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Abstract

We consider multiple stochastic integrals with respect to cadlag martingales, which
approximate a cylindrical Wiener process. We define a chaos expansion, analogous
to the case of multiple Wiener stochastic integrals, for these integrals and use it
to show moment bounds. Key tools include an iteration of the Burkholder—Davis—
Gundy inequality and a multi-scale decomposition similar to the one developed in
Hairer and Quastel (Forum Math Pi 6:e3, 2018). Our method can be combined with
the recently developed discretisation framework for regularity structures (Hairer and
Matetski in Ann Probab 46(3):1651-1709, 2018, Erhard and Hairer in Ann Inst Henri
Poincaré Probab Stat 55(4):2209-2248, 2019) to prove convergence of interacting
particle systems to singular stochastic PDEs. A companion article (Grazieschiet al.
in The dynamical Ising—Kac model in 3D converges to ®%, 2023. arXiv:2303.10242)
applies the results of this paper to prove convergence of a rescaled Glauber dynamics
for the three-dimensional Ising—Kac model near criticality to the d>§' dynamics on a
torus.
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1 Introduction

We consider a class of cadlag martingales which approximate a cylindrical Wiener
process over a d-dimensional spatial domain, i.e. integrated-in-time space-time white
noise. We develop a theory of iterated integrals with respect to these martingales and
derive moment bounds.

Our results serve as a technical tool for proving the convergence of Interacting Par-
ticle Systems (IPSs) to solutions of non-linear stochastic partial differential equations
(SPDESs). The limiting SPDEs are usually of the form

Lu = F(u, Vu) + o (u)E, (1.1)

where L is a linear parabolic operator (e.g. £L = 9, — A), & is an irregular random
noise (e.g. a Gaussian white noise) and F and o are local non-linearities. There are by
now a number of convergence results of this type. These include 1 + 1-dimensional
surface growth models rescaling to the KPZ equation

Oh —0fh = —(0:h)* + £, (1.2)
e.g. [3, 8,9, 12, 19], long range (Kac) spin models rescaling to ¢>" dynamics
o — Ap=—¢™ ! +&, (1.3)

in one [5, 16] and two dimensions [20, 32, 40, 42] as well as diffusions in random
environment rescaling to the parabolic Anderson model / multiplicative stochastic heat
equation

oru — Au = ué, (1.4)

[14, 39]. Ultimately, the motivating goal of the theory developed in this article is to
show the convergence of the Ising—Kac model to the ¢* dynamics in three dimensions,
and this is accomplished in our companion article [21].

A common feature of all of these limiting results is that particle systems are simul-
taneously rescaled (i.e. observed on large scales) while a certain parameter is changed.
The specific nature of this parameter depends on the model under consideration; exam-
ples are the strength of the weak asymmetry in exclusion processes approximating the
KPZ equation [3], or the range of the interaction in Kac-models [20]. The typical
strategy is to tune down the effect of the “non-linearity” as one moves to larger scales.

This procedure is necessary to obtain convergence to one of the SPDEs (1.2), (1.3),
(1.4) and reflects the fact that the SPDEs are themselves not scale-invariant. The fact
that a relatively small class of SPDEs arises as scaling limit of this type for a relatively
large number of particle systems sharing just a few key characteristics is sometimes
referred to as weak universality.

A key technical challenge in deriving such scaling results is the low regularity of
the solutions of the limiting Eqgs. (1.2), (1.3), (1.4): the noise term £ is typically very
irregular, leading to irregular solutions which in turn lead to difficulties in dealing
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Martingale-driven integrals and singular SPDEs 1065

with the non-linearities. This problem does not appear in more common Gaussian
fluctuation limits [35]—while the solutions of the limiting equations there are typically
also irregular, this is less problematic due to the absence of a non-linear term. Good
theories for non-linear SPDEs and their renormalisation have only been developed
over the last years, including Hairer’s theory of regularity structures [26], the theory
of paracontrolled distributions put forward by Gubinelli, Imkeller and Perkowski [17]
and more recently theories of weak solutions for specific equations, in particular the
KPZ equation [18, 19, 23, 24].

The theory of regularity structures and the theory of paracontrolled distributions
both build on a two-step approach: first, the construction of approximate solutions
building a local expansion (the model in the jargon of [26]) which relies on probabilistic
tools, in particular Gaussian analysis and explicit calculations of covariance functions,
and second, analytic techniques (in particular regularity estimates and commutator
estimates) for dealing with the remainder. The weak solution theories developed in
[18, 19, 23, 24] use a very different approach and make explicit use of the invariant
Gaussian measure to give a direct characterisation of the generator of the dynamics.

In principle, both approaches can be used to study scaling limits. In situations,
where a simple invariant measure for an interacting particle system is given, the weak
solution approach has proved highly efficient, see e.g. [2, 19, 25, 33]. The approach
which consists of mimicking the theory of regularity structure / paracontrolled distri-
butions has also been implemented in a few examples, in particular [14, 22, 39, 40].
Still, implementing this programme for “interesting” limiting equations remains a
challenging enterprise: for the second, deterministic, step of the analysis a systematic
theory has been developed in [13, 29], but the first probabilistic part remains chal-
lenging, because the number of terms in this perturbative expansion (the “trees”) can
become prohibitively large when looking at interesting equations. For the continuum
there is by now a very systematic treatment for the trees (see [6, 30, 31, 37]). The aim
of this paper is to develop a—at least somewhat—systematic approach to bound these
trees for approximations of white noise. A particular focus is on the jump martingales
that typically arise in the analysis of IPSs.

On a technical level: the noise approximations we deal with are of bounded vari-
ation, but discontinuous because of the jumps. Therefore, the non-linear functionals
that make up the model can rigorously be written in terms of integrals with respect to
product measure in the underlying noise. We then decompose these integrals according
to “diagonals” or “contractions”. This is in the spirit of the Wiener chaos decomposi-
tion, however many more terms than in the Gaussian case arise, as in the latter only
diagonals where precisely two coordinates coincide, make a non-vanishing contri-
bution. In our noise approximations, many more “diagonals” appear, and we aim to
show that their impact vanishes as space-time white noise is approached. Our main
technical tool is an iteration of a Burkholder—Davis—Gundy (BDG) type inequality.
For our purpose, the most convenient form is in terms of the predictable quadratic
variation with an error term that depends on the size of jumps, as was used previously
in [40, Lemma 4.1]. The advantage is that under our assumptions (which are motivated
by the analysis of the Ising—Kac model [21]), an explicit and optimal bound on the
predictable quadratic variation are available. The error term does not matter too much
in the Ising—Kac application, because the size of individual jumps is suppressed by the
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1066 P. Grazieschi et al.

smoothing from the Kac-potential. Another key assumption we need to make, is that
the magnitude of the jumps of the martingales is fixed by a deterministic constant. This
allows to rewrite contractions of an odd number of variables in terms of a martingale
and ultimately permits to prove that in the Kac-Ising application these contractions
vanish in the limit, even though they are integrated against a very singular kernel.

