. [3, 8, 9, 12, 19], long range (Kac) spin models rescaling to ϕ2n dynamics

∂tϕ −%ϕ = −ϕ2n−1 + ξ, (1.3)

in one [5, 16] and two dimensions [20, 32, 40, 42] as well as diffusions in random
environment rescaling to the parabolic Andersonmodel / multiplicative stochastic heat
equation

∂t u −%u = uξ, (1.4)

[14, 39]. Ultimately, the motivating goal of the theory developed in this article is to
show the convergence of the Ising–Kacmodel to the ϕ4 dynamics in three dimensions,
and this is accomplished in our companion article [21].

A common feature of all of these limiting results is that particle systems are simul-
taneously rescaled (i.e. observed on large scales) while a certain parameter is changed.
The specific nature of this parameter depends on themodel under consideration; exam-
ples are the strength of the weak asymmetry in exclusion processes approximating the
KPZ equation [3], or the range of the interaction in Kac-models [20]. The typical
strategy is to tune down the effect of the “non-linearity” as one moves to larger scales.

This procedure is necessary to obtain convergence to one of the SPDEs (1.2), (1.3),
(1.4) and reflects the fact that the SPDEs are themselves not scale-invariant. The fact
that a relatively small class of SPDEs arises as scaling limit of this type for a relatively
large number of particle systems sharing just a few key characteristics is sometimes
referred to as weak universality.

A key technical challenge in deriving such scaling results is the low regularity of
the solutions of the limiting Eqs. (1.2), (1.3), (1.4): the noise term ξ is typically very
irregular, leading to irregular solutions which in turn lead to difficulties in dealing
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Martingale-driven integrals and singular SPDEs 1065

with the non-linearities. This problem does not appear in more common Gaussian
fluctuation limits [35]—while the solutions of the limiting equations there are typically
also irregular, this is less problematic due to the absence of a non-linear term. Good
theories for non-linear SPDEs and their renormalisation have only been developed
over the last years, including Hairer’s theory of regularity structures [26], the theory
of paracontrolled distributions put forward by Gubinelli, Imkeller and Perkowski [17]
and more recently theories of weak solutions for specific equations, in particular the
KPZ equation [18, 19, 23, 24].

The theory of regularity structures and the theory of paracontrolled distributions
both build on a two-step approach: first, the construction of approximate solutions
building a local expansion (themodel in the jargon of [26])which relies on probabilistic
tools, in particular Gaussian analysis and explicit calculations of covariance functions,
and second, analytic techniques (in particular regularity estimates and commutator
estimates) for dealing with the remainder. The weak solution theories developed in
[18, 19, 23, 24] use a very different approach and make explicit use of the invariant
Gaussian measure to give a direct characterisation of the generator of the dynamics.

In principle, both approaches can be used to study scaling limits. In situations,
where a simple invariant measure for an interacting particle system is given, the weak
solution approach has proved highly efficient, see e.g. [2, 19, 25, 33]. The approach
which consists of mimicking the theory of regularity structure / paracontrolled distri-
butions has also been implemented in a few examples, in particular [14, 22, 39, 40].
Still, implementing this programme for “interesting” limiting equations remains a
challenging enterprise: for the second, deterministic, step of the analysis a systematic
theory has been developed in [13, 29], but the first probabilistic part remains chal-
lenging, because the number of terms in this perturbative expansion (the “trees”) can
become prohibitively large when looking at interesting equations. For the continuum
there is by now a very systematic treatment for the trees (see [6, 30, 31, 37]). The aim
of this paper is to develop a—at least somewhat—systematic approach to bound these
trees for approximations of white noise. A particular focus is on the jump martingales
that typically arise in the analysis of IPSs.

On a technical level: the noise approximations we deal with are of bounded vari-
ation, but discontinuous because of the jumps. Therefore, the non-linear functionals
that make up the model can rigorously be written in terms of integrals with respect to
productmeasure in the underlying noise.We then decompose these integrals according
to “diagonals” or “contractions”. This is in the spirit of the Wiener chaos decomposi-
tion, however many more terms than in the Gaussian case arise, as in the latter only
diagonals where precisely two coordinates coincide, make a non-vanishing contri-
bution. In our noise approximations, many more “diagonals” appear, and we aim to
show that their impact vanishes as space-time white noise is approached. Our main
technical tool is an iteration of a Burkholder–Davis–Gundy (BDG) type inequality.
For our purpose, the most convenient form is in terms of the predictable quadratic
variation with an error term that depends on the size of jumps, as was used previously
in [40, Lemma 4.1]. The advantage is that under our assumptions (which are motivated
by the analysis of the Ising–Kac model [21]), an explicit and optimal bound on the
predictable quadratic variation are available. The error term does not matter too much
in the Ising–Kac application, because the size of individual jumps is suppressed by the
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1066 P. Grazieschi et al.

smoothing from the Kac-potential. Another key assumption we need to make, is that
themagnitude of the jumps of themartingales is fixed by a deterministic constant. This
allows to rewrite contractions of an odd number of variables in terms of a martingale
and ultimately permits to prove that in the Kac-Ising application these contractions
vanish in the limit, even though they are integrated against a very singular kernel.

1.1 Structure of the article

In Sect. 2 we define multiple stochastic integrals with respect to càdlàg square inte-
grable martingales. In Sect. 3.1 we derive moment bounds on stochastic integrals with
respect to only one variable, while moment bounds on multiple integrals are obtained
in Sect. 3.2. Section3.2.1 is devoted to renormalised stochastic integrals and their
moment bounds. In Sect. 4 we analyse stochastic integrals with kernels given by gen-
eralised convolutions, which are typical objects in the theory of regularity structures.
As an example, we apply the result in Sect. 5 to a discrete approximation of the !4

3
equation.

1.2 Notation

We use the standard notation N = {1, 2, 3, . . .} for the set of natural numbers, N0
for N ∪ {0} and the set R+ := [0,∞) for the time variables. For n ∈ N we define
!n" := {1, . . . , n}. We use 1A for the indicator function of the set A.

For'0 being either (R/Z)d orRd weuse the standard notationD ′('0) for the space
of distributions on'0. For n ≥ 0, the spaceC n('0) contains all n-times continuously
differentiable functions on '0, and we write C ('0) for this space when n = 0. The
Skorokhod space of càdlàg functions on [0, T ] with values in D ′('0) is denoted by
D([0, T ],D ′('0)).

Given a random variable X and some p ≥ 1, we use the following shorthand
notation for the stochastic L p norm

Ep X := E
[
|X |p

]1/p
. (1.5)

In estimates we often use “!”, which means that the bound “≤” holds up to a
constantwhich is independent of the quantities relevant in our statements,whichwill be
always clear from the context. If wewant to indicate dependence of the proportionality
constant on some parameters α, β, . . ., we write “!α,β,...”.

Finally, let 'ε = (εZ/Z)d be a discrete torus with mesh size ε > 0. For T > 0,
p ≥ 1 and for a function F : [0, T ]×'ε → R, we define

∥F∥L p
ε
:=
(

εd
∑

x∈'ε

∫ T

0
|F(r , x)|pdr

) 1
p

, (1.6)
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Martingale-driven integrals and singular SPDEs 1067

that is, we take the L p norm in time and the l p norm in space with a weight εd on
the points of the lattice. This and several other norms in the article depend on the
parameter T , but we omit this dependence from our notation.

2 Integrals with respect to càdlàgmartingales

2.1 Properties of càdlàgmartingales

Following [34, Ch. I.4], we recall some properties of martingales which are used in
the article. Let (Mt )t≥0 and (Nt )t≥0 be two càdlàg square-integrable martingales on
the same filtered probability space. Their predictable quadratic covariation ⟨M, N ⟩t
is the unique adapted process with bounded total variation, such that Mt Nt −⟨M, N ⟩t
is a martingale. The quadratic covariation [M, N ]t is defined by

[M, N ]t := Mt Nt − M0N0 −
∫ t

0
Ms−dNs −

∫ t

0
Ns−dMs, (2.1)

where Ms− := limr↑s Mr is the left limit of M at time s. Another way to define these
quadratic covariations is the following: if 0 = t0 ≤ · · · ≤ tn = t is a partition with
diameter maxi (ti+1 − ti ) tending to zero as n → ∞, then [M, N ]t is equal to the
limit in probability of the sums

∑n−1
i=0 (Mti+1 − Mti )(Nti+1 − Nti ) as n → ∞ (see

[34, Thm. I.4.47]), and ⟨M, N ⟩t is the probability limit of the sums
∑n−1

i=0 E[(Mti+1 −
Mti )(Nti+1 − Nti )|Fti ], where (Ft )t≥0 is the underlying filtration [34, Prop. I.4.50].
The difference of the two bracket processes [M, N ]t − ⟨M, N ⟩t is always a càdlàg
martingale [34, Prop. I.4.50]. In the case M = N , it will be convenient to use the
shorthands [M]t = [M,M]t and ⟨M⟩t = ⟨M,M⟩t .

Wewill use theBurkholder–Davis–Gundy inequality in the following form,which is
obtained by approximating M by discrete-time martingales and applying the discrete-
time Burkholder–Davis–Gundy inequality [28].

Proposition 2.1 Let (Mt )t∈[0,T ] be a càdlàg square integrable martingale. Then, for
any p ≥ 1 there exists a constant C > 0 depending on p such that

E
[

sup
t∈[0,T ]

|Mt |p
] 1

p

≤ C
(
E
[
⟨M⟩p/2t

] 1
p + E

[
sup

t∈[0,T ]
|%t M |p

] 1
p
)
, (2.2)

where %t M := Mt − Mt− is a jump at time t.

2.2 Assumptions onmartingales

Let d ∈ N and let '0 be a d-dimensional torus (R/Z)d . For ε > 0, let 'ε be a
discretisation of '0 with mesh size ε, i.e. 'ε is a d-dimensional discrete torus (εZ/
Z)d (in this case we need ε−1 to be integer). The moment bounds for stochastic
integrals, which we prove in the following sections, depend on the Lebesgue measure
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1068 P. Grazieschi et al.

of the domain '0, which is bounded. LetDε := R+×'ε be a discretised space-time
domain, and letDε,t := [0, t)×'ε be the space-time domain with time horizon t > 0.

For a function uε on the domainDε, we introduce its natural extensions to the space
of distributions

(ιεuε)(ϕ) :=
∑

x∈'ε

εd
∫

R+
uε(t, x)ϕ(t, x)dt, (ιεuε)(t,ψ) :=

∑

x∈'ε

εduε(t, x)ψ(x),

(2.3)

where ϕ : R+ × '0 → R and ψ : '0 → R are smooth compactly supported
functions.

Let (-,F , (Ft )t≥0,P) be a filtered probability space, which satisfies the “usual
conditions” (i.e. completeness and right-continuity [34, Def. I.1.3]). We then intro-
duce a family of càdlàg martingales (Mε(t, x))t≥0, indexed by points x ∈ 'ε. Let
Mε(t−, x) = limδ→0+Mε(t − δ, x) be the left-limit of Mε(x) at time t and let
%tMε(x) := Mε(t, x)−Mε(t−, x) denote the jump at time t . We make the following
assumption on these martingales.

Assumption 1 For ε > 0, we assume that (Mε(t, x))t≥0 are càdlàg square-integrable
martingales with the following properties.

1. The predictable quadratic covariation
〈
Mε(x),Mε(y)

〉
t vanishes whenever x ̸= y,

and

〈
Mε(x)

〉
t = ε−d

∫ t

0
Cε(s, x)ds, (2.4)

where (s, x) 0→ Cε(s, x) is a progressively measurable stochastic process satisfy-
ing |Cε(s, x)| ! 1 a.s. uniformly in s and x . The proportionality constant in this
bound is non-random.

2. Two martingales almost surely never jump simultaneously, i.e. for any T > 0

P
(
%tMε(x)%tMε(y) = 0, ∀x ̸= y, ∀t ∈ [0, T ]

)
= 1.

3. There exist k > − d
2 and a non-random value c > 0 such that for all x ∈ 'ε and

t ≥ 0 the following holds: if %tMε(x) ̸= 0, then |%tMε(x)| = cεk a.s.
4. The martingaleMε(s, x) follows a dynamics which can be expressed in the form

Mε(t, x) = Jε(t, x)− ε−k−d
∫ t

0
Cε(s, x)ds, (2.5)

where t 0→ Jε(t, x) is a pure jump process (i.e. Jε(t, x) =
∑

0≤s≤t %sMε(x)) and
where t 0→ Cε(t, x) is a progressively measurable process such that |Cε(t, x)| ! 1
a.s. uniformly in x and t . The proportionality constant in the last estimate is non-
random.
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Martingale-driven integrals and singular SPDEs 1069

Remark 2.2 Assumption 1(1.) implies that in the caseCε(s, x) = 1 the quadratic vari-
ation of the martingales approximates the quadratic variation of a cylindrical Wiener
process, see also the following Lemma 2.6. Assumption 1(2.) is satisfied in many
applications, e.g. when jumps are sub-sampled from independent Poisson processes.
Assumption 1(3.) implies that the size of an individual jump is smaller than the size
of Mε(t, x) for bounded t , which is of order ε−d/2 by Assumption 1(1.). We show
in Lemma 2.4 below that Assumptions 1(1.) and 1(3.) combined imply that jumps
happen with frequency εd+2k.

We will use the following martingales (see Sect. 2.1)

Mε(t, x) := ε−k
([
Mε(x)

]
t −
〈
Mε(x)

〉
t

)
. (2.6)

The multiplier ε−k in (2.6) is chosen to have the following.

Lemma 2.3 The martingales Mε(t, x) satisfy Assumption 1 with the same value of k
(but with the constant c2 in place of c), with Cε replaced by c2Cε in (2.4) and with Cε

replaced by Cε in (2.5).

Proof Assumptions 1(1.) and (4.) yield [Mε(x)]t =
∑

0≤s≤t (%sMε(x))2 and

Mε(t, x) = ε−k
∑

0≤s≤t
(%sMε(x))2 − ε−k−d

∫ t

0
Cε(s, x)ds.

This identity gives Assumptions 1(4.) forMε with Cε replaced byCε. The second term
is a function of finite variation with respect to the variable t , and it does not contribute
to the predictable quadratic covariation. Then, using Assumptions 1(3.), we get

[Mε(x)]t = ε−2k
∑

0≤s≤t
(%sMε(x))4 = c2

∑

0≤s≤t
(%sMε(x))2 = c2[Mε(x)]t

almost surely. Similarly, we get [Mε(x),Mε(y)]t = 0 almost surely for x ̸= y. Since
[Mε(x)]t − ⟨Mε(x)⟩t is a martingale, predictable quadratic variation ofMε(x) has to
be c2⟨Mε(x)⟩t , which yields Assumptions 1(1.) forMε with Cε replaced by c2Cε.

The rest of Assumptions 1 for Mε follows readily from these identities and prop-
erties of the martingales Mε. ⊓⊔

For x ∈ 'ε and for a bounded set A ⊆ R+, we define

nε
A(x) := #{t ∈ A : %tMε(x) ̸= 0} (2.7)

to be the number of jumps of the martingale Mε(x) in A. We are going to show that
Assumption 1 implies moment bounds for the number of jumps.

Lemma 2.4 For any [a, b] ⊆ R+ and any p ≥ 1 the number of jumps satisfies

sup
ε∈(0,1]

sup
x∈'ε

Ep|nε
[εd+2ka,εd+2kb](x)| <∞, (2.8)
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1070 P. Grazieschi et al.

locally uniformly in a, b.

Proof Assumptions 1(3.) and (4.) yield [Mε(x)]t = ∑
0≤s≤t (%sMε(x))2 =

c2ε2knε
[0,t](x). Then for any p ≥ 1 we have Ep|nε

[0,t](x)| = c−2ε−2kEp[Mε(x)]t .
Using the martingales (2.6) and applyingMinkowski’s inequality, we get furthermore

Ep|nε
[0,t](x)| ≤ c−2ε−2kEp⟨Mε(x)⟩t + c−2ε−kEp|Mε(t, x)|.

The first term is bounded using Assumptions 1(1.) as ε−2kEp⟨Mε(x)⟩t ! ε−d−2kt ,
while to bound the second term we apply the Burkholder–Davis–Gundy inequality
(2.2):

ε−kEp|Mε(t, x)| ! ε−kEp⟨Mε(x)⟩1/2t + ε−kEp sup
s∈[0,t]

|%sMε(x)|,

where the proportionality constant depends only on p. Lemma 2.3 allows to bound
the preceding expression by a constant multiple of ε−k−d/2t1/2 + 1. Hence, we have

Ep|nε
[0,t](x)| ! ε−d−2kt + ε−k−d/2t1/2 + 1.

Since the proportionality constant in this bound is independent of t , we can replace t
by εd+2kt to get Ep|nε

[0,εd+2kt](x)| ! t + 1 from which the required bound follows. ⊓⊔

Lemma 2.5 Let ∥ • ∥TV([0,T ]) be the total variation norm on the interval [0, T ]. Then

sup
ε∈(0,1]

sup
x∈'ε

εk+d Ep∥Mε(x)∥TV([0,T ]) <∞

for any T > 0 and p ≥ 1.

Proof Assumption 1(4.) yields

∥Mε(x)∥TV([0,T ]) ≤
∑

0≤s≤T
|%sMε(x)| + ε−k−d

∫ T

0
|Cε(s, x)|ds

! εknε
[0,T ](x)+ T ε−k−d

a.s. uniformly in x , where we used the properties |%sMε(x)| ! εk and |Cε(s, x)| ! 1.
Then the required bound follows from Lemma 2.4. ⊓⊔

The next result shows that martingales satisfying Assumption 1 weakly converge
to a cylindrical Wiener process [11].

Lemma 2.6 Let martingales (Mε(t, x))t≥0, with x ∈ 'ε and either 'ε = (εZ/Z)d or
'ε = εZd , satisfyAssumption1 (except possiblyAssumption1(4.)) and letMε(0, x) =
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0. For every continuous, compactly supported function ϕ : '0 → R, for every fixed
t > 0 and some constant σ > 0, let the following limit hold in distribution

lim
ε→0

∫ t

0
(ιεCε)(s,ϕ)ds = σ t

∫

'0

ϕ(x)dx . (2.9)

Then the martingales (Mε(t, x))t≥0 weakly converge in the Skorokhod topology
D(R+,D ′('0)) to a cylindrical Wiener process on L2('0) with variance σ .