1.1 Structure of the article

In Sect.2 we define multiple stochastic integrals with respect to cadlag square inte-
grable martingales. In Sect. 3.1 we derive moment bounds on stochastic integrals with
respect to only one variable, while moment bounds on multiple integrals are obtained
in Sect.3.2. Section3.2.1 is devoted to renormalised stochastic integrals and their
moment bounds. In Sect.4 we analyse stochastic integrals with kernels given by gen-
eralised convolutions, which are typical objects in the theory of regularity structures.
As an example, we apply the result in Sect.5 to a discrete approximation of the <I>‘3‘
equation.

1.2 Notation

We use the standard notation N = {1, 2, 3, ...} for the set of natural numbers, Ny
for N U {0} and the set R := [0, co) for the time variables. For n € N we define
[n] :={1,...,n}. We use 14 for the indicator function of the set A.

For A being either (R/Z)¢ or R? we use the standard notation 2’ (A ) for the space
of distributions on Ag. For n > 0, the space " (A¢) contains all n-times continuously
differentiable functions on A, and we write €' (A) for this space when n = 0. The
Skorokhod space of cadlag functions on [0, T'] with values in 2’(Ag) is denoted by
D([0, T1, Z'(Ao)).

Given a random variable X and some p > 1, we use the following shorthand
notation for the stochastic L” norm

E,X :=E[|x|"]"". (1.5)

In estimates we often use “<”, which means that the bound “<” holds up to a
constant which is independent of the quantities relevant in our statements, which will be
always clear from the context. If we want to indicate dependence of the proportionality
constant on some parameters o, 3, . .., we write “Sq 6,7

Finally, let A, = (¢Z/Z)? be a discrete torus with mesh size ¢ > 0. For T > 0,

p > 1 and for a function F : [0, T] x A, — R, we define

T 1
IFlp = (gd 3 /0 |F(r,x)|1’dr>p, (1.6)

xelg
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Martingale-driven integrals and singular SPDEs 1067

that is, we take the L” norm in time and the /” norm in space with a weight £ on
the points of the lattice. This and several other norms in the article depend on the
parameter 7, but we omit this dependence from our notation.

2 Integrals with respect to cadlag martingales
2.1 Properties of cadlag martingales

Following [34, Ch. 1.4], we recall some properties of martingales which are used in
the article. Let (M;);>0 and (N;);>0 be two cadlag square-integrable martingales on
the same filtered probability space. Their predictable quadratic covariation (M, N);
is the unique adapted process with bounded total variation, such that M; N, — (M, N);
is a martingale. The quadratic covariation [M, N]; is defined by

t t
[M, N]; := M;N; — MyNy —/ M-dN; —/ N,-dM;, 2.1

0 0
where M;_ := lim,4s M, is the left limit of M at time s. Another way to define these
quadratic covariations is the following: if 0 = 7y < --- < 1, = ¢ is a partition with

diameter max; (t;+1 — t;) tending to zero as n — oo, then [M, N]; is equal to the
limit in probability of the sums Z:'l:_ol (My;,, — M)(Ny,, — Ni) asn — 00 (see
[34, Thm. 1.4.47]), and (M, N); is the probability limit of the sums Z;’;Ol E[(M;,,, —
M;)(Ny,, — Ny, 1, where (%) is the underlying filtration [34, Prop. 1.4.50].
The difference of the two bracket processes [M, N], — (M, N); is always a cadlag
martingale [34, Prop. 1.4.50]. In the case M = N, it will be convenient to use the
shorthands [M], = [M, M]; and (M); = (M, M),.

We will use the Burkholder—Davis—Gundy inequality in the following form, which is
obtained by approximating M by discrete-time martingales and applying the discrete-
time Burkholder-Davis—Gundy inequality [28].

Proposition 2.1 Let (M;):c[0,1] be a cadlag square integrable martingale. Then, for
any p > 1 there exists a constant C > 0 depending on p such that

1 1

r P27 d

E|: sup |M,|P] SC(E[(M)t ] —i—E[ sup |AtM|P} ) 2.2)
t€[0,T] te[0,T]

where At M := My, — M;_ is a jump at time t.

2.2 Assumptions on martingales

Let d € N and let Ag be a d-dimensional torus (R/Z)?. For ¢ > 0, let A, be a
discretisation of A with mesh size ¢, i.e. A, is a d-dimensional discrete torus (¢Z/
Z)¢ (in this case we need ¢! to be integer). The moment bounds for stochastic
integrals, which we prove in the following sections, depend on the Lebesgue measure
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1068 P. Grazieschi et al.

of the domain Ag, which is bounded. Let D, := Ry x A, be a discretised space-time
domain, and let D, ; := [0, t) x A, be the space-time domain with time horizon ¢ > 0.

For a function u, on the domain D,, we introduce its natural extensions to the space
of distributions

(eue) (@)=Y & /R ue(t, ), )di, () (t,9) =y e%uet, Y (x),

xXEA, XEA,

(2.3)

where ¢ : Ry x Ag - Rand ¢ : A9 — R are smooth compactly supported
functions.

Let (2, .7, (Z)i>0, P) be a filtered probability space, which satisfies the “usual
conditions” (i.e. completeness and right-continuity [34, Def. 1.1.3]). We then intro-
duce a family of cadlag martingales (M (¢, x));>0, indexed by points x € A,. Let
M, (t—, x) = limg_,o+ M(z — 8, x) be the left-limit of M, (x) at time ¢ and let
AM (x) := M (¢, x) — M, (#—, x) denote the jump at time . We make the following
assumption on these martingales.

Assumption 1 For ¢ > 0, we assume that (Ml (¢, x));>0 are cadlag square-integrable
martingales with the following properties.

1. The predictable quadratic covariation (MS (x), M, (y)) ; vanishes whenever x # y,
and

t
(Mg(x)>t:£_d/0 C. (s, x)ds, 2.4)

where (s, x) — Cg(s, x) is a progressively measurable stochastic process satisfy-
ing |C(s, x)| < 1 a.s. uniformly in s and x. The proportionality constant in this
bound is non-random.

2. Two martingales almost surely never jump simultaneously, i.e. for any 7 > 0

P(A M, (x)AM(y) =0, Vx # y, Vi € [0, T]) = 1.

3. There exist k > —% and a non-random value ¢ > 0 such that for all x € A, and
t > 0 the following holds: if A;M (x) # 0, then |A;M (x)| = ce¥ as.
4. The martingale M (s, x) follows a dynamics which can be expressed in the form

t
M, (1, x) = Je(t, x) —s*k*d/ Ce (s, x)ds, (2.5)
0

where 1 — J; (¢, x) is a pure jump process (i.e. Jo (7, X) = D g, AsM,(x)) and
where t > C, (¢, x) is a progressively measurable process such that |C. (¢, x)| < 1
a.s. uniformly in x and 7. The proportionality constant in the last estimate is non-
random.
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Martingale-driven integrals and singular SPDEs 1069

Remark 2.2 Assumption 1(1.) implies that in the case C, (s, x) = 1 the quadratic vari-
ation of the martingales approximates the quadratic variation of a cylindrical Wiener
process, see also the following Lemma 2.6. Assumption 1(2.) is satisfied in many
applications, e.g. when jumps are sub-sampled from independent Poisson processes.
Assumption 1(3.) implies that the size of an individual jump is smaller than the size
of M, (¢, x) for bounded ¢, which is of order ¢ ~4/2 by Assumption 1(1.). We show
in Lemma 2.4 below that Assumptions 1(1.) and 1(3.) combined imply that jumps
happen with frequency 2K,

We will use the following martingales (see Sect.2.1)
M, (1, x) == e ¥ ([M:(0)], — (M (x)),). (2.6)

The multiplier ¢ ¥ in (2.6) is chosen to have the following.

Lemma 2.3 The martingales M, (t, x) satisfy Assumption 1 with the same value of k
(but with the constant c2in place of c), with C, replaced by c2C, in (2.4) and with C,
replaced by C in (2.5).

Proof Assumptions 1(1.) and (4.) yield [M(x)]; = 205s§z(AsM8 (x))? and

t
M, (t,x) = ¢ ¥ Z (AsM, (x))% — s*k*"/ C. (s, x)ds.

0<s<t 0

This identity gives Assumptions 1(4.) for M[; with C, replaced by C,. The second term
is a function of finite variation with respect to the variable 7, and it does not contribute
to the predictable quadratic covariation. Then, using Assumptions 1(3.), we get

[Me ()] =& Y (AM:(x)* = Y (AM(x))* = A[M ()]

0<s<t 0<s<t

almost surely. Similarly, we get [Ma (x), Ms (»)]; = 0 almost surely for x # y. Since
[M,(x)]; — (M (x)); is a martingale, predictable quadratic variation of ML (x) has to
be c2 (M (x));, which yields Assumptions 1(1.) for M, with C; replaced by ¢*>Cs.
The rest of Assumptions 1 for M, follows readily from these identities and prop-
erties of the martingales M. O

For x € A, and for a bounded set A C R, we define
nf(x) :=#{r € A: AM(x) # 0} 2.7

to be the number of jumps of the martingale M, (x) in A. We are going to show that
Assumption 1 implies moment bounds for the number of jumps.

Lemma 2.4 Forany [a, b] € R, and any p > 1 the number of jumps satisfies

sup sup Ep|m€d ok, ok (X)] < 00, (2.3)
ec(0,1] x€A, (e Fa,eTTEp]
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1070 P. Grazieschi et al.

locally uniformly in a, b.

Proof Assumptions 1(3.) and (4.) yield [Mg(x)]; = Zoﬁsét(Asl\/Jlg(x))2 =

CZSZkaO!t](x). Then for any p > 1 we have Eplmfo,t](xﬂ = c’ze’ZkEp[Ms(x)],.

Using the martingales (2.6) and applying Minkowski’s inequality, we get furthermore
E,nfy (0] < ¢ 7267 E, (M (x)); + ¢ 267 E, M, (1, x)|.

The first term is bounded using Assumptions 1(1.) as 8_2kEp (Mg (x))y < g—d—2ky
while to bound the second term we apply the Burkholder—Davis—Gundy inequality
(2.2):

e XE, M, (1, x)| S e ¥E, (M (x)),”> + ¢ ¥E, sup |AM,(x)],
s€[0,]

where the proportionality constant depends only on p. Lemma 2.3 allows to bound
the preceding expression by a constant multiple of e "¥=4/2¢1/2 4 1. Hence, we have

Epnfy ()] S e M4k 2 4

Since the proportionality constant in this bound is independent of ¢, we can replace ¢
by £4t2K¢ to get E ,,|me 42k (x)| < ¢+ 1 from which the required bound follows. O

Lemma 2.5 Let || - I7v(o,T)) be the total variation norm on the interval [0, T]. Then

sup sup ekt E, 1M () |Iv(o,17) < 00
ee(0,1]xeA,

forany T > Qand p > 1.
Proof Assumption 1(4.) yields
T
IMe)litvaory < D 1AM ()] + &7 f |Ce (s, x)|ds
0

0<s<T

< 5km‘[€0’T](x) + Tekd

a.s. uniformly in x, where we used the properties | A;M, (x)| < ¥ and |C, (s, x)| < 1.
Then the required bound follows from Lemma 2.4. O

The next result shows that martingales satisfying Assumption 1 weakly converge
to a cylindrical Wiener process [11].

Lemma 2.6 Let martingales (M, (¢, x))s>0, withx € A, and either A, = (eZ/Z)d or
A, = eZ4, satisfy Assumption 1 (except possibly Assumption 1(4.)) and let Ml (0, x) =

@ Springer



Martingale-driven integrals and singular SPDEs 1071

0. For every continuous, compactly supported function ¢ : Ay — R, for every fixed
t > 0 and some constant o > 0, let the following limit hold in distribution

t
lim/ (teCe) (s, @)ds =at/ o(x)dx. 2.9)
e—=0 Jo A

0

Then the martingales (M(¢t, x));>0 weakly converge in the Skorokhod topology
DR, 2'(Ao)) to a cylindrical Wiener process on L*(Ag) with variance o.

Proof Let us take a continuous and compactly supported function ¢ and consider the
martingales t — (1.M;) (¢, ). To prove tightness of the laws of these martingales, we
will use a version of the Aldous’ criterion [4, Corollary 16.11] (see [1] for the original
result).