Proof Let us take a continuous and compactly supported function ϕ and consider the
martingales t 0→ (ιεMε)(t,ϕ). To prove tightness of the laws of these martingales, we
will use a version of the Aldous’ criterion [4, Corollary 16.11] (see [1] for the original
result).

By Assumption 1(2.),(3.), for any T > 0, the jumps of this martingale can be
a.s. bounded by sup0≤t≤T |%t (ιεMε)(ϕ)| ! εd+k∥ϕ∥L∞ , which vanishes as ε → 0.
Furthermore, for fixed t ≥ 0 the process δ 0→Mε(t+ δ, x)−Mε(t, x) is a martingale
with respect to the filtration (Ft+δ)δ≥0 with the predictable quadratic covariation
ε−d

∫ t+δ
t Cε(s, x)ds. Hence, for any stopping time τ ∈ [0, T ] and for any δ ∈ (0, 1]

we apply the Burkholder–Davis–Gundy inequality (2.2) to get

E|(ιεMε)(τ + δ,ϕ)− (ιεMε)(τ,ϕ)|
≤ E

[
sup

0≤t≤T
E
[
|(ιεMε)(t + δ,ϕ)− (ιεMε)(t,ϕ)|

∣∣Ft
]]

! E
[
sup

0≤t≤T
E
[∫ t+δ

t
(ιεCε)(s,ϕ2)ds

∣∣∣Ft

] 1
2
]
+ E

[
sup

0≤t≤T+δ
E
[
|%t (ιεMε)(ϕ)|

∣∣Ft
]]
.

Using Assumption 1(1.), the first term is bounded by a constant proportional to δ1/2,
while the second term is bounded by a constant proportional to εd+k. Hence, for any
α > 0 the Markov inequality yields

P
(
|(ιεMε)(τ + δ,ϕ)− (ιεMε)(τ,ϕ)| ≥ α

)
≤ C

1
α
(δ1/2 + εd+k),

and the assumptions of [4, Corollary 16.11] are satisfied. This gives tightness of the
stochastic processes t 0→ (ιεMε)(t,ϕ) in D([0, T ],R), and moreover every limit-
ing point is in C ([0, T ],R). From [34, Corollary IX.1.19] we conclude that every
limiting point is a martingale. Finally, [38] yields tightness of t 0→ ιεMε(t) in
D([0, T ],D ′('0)). Convergence (2.9) and Assumption 1(1.) imply the limit in dis-
tribution

lim
ε→0

⟨(ιεMε)(ϕ)⟩t = σ t∥ϕ∥2L2 ,

combining which with the Lévy characterization theorem we conclude that the limit
of Mε in the Skorokhod topology D([0, T ],D ′('0)) is a cylindrical Wiener process
with variance σ . ⊓⊔
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2.3 Iterated integrals with respect to martingales

Let Mε be the random measure (recall that the paths of Mε are almost surely of
bounded variation) over Dε such that, for any F : Dε → R which is continuous in
the time variable,

∫

Dε

F(z) dMε(z) =
∑

x∈'ε

εd
∫ ∞

s=0
F(s, x) dMε(s, x). (2.10)

Atoms of Mε correspond to jumps of the martingales; in fact, by Assumption 1,
the magnitude of the jumps of the martingales is deterministic in absolute value and
equal to cεk; as such, given that different martingales never jump simultaneously, the
absolute value of atoms of Mε is always equal to cεd+k and this quantity—see again
Assumption 1(3.)—goes to zero as ε → 0.

Let n ∈ N and letMn
ε be the product measure on Dn

ε . We want to analyse integrals
of the form

∫

Dn
ε

F dMn
ε :=

∫

Dn
ε

F(z1, . . . , zn)
n∏

i=1

dMε(zi ). (2.11)

Here and throughout this section F : Dn
ε → R is a function of n space-time variables,

which is continuous in all time variables.

2.3.1 Contractions and orderings

The following is motivated by the analysis of n-fold iterated integrals against space-
time white noise, which are conventionally defined as limits of Riemann sums that cut
out diagonals (see e.g. [41, Section 1.1.2], [36, Section 9], or [10, Appendix A]): we
call a contraction on !n" any equivalence relation on !n", and its equivalent classes
are called components. We use the symbol C(n) to denote the set of contractions and
the symbol Cm(n) to denote contractions on !n" with m components. For a, b ∈ !n"
and γ ∈ C(n), we use the notation a ∼γ b to indicate that a and b belong to the same
component, and we denote by [a]γ the component containing a.

For γ ∈ C(n) we define

D̃γ :=
{
(z1, . . . , zn) ∈ Dn

ε : zi = z j if and only if i ∼γ j
}
.

The sets D̃γ form a partition of Dn
ε = ⊔γ∈C(n) D̃γ , so that we can write the integral

in (2.11) as
∫

Dn
ε

F dMn
ε =

∑

γ∈C(n)

∫

D̃γ

F dMn
ε . (2.12)

The next lemma shows that under the measure Mn
ε we can disregard all the points

in Dn
ε which have different space components but the same time components. To this
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end, for i ̸= j ∈ !n" and for T > 0 we define

Ci, j (T ) :=
{
(z1, . . . , zn) ∈ Dn

ε : zi = (si , xi ), z j = (s j , x j ) with si = s j ∈ [0, T ), xi ̸= x j
}
,

as well as

C :=
⋃

T∈N

⋃

i ̸= j∈!n"
Ci, j (T ).

Lemma 2.7 Let n ∈ N, n ≥ 2. Then Mn
ε (C) = 0 almost surely.

Proof It suffices to show that for all T > 0 and all i ̸= j ∈ !n"wehaveMn
ε (Ci, j (T )) =

0. We have

Mn
ε

(
Ci, j (T )

)
= M2

ε

({(
(s, x1), (s, x2)

)
: x1 ̸= x2 and s ∈ [0, T )

})
Mn−2

ε

(
Dn−2

ε,T

)
.

ThequantityMn−2
ε

(
Dn−2

ε,T

)
is almost surelyfinite.Recall that themeasureMn

ε is defined
in terms of the martingales Mε, see (2.10), and that the martingales Mε are given by
a sum of a jump part and an absolutely continuous part, see Assumption 1(4.). The
absolutely continuous part does not contribute to the diagonal considered here, and
we get

M2
ε

({(
(s, x1), (s, x2)

)
: x1 ̸= x2 and s ∈ [0, T )

})

≤
∑

x1,x2∈'ε
x1 ̸=x2

ε2d
∑

0≤s<T

∣∣%sMε(x1)%sMε(x2)
∣∣.

By Assumption 1(2.) the last expression is 0 almost surely. ⊓⊔

Combining (2.12) with Lemma 2.7, we obtain

∫

Dn
ε

F dMn
ε =

∑

γ∈C(n)

∫

Dγ

F dMn
ε , (2.13)

where Dγ := D̃γ \ C.
Lemma 2.7 ensures that we can decompose the integral further according to the

order between the different components with respect to the time argument. For a given
γ ∈ Cm(n), we denote by 1γ the set of bijections from !m" to the components of
γ . We interpret σ ∈ 1γ as an ordering of the components and write [i]γ ≺σ [ j]γ
if σ−1([i]γ ) < σ−1([ j]γ ). Given an ordering σ ∈ 1γ over the components of a
contraction γ ∈ C(n), we define the sets

Dγ ,σ :=
{
((s1, x1), . . . , (sn, xn)) ∈ Dγ : si < s j whenever [i]γ ≺σ [ j]γ

}
.
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Now (2.13) becomes
∫

Dn
ε

F dMn
ε =

∑

γ∈C(n)

∑

σ∈1γ

∫

Dγ ,σ

F dMn
ε . (2.14)

2.3.2 A recursive representation

We introduce the notation

Iε
γ ,σ F :=

∫

Dγ ,σ

F dMn
ε , (2.15)

which allows to write (2.14) as
∫

Dn
ε

F dMn
ε =

∑

γ∈C(n)

∑

σ∈1γ

Iε
γ ,σ F . (2.16)

We will call this expression a chaos expansion by analogy with the Wiener chaos
expansion for multiple Wiener integrals. Usually, we will work with stochastic inte-
grals on a finite time interval [0, t], in which case the preceding two identities become

(Iε
γ ,σ F)t :=

∫

Dγ ,σ∩Dn
ε,t

F dMn
ε (2.17)

and
∫

Dn
ε∩Dn

ε,t

F dMn
ε =

∑

γ∈C(n)

∑

σ∈1γ

(Iε
γ ,σ F)t .

The aim of the next sections is to derive an estimate on moments of (Iε
γ ,σ F)t and this

will be done recursively. To this end we introduce some more notation: first, for given
γ ∈ Cm(n) and σ ∈ 1γ we define the function Fγ ,σ : Dm

ε → R by

Fγ ,σ
(
z1, . . . , zm) := F(z̄1, . . . , z̄n), (2.18)

where z̄ = (z̄1, . . . , z̄n) ∈ Dn
ε is defined by

z̄i = z j ⇐⇒ i is a member of the j-th equivalence class according to σ.

Furthermore, for any n we define the measure Mn
ε,diag on Dε as

Mn
ε,diag = ı∗Mn

ε⌊Dn
ε,diag

, (2.19)

where Dn
ε,diag denotes the full diagonal Dn

ε,diag := {(z1, z2, . . . , zn) ∈ Dn
ε : z1 =

z2 = · · · = zn}, Mn
ε⌊Dn

ε,diag
is the restriction of the product measure Mn

ε to Dn
ε,diag
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and ı∗ denotes the image measure under the identification ı : Dn
ε,diag → Dε given

by ı(z, z, . . . , z) = z. With this notations in place, the following recursive formula
follows immediately.

Lemma 2.8 For any F ∈ Dn
ε → R which is continuous in all time variables, for any

contraction γ ∈ Cm(n) and any ordering σ ∈ 1γ we have

(
Iε

γ ,σ F
)
t =

∫

sm<t

∫

sm−1<sm
· · ·

∫

s1<s2
Fγ ,σ (z1, . . . , zm) dM

|γσ (1)|
ε,diag (z1) · · · dM

|γσ (m)|
ε,diag (zm).

(2.20)

The subscript sm < t in the first integral of (2.20) is used as a shorthand for {zm =
(sm, xm) ∈ Dε : sm < t}, and similarly the subscripts si < si+1 mean that the
corresponding integrals are taken over {zi = (si , xi ) ∈ Dε : si < si+1}.

2.4 Analysis of themeasure on the diagonals

We analyse further the measuresMn
ε,diag defined in (2.19). By definition, we have for

F : Dε → R
∫

Dε

F dMn
ε,diag =

∫

Dn
ε,diag

F(z1) dMn
ε (z1, z2, . . . , zn).

In this formula we may allow F to be randomwhich does not affect our computations.
For n ≥ 2 Assumption 1(4.) implies that that only the jump parts of the martingales

produce non-trivial contributions. We get that

∫

s<t
F(s, x) dMn

ε,diag(s, x) =
∑

x∈'ε

εnd
∑

0≤s<t

F(s, x)
(
%sMε(x)

)n (2.21)

In the case n = 2 we use the bracket processes of the martingales (see Sect. 2.1) to
write (2.21) as
∫

s<t
F(s, x) dM2

ε,diag(s, x) =
∑

x∈'ε

ε2d
∫

s<t
F(s, x) d[Mε(x)]s

=
∑

x∈'ε

ε2d
∫

s<t
F(s, x) d⟨Mε(x)⟩s

+
∑

x∈'ε

ε2d
∫

s<t
F(s, x) d

(
[Mε(x)]s − ⟨Mε(x)⟩s

)

=
∑

x∈'ε

εd
∫

s<t
F(s, x)Cε(s, x) ds

+
∑

x∈'ε

ε2d+k
∫

s<t
F(s, x) dMε(s, x), (2.22)
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where in the last equality we have used Assumption 1(1.) in the first term and the
definition of the martingales (2.6) in the second one.

To bound (2.21) for n ≥ 3 we make crucial use of the Assumption 1(3.) that
guarantees that the jumps |%tM(x)| are of fixed size cεk. Then for n odd we get

∫

s<t
F(s, x) dMn

ε,diag(s, x) =
∑

x∈'ε

εnd
∑

0≤s<t

F(s, x)(cεk)n−1%sMε(x)

= cn−1ε(d+k)(n−1) ∑

x∈'ε

εd
∫

0≤s<t
F(s, x) dMε(s, x)

− cn−1ε(d+k)(n−2) ∑

x∈'ε

εd
∫

0≤s<t
F(s, x)Cε(s, x) ds,

(2.23)

where in the last identity we made use of Assumption 1(4.). Similarly, when n is even
we get

∫

s<t
F(s, x) dMn

ε,diag(s, x) = (cεk)n−2
∑

x∈'ε

εnd
∑

0≤s<t

F(s, x) d[Mε(x)]s

= cn−2ε(d+k)(n−1) ∑

x∈'ε

εd
∫

0≤s<t
F(s, x) dMε(s, x)

+ cn−2ε(d+k)(n−2) ∑

x∈'ε

εd
∫

0≤s<t
F(s, x)Cε(s, x) ds,

(2.24)

where we made use of the martingale (2.6) and Assumption 1(1.). Remarkably, the
equations (2.23) and (2.24) are of exactly the same structure and consequently, even
and odd contractions can be bounded in the same way.

3 Moment bounds for iterated integrals

We aim to estimate integrals (2.20). This is done recursively and here we perform the
recursive step by deriving an estimate on

∫

Dε

Gt (t, x) dM
n0
ε,diag(t, x), (3.1)

where

Gt (s, x) =
∫

sm<t

∫

sm−1<sm
· · ·

∫

s1<s2
F(s, x; z1, . . . , zm) dMn1

ε,diag(z1) · · · dM
nm
ε,diag(zm)

(3.2)
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and n0, n1, . . . , nm ≥ 1. Throughout this section we make the assumption that F :
Dm+1

ε → R is a deterministic function that is C 1 in each time variable. We note
that the domain of integration in (3.2) guarantees that for any fixed s the function
t 0→ Gt (s, x) is predictable. In the following Sect. 3.1 we bound the simple integral
(3.1) in terms of G and F . The resulting estimate is then used in a recursive argument
to bound the full iterated integral Iε

γ ,σ F in the subsequent Sect. 3.2.
To control the function F we will use the following norm

∥F∥C 1
s (L∞ε ) := ∥F∥L∞ε + ∥∂s F∥L∞ε , (3.3)

where the subscript s refers to the variable with respect to which the C 1-norm is
computed.

3.1 Simple integrals

We will need the following result.

Lemma 3.1 Let f : I → R be a C 1 function on a interval I ⊆ R with length |I | > 0.
Then for any p ≥ 1

sup
t∈I

| f (t)|p ≤ 1
|I |

∫

I
| f (r)|pdr + p

(∫

I
| f (r)|pdr

) p−1
p
(∫

I
| f ′(r)|pdr

) 1
p

. (3.4)

Proof For any fixed t, t0 ∈ I we can write f (t)p = f (t0)p +
∫ t
t0
p f (r)p−1 f ′(r)dr .

Taking absolute values, then using the Hölder inequality and finally taking the supre-
mum over t , we deduce that

sup
t∈I

| f (t)|p ≤ | f (t0)|p + p
(∫

I
| f (r)|pdr

) p−1
p
(∫

I
| f ′(r)|pdr

) 1
p

.

We conclude by averaging the variable t0 over the interval I . ⊓⊔

The following proposition providesmoment bounds for a simple stochastic integral.

Proposition 3.2 Let Gt : Dε → R be a possibly random function, such that the
function t 0→ Gt (t, x) is predictable. Then for any p ≥ 2 and T ∈ [0, 1] we have

Ep sup
t∈[0,T ]

∣∣∣
∫

Dε,t

Gs(s, x) dMε(s, x)
∣∣∣ (3.5)

!p

(
εd
∑

y∈'ε

∫ T

0

(
EpGr (r , y)

)2dr
) 1

2

+ εd+k Ep sup
(s,x)∈Dε,T

|Gs(s, x)|.
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If Gt (s, x) is of the form (3.2), then we have

Ep sup
(s,x)∈Dε,T

|Gs(s, x)| ! ε
−(d+(d+k)n) 1p

∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥

p−1
p

L∞ε
∥F∥

1
p

C 1
s (L∞ε )

, (3.6)

where n1 + · · · + nm = n and where we use the norm (3.3).

Remark 3.3 In our application, ∂s F will be badly behaved and in general blow up as
negative power in ε, similarly to the other exploding terms. However, as p can and
will be chosen arbitrarily large, all can be absorbed in a small pre-factor εd+k and
therefore these error terms are all harmless.

Proof of Proposition 3.2 Using the Burkholder–Davis–Gundy inequality (Proposi-
tion 2.1) and Assumption 1, we get

Ep sup
t∈[0,T ]

∣∣∣
∫

Dε,t

Gs(s, x) dMε(s, x)
∣∣∣ (3.7)

!p E
[(∑

y∈'ε

ε2d
∫ T

r=0
Gr (r , y)2d⟨Mε(y)⟩r

) p
2
] 1

p

+ E
[

sup
t∈[0,T ]

|Gt (t, x)%tMε(x)|p
] 1

p

!p E
[(∑

y∈'ε

εd
∫ T

0
Gr (r , y)2dr

) p
2
] 1

p

+ εd+kE
[

sup
(s,x)∈Dε,T

|Gs(s, x)|p
] 1

p

, (3.8)

where the proportionality constant in the last bound comes fromAssumption 1(1.) and
(3.). The first term on the right hand side of (3.8) can be controlled by the first term
in (3.5) by an application of Minkowski’s inequality. This yields the required bound
(3.5).