By Assumption 1(2.),(3.), for any 7" > 0, the jumps of this martingale can be
a.s. bounded by supy; <7 A (teMe) (@)| S e4tK|| || oo, which vanishes as ¢ — 0.
Furthermore, for fixed t > 0 the process § > M (¢ + 8, x) — M, (¢, x) is a martingale
with respect to the filtration (.%;15)s>0 with the predictable quadratic covariation
g ;+6 C. (s, x)ds. Hence, for any stopping time t € [0, T'] and for any § € (0, 1]
we apply the Burkholder—Davis—Gundy inequality (2.2) to get

E|(t:Me) (T +6, ¢) — (M) (7, @)

<E[ sup E[lM¢ +8,9) — Mo, )]
0<t<T

fj,]]

t+6 1
<E[ su E[/ t:Cs, @ds| 7 |+ B[ sup E[1A (M) @)I| 7]
0<t<T t 0<t<T+§

Using Assumption 1(1.), the first term is bounded by a constant proportional to §'/2,
while the second term is bounded by a constant proportional to ¢4+X. Hence, for any
a > 0 the Markov inequality yields

P(I(t:Mo)(T +8,9) — (1M,)(1, )| > &) < clw”z + ek,
o

and the assumptions of [4, Corollary 16.11] are satisfied. This gives tightness of the
stochastic processes ¢ +— (t:M;) (¢, ¢) in D([0, T], R), and moreover every limit-
ing point is in ([0, T], R). From [34, Corollary IX.1.19] we conclude that every
limiting point is a martingale. Finally, [38] yields tightness of t +— (.M (¢) in
D([0, T], Z'(Ag)). Convergence (2.9) and Assumption 1(1.) imply the limit in dis-
tribution

lim (e M) (@))s = otll@|l7..
e—0

combining which with the Lévy characterization theorem we conclude that the limit
of M in the Skorokhod topology D([0, T], 2'(Ay)) is a cylindrical Wiener process
with variance o. O
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2.3 lterated integrals with respect to martingales

Let M, be the random measure (recall that the paths of M are almost surely of
bounded variation) over D, such that, for any F : D, — R which is continuous in
the time variable,

/ F@)dM(z) = Y &* /Oo F(s, x) dM, (s, x). (2.10)
D, s=0

XA

Atoms of M, correspond to jumps of the martingales; in fact, by Assumption 1,
the magnitude of the jumps of the martingales is deterministic in absolute value and
equal to ce¥; as such, given that different martingales never jump simultaneously, the
absolute value of atoms of M, is always equal to ce? ¥ and this quantity—see again
Assumption 1(3.)—goes to zero as ¢ — 0.

Let n € N and let M} be the product measure on D}. We want to analyse integrals
of the form

n
[ orav= [ Feia[Tami. @11)
Dy Dy i=1

Here and throughout this section F : D} — Ris a function of n space-time variables,
which is continuous in all time variables.

2.3.1 Contractions and orderings

The following is motivated by the analysis of n-fold iterated integrals against space-
time white noise, which are conventionally defined as limits of Riemann sums that cut
out diagonals (see e.g. [41, Section 1.1.2], [36, Section 9], or [10, Appendix A]): we
call a contraction on [[n] any equivalence relation on [n], and its equivalent classes
are called components. We use the symbol €(n) to denote the set of contractions and
the symbol ¢, () to denote contractions on [n] with m components. For a, b € [n]
and y € &(n), we use the notation a ~, b to indicate that a and b belong to the same
component, and we denote by [a], the component containing a.
For y € €(n) we define

ﬁ, = {(zl,...,zn) €D} : z; =zjifandonlyifi ~, j}.

The sets ﬁ, form a partition of D} = |_|y cen) 5,/, so that we can write the integral
in (2.11) as

FdM" = / F dM”. (2.12)
/p =2 B, ¢

: ye€(n)

The next lemma shows that under the measure M we can disregard all the points
in D which have different space components but the same time components. To this
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Martingale-driven integrals and singular SPDEs 1073

end, fori # j € [n] and for T > 0 we define
Cij(T):= {(zl,...,zn) €Dyt zi = (si,xi),zj = (sj,xj) withs; =5; € [0, T), x; ;éxj},

as well as

= U a,m.

TeNizje[n]
Lemma2.7 Letn € N, n > 2. Then M7} (C) = 0 almost surely.

Proof Itsuffices to show thatforall 7 > Oandalli # j € [n] wehave M} (C; ;(T)) =
0. We have

M2 (Ciy (1) = ME({ (5. 40), (5.32)) 31 # 32 and s € 0, )| M2 (D12).

The quantity M}~ 2 (D" 2) is almost surely finite. Recall that the measure M, is defined
in terms of the martmgales M, see (2.10), and that the martingales M, are given by
a sum of a jump part and an absolutely continuous part, see Assumption 1(4.). The
absolutely continuous part does not contribute to the diagonal considered here, and
we get

Mf«({((&xl), (s,x2)) : x1 # xp and s € [0, T)})
Z 82d Z |ASM€(-XI)ASM$(X2)|.

X1,X2€A¢ 0<s<T
X17#x2
By Assumption 1(2.) the last expression is O almost surely. O

Combining (2.12) with Lemma 2.7, we obtain

/FdM” Z/ FdM?”, (2.13)

ye€(n)

where D, := 13}, \C.

Lemma 2.7 ensures that we can decompose the integral further according to the
order between the different components with respect to the time argument. For a given
y € €y (n), we denote by X, the set of bijections from [m] to the components of
y. We interpret 0 € X, as an ordering of the components and write [i], <, [jly
if 0_1([i]y) < o_l([j]y). Given an ordering o € X, over the components of a
contraction y € €(n), we define the sets

Dyo = {51,540, o (s ¥a)) €Dyt 5y < s whenever [il, <5 [Jly }-
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1074 P. Grazieschi et al.

Now (2.13) becomes

Jo

2.3.2 Arecursive representation

FaMz = )~ Z/ FdM”. (2.14)

¢ yeemn)oex, ' Pro

We introduce the notation
Z;UF ::/ FdM}, (2.15)
Dy.o

which allows to write (2.14) as

f FaMm;= Y > It | F. (2.16)
D

¢ ye€(n)o€x,

We will call this expression a chaos expansion by analogy with the Wiener chaos
expansion for multiple Wiener integrals. Usually, we will work with stochastic inte-
grals on a finite time interval [0, ¢], in which case the preceding two identities become

(I;’UF),‘ = /D - F dM} 2.17)
.o D,

and

/;)gmpgy[ FdM; = Z Z Ty o F)r-

ye€(n)oex,

The aim of the next sections is to derive an estimate on moments of (ija F); and this
will be done recursively. To this end we introduce some more notation: first, for given
y € €, (n) and o € X, we define the function F7-: D} — R by

FV’U(Zl,.--,Zm) =F(Z1,...,2Zn), (2.18)
where Z = (21, ..., Zy) € D} is defined by

i =2 — i is a member of the j-th equivalence class according to o.

n

Furthermore, for any n we define the measure M diag

on D, as

M = I*Mg L'Dil

e,diag ’

(2.19)

n
¢,diag

where Dg"diag denotes the full diagonal Dg’diag ={(z1,22,...,2p) € D} 7y =

2= =z}, MV LDngiag is the restriction of the product measure M to Dy ;.
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and :* denotes the image measure under the identification : D diag D, given
by 1(z, z,...,z) = z. With this notations in place, the following recursive formula
follows immediately.