Now we will prove (3.6). First, the supremum over the lattice points is replaced
by a sum at the expense of a small negative power of ε and second, we use
sups∈[0,T ] |Gs(s, x)| ≤ sups,t∈[0,T ] |Gt (s, x)| to arrive at

E
[

sup
(s,x)∈Dε,T

|Gs(s, x)|p
] 1

p

≤ ε
− d

p

(
εd
∑

y∈'ε

E
[

sup
s,t∈[0,T ]

|Gt (s, y)|p
]) 1

p

. (3.9)

We note that this bound holds because 'ε is a finite lattice. We apply first (3.4) to the
supremum in the variable s and then Hölder’s inequality to bound the right-hand side
of (3.9) by a constant times

ε
− d

p

(
εd
∑

y∈'ε

E sup
t∈[0,T ]

[
1
T

∫ T

0
|Gt (s, y)|pds

+
(∫ T

0
|Gt (s, y)|pds

) p−1
p
(∫ T

0
|∂sGt (s, y)|pds

) 1
p
]) 1

p
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! ε
− d

p

(
εd
∑

y∈'ε

1
T

∫ T

0
E
[

sup
t∈[0,T ]

|Gt (s, y)|p
]
ds (3.10)

+
(

εd
∑

y∈'ε

∫ T

0
E
[

sup
t∈[0,T ]

|Gt (s, y)|p
]
ds
) p−1

p

(
εd
∑

y∈'ε

∫ T

0
E
[

sup
t∈[0,T ]

|∂sGt (s, y)|p
]
ds
) 1

p
) 1

p

.

To bound the norms of the function Gt , we observe that

εd
∑

y∈'ε

∫ T

0
E
[

sup
t∈[0,T ]

|Gt (s, y)|p
]
ds ! T sup

(s,y)∈Dε,T

E
[

sup
t∈[0,T ]

|Gt (s, y)|p
]
,

where we used that the grid'ε is finite. Then (3.10) is estimated by a constant multiple
of

ε
− d

p

(∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥
p

L∞ε
+
∥∥∥Ep sup

t∈[0,T ]
|Gt |

∥∥∥
p−1

L∞ε
(

εd
∑

y∈'ε

∫ T

0
E
[

sup
t∈[0,T ]

|∂sGt (s, y)|p
]
ds
) 1

p
) 1

p

, (3.11)

where we used our assumption T ≤ 1.
Now, we will bound the expectation containing ∂sGt in (3.11). The definition (3.2)

yields

|∂sGt (s, y)| ! ∥∂s F∥L∞ε
∑

x1,...,xm∈'ε

εmd
m∏

i=1

∥Mni
ε,diag(xi )∥TV([0,T ]),

and hence

Ep sup
t∈[0,T ]

|∂sGt (s, y)| ! ∥∂s F∥L∞ε sup
x1,...,xm∈'ε

Ep

m∏

i=1

∥Mni
ε,diag(xi )∥TV([0,T ]).

Hölder’s inequality allows to bound the preceding expression by

Ep sup
t∈[0,T ]

|∂sGt (s, y)| ! ∥∂s F∥L∞ε sup
x1,...,xm∈'ε

m∏

i=1

Emp∥Mni
ε,diag(xi )∥TV([0,T ]).

Identities (2.23)/(2.24) and Lemma 2.5 yield

sup
xi∈'ε

Emp∥Mni
ε,diag(xi )∥TV([0,T ]) ! ε−(k+d)ni ,
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and we get

Ep sup
t∈[0,T ]

|∂sGt (s, y)| ! ∥∂s F∥L∞ε
m∏

i=1

ε−(k+d)ni ! ∥∂s F∥L∞ε ε−(k+d)n, (3.12)

where n1 + · · · + nm = n.
Using (3.12) in (3.11), we conclude that (3.9) is estimated by a constant multiple

of

ε
− d

p

(∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥
p

L∞ε
+ ε−(d+k)n∥∂s F∥L∞ε

∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥
p−1

L∞ε

) 1
p

= ε
− d

p

∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥

p−1
p

L∞ε

(∥∥∥Ep sup
t∈[0,T ]

|Gt |
∥∥∥
L∞ε

+ ε−(d+k)n∥∂s F∥L∞ε
) 1

p

,

(3.13)

where we used our assumption T ≤ 1. Similarly to (3.12) we get

Ep sup
t∈[0,T ]

|Gt (s, y)| ! ∥F∥L∞ε
m∏

i=1

ε−(k+d)ni ! ∥F∥L∞ε ε−(k+d)n,

and (3.13) is estimated by a constant multiple of

ε
− d

p−(d+k) np
∥∥∥Ep sup

t∈[0,T ]
|Gt |

∥∥∥
p−1
p

L∞ε
∥F∥

1
p

C 1
s (L∞ε )

,

where we used the norm (3.3). This gives the required bound (3.6). ⊓⊔

In connection with the representation developed in Sect. 2.3.2 we get the following.

Proposition 3.4 Let Gt be as in (3.5) and let n0 ≥ 2. Then for any p ≥ 2 and T ∈ [0, 1]
we have

Ep sup
t∈[0,T ]

∣∣∣
∫

Dε,t

Gs(s, x) dM
n0
ε,diag(s, x)

∣∣∣

!p ε(d+k)(n0−1)
(

εd
∑

y∈'ε

∫ T

0

(
EpGr (r , y)

)2dr
) 1

2

+ ε(d+k)(n0−2)
∥∥∥∥Ep sup

t∈[0,T ]
|Gt |

∥∥∥∥
L1

ε

+ ε(d+k)n0Ep sup
(s,x)∈Dε,T

|Gs(s, x)|. (3.14)

If Gt (s, x) is of the form (3.2), then the last expectation is bounded by (3.6).

123



Martingale-driven integrals and singular SPDEs 1081

Proof Using (2.23)/(2.24) and Assumption 1 we get

∣∣∣
∫

Dε,t

Gs(s, x) dM
n0
ε,diag(s, x)

∣∣∣ ! ε(d+k)(n0−1)
∣∣∣∣

∫

Dε,t

Gs(s, x) dNε(s, x)
∣∣∣∣ (3.15)

+ ε(d+k)(n0−2)
∑

x∈'ε

εd
∫

0≤s≤t
|Gs(s, x)| ds

a.s., where the martingale Nε is either Mε or Mε, depending on whether n0 is odd or
even. In particular, the martingale satisfies Assumption 1. For the first term in (3.15)
we use Proposition 3.2 to get

Ep sup
t∈[0,T ]

∣∣∣∣

∫

Dε,t

Gs(s, x) dNε(s, x)
∣∣∣∣ !

(
εd
∑

y∈'ε

∫ T

0

(
EpGr (r , y)

)2dr
) 1

2

+ εd+k Ep sup
(s,x)∈Dε,T

|Gs(s, x)|,

and for the second term in (3.15) we have

Ep

∣∣∣∣
∑

x∈'ε

εd
∫

0≤s≤t
|Gs(s, x)| ds

∣∣∣∣ !
∥∥∥∥Ep sup

t∈[0,T ]
|Gt |

∥∥∥∥
L1

ε

.

This gives the required bound (3.14). ⊓⊔

3.2 Bounds for general iterated integrals

Let n,m ∈ N with m ≤ n be fixed. For a contraction γ ∈ Cm(n) and a permutation
σ ∈ 1γ , we want to prove moment bounds for general multiple iterated integrals
(2.17). For this, we will define a norm on the function Fγ ,σ from (2.18).

For m ≥ 1 we denote by Pm the set of all functions p : !m" → {1, 2,∞}. Then
for p ∈ P1 we set ∥Fγ ,σ ∥Lp

ε
= ∥Fγ ,σ ∥

Lp(1)
ε

, and for m ≥ 2 and p ∈ Pm we define
the norm recursively

∥Fγ ,σ ∥Lp
ε
:=
∥∥∥
∥∥(Fγ ,σ )(zm )1sm>sm−1

∥∥
L
p!!m−1"
ε

∥∥∥
Lp(m)

ε

, (3.16)

where p "!m−1" is the restriction of p to !m−1", the function (Fγ ,σ )(zm ) : Dm−1
ε → R

is defined as (Fγ ,σ )(zm )(z1, . . . , zm−1) = Fγ ,σ (z1, . . . , zm−1, zm), and the outer norm
in (3.16) is computed with respect to the variable zm . The indicator 1sm>sm−1 , with the
convention s0 = 0, is needed to respect the domain of integration in (2.20).

For p ∈Pm we will also use the standard notation p−1 : {1, 2,∞}→ 2!m" for the
inverse function. For any γ ∈ Cm(n), we define the set of non-contracted variables

21(γ ) := {i ∈ !m" : |γi | = 1}. (3.17)
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The following is our main result for the general iterated integrals.

Theorem 3.5 Let martingales (Mε(t, x))t≥0 satisfy Assumption 1, γ ∈ Cm(n), σ ∈
1γ be any ordering for the components of γ , and let F : Dn

ε → R be C 1 in each time
variable. Then for every p ≥ 2 and T ∈ [0, 1]

Ep

[
sup

t∈[0,T ]

∣∣(Iε
γ ,σ F)t

∣∣
]

(3.18)

!p
∑

p∈Pm :
p−1(1)∩21(γ )=∅

εαγ (p)∥Fγ ,σ ∥βγ ,p(p)
Lp

ε

( ∏

i∈p−1(∞)\21(γ ):
i≥2

ε−κγ ,i (p)∥Fγ ,σ ∥β
γ≥i ,p(p

≥i )

C 1
si
(L∞ε )

) 1
p

,

for some constants κγ ,i (p) > 0, where the function Fγ ,σ is defined in (2.18), the
powers are

αγ (p) := (d + k)
( m∑

i=1

|γi |− 2|p−1(1)|− |p−1(2)|
)
, (3.19)

βγ ,p(p) :=
∏

i∈p−1(∞)\21(γ ):
i≥2

(
p − 1
p

)
, (3.20)

the contraction γ ≥i has components γ ≥i
1 , . . . , γ ≥i

m−i+1 such that γ ≥i
j = γi+ j−1, and

the function p≥i ∈Pm−i+1 is defined as p≥i ( j) = p(i + j − 1).

Remark 3.6 Precise values of the constants κγ ,i (p) in (3.18) will not be important to
us, although they may be obtained from the proof of Theorem 3.5. We show below
that for p sufficiently large the divergent factors ε−κγ ,i (p)/p are compensated by the
multiplier εαγ (p).

Remark 3.7 One can see that for any function p in (3.18) satisfying p−1(∞) ̸= ∅ we
have αγ (p) ≥ d+k. Indeed, we can estimate

∑m
i=1 |γi | ≥ |21(γ )|+2(m−|21(γ )|) =

2m− |21(γ )|, because the sum over |21(γ )| components γi of cardinality 1 is exactly
|21(γ )| and the sum over the other m − |21(γ )| component is at least 2(m − |21(γ )|).
On the other hand, the assumptions on p yield 2|p−1(1)|+|p−1(2)| < m+|p−1(1)| ≤
2m − |21(γ )|. Thus, we conclude that αγ (p) ≥ d + k.

Similarly, we have αγ (p) ≥ d+k if the contraction γ has a component γi such that
|γi | ≥ 3. Repeating the preceding computations, we get

∑m
i=1 |γi | > 2m − |21(γ )|

and 2|p−1(1)| + |p−1(2)| ≤ 2m − |21(γ )|, which yield the required estimate.
Finally, one can see that we have αγ (p) ≥ d + k if there is a component γi such

that i ∈ p−1(2) and |γi | ≥ 2.
Hence, if we have a sufficiently good control on the norms ∥Fγ ,σ ∥Lp

ε
and the

product in (3.18) over i ∈ p−1(∞) is bounded by Cε−κ for some κ > 0, we can take
p sufficiently large such that εαγ (p)ε−κ/p vanishes as ε → 0. So that we expect that the
only non-vanishing terms in the limit ε → 0 are those with correspond to contractions
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γ with components of cardinalities at most 2 and functions p satisfying p−1(∞) = ∅
and p−1(2) = 21(γ ). In these cases we have αγ (p) = 0 and βγ ,p(p) = 1, and the
estimate (3.18) is similar to the bound for a multiple Wiener integral.

Remark 3.8 The bound (3.18) is homogeneous with respect to F , i.e. multiplication
of F by a constant λ > 0 is equivalent to multiplication of the two sides of (3.18) by
λ. While the homogeneity of the left-hand side is trivial, seeing it for the right-hand
side is more complicated. Let us consider the term in the sum in (3.18) corresponding
to a function p.

If p−1(∞) \ 21(γ ) = ∅ or p−1(∞) \ 21(γ ) = {1}, then βγ ,p(p) = 1 and the
product in the parentheses in (3.18) equals 1. The respective term in the sum in (3.18)
equals εαγ (p)∥Fγ ,σ ∥Lp

ε
and is homogeneous with respect to F .

Let us now look at the case when the set {i ∈ p−1(∞)\21(γ ) : i ≥ 2} is non-empty,
and let N be the magnitude of this set. Then the λ-multiplier corresponding to this
term in the sum in (3.18) equals

λβγ ,p(p)
( ∏

i∈p−1(∞)\21(γ ):
i≥2

λ
β

γ≥i ,p(p
≥i )
) 1

p

.

Furthermore, from the definition (3.20)we conclude that the power of λmay bewritten
as

(
p − 1
p

)N

+ 1
p

N∑

i=1

(
p − 1
p

)N−i
= 1.

Hence, this term in the sum in (3.18) is homogeneous with respect to F .

Proof of Theorem 3.5 We prove this theorem by induction over the number m of com-
ponents in γ .

The base of induction is m = 1, in which case γ has only one component γ1 such
that |γ1| = n. If n = 1 then the required bound (3.18) is given in Proposition 3.2.
(In this case, only two functions p contribute to the sum in (3.18): p(1) = 2 and
p(1) =∞, which correspond to αγ (p) = 0 and αγ (p) = d + k respectively. In both
cases βγ ,p(p) = 1. Then the two terms on the right-hand side of (3.18) coincide with
the two terms in (3.5).) If n ≥ 2 then the bound (3.18) is provided by Proposition 3.4.
(The three functions p contributing to the sum in (3.18) are p(1) = 1, p(1) = 2 and
p(1) = ∞, which correspond to αγ (p) = (d + k)(n − 2), αγ (p) = (d + k)(n − 1)
and αγ (p) = (d + k)n respectively. In all cases βγ ,p(p) = 1.)

To make an inductive step, we assume that (3.18) holds for all contractions having
m components and we will prove it for a contraction γ ∈ Cm+1(n). Lemma 2.8 yields

(Iε
γ ,σ F)t =

∫

sm+1<t

(
Iε

γ̄ ,σ̄ F
(zm+1)

)

sm+1−
dM|γm+1|

ε,diag (zm+1), (3.21)
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where γ̄ is the contraction obtained from γ by removing the (m + 1)th component,
σ̄ is obtained by restricting σ to !m", and the function F (zm+1) is obtained from F by
setting all the variables, whose labels are in (m+ 1)-st equivalence class according to
σ , to zm+1. If |γm+1| = 1, we bound (3.21) using Proposition 3.2:

Ep

[
sup

t∈[0,T ]
|(Iε

γ ,σ F)t |
]

!p

∥∥∥Ep sup
t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
∥∥∥
L2

ε

+ εd+k
∥∥∥Ep sup

t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
∥∥∥
L∞ε

, (3.22)

and if |γm+1| ≥ 2, we use Proposition 3.4 and the estimate (3.6):

Ep

[
sup

t∈[0,T ]
|(Iε

γ ,σ F)t |
]

!p ε(d+k)(|γm+1|−1)
∥∥∥Ep sup

t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
∥∥∥
L2

ε

+ ε(d+k)(|γm+1|−2)
∥∥∥∥Ep sup

t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
∥∥∥∥
L1

ε

(3.23)

+ ε(d+k)|γm+1|ε−(d+(d+k)(n−|γm+1|)) 1p
∥∥∥Ep

sup
t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
∥∥∥

p−1
p

L∞ε
∥Fγ ,σ ∥

1
p

C 1
sm+1

(L∞ε )
.

The function inside the expectations is itself an iterated integral of the function F (zm+1)

with the contraction γ̄ having m components. We can use the induction hypothesis
and the simple bound ∥(F γ̄ ,σ̄ )(zm+1)∥C 1

si
(L∞ε ) ≤ ∥Fγ ,σ∥C 1

si
(L∞ε ) to get moment bounds

for the expectation:

Ep

[
sup

t∈[0,T ]

∣∣∣
(
Iε

γ̄ ,σ̄ F
(zm+1)

)

t

∣∣∣
]

!p
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

εαγ̄ (p̄)∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

Ep(γ̄ , p̄),

(3.24)

where we denoted

Ep(γ̄ , p̄) :=
( ∏

i∈p̄−1(∞)\21(γ̄ ):
i≥2

ε−κγ̄ ,i (p̄)∥Fγ ,σ ∥βγ̄≥i ,p(p̄≥i )

C 1
si
(L∞ε )

) 1
p

, (3.25)

for some constants κγ̄ ,i (p̄) > 0. Then we use the preceding bound in (3.22) to get

Ep

[
sup

t∈[0,T ]
|(Iε

γ ,σ F)t |
]

!p
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

εαγ̄ (p̄)
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L2

ε

Ep(γ̄ , p̄)

(3.26)
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+
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

εαγ̄ (p̄)+d+k
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L∞ε

Ep(γ̄ , p̄).

We have
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L∞ε

≤
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥L p̄

ε

∥∥∥
βγ̄ ,p(p̄)

L∞ε
. Moreover, we

have βγ̄ ,p(p̄) ≤ 1 and Jensen’s inequality yields
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L2

ε

!
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥L p̄

ε

∥∥∥
βγ̄ ,p(p̄)

L2
ε

. We introduce new functions p ∈Pm+1, such that p(i) =
p̄(i) for i ∈ !m", and p(m + 1) = 2 and p(m + 1) = ∞ in the two sums in
(3.26) respectively. Then (3.19) and |γm+1| = 1 imply that the powers of ε in (3.26)
are exactly αγ (p). Furthermore, (3.20) yields βγ̄ ,p(p̄) = βγ ,p(p) and (3.25) yields
Ep(γ̄ , p̄) = Ep(γ ,p). Hence, recalling the definition (3.16)we get the required bound
(3.18) for m + 1.

Now, we use the bound (3.24) in (3.23) and get

Ep

[
sup

t∈[0,T ]
|(Iε

γ ,σ F)t |
]

!p
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

εαγ̄ (p̄)+(d+k)(|γm+1|−1)
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L2

ε

Ep(γ̄ , p̄)

+
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

εαγ̄ (p̄)+(d+k)(|γm+1|−2)
∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
L1

ε

Ep(γ̄ , p̄) (3.27)

+
∑

p̄∈Pm :
p̄−1(1)∩21(γ̄ )=∅

ε
αγ̄ (p̄)

p−1
p +(d+k)|γm+1|−(d+(d+k)(n−|γm+1|)) 1p

∥∥∥∥(F γ̄ ,σ̄ )(zm+1)∥βγ̄ ,p(p̄)

L p̄
ε

∥∥∥
p−1
p

L∞ε

× Ep(γ̄ , p̄)
p−1
p ∥Fγ ,σ ∥

1
p

C 1
sm+1

(L∞ε )
,

where in the last line we used subadditivity of the function x 0→ x
p−1
p for x ≥ 0.

As above, we estimate the norms by moving the power βγ̄ ,p(p̄) to the outer norms.
Furthermore, we introduce functions p ∈ Pm+1, such that p(i) = p̄(i) for i ∈ !m",
and p(m + 1) = 2, p(m + 1) = 1 and p(m + 1) =∞ in the three sums respectively.
Then the powers of ε in the first and second sums in (3.27) equal αγ (p). Moreover,
we have βγ̄ ,p(p̄) = βγ ,p(p) and Ep(γ̄ , p̄) = Ep(γ ,p) in these sums. The last sum
in (3.27) is more complicated. The power of ε equals αγ (p) − κγ ,m+1(p) 1p with

κγ ,m+1(p) = αγ̄ (p̄) + d + (d + k)(n − |γm+1|) > 0. Furthermore, βγ̄ ,p(p̄)
p−1
p =

βγ ,p(p). Setting κγ ,i (p) = κγ̄ ,i (p̄)
p−1
p for i ≤ m, we get
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ε
−κγ ,m+1(p) 1p E p(γ̄ , p̄)

p−1
p ∥Fγ ,σ ∥

1
p

C 1
sm+1

(L∞ε )

=
(

ε−κγ ,m+1(p)∥Fγ ,σ ∥C 1
sm+1

(L∞ε )

( ∏

i∈p̄−1(∞)\21(γ̄ ):
i≥2

ε−κγ̄ ,i (p̄)∥Fγ ,σ ∥βγ̄≥i ,p(p̄≥i )
C 1
si
(L∞ε )

) p−1
p
) 1

p

=
( ∏

i∈p−1(∞)\21(γ ):
i≥2

ε−κγ ,i (p)∥Fγ ,σ ∥βγ≥i ,p(p≥i )
C 1
si
(L∞ε )

) 1
p
,

where we used the identities βγ≥m+1,p(p≥m+1) = 1 and βγ≥i ,p(p≥i ) = βγ̄≥i ,p(p̄≥i )
p−1
p

which follow from the definitions. The preceding expression has the form (3.25) for
the contraction γ and the function p. Hence, recalling the definition (3.16), we get
from (3.27) the required bound (3.18) for m + 1. ⊓⊔

3.2.1 Renormalised iterated integrals

In the theory of regularity structures [26], there is usually the need to renormalise
stochastic objects. Introducing renormalised integrals against martingales is the goal
of this section.

Let (Mε(t, x))t≥0 bemartingales satisfyingAssumption 1. Let a function F : Dn
ε →

R be as in (2.17), where the contraction γ has only one component γ1, such that
|γ1| = n is even, and let the permutation σ be trivial. We define the integral

(Iε,▽
γ ,σ F)t := ε(d+k)(n−2)

∫

Dε,t

Fγ ,σ (z)Cε(z) dz, (3.28)

where we use the function Fγ ,σ defined in (2.18). In this expression we integrate
the contracted variable with respect to the bracket process (2.4) of the martingale.
Furthermore, we define the renormalised integral

(Iε,⋄
γ ,σ F)t := (Iε

γ ,σ F)t − (Iε,▽
γ ,σ F)t = ε(d+k)(n−1)

∫

Dε,t

Fγ ,σ (s, x) dMε(s, x),

(3.29)

where the last equality follows from (2.24), with the martingale Mε defined in (2.6).
As we will see in our application in Sect. 5, we will consider the situation when the
integral Iε

γ ,σ diverges as ε → 0, and in order to control the latter we need to consider
its renormalisation Iε,⋄

γ ,σ instead. If the noise was Gaussian, then the renormalising
term Iε,▽

γ ,σ would be deterministic. In our case, it is however a stochastic process.
In general, let γ ∈ Cm(n) with 1 ≤ m ≤ n, and let σ ∈ 1γ be a permutation.

Moreover, let us label components of γ using L ∈ {▽,⋄,nil}!m", such that the label
L(i) assigned to a component shows with respect to which process the variable is
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integrated. For m = 1 we set

(Iε,L
γ ,σ F)t :=

⎧
⎨

⎩

(Iε,▽
γ1,σ

F)t if L(1) = ▽,

(Iε,⋄
γ1,σ

F)t if L(1) = ⋄,
(Iε

γ1,σ
F)t if L(1) = nil.

Sincewe defined the integrals (3.28) and (3.29) only for even n, wewill always assume
thatL(i) = nil for any i such that |γ (i)| is odd. Then form ≥ 2we define recursively

(Iε,L
γ ,σ F)t :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε(d+k)(|γm |−2) ∫
Dε,t

(
I

ε,L!!m−1"
γ̄ ,σ̄ F (zm )

)

sm−
Cε(zm) dzm if L(m) = ▽,

ε(d+k)(|γm |−1) ∫
Dε,t

(
I

ε,L!!m−1"
γ̄ ,σ̄ F (zm )

)

sm−
dMε(zm) if L(m) = ⋄,

∫
Dε,t

(
I

ε,L!!m−1"
γ̄ ,σ̄ F (zm )

)

sm−
dM|γm |

ε,diag(zm) if L(m) = nil,

(3.30)

where the function F (zm) is obtained from F by setting the values of the variables in
{σ (i) : i ∈ γm} to zm , where γ̄ is the contraction that removes the mth component
of γ , where the labeling L is restricted to the indices in !m − 1", and where σ̄ is the
restriction of σ to !m − 1".

For a labeling L it will be convenient to define the sets

L−1(▽) := {i : L(i) = ▽}, L−1(⋄) := {i : L(i) = ⋄},

which contain the indices of the components labeled by “▽” and “⋄” respectively.
Similarly to (3.17) we define the set

2(γ ) := 21(γ ) ∪ L−1(⋄). (3.31)

of variables integrated with respect to martingales.
The following result is an analogue of Theorem 3.5 for the renormalised integrals.

Theorem 3.9 In the setting of Theorem 3.5, let L be a labeling of the contraction
γ ∈ Cm(n). Then for every p ≥ 2 and T ∈ [0, 1]

Ep

[
sup

t∈[0,T ]

∣∣(Iε,L
γ ,σ F)t

∣∣
]

(3.32)

!p
∑

p∈Pm :
p−1(1)∩2(γ )=∅,

L−1(▽)⊆p−1(1)

εαγ (p)∥Fγ ,σ ∥βγ ,p(p)
Lp

ε

( ∏

i∈p−1(∞)\21(γ ):
i≥2

ε−κγ ,i (p)∥Fγ ,σ ∥β
γ≥i ,p(p

≥i )

C 1
si
(L∞ε )

) 1
p

,

for some constants κγ ,i (p) > 0, where αγ (p) and βγ ,p(p) are defined in (3.19) and
(3.20).
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Proof The proof is analogous to the proof of Theorem 3.5, where we use the recur-
sive definition (3.30) and the fact that the martingales Mε satisfy Assumption 1. The
restriction L−1(▽) ⊆ p−1(1) in the sum in (3.32) follows from the uniform bound on
the integral with the label ▽. ⊓⊔

Remark 3.10 The same argument as in Remark 3.7 implies that as ε → 0 the non-
vanishing expectations (3.32) are those with contractions γ having components of
cardinalities at most 2 and functions p satisfying p−1(∞) = ∅ and p−1(2) = 2(γ ).

4 Kernels given by generalised convolutions

In this section we prove moment bounds for the iterated integrals (2.11), when the
function F is given by convolutions of singular kernels (similar to the one introduced
in [30, Appendix A]). This type of kernels appears in canonical lifts of random noises
in the theory of regularity structures. However, the result presented in this section is
different from [30] because of two reasons: first, our noise is non-Gaussian, and second,
we prove bounds on the stochastic integrals rather than on deterministic objects which
appear after Wick contractions of Gaussian noises. Moment bounds for stochastic
integrals driven by a general stationary non-Gaussian noise were proved in [7]. In the
latter work, the authors generalised the framework of [30, Appendix A] which allowed
them to deal with more general contractions of noises. In our setting, we need to use
Theorem 3.9, which requires estimating more complicated norms of the functions, in
contrast to the L2 norms when the noise is Gaussian. Since we adjust the ideas of [30,
Appendix A] to our framework, we equip our results and definitions with references
to their analogues from this article.

We will work in the space Rd+1 with the parabolic scaling s = (2, 1, . . . , 1),
where the first coordinate is time and the other d coordinates are spatial. We denote
|s| := 2+d, and ∥z∥s := |t |1/2+|x | for any z = (t, x) ∈ Rd+1, and λsz := (λ2t, λx).
For a multi-index k = (k0, . . . , kd) ∈ Nd+1

0 we define |k|s := 2k0 +
∑d

i=1 ki . Then
we denote by C r

s the space of function on Rd+1 with bounded mixed derivatives of
the scaled order not exceeding r .

It will be convenient to consider processesMε(t, x) defined on the whole time line
R. For this, we denote by M̃ε(t, x) an independent copy of Mε(t, x) and define

Mε(t, x) :=
{
Mε(t, x) for t ≥ 0,
M̃ε(−t, x) for t < 0,

(4.1)

for all t ∈ R. Then the stochastic integral (2.10) can be naturally extended as

∫

R×'ε

F(z) dMε(z) = εd
∑

x∈'ε

∫ ∞

s=0
F(s, x) dMε(s, x)

+εd
∑

x∈'ε

∫ ∞

s=0
F(−s, x) dM̃ε(s, x). (4.2)
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v↑

Vvar

Fig. 1 An example of the graphG, where the green edge connects the distinguished vertices and v↑⋆ . The
white vertices are inVvar and have only outgoing edges. The distinguished vertex has an incoming edge,
but it cannot come from v

↑
⋆ (colour figure online)

The multiple integrals developed in Sect. 2.3 can be then naturally extended to whole
R in the time variable. With a little ambiguity we will use the notation as in Sect. 2.3
for the integral defined with respect toMε on R×'ε.

Following the idea of [30,AppendixA], it will be convenient to describe generalised
convolutions using labelled graphs.More precisely, we consider a finite directed graph
G = (V,E) with a set of vertices V and with edges e ∈ E labelled by pairs (ae, re) ∈
R+×Z. We assume that the graph is weakly connected and loopless, i.e. every vertex
has either an outgoing or incoming edge, and there are no edges from a vertex to itself.
We require G to contain a distinguished vertex ∈ V, connected by an outgoing
edge with exactly one other vertex, denoted by v

↑
⋆ ∈ V\{ }. We also allow to

have incoming edges, which by the loopless assumption above cannot come from v
↑
⋆ .

Finally, we assume that the graph contains a set Vvar of distinguished vertices, which
can be empty and which satisfies /∈ Vvar, and if it is non-empty, then it has only
outgoing edges (“var” stands for “variables” because these vertices correspond to
the variables integrated in the stochastic integral). This implies that there are no edges
connecting two vertices from Vvar. In Fig. 1 we provide an example of such graphG,
where we omit labels and use various decorations for nodes and edges.

We define the set V⋆̄ := V\{ } and for a directed edge e ∈ E we write e+ and e−
for the two vertices such that e = (e−, e+) is directed from e− to e+. We make the
following assumption on the labels of the edges.

Assumption 2 The described graph G has the following properties:

1. every edge e containing has re = 0;
2. the edge e = ( , v

↑
⋆ ) has the label (ae, re) = (0, 0);

3. at most one edge with re > 0 may be incident to the same vertex;
4. if there are two vertices e− and e+ such that the edge e = (e−, e+) has re < 0,

then e− and e+ have no other incident edge.

Let |Vvar| = n ≥ 1. Then we label the elements Vvar by 1, . . . , n, which gives a
bijection between Vvar and !n". Using the notation of Sect. 2.3.1, we write C(Vvar)
for the set C(n) of all contractions onVvar. For a graphG = (V,E) and a contraction
γ ∈ C(Vvar) we define the multigraph (i.e. two vertices are allowed to be connected
by multiple edges) Gγ = (Ṽ, Ẽ), with labels (ãe, r̃e), in the following way: the set
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of vertices Ṽ ⊆ V is obtained from V by identifying those vertices from Vvar which
belong to the same component in γ .We denote this “identification” by a surjectivemap
iγ : V → Ṽ. In particular, iγ maps the vertices from V\Vvar (which includes ) to
themselves. We define Ṽvar to be the image ofVvar under the map iγ . Then we define
the set of edges Ẽ on Ṽ to contain ẽ = (iγ (e−), iγ (e+)) for all e = (e−, e+) ∈ E, with
the label (aẽ, rẽ) = (ae, re). In what follows, we call Gγ = (Ṽ, Ẽ) the contracted
(multi)graph corresponding to G and γ . To consider renormalised integrals, we will
use a labeling L of the components of the contraction γ , defined as in Sect. 3.2.1. We
by analogy with (3.31) we define the set of vertices

2(γ ) := {v ∈ Ṽvar : |i−1γ (v)| = 1} ∪ L−1(⋄), (4.3)

which correspond to the variables integrated with respect to martingales. Throughout
this section we will use the shorthand 2 = 2(γ ) because the contraction γ will be
always fixed.

A special case is Vvar = ∅, in which all the definitions in the previous paragraph
make sense for the identity contraction γ , and the contracted graphGγ coincides with
the original one G.

It will be useful to define a simple (containing no multiedges) graph (V̂, Ê), such
that V̂ = Ṽ and the unique edge e ∈ Ê from e− to e+ is obtained by contracting all
edges ẽ from e− to e+ in Ẽ, with the label (̂ae, re) of e being the sum of the labels of
all such parallel edges ẽ. It follows from Assumption 2 that if there is more than one
edge connecting e− to e+ in Gγ , then the value re associated to the contracted edge
is either 0 (if all these edges ẽ ∈ Ẽ have rẽ = 0), or coincides with the only value
rẽ > 0, for ẽ ∈ Ẽ connecting e− to e+. We can have re < 0 only if there is a unique
edge ẽ from e− to e+ with rẽ < 0.

For a subset V̄ ⊆ V we define the outgoing edges E↑(V̄) := {e ∈ E : e− ∈ V̄},
incoming edges E↓(V̄) := {e ∈ E : e+ ∈ V̄}, internal edges E0(V̄) := {e ∈ E : e± ∈
V̄}, and incident edges E(V̄) := {e ∈ E : e− ∈ V̄ or e+ ∈ V̄}. If V̄ = V, we simply
write E↑, E↓, etc. Furthermore, we define the sets E+(V̄) := {e ∈ E(V̄) : re > 0},
E−(V̄) := {e ∈ E(V̄) : re < 0}, E↑+ := E+ ∩ E↑ and E↓+ := E+ ∩ E↓. These sets,
defined for the edges Ẽ and Ê, will have the respective decorations.

Then we require the contracted graph to satisfy the following assumption, which
we state for the simple graph (V̂, Ê) defined above.

Assumption 3 The graph G = (V,E) and the contraction γ ∈ C(Vvar) are such that
the graph (V̂, Ê), defined above, has the following properties:

1. for any edge e ∈ Ê one has âe + (re ∧ 0) < |s|;
2. for every subset V̄ ⊆ V̂⋆̄ of cardinality at least 3 one has

∑

e∈Ê0(V̄)
âe <

(
2|V̄|− |V̄ ∩ 2|− 1− 1V̄∩2=∅

) |s|
2
;
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3. for every subset V̄ ⊆ V̂ containing of cardinality at least 2 one has

∑

e∈Ê0(V̄)
âe +

∑

e∈Ê↑+(V̄)

(
âe + re − 1

)
−

∑

e∈Ê↓+(V̄)

re <
(
2|V̄|− |V̄ ∩ 2|

) |s|
2
;

4. for every non-empty subset V̄ ⊆ V̂⋆̄\{v↑⋆ } one has
∑

e∈Ê(V̄)\Ê↓+(V̄)

âe +
∑

e∈Ê↑+(V̄)

re −
∑

e∈Ê↓+(V̄)

(re − 1) >
(
2|V̄|− |V̄ ∩ 2|

) |s|
2
.

Remark 4.1 Assumption 3 coincides with Assumption 3.17 in [7] on an “elementary
graph”, where the set of “external vertices” (see Definition 3.13 in [7]) is given in our
case by the set 2.

4.1 Kernels associated to the graph

Given a graph G = (V,E) as above, to each edge we associate a kernel and each
vertex corresponds to a variable in the domain Rd+1. Then, for e ∈ E, the values
ae will describe the order of singularity of the kernel associated to the edge e. The
value re will describe the order of renormalisation of this kernel. For every vertex
v /∈ Vvar ∪ { } we assume to be given a measure µε

v on Rd+1 of the form

µε(dz) = εd
∑

y∈εZd

δ(y − x) dt dx, (4.4)

where z = (t, x) with t ∈ R and x ∈ Rd , and where δ is the Dirac delta function on
Rd . This measure counts the points in the space lattice and is the Lebesgue measure
in time. Notice that, as ε → 0, the measure µε

v converges in the weak-∗ topology to
the Lebesgue measure on Rd+1.