Lemma 2.8 Forany F € D} — R which is continuous in all time variables, for any
contraction y € &, (n) and any ordering o € %, we have

, 1Yo )] Vo o)
(I)S/,UF)I :/ / / FVU(ZL...,Zm)dMs,Ziag(Zl)---dM&;lAsg (Zm)-
Sm<t JSp_1<Sm 51<82

(2.20)

The subscript s, < t in the first integral of (2.20) is used as a shorthand for {z,, =
(SmsXm) € De: sy < t}, and similarly the subscripts s; < si+1 mean that the
corresponding integrals are taken over {z; = (si, xi) € Dg: si < Sit+1}.

2.4 Analysis of the measure on the diagonals

We analyse further the measures My diag defined in (2.19). By definition, we have for
F: D, — R

/ FdMg,diagZ/n F(z1) dM{ (21, 22, .-, Zn)-
€ ¢,diag

In this formula we may allow F to be random which does not affect our computations.
Forn > 2 Assumption 1(4.) implies that that only the jump parts of the martingales
produce non-trivial contributions. We get that

/ F(s,x)dM? gipo(s.0) = > ™ " F(s, x)(AM(x))" (2.21)
s<t

xeNg 0<s<t

In the case n = 2 we use the bracket processes of the martingales (see Sect.2.1) to
write (2.21) as

/ F(s, %) AM gipg(s, ) = ) 6™ f F (s, x) d[M (0]
s<t s<t

xXeA;
=Y e / F(s, ) d{M, (x)),
XGAE s<t
£y e / F(s, ) d(IMy ()], — (M (x));)
XGAS s<t
= Z ed/ F(s,x)Cy(s, x)ds
XEAg s<t
+ Z 32‘1“‘/ F(s, x) dM, (s, x), (2.22)
XEAS s<t
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where in the last equality we have used Assumption 1(1.) in the first term and the
definition of the martingales (2.6) in the second one.

To bound (2.21) for n > 3 we make crucial use of the Assumption 1(3.) that
guarantees that the jumps |A,M(x)| are of fixed size c¥. Then for n odd we get

/ F(s,x)dMZ gipo(s.X) = > €™ )" F(s, x)(ce®)" ™ A M, (x)
s<t

xeA, 0<s<t

=" @HE=D R adf F(s, x) dM (s, x)
O<s<t

xXeA,

— " lgld+k)(n=2) Z &4 / F (s, x)Cq(s, x)ds,
0<s<t

xeA;

(2.23)

where in the last identity we made use of Assumption 1(4.). Similarly, when n is even
we get

/ F(s, ) M gipo (5. X) = (c6%)" 72 Y~ ™ 3™ F(s, x) d[M (x)]s
s<t

xX€Ag O<s<t
— N2 d+R)(n=1) Z gd/ F(s, x) dM (s, x)
xelA; O=s<t
+Cn—28(d+k)(”_2) Z gd/ F(S,X)CS(S» x) ds,
xXelAg O=s<t

(2.24)

where we made use of the martingale (2.6) and Assumption 1(1.). Remarkably, the
equations (2.23) and (2.24) are of exactly the same structure and consequently, even
and odd contractions can be bounded in the same way.

3 Moment bounds for iterated integrals

We aim to estimate integrals (2.20). This is done recursively and here we perform the
recursive step by deriving an estimate on

/D G(t,x) dMZf’diag(t,x), 3.1

where

Gi(s,x) =/ / / F(s,x321, 0y zm) AME e (20) -+ AM G0 (2m)
Sm<t JSm_1<Sm 51<82

(3.2)
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and ng, ni, ..., n, > 1. Throughout this section we make the assumption that F :
Dl — R is a deterministic function that is ¢! in each time variable. We note
that the domain of integration in (3.2) guarantees that for any fixed s the function
t = G,(s, x) is predictable. In the following Sect. 3.1 we bound the simple integral
(3.1) in terms of G and F. The resulting estimate is then used in a recursive argument
to bound the full iterated integral 7}, ; F' in the subsequent Sect.3.2.

To control the function F we w1ll use the following norm

IF g1 1) = IFllzze + 18, F o, (3.3)

where the subscript s refers to the variable with respect to which the %'-norm is
computed.

3.1 Simple integrals
We will need the following result.

Lemma3.1 Let f : I — R be a6 function on a interval I C R with length |I| > 0.
Then for any p > 1

=1 1
sup |/ (OI7 < m/If(r)lpdr+p(/lf(r)|”dr) ! </Ilf’(r)|pdr>1 (34
te

Proof For any fixed ¢, tg € I we can write f(1)? = f(t)? + ftg pfMPLF (r)dr.
Taking absolute values, then using the Holder inequality and finally taking the supre-
mum over ¢, we deduce that

=l 1
sup /017 < If(to)l”+p(fllf(r)|”dr> ' (fllf’(r)l”dr>'
te

We conclude by averaging the variable fy over the interval 1. O
The following proposition provides moment bounds for a simple stochastic integral.

Proposition3.2 Let G; : D — R be a possibly random function, such that the
function t — G, (t, x) is predictable. Then for any p > 2 and T € [0, 1] we have

E, sup ‘/ G, (s, x) dM. (s, x) ‘ 3.5)
t€[0,T]" J D,

( Zf (E,G,(r, ) d >+ed+"Ep sup  |Gy(s, x)|.

yehs (s,x)€Dg T
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If G (s, x) is of the form (3.2), then we have

p—1

1
o IF Gy ey B

1
E, sup |Gy(s,x)| S “WHEHOmy
(S’X)EDE.T

p sup |Gy
t€[0,T]

where ny + - - - + n,, = n and where we use the norm (3.3).

Remark 3.3 In our application, d; F will be badly behaved and in general blow up as
negative power in ¢, similarly to the other exploding terms. However, as p can and
will be chosen arbitrarily large, all can be absorbed in a small pre-factor ¥ and
therefore these error terms are all harmless.

Proof of Proposition 3.2 Using the Burkholder—Davis—Gundy inequality (Proposi-
tion 2.1) and Assumption 1, we get

sup ‘/ Gy (s, x) dMg (s, x) ‘ 3.7
P etor Doy
1 1
[(Z 2‘1/ G (r. ) 2d(M, <y>>> ] +E[ sup |Gt<r,x>Ang(x)|P]”
ey 1€[0,T]
1 1
[(Z f G,(r, y)zdr> ] +€d+kE|: sup |Gs(s,x)|p}p, (3.8)
yeAy (s,x)€Dg. T

where the proportionality constant in the last bound comes from Assumption 1(1.) and
(3.). The first term on the right hand side of (3.8) can be controlled by the first term
in (3.5) by an application of Minkowski’s inequality. This yields the required bound
(3.5).

Now we will prove (3.6). First, the supremum over the lattice points is replaced
by a sum at the expense of a small negative power of & and second, we use
supsero.71 1Gs (s, X)| < sup; 0,77 1G (5, X)| to arrive at

E[ sup |Gs(s,x)|l’}"gg‘7v<gdZE[ sup |G,(s,y)|PDP. (3.9)

(s,x)€Dy T yeAs s,t€[0,T]

We note that this bound holds because A. is a finite lattice. We apply first (3.4) to the
supremum in the variable s and then Holder’s inequality to bound the right-hand side
of (3.9) by a constant times

_d 1 [T
€ F(Sd Z E sup |:—/ |G (s, y)|Pds
yen. 1€0T] T Jo

T ST AN
+</ |G,(s,y>|Pds) (/ |3st(S,y)|Pds> D
0 0
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8Z( Z / |:sup |G,(s,y)|pi|ds (3.10)

yehs te[0,T]
p—1
P
( Z/ [sup |Gt(s,y>|f’]ds>
yehs te[0,T]
P\ P
( Z/ [sup 18:G1 (s, y)ﬂds) )
yeh, tel0,T]

To bound the norms of the function G;, we observe that

o Z/ [ sup_ |G, y>|"] ds ST sup E[ sup |Gt(s,y>|"},

ven, 1€[0,T] (s.y)€Der Li€l0,T]

where we used that the grid A, is finite. Then (3.10) is estimated by a constant multiple
of

p—1
(HE,, sup |G| —|—HEP sup Gel|
1€[0,T] 1€[0,T] Lg
11
P P
< Z/ [sup 10;G (s, y)|p:|ds) ) , (3.11)
yeAs t€[0,T]

where we used our assumption 7 < 1.
Now, we will bound the expectation containing d;G; in (3.11). The definition (3.2)
yields

m
0:Gi(s, IS 105 F e Y ™ [ IME g ) lTvgo. 7
X1yees XmENg i=1

and hence

E, sup [3,Gi(s, )| S 9:Fllze  sup pl"[nMgdlag(xl)nmom

t€[0,T] X1seers Xm€Ag i=1

Holder’s inequality allows to bound the preceding expression by
E, sup [3;Gi(s, )| S 19:Fllzee  su 1'[ Epp MY 41,0 ) v (10,7 -

1€[0,T] X1, meAsll

Identities (2.23)/(2.24) and Lemma 2.5 yield

sup Epp MY g1, 060 rvgo, 1y S &~ 6O,

Xi€Ag
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and we get

E, sup [3;Gi(s, y)| < N0 F||Loo]"[e—<"+d)”l Sl Flleoe™® 0" (3.12)
t€[0,7T] i=1

wheren; +---+n,; =n.
Using (3.12) in (3.11), we conclude that (3.9) is estimated by a constant multiple
of

_d _ r—1

: (HEp sup [Gyl} 4= "o, Pl [, sup (Gl x)
1€[0,T1] 1€[0,T] Lg

1

_d _ »
—¢ 7B, sup |Gl <”E,, sup |Gl _+e (d+k)n||aXF||Lg<>> ,
1€[0,T] 1€[0,T] L3
(3.13)
where we used our assumption 7 < 1. Similarly to (3.12) we get
E, sup Gi(s. )| S IFllzs 1"[8*“‘*‘“"' SN F e ®FOm,
1€[0,T] i=1
and (3.13) is estimated by a constant multiple of
—(d+k) " .
e sup |G| I|F|| 0y
P 1€[0,T] ' (G
where we used the norm (3.3). This gives the required bound (3.6). O

In connection with the representation developed in Sect. 2.3.2 we get the following.

Proposition 3.4 Let G; beasin(3.5)andletnog > 2. Thenforany p > 2andT € [0, 1]
we have

E, sup (/ G (s, ) dML (5. %) |
t€[0,T] " I Dg,

1

<, e@o0o- 1)( Z/ (E,G(r,))'d )2

yEA,

+ gdH)(n0-2) E, sup |G|

te[0,T]

+@HOmE - sup  |Gy(s, ). (3.14)
Lé (s,x)eD; 1

If G (s, x) is of the form (3.2), then the last expectation is bounded by (3.6).
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Proof Using (2.23)/(2.24) and Assumption 1 we get

(3.15)

‘ /D Gy (s, x) dMZ,Odiag(s’ x) | < gldFlo=
&,1

/ Gy(s, x)dNg(s, x)
De.s

+ g@+K)(0=2) Z gd/ |G (s, x)|ds
0<s<t

xel;

a.s., where the martingale N, is either M or M,, depending on whether ng is odd or
even. In particular, the martingale satisfies Assumption 1. For the first term in (3.15)
we use Proposition 3.2 to get

T 1
< (sd Z/ (EpGr(r,y))zdr>2
0

YEAe

+eRE,  sup  [Gy(s, x),
(s,x)€De T

E, sup

/ Gy (s, x) dNg (s, x)
te[0,T] Dg,,

and for the second term in (3.15) we have

> e"/ |Gy (s, x)| ds
0<s<t

xeAg

Ep

<

‘Ep sup |Gyl
t€l0,T]

L}
This gives the required bound (3.14). O

3.2 Bounds for general iterated integrals

Let n,m € N with m < n be fixed. For a contraction y € €,,(n) and a permutation
o € X,, we want to prove moment bounds for general multiple iterated integrals
(2.17). For this, we will define a norm on the function F?-° from (2.18).

For m > 1 we denote by &, the set of all functions p : [m] — {I, 2, co}. Then
for p € & we set ||F7’"’||Lg = ||FV"’||LP(1), and form > 2 and p € &, we define
the norm recursively ’

”Fy’o- ||LE = H || (Fy,o-)(zm)]lxm>sm—l HLPHI’"_I]] (3.16)

Lg(m) ’

where p [[,,_] is the restriction of p to [m — 1], the function (F7o)@m, pmn=l R
isdefinedas (F¥'°)@m) (zy, ..., zm—1) = FY'"°(21, ..., Zm—1, Zm), and the outer norm
in (3.16) is computed with respect to the variable z;,. The indicator 1, -, _,, with the
convention sg = 0, is needed to respect the domain of integration in (2.20).

For p € 2, we will also use the standard notation p~': {1, 2, 0o} — 207 for the
inverse function. For any y € &,,(n), we define the set of non-contracted variables

Ty (y) = {i € [m]: |y = 1}. (3.17)
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The following is our main result for the general iterated integrals.

Theorem 3.5 Let martingales (M, (¢, x));>0 satisfy Assumption 1, y € €, (n), o €
%, be any ordering for the components of y, and let F : D} — R be €' in each time
variable. Then for every p > 2 and T € [0, 1]

E”[ o }(I;"’F)’q (3.18)
te€[0,T]
o1
:B 5 (17) _ ) ﬁ 2[. (pzt) D
SEED DI 1 eoirrge’)
pE?}ml iEpil(oo)\[‘l(y):
p i ONN ()= A

for some constants ky, ;(p) > 0, where the function F°° is defined in (2.18), the
powers are

d +k)<2|y,~| —2p~' () - w—1(2>|>, (3.19)

i=1

ay(p) :

1
B =[] (%) , (3.20)

iep™! (co)\I (»):
i>2

the contraction y=' has components ylzi, cees y;i_i 41 Such that y]?i = Yitj-1, and
the function p=' € P,_; 11 is defined asp= (j) =p(i + j — 1).