For each edge of the graph we associate a kernel with the following properties.

Assumption 4 For every e ∈ Ewe consider a smooth1 kernel K ε
e : Rd+1 → R, which

can be written as K ε
e (z) =

∑N
n=0 K

ε,n
e (z) for N = −⌊log2 e⌋ and for some e ∈ [ε, 1],

where the smooth functions {K ε,n
e }0≤n≤N have the following properties:

1. the function K ε,n
e (z) is supported in C12−n ≤ ∥z∥s ≤ C22−n for some 0 < C1 <

C2;
2. for any q ≥ 0 and for some C > 0, independent of ε and e, one has

|DkK ε,n
e (z)| ≤ C2n(ae+|k|s), (4.5)

uniformly in z, |k|s ≤ q and 0 ≤ n ≤ N ;

1 In all our applications it is sufficient to have kernels sufficiently many times differentiable. For example,
we can take them to be in C q

s for q =∑e∈E(|re| + 2).
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3. if re < 0, then for all 0 ≤ n ≤ N and |k|s < |re| one has
∫

Rd+1
zk K ε,n

e (z)µε
e+(dz) = 0. (4.6)

The necessity to introduce a new parameter e can be seen in our application in
Sect. 5, where the mesh size of the grid is ε and the interaction range is defined on the
scale ε

3
4 ≥ ε.

We see from (4.5) that the value ae characterizes the order of singularity of the
kernel. Moreover, the value re, assigned to an edge e ∈ E, describes a renormalisation
of the singularity, which for positive and negative values are defined in different ways
in the following section.

Lemma 4.2 If Assumption 4 is satisfied, then for any q ≥ 0, the following quantity is
bounded uniformly in e ∈ [ε, 1] and ε ∈ (0, 1]

∥K ε
e ∥(e)ae;q := sup

z∈Rd+1
sup

|k|s<q
(∥z∥s + e)ae+|k|s |DkK ε

e (z)|. (4.7)

The reverse statement if also true, i.e. if for a kernel K ε
e the quantity (4.7) is bounded

uniformly, then it has all the properties listen in Assumption 4.

Proof The bound (4.7) is a direct consequence of Assumption 4(1.)–(2.). The second
part of the lemma follows by repeating the proof of [29, Lemma 5.4]. ⊓⊔

4.1.1 Renormalisation

If re ̸= 0, then the kernel corresponding to the edge e requires renormalisation. For
positive and negative values of re the renormalisation is defined different. For re > 0
the renormalisation of the smooth kernel is required to get a sufficiently fast decay of
the kernel at the origin. In the case re < 0 the renormalisation is required to make the
kernel, with a very strong singularity at the origin, integrable.

In the case re > 0, we define the renormalised kernel

K̂ ε
e (ze− , ze+) := K ε

e (ze+ − ze−)−
∑

|k|s<re

zke+
k! DkK ε

e (−ze−), (4.8)

where the sum runs over all multi-indices k ∈ Nd+1
0 such that |k|s < re. In the case

re = 0we simply define K̂ ε
e (ze− , ze+) := K ε

e (ze+−ze−). The positive renormalisation
(4.8) allows to define kernels, which have sufficiently fast polynomial decay at the
diagonal ze− = ze+ . This is the case when K ε

e is smooth with uniformly bounded
derivatives.

If re < 0, then for a smooth and compactly supported function ϕ on Rd+1 ×Rd+1

we define the expansion

(Treϕ)(ze− , ze+) := ϕ(ze− , ze+)−
∑

|k|s<|re|

(ze+ − ze−)
k

k! Dk
2ϕ(ze− , ze−), (4.9)
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where the sum runs over all multi-indices k ∈ Nd+1
0 satisfying |k|s < |re|, and where

Dk
2 is the multi-derivative in the second argument. Furthermore, we associate to K ε

e
the distribution

K̂ ε
e (ϕ) :=

∫

Rd+1

∫

Rd+1
K ε
e (ze+ − ze−)(Treϕ)(ze− , ze+) µ

ε
e−(dze−)µ

ε
e+(dze+), (4.10)

which is obtained from K ε
e by subtracting delta-functions and their derivatives. Expres-

sion (4.10) is just another way to write the integral

∫

Rd+1

∫

Rd+1
K ε
e (ze+ − ze−)ϕ(ze− , ze+) µ

ε
e−(dze−)µ

ε
e+(dze+),

since
∫
Rd+1K ε

e (z)z
k µε

e+(dz) = 0 and the measure µε
e+ is translation invariant.

Example 1 In all of the applications that we have in mind, we deal with labels re
taking values +1, 0 or −1. In Sect. 5, for example, we have re = 1 only for the tree
in Sect. 5.4; we use negative renormalisation with re = −1 only for the tree which is
dealt with in (5.16). All the other edges in the trees of Sect. 5 always have re = 0.

Clearly, when re = 0, we have no transformation to do on the kernels.When re = 1,
on the other hand, we have

K̂ ε
e (ze− , ze+) := K ε

e (ze+ − ze−)− K ε
e (−ze−),

while when re = −1, we get

K̂ ε
e (ze− , ze+) := K ε

e (ze+ − ze−)−
(∫

Rd+1
K ε
e (ze+ − ze−)µ

ε
e+(dze+)

)
δ(ze+ − ze−),

where δ is the Dirac delta-function. Observe that positive renormalisation corresponds
to subtracting the value of the kernel itself at the “base” point ze− , while negative
renormalisation means removing singularities at the base point.

4.1.2 A generalised convolution

Let us fix a graph G = (V,E) as described above. Then for a smooth and compactly
supported function ϕ : Rd+1 → R, for z = (t, x), z̄ = (t̄, x̄) ∈ Rd+1 and for
λ ∈ (0, 1] we define its rescaling and recentering

ϕλ
z̄ (z) := λ−|s|ϕ

(
λ−2(t − t̄), λ−1(x − x̄)

)
. (4.11)

For fixed zvar ∈ (Rd+1)Vvar we define the product measure on z ∈ (Rd+1)V⋆̄

µε
V⋆̄,zvar(dz) :=

( ∏

v∈V⋆̄\Vvar
µε
v(dzv)

)( ∏

w∈Vvar
δ(zw − zvarw )dzw

)
, (4.12)
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where again δ is the Dirac delta-function, and where z = (zv ∈ Rd+1 : v ∈ V⋆̄) and
zvar = (zvarv ∈ Rd+1 : v ∈ Vvar). In other words, the variable zv , corresponding
to the vertex v ∈ V⋆̄\Vvar, is integrated with respect to the measures µε

v , and the
variables corresponding to the vertices inVvar are fixed to be equal to zvar. These are
the variables which we want to integrate with respect to martingales. Then we define
the generalised convolution

Kλ,ε
G (zvar) :=

∫

(Rd+1)V⋆̄

(∏

e∈E
K̂ ε
e (ze− , ze+)

)
ϕλ
0 (zv↑⋆ )µ

ε
V⋆̄,zvar(dz). (4.13)

Since the kernels K ε
e are smooth, our assumptions on the graph guarantee that the

generalised convolution (4.13) is well-defined.
We fix any order of the elements in Vvar (which respectively fixed the order of the

variables in Kλ,ε
G (zvar)) and we define

(Iε,L
γ Kλ,ε

G )t :=
∑

σ∈1γ

(Iε,L
γ ,σK

λ,ε
G )t , (4.14)

where the stochastic integral Iε,L
γ ,σ is defined in Sect. 3.2.1 with respect to the fixed

order of the variables. The following is our main result of this section.

Theorem 4.3 Let G = (V,E) be a graph with labels {ae, re}e∈E satisfying Assump-
tion 2, let γ ∈ Cm(Vvar), with 1 ≤ m ≤ |Vvar|, be a contraction with a labeling
L such that Assumption 3 is satisfied. Let the measures be defined as in (4.4) and let
the kernels satisfy Assumption 4. Let furthermore Iε,L

γ be a stochastic integral with
respect to càdlàg martingales satisfying Assumption 1, let the set 2 be defined in (4.3),
and let

νγ := |s||V̂⋆̄ \ {̂v↑⋆ }|−
|s|
2
|2|−

∑

e∈Ê
âe < 0. (4.15)

Then for any p ≥ 2 and θ > 0 there is a constant C for which the following bound
holds

(
E
[
sup
t∈R+

∣∣(Iε,L
γ Kλ,ε

G )t
∣∣p
]) 1

p

≤ Cλνγ
∑

p∈Pm : p−1(1)∩2=∅,

L−1(▽)⊆p−1(1), p−1(∞)=∅

εαγ (p)e−δγ (p) (4.16)

+ Cλνγ
∑

p∈Pm : p−1(1)∩2=∅,

L−1(▽)⊆p−1(1), p−1(∞) ̸=∅

εαγ (p)−θ e−δγ (p)
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uniformly in λ ∈ [e, 1], e ∈ [ε, 1] and ε ∈ (0, 1], where the set of functions Pm is
defined in Sect.3.2, the constant αγ (p) is defined in (3.19), and

δγ (p) :=
|s|
2

(
2|p−1(∞) \ 2| + |p−1(∞) ∩ 2| + |p−1(2) \ 2|

)
. (4.17)

We prove this theorem in Sect. 4.4, and before that we need to get some preliminary
results.

Remark 4.4 From the proof of Theorem 4.3 we can see that there exists a value q ≥ 0
and a compact set K ⊆ Rd+1, such that the constant C in (4.16) is proportional to

(∏

e∈E
∥K ε

e ∥(e)ae;q
)( ∏

v /∈Vvar∪{⋆}
∥µε

v∥TV(K)

)
,

which by our assumptions is bounded uniformly in ε and e. For example, we can take
a very rough value q =∑e∈E(|re| + 2).

If we would like to consider a recentered test function ϕλ
z̄ (z), we need to shift

respectively all the variables in the generalised convolution:

Kλ,ε
G,z̄(z

var) :=
∫

(Rd+1)V⋆̄

(∏

e∈E
K̂ ε
e (ze− − z̄, ze+ − z̄)

)
ϕλ
z̄ (zv↑⋆ )µ

ε
V⋆̄,zvar(dz). (4.18)

Then the following result can be proved as Theorem 4.3, by changing the value of the
variable z⋆ from 0 to z̄. Uniformity in z̄ holds, because the norms of the kernels (4.30)
are independent of this variable.

Corollary 4.5 Under the assumptions of Theorem 4.3, the bound (4.16) holds for the
multiple integral Iε,L

γ Kλ,ε
G,z̄ , locally uniformly in z̄.

Applying Minkowski inequality, we get from the definition (4.14) the bound

Ep sup
t∈R+

∣∣(Iε,L
γ Kλ,ε

G )t
∣∣ ≤

∑

σ∈1γ

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

λ,ε
G )t

∣∣. (4.19)

In the rest of the section we are going to prove the bound (4.16) for the integral Iε,L
γ ,σ

with a fixed σ . One can see from the proof, that this bound is independent of the
order of the variables (although the order plays a role in some intermediate results like
Lemma 4.7), and the same bound (4.16) holds for every integral Iε,L

γ ,σ in (4.19).

4.2 Multiscale decomposition of the generalised convolution

Our aim is to write the kernels K ε
e in the generalised convolution (4.13) as sums of

localised functions. For the edge (⋆, v↑⋆ ),we view the test functionϕλ
0 (zv↑⋆ ) in (4.13) as a
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new kernel K
(⋆,v

↑
⋆ )
(z

v
↑
⋆
), supported on ∥z

v
↑
⋆
∥s ! λ and satisfying ∥K

(⋆,v
↑
⋆ )
∥0;q ! λ−|s|

(recall that this edge has the labels ae = re = 0 in the graph).
Our next aim is to decompose the kernels in (4.13) into sums of localised functions.

To this end, for e ∈ Ewith re > 0, we take any smooth functions ψ (ε,n) : Rd+1 → R,
such that ψ (ε,n)(z) is supported in C12−n ≤ ∥z∥s ≤ C22−n (where C1,C2 are from
Assumption 4), scales as 2−n and satisfies

∑N
n=0 ψ (ε,n)(z) = 1 for all z. Let us denote

for convenience N≤N := {0, 1, . . . , N }. Then for re > 0 and n = (k, p,m) ∈ N3
≤N

we set

K̂ ε,n
e (z, z̄) := ψ (ε,k)(z̄ − z)ψ (ε,p)(z)ψ (ε,m)(z̄)K̂ ε

e (z, z̄), (4.20)

where the kernel K̂ ε
e has been defined in (4.8). For n ∈ N3

≤N and e ∈ E such that
re ≤ 0, we define the function

K̂ ε,n
e (z, z̄) :=

{
K ε,k
e (z̄ − z), if n = (k, 0, 0), 0 ≤ k ≤ N ,

0, otherwise,

where we made use of the expansion of the kernel from Assumption 4.
For λ ∈ (0, 1] we define the set N e

λ of functions n : E → N3
≤N satisfying

2
−|n

(⋆,v
↑
⋆ )
| ≤ λ ∨ e, with n

(⋆,v
↑
⋆ )

being the evaluation of the function n on the edge

(⋆, v
↑
⋆ ). Then for a function n ∈ N e

λ and a point z = (zv : v ∈ V⋆̄), we define

K̂ ε,n(z) :=
∏

e∈E
K̂ ε,ne
e (ze− , ze+), (4.21)

where z⋆ = 0. Since the functions ψ (ε,n) sum up to 1 and since we consider the test
function ϕλ

0 as a kernel, one can rewrite the generalised convolution (4.13) as

Kλ,ε
G (zvar) :=

∑

n∈N e
λ

Kε,n
G (zvar), Kε,n

G (zvar) :=
∫

(Rd+1)V⋆̄

K̂ ε,n(z) µε
V⋆̄,zvar(dz).

(4.22)

Since we are interested in estimating the integrals Iε,L
γ ,σK

λ,ε
G , we can exploit the

fact that the integration variables zv in the kernel (4.22), for vertices v belonging to
the same component of γ , are equal. More precisely, we define the set N e

λ,γ in the

same way as N e
λ , but using the contracted graph Gγ = (Ṽ, Ẽ). Then for a function

n ∈ N e
λ,γ and a point z = (zv : v ∈ Ṽ⋆̄), we define the kernel K̂ ε,n(z) as in (4.21), but

with the product over Ẽ. Furthermore, we define the measure µε

Ṽ⋆̄,zvar
on (Rd+1)Ṽ⋆̄

by

µε

Ṽ⋆̄,zvar
(dz) :=

( ∏

v∈Ṽ⋆̄\Ṽvar

µε
v(dzv)

)( ∏

w∈Ṽvar

δzw−zvarw∗ dzw
)
, (4.23)
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where w∗ is the first element (with respect to a chosen order of vertices) in i−1γ (w),
and the map iγ has been introduced in the beginning of this section. In other words,
this measure identifies the variables in Ṽvar which correspond to the same component
of γ . Then we define the kernel

Kε,n
Gγ

(zvar) :=
∫

(Rd+1)Ṽ⋆̄

K̂ ε,n(z) µε

Ṽ⋆̄,zvar
(dz), (4.24)

and write the multiple stochastic integral as Iε,L
γ ,σK

λ,ε
G =∑n∈N e

λ,γ
Iε,L

γ ,σK
ε,n
Gγ

. Using this
expansion and applying Minkowski’s inequality, we obtain the bound

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

λ,ε
G )t

∣∣ ≤
∑

n∈N e
λ,γ

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

ε,n
Gγ

)t
∣∣. (4.25)

Bounding a multiple integral of the generalised convolution boils down to bounding
integrals in (4.25) and summing over the functions n ∈ N e

λ,γ . This is what we do in the
next sections, where, following the idea of [30, Appendix A.2], we use a multiscale
clustering in the sum over n.

4.3 Bounds on iterated integrals

We associate to every point z ∈ (Rd+1)Ṽ a rooted labelled binary tree (T , ℓ), such
that ∥zv − zw∥s ∼ 2−ℓv∧w and ℓv∧w ∈ N≤N , where v ∧ w is the closest common
ancestor of v and w. Moreover, the labels ℓ satisfy ℓν ≥ ℓω whenever ν ≥ ω, where
ν ≥ ω means that ω belongs to the shortest path from ν to the root of the tree T . See
[30, Appendix A.2] for construction of such tree and also for the terminology which
we are going to use. Given a set of vertices Ṽ, we denote by Te(Ṽ) the set of rooted
labelled binary trees (T , ℓ) as above, which have Ṽ as their set of leaves. Denote
furthermore by Te

λ (Ṽ) the subset of those labelled trees in Te(Ṽ) with the property

that 2
−ℓ

⋆∧v↑⋆ ≤ λ.
Our next aim is to write summation in (4.25) over such labelled trees (T , ℓ) and

then over those functions n which are close in some sense to the labeling ℓ. To this
end, for the constant,2 c := (log2 |Ṽ| + | log2 C1|) ∨ | log2 C2|, where the constants
C1,C2 are from Assumption 4, we define the setN e

γ (T , ℓ) consisting of all functions

n : Ẽ→ N3
≤N such that

1. for every edge e = (v,w) with re ≤ 0, one has ne = (k, 0, 0) ∈ N3
≤N with

|k − ℓv∧w| ≤ c,
2. for every edge e = (v,w) with re > 0, one has ne = (k, p,m) ∈ N3

≤N with
|k − ℓv∧w| ≤ c, |p − ℓv∧⋆| ≤ c, and |m − ℓw∧⋆| ≤ c.

2 Our value of c is different from the analogous value in [30, Definition A.8] because the kernels K e,n
e

from Assumption 4 have a different support. The need to define c in this way can be seen from the proof of
[30, Lemma A.9].
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1098 P. Grazieschi et al.

Then we have the following analogue of [30, Lemma A.9], which is proved in exactly
the same way.

Lemma 4.6 Let us fix a point zvar ∈ (Rd+1)Vvar . Let n : Ẽ → N3
≤N be such that the

kernel Kε,n
Gγ

(zvar) defined in (4.24) does not vanish. Then there exists a labelled tree

(T , ℓ) ∈ Te
λ (Ṽ) such that n ∈ N e

γ (T , ℓ).