Remark 3.6 Precise values of the constants k) ; (p) in (3.18) will not be important to
us, although they may be obtained from the proof of Theorem 3.5. We show below
that for p sufficiently large the divergent factors ¢ <7 (®)/P are compensated by the
multiplier % ®,

Remark 3.7 One can see that for any function p in (3.18) satisfying p~!(c0) # @ we
have a, (p) > d+Kk. Indeed, we canestimate Y ;- |y;| > [T1(y)[+2(m—|T1(y)]) =
2m — | (y)|, because the sum over |7 (y)| components y; of cardinality 1 is exactly
[T1 (y)| and the sum over the other m — |I'] (y)| component is at least 2(m — |1 (y)]).
On the other hand, the assumptions on p yield 2[p~'(1)|+[p~' )| < m+|p~ 1 ()] <
2m — I (y)|. Thus, we conclude that o, (p) > d + k.

Similarly, we have o, (p) > d +K if the contraction y has a component y; such that
lyil > 3. Repeating the preceding computations, we get > ;- |yi| > 2m — |[1(y)]
and 2[p~ " (D)| + |p~'(2)| < 2m — |1 (y)|, which yield the required estimate.

Finally, one can see that we have a,, (p) > d + K if there is a component y; such
thati € p~!'(2) and |y;| > 2.

Hence, if we have a sufficiently good control on the norms || F¥-7 || P and the
product in (3.18) overi € p~!(c0) is bounded by Ce™" for some « > 0, we can take
p sufficiently large such that % ®)¢ /P vanishes as ¢ — 0. So that we expect that the
only non-vanishing terms in the limit ¢ — 0 are those with correspond to contractions
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y with components of cardinalities at most 2 and functions p satisfying p~! (c0) = @
and p’1 (2) = I (y). In these cases we have a,, (p) = 0 and B, ,(p) = 1, and the
estimate (3.18) is similar to the bound for a multiple Wiener integral.

Remark 3.8 The bound (3.18) is homogeneous with respect to F, i.e. multiplication
of F by a constant A > 0 is equivalent to multiplication of the two sides of (3.18) by
A. While the homogeneity of the left-hand side is trivial, seeing it for the right-hand
side is more complicated. Let us consider the term in the sum in (3.18) corresponding
to a function p.

If p~'(00) \ I (y) = @ or p~'(c0) \ Ti(y) = {1}, then B, ,(p) = 1 and the
product in the parentheses in (3.18) equals 1. The respective term in the sum in (3.18)
equals 27 @ || F7-2 | P and is homogeneous with respect to F'.

Let us now look at the case when the set {i € p~'(c0)\I'|(y) : i > 2} is non-empty,
and let N be the magnitude of this set. Then the A-multiplier corresponding to this
term in the sum in (3.18) equals

1
)Lﬁy.p(P) 1_[ )\'lgy>i‘p(l’>i)> p )

iep™! (co)\IN ():
i>2

Furthermore, from the definition (3.20) we conclude that the power of A may be written
as

-n\Y 1 L p-n\VH
()
P P&\ p

Hence, this term in the sum in (3.18) is homogeneous with respect to F'.

Proof of Theorem 3.5 We prove this theorem by induction over the number m of com-
ponents in y .

The base of induction is m = 1, in which case y has only one component y; such
that |y1| = n. If n = 1 then the required bound (3.18) is given in Proposition 3.2.
(In this case, only two functions p contribute to the sum in (3.18): p(1) = 2 and
p(1) = oo, which correspond to a, (p) = 0 and «,, (p) = d + Kk respectively. In both
cases B, p(p) = 1. Then the two terms on the right-hand side of (3.18) coincide with
the two terms in (3.5).) If n > 2 then the bound (3.18) is provided by Proposition 3.4.
(The three functions p contributing to the sum in (3.18) are p(1) = 1, p(1) = 2 and
p(1) = oo, which correspond to &, (p) = (d +K)(n — 2), ay, (p) = (d + K)(n — 1)
and oy, (p) = (d + K)n respectively. In all cases 8, ,(p) = 1.)

To make an inductive step, we assume that (3.18) holds for all contractions having
m components and we will prove it for a contraction y € €, 1(n). Lemma 2.8 yields

Sm+1—

(I)S/,UF)f Z/ (I;%.&F(Zm+])) dMg’éﬁZQ @m+1)s (3.21)
Sm41<t
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where 7 is the contraction obtained from y by removing the (m 4+ 1) component,
& is obtained by restricting o to [m], and the function F@»+1) is obtained from F by
setting all the variables, whose labels are in (m + 1)-st equivalence class according to

0,10 Zm+1- If |Ym+1] = 1, we bound (3.21) using Proposition 3.2:

] o ),

1€[0,T 1€[0,T] L?

+e K|, sup (75, re0) || L 322)
t€[0,T] ’ t1Lge
and if |y,,41| > 2, we use Proposition 3.4 and the estimate (3.6):
Ep|: sup |(I;,UF)Z|] Sp 8(d+k)(|7m+1|—1)HEp sup ‘( ;’5F(Z’"+l)) i
1€l0.7] 1€[0.7] ez
+ @Ol =D g sup ‘( ;&Fumm) (3.23)
1€[0,T] an
+8(d+k)‘)’m+l|8_(d+(d+k)(n—|ym+l‘))71) Ep
(@m+1) P gy
sup | (25 7o) || 7 EIE o
1€[0.T] b (L)

The function inside the expectations is itself an iterated integral of the function F @n+1)
with the contraction y having m components. We can use the induction hypothesis
and the simple bound ||(F7-7)@m+1) ”‘53- (L) = |F7-° ||<ng (L) 0 get moment bounds

for the expectation:

(P x By.p _ -
}5,» Yo e PE e P L (7, ).
PEPy: ¢
Pl (HNN(7)=2

EP[ sup ‘(I;’&F(Zm+l)>
tel[0,T] t

(3.24)
where we denoted
1
o e Brp @)\ P
Ep(7,p) = ( 1_[ e Ky,z(P)||F%U||(l;:f(£’go) ) , (3.25)

iepH(co)\TN (7):
i>2

for some constants «; ; (p) > 0. Then we use the preceding bound in (3.22) to get

Ep[ sup |(Z; F)zl] S Y @i e e By
1€l0.7] PEPn: ¢ ¢
P (NN (7)=2
(3.26)
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= (P 7.6 By,p(P) S~
+ Z E‘XV(P)+d+k” “(F%U)(zmﬂ)”Lll{)P HLOOEP(),7 p.
PEDm: ¢ ¢
Pl (HNM (7)=2

13;/ p(P

We have H [(F7-7)Gm+D) ||ﬁy »(® . Moreover, we

< |icEroyenoy

have B; p(p) < 1 and Jensen’s inequality yields H ||(F7’ ")(Z'"+1)||ﬂy @)
ﬂy rP

<
2"

[1E7oy@moy

We introduce new functions p € 4,1, such that p(i) =

p@) for i € [[m]] and p(m + 1) = 2 and p(m + 1) = o0 in the two sums in
(3.26) respectively. Then (3.19) and |y;,,4+1| = 1 imply that the powers of ¢ in (3.26)
are exactly ) (p). Furthermore, (3.20) yields 85 ,(p) = By,»(p) and (3.25) yields
E,(y,p) = E,(y, p). Hence, recalling the definition (3.16) we get the required bound
(3.18) for m + 1.