Using this result, the right-hand side of (4.25) can be estimated as

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

λ,ε
G )t

∣∣ ≤
∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

ε,n
Gγ

)t
∣∣. (4.26)

We will now modify the kernels in (4.21) in the same way how it was done in [30,
Appendix A.5]. Let A− ⊆ Ẽ contain those edges e = (e−, e+) which have the label
re < 0, and for which any two vertices {u, v} satisfying u ∧ v = e− ∧ e+ coincide
with {e−, e+}. Then we can factorize (4.21) as

K̂ ε,n(z) = Ĝe,n(z)
(∏

e∈A−
K̂ ε,ne
e (ze− , ze+)

)
, Ĝe,n(z) :=

∏

e/∈A−
K̂ ε,ne
e (ze− , ze+).

(4.27)

For e = (e−, e+) and r > 0 we define the operator Y r
e acting on sufficiently smooth

functions V : (Rd+1)Ṽ → R as

(Y r
e V )(z) := V (z)−

∑

|k|s<r

(ze+ − ze−)
k

k! (Dk
e+V )(Pe(z)),

where Dk
e+ is a derivative with respect to ze+ and where (Pe(z))v = zv if v ̸= e+

and (Pe(z))v = ze− if v = e+. Furthermore, writing A− = {e(1), . . . , e(k)} for some
k ≥ 0, we define the kernel

K̃ ε,n(z) :=
(
Y

re(k)
e(k)

· · ·Y re(1)
e(1)

Ĝe,n(z)
)(∏

e∈A−
K̂ ε,ne
e (ze− , ze+)

)
. (4.28)

Then for every zvar we have

∫

(Rd+1)Ṽ⋆̄

K̂ ε,n(z) µε

Ṽ⋆̄,zvar
(dz) =

∫

(Rd+1)Ṽ⋆̄

K̃ ε,n(z) µε

Ṽ⋆̄,zvar
(dz), (4.29)

which is just a reformulation of the argument below [30, EquationA.26] in our context.
Then (4.26) can be written as

Ep sup
t∈R+

∣∣(Iε,L
γ ,σK

λ,ε
G )t

∣∣ ≤
∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

Ep sup
t∈R+

∣∣(Iε,L
γ ,σ K̃

ε,n
Gγ

)t
∣∣, (4.30)
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with the new kernels

K̃ε,n
Gγ

(zvar) :=
∫

(Rd+1)Ṽ⋆̄

K̃ ε,n(z) µε

Ṽ⋆̄,zvar
(dz). (4.31)

Using the notation (2.18), we denote with (K̃ε,n
Gγ

)γ ,σ : (Rd+1)Ṽvar → R the kernel

which is obtained from K̃ε,n
Gγ

by making all the variables from the same component
of γ equal. We would like to apply Theorem 3.9 to bound the stochastic integrals in
(4.30). For this, we need to estimate the norms (3.16) of the kernel (K̃ε,n

Gγ
)γ ,σ (zvar),

which is what we are going to do now.
Let T ◦ denote the set of interior nodes of the tree T . Then for e ∈ Ê let us define

the function ηe : T ◦ → R by

ηe(v) := −âe1e↑(v)+ re
(
1e+∧⋆(v)− 1e↑(v)

)
1re>0, e+∧⋆>e↑

+ (1− re − âe)
(
1e−∧⋆(v)− 1e↑(v)

)
1re>0, e−∧⋆>e↑ ,

where 1v(w) := 1v=w and e↑ := e− ∧ e+ ∈ T ◦ for an edge e = (e−, e+) ∈ Ê. The
function ηe coincides with the one defined in [30, Equation A.20] and is used to bound
the generalised convolution without taking into account negative renormalisation. To
consider negative renormalisation we define by analogy with [30, Equation A.27] a
modified function

η̃(v) := |s| +
∑

e∈Ê
η̃e(v), η̃e(v) := ηe(v)− re 1e∈A−

(
1e↑(v)− 1e⇑(v)

)
,

(4.32)

where the interior node e⇑ ∈ T ◦ is of the formw∧e− withw /∈ ewhich is the furthest
from the root.

From the fixed order σ of the variables in (4.14) we obtain an oder of the vertices in
Ṽvar. Then we write Ṽvar = (v1, . . . , vm) according to this order. For every v ∈ Ṽvar
we denote by v# the element following after v with respect to this order, and in case
when there is no following element we define v# = . For A ⊆ Ṽvar, let TA be the
subtree of T containing all the leaves v and v#, for v ∈ A ⊔ { }, and all the inner
nodes v ∧ v# for such v. Let T ◦A contain the inner nodes of TA.

Then we have the following bound on the norms (3.16) of the kernels (K̃ε,n
Gγ

)γ ,σ .

Lemma 4.7 In the setting of Theorem 4.3, let p be one of the functions in the sum in
(4.16). Then for any labeled tree (T , ℓ) ∈ Te

λ (Ṽ) there is a constant C such that for
every n ∈ N e

γ (T , ℓ) one has the bound

∥∥(K̃ε,n
Gγ

)γ ,σ
∥∥
Lp

ε
≤ Ce−δγ (p)

(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|
) 1

2
, (4.33)

where we use the norm (3.16) and the constant δγ (p) defined in (4.17).
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Proof We are going to prove a more general result; namely, we will prove a bound
on the norm of the kernel (K̃ε,n

Gγ
)γ ,σ some of whose variables are fixed. For this, we

take 0 ≤ M < m and the set D = {vM+1, . . . , vm} ⊆ Ṽvar of vertices and we
will fix the values of the variables corresponding to these vertices. More precisely,
for zD ∈ (Rd+1)D we write (K̃ε,n

Gγ
)γ ,σ

∣∣
zD

for the function from (Rd+1)Ṽvar\D to R,

which is obtained from (K̃ε,n
Gγ

)γ ,σ (zvar) by fixing the values of the variables zvarv

with v ∈ D. We extend this definition for D = ∅ (which corresponds to M = m) by
(K̃ε,n

Gγ
)γ ,σ

∣∣
z∅

= (K̃ε,n
Gγ

)γ ,σ .
For 1 ≤ M ≤ m and for a function p ∈PM , we are going to prove the bound

∥∥(K̃ε,n
Gγ

)γ ,σ
∣∣
zD

∥∥
Lp

ε
≤ C

(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦
D⊔p−1(∞)

2ℓν |s|
)( ∏

ν∈T ◦
p−1(2)

2ℓν |s|
) 1

2

(4.34)

uniformly in zD ∈ (Rd+1)D . Moreover, we will show that for M = 0 (in which case
D = Ṽvar) the same bound holds for the absolute value of (K̃ε,n

Gγ
)γ ,σ

∣∣
zD
.

We can see that the bound (4.33) follows from (4.34) in the particular case M = m
corresponding to D = ∅. To see it, we note that (4.34) simplifies to

∥∥(K̃ε,n
Gγ

)γ ,σ
∥∥
Lp

ε
≤ C

(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦
p−1(∞)

2ℓν |s|
)( ∏

ν∈T ◦
p−1(2)

2ℓν |s|
) 1

2
. (4.35)

Our next goal is to replace the product over ν ∈ T ◦p−1(2) by the product over ν ∈ T ◦2 .We

do it by noting that Ṽvar = p−1(1) ⊔ p−1(2) ⊔ p−1(∞) and using simple operations
on the sets. Namely, we have p−1(2) =

(
2 ⊔ (p−1(2)\2)

)
\
(
p−1(∞) ∩ 2

)
, where

we used the assumption p−1(1) ∩ 2 = ∅ in (4.16). Then we write the products over
ν ∈ T ◦p−1(2) as

∏

ν∈T ◦
p−1(2)

2ℓν |s| =
(∏

ν∈T ◦2

2ℓν |s|
)( ∏

ν∈T ◦
p−1(2)\T

◦
2

2ℓν |s|
)( ∏

ν∈T ◦
p−1(∞)

∩T ◦2

2−ℓν |s|
)
.

Hence, the product on the right-hand side of (4.35) equals

(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|
) 1

2
( ∏

ν∈T ◦
p−1(∞)

2ℓν |s|
)( ∏

ν∈T ◦
p−1(2)\T

◦
2

2ℓν |s|
) 1

2

×
( ∏

ν∈T ◦
p−1(∞)

∩T ◦2

2−ℓν |s|
) 1

2
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=
(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|
) 1

2
( ∏

ν∈T ◦
p−1(∞)\T ◦2

2ℓν |s|
)( ∏

ν∈T ◦
p−1(∞)

∩T ◦2

2ℓν |s|
) 1

2

×
( ∏

ν∈T ◦
p−1(2)\T

◦
2

2ℓν |s|
) 1

2
.

According to our definition of the labels ℓ in Sect. 4.3 we have 2−ℓν ≥ e, and we can
bound the preceding expression by the right-hand side of (4.33).

Now, we turn to the proof of (4.34). From [30, Lemma A.16] we conclude that the
kernel (4.28) satisfies

sup
z∈(Rd+1)Ṽ⋆̄

|K̃ ε,n(z)| !
∏

ν∈T ◦
2−ℓν (η̃(ν)−|s|), (4.36)

uniformly over all n ∈ N e
γ (T , ℓ). We will use this estimate to bound the norms (3.16).

Let us first consider the case M = 0 corresponding to D = Ṽvar. We have
(K̃ε,n

Gγ
)γ ,σ

∣∣
zD

= (K̃ε,n
Gγ

)γ ,σ (zD), and we are going to bound it absolutely. From (4.23)
and (4.31) we get

(K̃ε,n
Gγ

)γ ,σ
∣∣∣
zD

=
∫

(Rd+1)Ṽ⋆̄\Ṽvar
(K̃ε,n

Gγ
)γ ,σ (z)

∣∣∣
zvar=zD

∏

v∈Ṽ⋆̄\Ṽvar

µε
v(dzv). (4.37)

We write z = (zṼ⋆̄\Ṽvar, z
var), where zṼ⋆̄\Ṽvar contains the variables zv with v ∈

Ṽ⋆̄\Ṽvar. The definition of the kernel and properties of the measures µε
v allow to

bound the preceding expression by a constant times

|Aε
γ ||Ṽ⋆̄\Ṽvar| sup

zṼ⋆̄\Ṽvar∈(R
d+1)Ṽ⋆̄\Ṽvar

|K̃ ε,n(zṼ⋆̄\Ṽvar, zD)|,

where we write | · |α for the (α|s|)-dimensional Lebesgue measure, and the set Aε
γ

contains all points {zv : v ∈ Ṽ⋆̄\Ṽvar}, satisfying the conditions

∥zv − zw∥s ≤ C ′2−ℓv∧w for v,w ∈ Ṽ⋆̄ \ Ṽvar,
∥zv − zvarw ∥s ≤ C ′2−ℓv∧w for v ∈ Ṽ⋆̄ \ Ṽvar, w ∈ Ṽvar.

Here, we use the fact that 2−ℓv∧w ≥ e, which is a consequence of the assumption
(T , ℓ) ∈ Te

λ (Ṽ). For an interior node ν ∈ T ◦, let us choose v± ∈ Ṽ to be such
that v− ∧ v+ = ν and there is an edge from v− to v+. Then the collection of edges
{(v−, v+) : ν ∈ T ◦} forms a spanning tree of Ṽ, and Aε

γ is a subset of
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{
zṼ⋆̄\Ṽvar ∈ (Rd+1)Ṽ⋆̄\Ṽvar : ∥zv+ − zv−∥s ≤ C ′2−ℓν ∀ ν ∈ T ◦, v± /∈ Ṽvar,

∥zv+ − zvarv− ∥s ≤ C ′2−ℓν ∀ ν ∈ T ◦, v− ∈ Ṽvar
}
,

where z⋆ = 0. Here, we used the property that the vertices in Ṽvar have only outgo-
ing edges. Next, we compute the Lebesgue measure of this set. We integrate out
the variables zv one by one, for v /∈ Ṽvar, which gives an expression of order∏

ν∈T ◦\T ◦Ṽvar
2−ℓν |s|. Hence,

|Aε
γ ||Ṽ⋆̄\Ṽvar| !

∏

ν∈T ◦\T ◦Ṽvar

2−ℓν |s|,

combining which with the estimate on the kernel (4.36) we get

∣∣∣(K̃ε,n
Gγ

)γ ,σ
∣∣
zD

∣∣∣ !
( ∏

ν∈T ◦\T ◦Ṽvar

2−ℓν |s|
)(∏

ν∈T ◦
2−ℓν (η̃(ν)−|s|)

)

!
(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar

2ℓν |s|
)
. (4.38)

Recalling that D = Ṽvar, this is exactly the right-hand side of (4.34) with p−1(∞) =
p−1(2) = ∅.

Now we proceed with the proof of (4.34) by induction over M = 1, . . . ,m. For
p ∈PM withM ≥ 2, let p̄ be the restriction of p to {1, . . . ,M−1}. Let us furthermore
define the function with respect to the variable zvM corresponding to the vertex vM :

F(zvM ) :=
∥∥∥(K̃ε,n

Gγ
)γ ,σ

∣∣
zD⊔{vM }

∥∥∥
L p̄

ε

(4.39)

if M ≥ 2 and F(zvM ) := (K̃ε,n
Gγ

)γ ,σ
∣∣
zD⊔{vM }

if M = 1. Then we use the definition
(3.16) to write

∥∥∥(K̃ε,n
Gγ

)γ
∣∣
zD

∥∥∥
Lp

ε

≤ ∥F∥
Lp(M)

ε
. (4.40)

We got an inequality because we omitted the indicator functions in the definition
(3.16), which corresponds to increasing the domain of integration of the function. We
need to bound the norm on the right-hand side of (4.40), for what we consider all
possible values of p(M) one-by-one.

If p(M) = 2, then the definition (1.6) yields

∥F∥L2
ε
=
(

εd
∑

x∈'ε

∫ ∞

0
F(r , x)2dr

) 1
2

. (4.41)
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The norms (3.16) are defined on the time interval [0, T ], which means that the integral
in (4.41) with respect to r should be on [0, T ]. Since the kernel (K̃ε,n

Gγ
)γ ,σ is compactly

supported, we can take T big enough so that the integrals can be written on [0,∞).
We use this convention in all formulas below.

Recalling the definitions of the kernel (4.31) and the function n in Sect. 4.3, we
conclude that the function F(zvM ) is supported on ∥zvM − zv#

M
∥s ! 2−ℓvM∧v#M . We

recall that v#
M = vM+1 if M < m and v#

m = . Then the norm (4.41) can be bounded
as

∥F∥L2
ε

!
(
2−ℓvM∧v#M |s| sup

∥zvM−zv#M ∥s#2
−ℓvM∧v#M

F(zvM )
2
) 1

2

. (4.42)

If M = 1, i.e. the set D ⊔ {v1} in (4.39) equals Ṽvar, then the function F(zv1)
satisfies the bound (4.38). Then the expression (4.42) is bounded by a constant times

2−ℓv1∧v#1 |s|/2(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar

2ℓν |s|
)

=
(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar\{v1∧v
#
1 }

2ℓν |s|
)
2ℓv1∧v#1 |s|/2

. (4.43)

Since T ◦Ṽvar
\{v1∧v#

1 } = T ◦Ṽvar\{v1}
, this is exactly (4.34)withp−1(2) = {1},p−1(1) =

p−1(∞) = ∅ and D = Ṽvar\{v1}.
If M ≥ 2, i.e. the set D ⊔ {vM } in (4.39) is a strict subset of Ṽvar, then by the

induction hypothesis the function F(zvM ) satisfies the bound (4.34) with the function
p̄ and the set D ⊔ {vM }. Then the expression (4.42) is bounded by a constant multiple
of

2−ℓvM∧v#M |s|/2(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦
D⊔{vM }⊔p̄−1(∞)

2ℓν |s|
)( ∏

ν∈T ◦
p̄−1(2)

2ℓν |s|
) 1

2
. (4.44)

Since T ◦
D⊔{vM }⊔p̄−1(∞)

= T ◦
D⊔p̄−1(∞)

⊔ {vM ∧ v#
M } and T ◦

p̄−1(2)
= T ◦p−1(2)\{vM ∧ v#

M },
this gives the required expression (4.34).

Now we consider the case p(M) = 1 in (4.40). Similarly to (4.42) we get

∥F∥L1
ε

! 2−ℓvM∧v#M |s| sup
∥zvM−zv#M ∥s#2

−ℓvM∧v#M

|F(zvM )|. (4.45)
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If M = 1, then by analogy with (4.43) we bound the preceding expression by a
constant times

2−ℓv1∧v#1 |s|(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar

2ℓν |s|
)
=
(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar\{v1∧v
#
1 }

2ℓν |s|
)
,

which is exactly (4.34) with D = Ṽvar\{v1}. In the case M ≥ 2 we use the induction
hypothesis, and by analogy with (4.44), we bound (4.45) by a constant times

2−ℓvM∧v#M |s|(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦
D⊔p̄−1(∞)⊔{vM }

2ℓν |s|
)( ∏

ν∈T ◦
p̄−1(2)

2ℓν |s|
) 1

2
,

which is the required bound (4.34).
Finally, we consider the case p(M) = ∞ in (4.40). Similarly to (4.42) we can

bound

∥F∥L p
ε

! sup
∥zvM−zv#M ∥s#2

−ℓvM∧v#M

|F(zvM )|. (4.46)

In the case M = 1, we use (4.38) to bound this expression by a constant multiple of

(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦Ṽvar

2ℓν |s|
)
,

which is the required bound (4.34) with p−1(1) = p−1(2) = ∅, p−1(∞) = {v1} and
D = Ṽvar\{v1}. If M ≥ 2, we use the induction hypothesis and similarly to (4.44)
we bound the expression (4.46) by a constant times

(∏

ν∈T ◦
2−ℓν η̃(ν)

)( ∏

ν∈T ◦
D⊔p̄−1(∞)⊔{vM }

2ℓν |s|
)( ∏

ν∈T ◦
p̄−1(2)

2ℓν |s|
) 1

2
,

which is exactly (4.34). ⊓⊔

Since the product in (4.34) is different from the one in [30, Lemma A.10], we need
to have an analogous result in our context. For this we define the function η̂ : T ◦ → R
by η̂(v) = η̃(v) if v /∈ T ◦2 , and η̂(v) = η̃(v) − |s|/2 if v ∈ T ◦2 , where we use the set
T ◦2 introduced above Lemma 4.7.

Lemma 4.8 In the setting of Theorem 4.3, the function η̂ satisfies assumptions of [30,
Lemma A.10], and

|̂η| :=
∑

v∈T◦
η̂(v) = |s||Ṽ⋆̄ \ {v↑⋆ }|−

∑

e∈Ê
âe −

|s|
2
|2|. (4.47)
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Proof Using the definition of the function η̂, the assumptions of [30, Lemma A.10]
follow at once if we prove the following two properties

1. For every ν ∈ T ◦ one has
∑

v≥ν η̃(v) > |s|
2 #{v ∈ T ◦2 : v ≥ ν}.

2. For every ν ∈ T ◦ such that ν ≤ ν⋆ one has
∑

v"ν η̃(v) < |s|
2 #{v ∈ T ◦2 : v " ν},

provided that this sum contains at least one term, where ν⋆ is a fixed distinguished
inner node.

These bounds can be shown by repeating the proof of [30, Lemma A.19] and using
Assumption 3. To compute (4.47) we use |T ◦2 | = |2|. ⊓⊔

Lemma 4.9 Let the function η̃ be defined in (4.32). In the setting of Theorem 4.3 the
following bound holds uniformly over λ ∈ [e, 1]:

∑

ℓ∈N e
λ (T

◦)

(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|/2
)

! λ|̂η|, (4.48)

where |̂η| is computed in (4.47).

Proof Using the function η̂, defined above Lemma 4.8, we can write the left-hand side
of (4.48) as

∑

ℓ∈N e
λ (T

◦)

∏

ν∈T ◦
2−ℓν η̂ν .

Then Lemma 4.8 implies that the function η̂ satisfies the assumptions of [30,
Lemma A.10], and [30, Equation A.29] allows to bound the left-hand side of (4.48)
by λ|̂η|, where |̂η| is computed in (4.47). ⊓⊔

4.4 Proof of Theorem 4.3

We use formulas (4.19) and (4.30), and apply Theorem 3.9 to each term:

Ep sup
t∈R+

∣∣(Iε,L
γ Kλ,ε

G )t
∣∣

!p
∑

σ∈1γ

∑

p∈Pm :
p−1(1)∩2(γ )=∅,

L−1(▽)⊆p−1(1)

∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

εαγ (p)∥(K̃ε,n
Gγ

)γ ,σ ∥βγ ,p(p)
Lp

ε
(4.49)

×
( ∏

i∈p−1(∞)\21(γ ):
i≥2

ε−κγ ,i (p)∥(K̃ε,n
Gγ

)γ ,σ ∥β
γ≥i ,p(p

≥i )

C 1
si
(L∞ε )

) 1
p

,

for some constants κγ ,i (p) > 0. Next, we are going to bound the terms in the sum in
(4.49) for different functions p.
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1106 P. Grazieschi et al.

If the function p satisfies p−1(∞) = ∅, then we have βγ ,p(p) = 1 and the product
in the parentheses in (4.49) equals 1. Then the inner double sum in (4.49) simplifies
to

εαγ (p)
∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

∥(K̃ε,n
Gγ

)γ ,σ ∥Lp
ε
.

Using Lemma 4.7, we bound this expression by a constant multiple of

εαγ (p)e−δγ (p)
∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|
) 1

2
.

Lemma 4.9 allows to bound this expression by a constant times εαγ (p)e−δγ (p)λνγ , with
νγ defined in (4.15).

Let p−1(∞) ̸= ∅. We can bound the norm ∥(K̃ε,n
Gγ

)γ ,σ ∥C 1
si
(L∞ε ) defined in (3.3).

More precisely, Lemma 4.7 yields

∥∂ksi (K̃
ε,n
Gγ

)γ ,σ ∥L∞ε ! e−δγ (∞)−2k
(∏

ν∈T ◦
2−ℓν η̃(ν)

)(∏

ν∈T ◦2

2ℓν |s|
) 1

2
, (4.50)

for k = 0 and k = 1, where we write δγ (∞) for the constant (4.17) defined via the
function p ≡ ∞, and where the derivative ∂si gives the multiplier e−2 (as follows
from the scaling properties of the kernels). The norm (4.50) can be brutally bounded
by a negative power of e $ ε, and hence the whole expression in the parentheses in
(4.49) can be bounded by ε−κ for some κ ≥ 0. Hence, the inner double sum in (4.49)
is estimated by

∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

ε
αγ (p)− κ

p ∥(K̃ε,n
Gγ

)γ ,σ ∥βγ ,p(p)
Lp

ε
.

Since βγ ,p(p) ≤ 1 (see (3.20)), we use Jensen’s inequality to estimate this expression
by a constant times

ε
αγ (p)− κ

p

( ∑

(T ,ℓ)∈Te
λ (Ṽ)

∑

n∈N e
γ (T ,ℓ)

∥(K̃ε,n
Gγ

)γ ,σ ∥Lp
ε

)βγ ,p(p)

.

We use Lemmas 4.7 and 4.9 to bound the double sum by e−δγ (p)λνγ , and we bound
the preceding expression by

ε
αγ (p)− κ

p
(
e−δγ (p)λνγ

)βγ ,p(p)
.
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Martingale-driven integrals and singular SPDEs 1107

The expression in the parentheses is smaller than one (recall that we assumed νγ < 0),

and this expression can be estimated by ε
αγ (p)− κ

p e−δγ (p)λνγ . Taking p sufficiently
large, we get the required bound (4.16).

5 Application to a discrete martingale model

This section is a showcase of the theory we developed in this paper. We introduce
a family of martingales indexed by points of the lattice 'ε; we then build trees as
iterated integrals against the martingales themselves; and we finally apply our theory
to prove uniform bounds.

The martingales in this section are chosen to resemble those that appear in our
companionpaper [21],whereweprove convergence of the dynamical Ising–Kacmodel
to !4

3 and this proof of convergence is what motivated the development of the theory
here in the first place. We have therefore chosen to present a family of martingales
which is both simpler and similar to the one found in the Ising–Kac model. In this
way, we aim to give the reader a concrete and easy example of how the theory above
can be applied.

For the proof of convergence in our companion paper [21], we use the theory of
regularity structures [26] (see also [15, 27]), together with the discretisation frame-
work by [13]. We prefer not to reintroduce all the concepts developed in these articles.
Generally speaking, however, the theory of regularity structures is used as a solution
theory for the (continuous) !4

3 equation, while the discretisation framework by [13]
gives us a solution theory for the discrete Ising–Kac model which preserves the for-
malism of regularity structures; [13] also supplies us with some convergence tools,
while our theory develops themissing tool for convergence ofmodels, namely uniform
boundedness in the scaling parameter.

As follows from [26], the regularity structure for the!4
3 equation has a basis which

is convenient to write as formal expressions, which are written using the symbols ;,
I and Xi , i = 0, . . . , 3. Here, the symbol ; corresponds to the driving noise of the
equation, I corresponds to the convolution map with respect to the heat kernel, and
Xi are the time-space variables. For example, the expression < := I(;) corresponds
to the convolution of the heat kernel with the driving noise. The first several basis
elements of the regularity structure are ;, <, <2, <3, <2Xi , I(<3)<, I(<3)<2,
I(<3)<3. In this section we will prove moment bounds for a discrete model acting
only on the elements ;, <, <2, I(<3)<2, which we believe are the most interesting.
We refer the reader to our companion paper [21] for a full description of the regularity
structure for the Ising–Kac model.

A model is a pair of linear maps (=,2) on a regularity structure, which map the
basis elements into functions/distributions. These maps are required to have certain
algebraic and analytic properties which can be found in [26]. In this section we will
consider a discretemodel (in the sense of [13]) and,more precisely, only a discretisation
of the map =. For this, we need to make some definitions.

For any α ∈ (0, 1), we define e := εα and the function ψe : R3 → R+ by
ψe(x) := e−3ψ(e−1x), withψ being a smooth function, supported in the ball centered
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1108 P. Grazieschi et al.

at the origin and of radius 1, and satisfying
∫
R3 ψ(x)dx = 1. While any α ∈ (0, 1)

works for our purposes, we choose α = 3/4 to be in the setting of [21]. Then for t ≥ 0
and x ∈ 'ε := (εZ/Z)3 we define the martingale

Mε(t, x) =
1√
2
ε

5
2
∑

y∈'ε

ψe(x − y)
(
Pε−2t (ε

−1y)− P̃ε−2t (ε
−1y)

)
, (5.1)

where Pt (x) and P̃t (x) are independent Poisson processes of intensities 1. We extend
these martingales periodically to x ∈ εZ3 and we extend them toR in time as in (4.1).
We denote the new space-time domain by Dε := R× εZ3.

As mentioned above, we want to make the family of martingales (5.1) as similar as
possible to the family of martingales of the Ising–Kac interaction system; and, by the
choice of α = 3

4 , the two families of martingales have the same limiting behaviour as
ε → 0. We refer the reader to the [21] for a more detailed explanation.

Using thesemartingales, we are going to define a discretisation of themap=, which
we denote by =̂ε. As we mentioned above, we will bound this map only for the four
elements ;, <, <2 and I(<3)<2 of the regularity structure, and a complete analysis
of the map in a similar context is performed in [21]. For every fixed z ∈ Dε the action
of this map on the element ; is defined as

(
=̂ε

z;
)
(z̄) = dMε(z̄), (5.2)

which means that for every test function ϕ : R4 → R we have

ιε
(
=̂ε

z;
)
(ϕ) =

∫

Dε

ϕ(z̄) dMε(z̄),

where we used the extension (2.3), the expression on the left-hand side means the
duality pairing of the distribution ιε(=̂

ε
z;) with the test function ϕ, and where the

integral with respect to the martingale is defined as in (4.2).
Let P(t, x) := 1

(4π t)3/2 e
−|x |2/(4t) be the heat kernel on R3. In order to integrate it

with respect to the martingales Mε, we need to remove the singularity of P at the
origin. For this, we will convolve P with a smooth function. More precisely, let us
take any smooth function ψ̃ : R4 → R, supported in the unit ball with the center at the
origin and which satisfies

∫
R4 ψ̃(z) dz = 1. Let us set ψ̃e(t, x) := e−5ψ̃(e−2t, e−1x).

Then we define a smoothened heat kernel Pε := P ∗ ψ̃e, where the convolution is
over R4. As follows from [26, Lemma 7.7], we can write Pε = K ε + Rε, where K ε

is a compactly supported singular part of the kernel (i.e. K ε(0) diverges as ε → 0)
and Rε is smooth. Then we set

(
=̂ε

z<
)
(z̄) =

∫

Dε

K ε(z̄ − z̃) dMε(z̃), (5.3)

where we recall that < = I(;).
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Martingale-driven integrals and singular SPDEs 1109

We will also use the kernel K e := K ε⋆εψe, where ⋆ε is the convolution on εZ3.
Then we set

(
=̂ε

z<
2)(z̄) =

(
=̂ε

z<
)
(z̄)2 − Cε

1, (5.4)

with the renormalisation constant

Cε
1 =

∫

Dε

K e(z)2 dz. (5.5)

It is not difficult to see that =̂ε
z< converges to a distribution as ε → 0. This implies

that the product (=̂ε
z<

2)(z̄)2 diverges in the limit, and in order to have a non-trivial
limit we need to renormalise the product by subtracting the divergent constant Cε

1 .
The precise formula for this constant will be explained in Sect. 5.3 below.

Finally, for the element I(<3)<2 we set

(
=̂ε

zI(<3)<2)(z̄) =
(
=̂ε

z<
)
(z̄)2

∫

Dε

(
K ε(z̄ − z̃)− K ε(z − z̃)

)(
=̂ε

z<
)
(z̃)3 dz̃

−3Cε
2 (=̂

ε
z<)(z̄), (5.6)

where the new renormalisation constant is

Cε
2 = 2

∫

Dε

∫

Dε

∫

Dε

K e(z1)K e(z1 − z3)K e(z2)K e(z2 − z3)K e(z3) dz1 dz2 dz3.

(5.7)

Again, we need to subtract the renormalisation constant to have non-divergent moment
bounds for the function. The formula for the renormalisation constant is explained in
Sect. 5.4 below.

For a fixed κ > 0, we assign to these four basis elements a homogeneity | • | as

|;| = −5
2
− κ, |<| = −1

2
− κ, |<2| = −1− 2κ, |I(<3)<2| = −1

2
− 5κ.

Let τ be one of these elements. We are going to prove that for some κ̄ > 0, any p ≥ 2
and any test function ϕ : R4 → R the following bound holds:

Ep
∣∣ιε
(
=̂ε

zτ
)
(ϕλ

z )
∣∣ ≤ Cλ|τ |+κ̄ , (5.8)

uniformly in z ∈ Dε, λ ∈ [e, 1] and ε ∈ (0, 1], where we use the extension (2.3) and a
recentered and rescaled test function (4.11). The constantC in this bound may depend
on p.

For every element τ ∈ {;,<,<2, I(<3)<2}, we use (2.14) to write

(=̂ε
zτ )(ϕ

λ
z ) =

∑

γ∈C(n)

∑

σ∈1γ

∫

Dε

ϕλ
z (z̄)

(∫

Dγ ,σ

Fz̄(z1, . . . , zn) dMn
ε (z1, . . . , zn)

)
dz̄,
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1110 P. Grazieschi et al.

where n is the number of instances of ; in the definition of τ (recall that < = I(;)),
the measureMn

ε is the product measure built fromMε, and some function F . In order
to bound such terms, we need to use martingales satisfying Assumption 1. For this,
we use the definition (5.1) and rewrite the previous expression in the form

(=̂ε
zτ )(ϕ

λ
z ) =

∑

γ∈C(n)

∑

σ∈1γ

∫

Dε

ϕλ
z (z̄)

×
(∫

Dγ ,σ

((
F⋆nεψe

)
z̄(z1, . . . , zn)

)
dMn

ε (z1, . . . , zn)
)
dz̄, (5.9)

where now the measureMn
ε is built as in (2.13) using the family of martingales

Mε(t, x) :=
1√
2
ε−

1
2
(
Pε−2t (ε

−1x)− P̃ε−2t (ε
−1x)

)
(5.10)

andwhere F⋆nεψe is the discrete convolution of F against the functionψe in each of the
variables of F . In particular,Mε are càdlàg martingales, satisfying Assumption 1 with
k = − 1

2 andCε ≡ Cε ≡ 1. We note that we can replace the Poisson processes in (5.1)
and in (5.10) by their compensated versions, because the integrals of their intensities
cancel each other. Furthermore, (2.15) allows to write (5.9) as a chaos expansion

(=̂ε
zτ )(ϕ

λ
z ) =

∑

γ∈C(n)

∑

σ∈1γ

∫

Dε

ϕλ
z (z̄)

(
Iε

γ ,σ

(
F⋆nεψe

)
z̄

)
dz̄.

The functions ϕλ
z and F⋆nεψe may be written in this expression as a suitable kernel

Kλ,ε
G,z in the sense of (4.18). Moreover, due to the renormalisation involved in the

definition of =̂ε
zτ we will typically write this expression in terms of renormalised

stochastic integrals (3.30) with suitable labelings Lγ , which may be different for
different contractions γ . Hence, we will write the preceding expression as

(=̂ε
zτ )(ϕ

λ
z ) =

∑

γ∈C(n)

∑

σ∈1γ

Iε,Lγ
γ ,σ Kλ,ε

G,z .

Finally, we use (4.14) to write it as

(=̂ε
zτ )(ϕ

λ
z ) =

∑

γ∈C(n)
Iε,Lγ

γ Kλ,ε
G,z,

and we are going to bound each term in this sum using Corollary 4.5.
Additionally, it is convenient to use graphical notation to represent the kernelsKλ,ε

G,z .
In the graphical notation, nodes represent variables and arrows represent kernels. The
vertex “ ” labelled with z represents the basis point z ∈ Dε. The arrow “ ”
represents a test function ϕλ

z . The arrow “ ” represents either the discrete kernel
K ε or K e, and we will write two labels (ae, re) on this arrow, which correspond to the
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labels on graphs as described in Sect. 4. More precisely, since the kernels K ε and K e

satisfy the bound (4.7) with ae = 3 (this follows from [26, Lemma 7.7]), Lemma 4.2
implies that the kernels K ε and K e have all the properties fromAssumption 4 with the
values ae = 3 and re = 0. Hence, we will depict this kernel by “ 3,0 ”. Whenever
a contracted variable zi is integrated with respect to the measure Mn

ε with n ≥ 2, we
denote it by a node “ ”. Moreover, the variable integrated with respect toMε will be
denoted by “ ”. By the node “ ” we denote a variable integrated out in Dε.

Using this notation,wewill nowprove the bounds (5.8) for each of the four elements
τ .

5.1 The element ! = 4

The definitions (5.2), (5.1) and (5.10) yield

ιε(=̂
ε
z;)(ϕλ

z ) =
∫

Dε

(
ϕλ
z ⋆εψe

)
(z̄) dMε(z̄).

This expression is not in the scope of Theorem 4.3, but we can bound it using Propo-
sition 3.2 since the right-hand side is a first-order stochastic integral. Recalling that
we extended the martingale Mε to all times in R by (4.1), we write the preceding
expression explicitly as

∑

x̄∈εZ3

ε3
∫ ∞

t̄=0

(
ϕλ
z ⋆εψe

)
(t̄, x̄) dMε(t̄, x̄)+

∑

x̄∈εZ3

ε3
∫ ∞

t̄=0

(
ϕλ
z ⋆εψe

)
(−t̄, x̄) dM̃ε(t̄, x̄),

where M̃ε is an independent copy of Mε (see (4.1)). We bound these two integrals
using Proposition 3.2, recalling the definition (2.10), and get

Ep
∣∣ιε
(
=̂ε

z;
)
(ϕλ

z )
∣∣ !

(
ε3
∑

x̄∈εZ3

∫

R

(
ϕλ
z ⋆εψe

)
(t̄, x̄)2dt̄

) 1
2

+ ε
5
2 sup
(t̄,x̄)∈Dε

|
(
ϕλ
z ⋆εψe

)
(t̄, x̄)|,

(5.11)

where we used k = − 1
2 . The function

(
ϕλ
z ⋆εψe

)
(t̄, x̄) is supported on (t̄, x̄) ∈ Dε

satisfying |t̄ − t | ! λ and |x̄ − x | ! λ∨ e. Moreover, this function is rescaled by λ in
time and λ∨ e in space. Then the first term on the right-hand side of (5.11) is bounded
by a constant times λ−

5
2 for λ ∈ [e, 1]. The second term in (5.11) is bounded by a

constant times ε
5
2 λ−5 ≤ λ−

5
2 for λ ∈ [e, 1]. Hence, we obtained the required bound

(5.8) with |;| = − 5
2 − κ for any κ > 0.

5.2 The element ! = 9

Using (5.3), (5.1) and (5.10), we can represent the map =̂ε
zτ diagrammatically as

ιε(=̂
ε
zτ )(ϕ

λ
z ) =

z
3,0 .
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1112 P. Grazieschi et al.

This diagram is the stochastic integral Iε(F), where the kernel F is in this case the
generalised convolution Kλ,ε

G,z , as in (4.18), given by

Kλ,ε
G,z(z

var) =
∫

Dε

ϕλ
z (z̄) K

e(z̄ − zvar) dz̄.

One can check that Assumption 3 is satisfied for this diagram, because it contains only
one edge with the labels a = 3 and r = 0, 2 = V̂var = {1}, the contraction γ is
trivial with only one component γ1 = {1}, and |V̂⋆̄\{v↑⋆ }| = 1. The space-time scaling
is s = (2, 1, 1, 1), so that |s| = 5 and the value of the constant νγ in (4.15) is − 1

2 ,
where we used |2| = 1.

Then we can compute the quantities appearing in (4.16). There is only one function
p ∈P1 satisfying the conditions of the first sum in (4.16), this is the functionp(1) = 2.
Using this function, the first term on the right-hand side of (4.16) is Cλ−

1
2 , because

αγ (p) = δγ (p) = 0 as follows from (3.19) and (4.17).
The only function p ∈ P1 satisfying the conditions of the second sum in (4.16)

is the function p(1) = ∞. Then the second term on the right-hand side of (4.16) is
Cλ−

1
2 ε

5
2−θ e−

5
2 for any θ > 0, because αγ (p) = 5

2 and δγ (p) = 5
2 as follows from

(3.19) and (4.17) respectively.
Hence, applying Corollary 4.5 and recalling that |τ | = − 1

2 − κ , one obtains the
bound

(
E
∣∣ιε(=̂ε

zτ )(ϕ
λ
z )
∣∣p
) 1

p ! λ−
1
2
(
1+ ε

5
2−θ e−

5
2
)

! λ−
1
2 ,

for any θ > 0 small enough. As such, we immediately get (5.8) for the element τ .
In what follows we always have |s| = 5 and we prefer not to recall it every time.

5.3 The element ! = 92

Taking into account the renormalisation in (5.4), the map =̂ε
zτ can be represented by

the diagrams

ιε(=̂
ε
zτ )(ϕ

λ
z ) =

z

3,0 3,0

+

z

3,03,0

− Cε
1

z

, (5.12)

where the renormalisation constant is given in (5.5). We denote the first diagram by
ιε(=̂

ε,1
z τ )(ϕλ

z ) and the difference of the other two terms by ιε(=̂
ε,2
z τ )(ϕλ

z ).
Let us start with the first diagram in (5.12). Assumption 3 is satisfied for it with

a trivial contraction γ having two components γ1 = {1} and γ2 = {2}, and the sets
2 = V̂var = {1, 2}. Furthermore, we have |V̂⋆̄\{v↑⋆ }| = 2 and the value of the constant
νγ in (4.15) is −1.
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Now,wecan compute thequantities appearing in thebound (4.16).Only the function
p ∈P2 with p(1) = p(2) = 2 contributes to the first sum in (4.16). Then, according
to (3.19) and (4.17), we have αγ (p) = δγ (p) = 0 and the first term on the right-hand
side of (4.16) equals Cλ−1.

There are three functions p ∈ P2 contributing to the second sum in (4.16) which
we denote by p1, p2 and p3. These functions are given by p1(1) = 2, p1(2) = ∞,
p2(1) =∞, p2(2) = 2, and p3(1) = p3(2) =∞. According to (3.19) and (4.17), we
have αγ (p1) = αγ (p2) = δγ (p1) = δγ (p2) = 5

2 and αγ (p3) = δγ (p2) = 5. Then

the second term on the right-hand side equals Cλ−1
(
2ε

5
2−θ e−

5
2 + ε5−θ e−5

)
for any

θ > 0. Hence, applying Corollary 4.5 to this diagram, we get the bound

(
E
∣∣ιε(=̂ε,1

z τ )(ϕλ
z )
∣∣p
) 1

p ! λ−1
(
1+ ε

5
2−θ e−

5
2 + ε5−θ e−5

)
! λ−1,

for any θ > 0 small enough. Recalling that |τ | = −1− 2κ , we get the bound (5.8).
The second diagram in (5.12) does not satisfy Assumption 3 and it needs to be con-

sidered as a renormalised integral in the sense of (3.29). For this, let us denote by “ ”
the variablewhich is integratedwith respect to themartingales t 0→ (ε

5
2Mε(t, x))x∈'ε ,

where Mε(t, x) := ε
1
2 ([Mε(x)]t − ⟨Mε(x)⟩t ). We use the multiplier ε

1
2 to be con-

sistent with our definition (2.6), and the multiplier εd+k = ε
5
2 equals the ε-factor in

the definition (3.29) with n = 2. Then the identity (2.22) and our definition of the
renormalisation constant (5.5) allow to write

ιε(=̂
ε,2
z τ )(ϕλ

z ) =

z

3,03,0

.

This expression equals to a renormalised integral (3.29) with n = 2. More generally, it
is equal to an integral (3.30) with the contraction γ having one component γ1 = {1, 2}
which is labeled with ⋄. However, this diagram still does not satisfy Assumption 3,
because the kernels have very strong singularities. To resolve this problem, we notice
thatmultiplication of a kernel by a positive power of ε decreases the order of singularity
in (4.7). Hence, for any 0 < a < 3 we can write the preceding expression as

ε2(a−3)

z

a,0a,0

, (5.13)

where we multiplied each kernel by ε3−a . For 5
4 < a < 5

2 , Assumption 3 is satisfied

with the sets 2 = V̂var = {1}. Furthermore, we have |V̂⋆̄\{v↑⋆ }| = 1 and the value of
the constant νγ in (4.15) is 5

2 − 2a < 0.
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To apply the bound (4.16) to the expression in the parentheses in (5.13), we need to
compute the involved quantities. There is one function p ∈P1 contributing to the first
sum on the right-hand side of (4.16), and this function is p(1) = 2. Using (3.19) and
(4.17), we compute αγ (p) = 5

2 and δγ (p) = 0, and the first term on the right-hand

side of (4.16) equals Cλ
5
2−2aε

5
2 .

The only function p ∈P1 contributing to the second sum on the right-hand side of
(4.16) is p(1) =∞. Using (3.19) and (4.17), we compute αγ (p) = 5 and δγ (p) = 5

2 ,

and the second term on the right-hand side of (4.16) equals Cλ
5
2−2aε5−θ e−

5
2 for any

θ > 0.
Hence, Corollary 4.5 yields

(
E
∣∣ιε(=̂ε,2

z τ )(ϕλ
z )
∣∣p
) 1

p ! ε2(a−3)λ
5
2−2a

(
ε

5
2 + ε5−θ e−

5
2
)

! ε2a−
7
2−θλ

5
2−2a,

for any θ > 0. If we take a > 7
4 + θ , then the last expression becomes εθλ−1−2θ .

Recalling that |τ | = −1 − 2κ and taking θ small enough, we get the bound (5.8).
Moreover, this quantity vanishes as ε → 0.

5.4 The element ! = I(93)92

Using the definition (5.6) and the renormalised integrals as in Sect. 5.3, the diagrams
for the map =̂ε

zτ are the following:

ιε(=̂
ε
z τ )(ϕ

λ
z ) =

z

3,0 3,0
3,0

3,1
3,03,0

+ 3

z

3,0

3,0 3,0

3,1
3,03,0

+

z

3,03,0
3,0

3,1
3,03,0

+ 2

z

3,03,0
3,0

3,1

3,0

3,0
+ 3

z

3,0

3,0

3,0

3,1
3,0

3,0

+ 6

z

3,0

3,0

3,0
3,1

3,0

3,0 + 3

z

3,0

3,0

3,0

3,1
3,0

3,0

+ 6

z

3,0
3,0

3,0
3,1

3,03,0
+ 6

z

3,0

3,0 3,0

3,1

3,0

3,0
+

z

3,03,0
3,0

3,1

3,03,0

+ 3

z

3,0

3,0

3,1
3,0

3,0

3,0

+ 6

z

3,0

3,0

3,0
3,1

3,03,0
+

z

3,0 3,0
3,0

3,1
3,0

3,0

+

z

3,03,0
3,0

3,1
3,0

3,0
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+ 6

z

3,0 3,0

3,0

3,1

3,03,0

− 3Cε
2

z

3,0
. (5.14)

All these diagrams, except the tenth and the last two, can be bounded by a direct
application of Corollary 4.5.

As a demonstration, let us bound the third diagram, which we denote by
ιε(=̂

ε,3
z τ )(ϕλ

z ). Let us label the vertices Vvar of the first diagram in (5.14) with
1, . . . , 5, going in the clockwise direction. Then the third diagram corresponds to
the contraction γ with three components γ1 = {1}, γ2 = {2, 3, 4} and γ3 = {5}. After
performing contraction, we get three vertices in V̂var which we label with 1, 2 and 3.
Then Assumption 3 is satisfied with 2 = {1, 3}. Furthermore, we have |V̂⋆̄\{v↑⋆ }| = 4
and the value of the constant νγ in (4.15) is −3.

Now, we will compute the quantities which appear in the bounds (4.16). There is
only one function p ∈P3 contributing to the first sum in (4.16), which is the function
p(1) = 2, p(2) = 1 and p(3) = 2. Then (3.19) and (4.17) yield αγ (p) = 5

2 and

δγ (p) = 0, and the first term on the right-hand side of (4.16) equals Cλ−3ε
5
2 . Since

λ ≥ ε, we can estimate it by Cλ−
1
2−θ εθ for any θ ∈ (0, 5

2 ).
There are four functions p ∈ P3 contributing to the second sum in (4.16), which

we denote by p1, p2, p3 and p4, and which are given by p1(1) = 2, p1(2) = ∞,
p1(3) = 2, p2(1) =∞, p2(2) =∞, p2(3) = 2, p3(1) = 2, p3(2) =∞, p3(3) =∞,
p4(1) = ∞, p4(2) = ∞ and p4(3) = ∞. We can compute by (3.19) and (4.17) the
quantities αγ (p1) = 15

2 , δγ (p1) = 5, αγ (p2) = αγ (p3) = 10, δγ (p2) = δγ (p3) = 15
2 ,

αγ (p4) = 25
2 and δγ (p4) = 10. Then the second term on the right-hand side of (4.16)

equals

Cλ−3
(
ε

15
2 −θ e−5 + 2ε10−θ e−

15
2 + ε

25
2 −θ e−10

)
,

for any θ > 0. Recalling that λ ≥ e ≥ ε and taking θ small enough, we bound this
expression by 4Cλ−

1
2−2θ εθ .

Hence, applying Corollary 4.5, we get

(
E
∣∣ιε(=̂ε,3

z τ )(ϕλ
z )
∣∣p
) 1

p ! λ−
1
2−2θ εθ ,

for all θ > 0 small enough. Taking a suitable value of θ , we get the required bound
(5.8) with |τ | = − 1

2 − 5κ .
Now, we will bound the tenth diagram (the one that contracts all leaves), which

we denote by ιε(=̂
ε,10
z τ )(ϕλ

z ). For this we write the product measure M5
ε , defined in

(2.11), as
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M5
ε([0, t]× A) = ε15

∑

x∈A

∑

0≤s≤t

(
%sMε(x)

)5 = ε13
∑

x∈A

∑

0≤s≤t
%sMε(x),

where γ ∈ C1(Vvar) with |Vvar| = |γ1| = 5 and [0, t] × A ⊆ Dγ , where the set
Dγ is defined in (2.13), i.e. it is the diagonal of D5

ε on which all variables take the
same values. The preceding expression equals ε13

∑
x∈A Mε(t, x) because Mε is a

piece-wise constant process. Then we can write

z

3,03,0
3,0

3,1

3,03,0 = ε10

z

9,0

3,1

3,03,0

,

where the stochastic integral is with respect to the martingale Mε. We can now view
this diagram to correspond to the contraction γ with one component γ1 = {1}. Taking
powers of ε to improve the singularities of the kernels, similarly to how we did it in
(5.13), we get

ε2a+b−5

z

b,0

3,1

a,0a,0

, (5.15)

for 0 < a < 3 and 0 < b < 9. If a and b satisfy b < 5 and 7
2 < 2a + b < 7,

then Assumption 3 is satisfied with the sets 2 = V̂var = {1}. Furthermore, we have
|V̂⋆̄\{v↑⋆ }| = 2 and the value of the constant νγ in (4.15) equals 9

2 − 2a − b, which is
strictly negative if 2a + b > 9

2 .
Now, we are going to apply the bound (4.16) to the diagram (5.15), together with

the multiplier ε2a+b−5. There is one function p ∈P1, given by p(1) = 2, contributing
to the first sum on the right-hand side of (4.16). Using (3.19) and (4.17), we com-
pute αγ (p) = δγ (p) = 0, and the first term on the right-hand side of (4.16) equals

Cε2a+b−5λ
9
2−2a−b.

The only function p ∈P1 contributing to the second sum on the right-hand side of
(4.16) is p(1) = ∞. Using (3.19) and (4.17), we compute αγ (p) = δγ (p) = 5

2 , and

the second term on the right-hand side of (4.16) equalsCε2a+b−5λ
9
2−2a−bε

5
2−θ e−

5
2 ≤

Cε2a+b−5−θλ
9
2−2a−b for any θ > 0.
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Then Corollary 4.5 yields

(
E
∣∣ιε(=̂ε,10

z τ )(ϕλ
z )
∣∣p
) 1

p ! ε2a+b−5−θλ
9
2−2a−b.

If we take θ > 0 sufficiently small and 2a + b = 5 + 2θ , then the last expression
turns to εθλ−

1
2−2θ . Recalling that |τ | = − 1

2 − 5κ and taking θ small enough, we get
the bound (5.8), and this quantity vanishes as ε → 0.

We now turn our attention to the last two terms in (5.14), which are also the most
interesting ones. Using the renormalised kernel (4.8), we can write

2

z

3,0 3,0

3,0

3,1

3,03,0

− Cε
2

z

3,0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,0

3,03,0

− Cε
2

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2

z

3,0 3,0

3,0

3,03,0
3,0

.

(5.16)

The last diagram can be further decomposed as

z

3,0 3,0

3,0

3,03,0
3,0

=

z

3,0 3,0

3,0

3,03,0
3,0

+ 2

z

3,0 3,0

3,0

3,03,0
3,0

+

z

3,0 3,0

3,0

3,03,0
3,0

and applying Corollary 4.5 with νγ = − 11
2 , the p-th moment of each term can be

bounded by a constant times εθλ−
1
2−2θ for any θ > 0. To obtain this bound, we need

to perform computations similar to what we did above.
The expression in the parentheses in (5.16) can be written as

2

z

3,0 3,0

3,0

3,0

3,03,0

− Cε
2

z

3,0 = 2

z

3,0 3,0

3,0

3,0

3,03,0

+ 4

z

3,0 3,0

3,0

3,0

3,03,0

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

z

3,0 3,0

3,0

3,0

3,03,0

− Cε
2

z

3,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.17)
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The first two diagrams above can again be bounded using Corollary 4.5 by a constant
multiple of εθλ−

1
2−2θ for θ > 0.

The last expression in the parentheses in (5.17) needs more attention. Let us define
a new kernel

Gε(z1, z2) :=

z2

z1

3,0 3,0
3,0

3,03,0
,

which is in fact a function of the difference of the arguments, i.e. Gε(z1, z2) = Gε(z2−
z1). As follows from the order of the singularity of the kernel K e and [29, Lemma 7.3],
the function Gε satisfies |DkGε(z)| ! (∥z∥s + e)−5−|k|s for all multiindices k with
|k|s large enough. Then we conclude from Lemma 4.2 that the function Gε has all the
properties listed in Assumption 4 with the values ae = 5 and re = 0. We denote the
kernel Gε by an edge “ 5,0 ”. Then the first diagram in the parentheses in (5.17) can
be represented as

z
3,05,0 ,

and one can see that this diagramdoes not satisfyAssumption 3(1.) (recall that |s| = 5).
To resolve this problem, we need to use a negative renormalisation (in the sense of
Sect. 4.1.1) of the kernelGε.More precisely, for any smooth functionη : R4×R4 → R,
we define its negative renormalisation as

(
RεGε

)
(η) :=

∫

Dε

∫

Dε

Gε(z1, z2)
(
η(z1, z2)− η(z1, z1)

)
dz1dz2,

and we graphically depictRεGε as “ 5,-1 ”, where the label “−1” refers to the order
of renormalisation. Since the renormalisation constant (5.7) can be represented as

Cε
2 = 2

0

3,0 3,0
3,0

3,03,0
,

the expression in the parentheses in (5.17) equals

2
z

3,05,-1 .

This diagram satisfies Assumption 3, and using Corollary 4.5 we bound its moments
by a constant multiple of εθλ−

1
2−2θ for θ > 0.

By taking θ in the preceding bounds sufficiently small, we obtain the required
bound (5.8) on the expression (5.16).
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