Now, we use the bound (3.24) in (3.23) and get

E [SUP I(Z;, F)zl]

tel0,T
< oy (P)+d+K) ([Vmt11—1) 7.6\ G@ms1)  Pr.p (P - =
S IEPD D" L Ep (B
PEPp:
Pl (NN (7)=2
+(d+K) ([ Ymt11-2 - Bir.p (D) ——
+ Z 227 P+ @+ (Ymy11— )H”(F)/ 7y +1)|| Ver 1Ep(%p) (3.27)
PEPm: Le
pl(HNN(7)=2
oy () 2L 7.6\ Gmr1) | P70 (P
+ Y TP R 1
PEPm: ¢
pl(HNN(7)=2
R E V,0 %
x Ey(y,p) » |F” II%XIM(L?),
p—1
where in the last line we used subadditivity of the function x +— x » for x > 0.

As above, we estimate the norms by moving the power B ,(p) to the outer norms.
Furthermore, we introduce functions p € £,41, such that p(i) = p(i) for i € [m],
andp(m + 1) =2,p(m + 1) = 1 and p(m + 1) = oo in the three sums respectively.
Then the powers of ¢ in the first and second sums in (3.27) equal «y, (p). Moreover,
we have B85 ,(p) = By,p(p) and E,(y,p) = E,(y, p) in these sums. The last sum
in (3.27) is more complicated. The power of ¢ equals ay, (p) — Ky,m+1(p)% with

Kymt1(P) = ay(P) +d + (d + k)(n — |¥m+1]) > 0. Furthermore, ﬂ,;,p([_))pTT1 =
By.p(p). Setting ky; (p) = ky.,i () 5~ L fori < m, we get
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1

_Ky.m+l(p)l = = # V.0 | P
¢ PEp7 D TG (1)
_ p=l L
— | o=y 1 @) pys0 —7.i(B) || >0 | Priop P=i) ?
_(5 TR ”%‘M(L?“) H e IE ”ﬁl(Lz?C)
iep1(co)\I'(7):
i>2

1

= —ky,i(P)|| FY-O By.ip(P=i)\ P

= T e i)
i (N ():

>

where we used the identities By, .1, p(P+1) = 1and By, »(p.;) = ,B);zi,p([')zi)p—fl
which follow from the definitions. The preceding expression has the form (3.25) for
the contraction y and the function p. Hence, recalling the definition (3.16), we get
from (3.27) the required bound (3.18) for m + 1. m]

3.2.1 Renormalised iterated integrals

In the theory of regularity structures [26], there is usually the need to renormalise
stochastic objects. Introducing renormalised integrals against martingales is the goal
of this section.

Let (M (¢, x));>0 be martingales satisfying Assumption 1. Leta function F : D] —
R be as in (2.17), where the contraction y has only one component y;, such that
|y1] = n is even, and let the permutation o be trivial. We define the integral

(T5T F), = @02 / FY9 (2)Co(2) dz, (3.28)
Des

where we use the function F7¢ defined in (2.18). In this expression we integrate
the contracted variable with respect to the bracket process (2.4) of the martingale.
Furthermore, we define the renormalised integral

(TESF) = (T5 , F) — (I5 ] F), :e“’“‘)(”*l)/ F7 (s, x) dM, (s, x),
&t

(3.29)

where the last equality follows from (2.24), with the martingale M, defined in (2.6).
As we will see in our application in Sect. 5, we will consider the situation when the
integral 7, , diverges as ¢ — 0, and in order to control the latter we need to consider
its renormalisation I;f, instead. If the noise was Gaussian, then the renormalising
term Ij’) Z would be deterministic. In our case, it is however a stochastic process.

In general, let y € €,;;(n) with 1 < m < n, and let 0 € X, be a permutation.
Moreover, let us label components of y using L € {V, ©, nil}[[’”]], such that the label
L(i) assigned to a component shows with respect to which process the variable is
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integrated. For m = 1 we set

(I;IVUF)[ ifL(1) =V,
Ty o F)i= @5 F) ifL(1) = o,
Z VlaF)l if L(l) =nil.

Since we defined the integrals (3.28) and (3.29) only for even n, we will always assume
that (i) = nil foranyi suchthat |y (i)| is odd. Then for m > 2 we define recursively

g@tRlynl=2) f ( r[[m E F(Zm>) Ce(zm)dzy, ifL(m) =V,
Sm—

(TEEF), 1= | s@HOUmI=D [ ( . G“Im*l]]F(Zm)) dM, (z,)  if Lm) = o,

Sm—

Io., (7% - ‘“F<’m>) LY R if Lon) =nil,
(3.30)

where the function F @) is obtained from F by setting the values of the variables in
{0(i) : i € Y} t0 z;n, where 7 is the contraction that removes the m™ component
of y, where the labeling L is restricted to the indices in [m — 1], and where & is the
restriction of o to [m — 1].

For a labeling L it will be convenient to define the sets

L'w)={i:L@)=v), L No):={: LG =0

which contain the indices of the components labeled by “V” and “¢” respectively.
Similarly to (3.17) we define the set

T(y):=Ti(y) UL (o). (3.31)

of variables integrated with respect to martingales.
The following result is an analogue of Theorem 3.5 for the renormalised integrals.

Theorem 3.9 In the setting of Theorem 3.5, let L be a labeling of the contraction
y € €, (n). Then for every p >2and T € [0, 1]

E,,[ sup |(Ij:§F),|:| (3.32)
t€[0,T]
< Z an(p) ”Fy,o ”.va(p) l_[ 871(%[(17) ||Fy70 ”ﬂyzz p(p>1)
~P L e )
PETm: iep (CO\I (v):
p ' (HNC(y)=2, i>2
Y (wycp~t(

for some constants k, ;(p) > 0, where a), (p) and B, ,(p) are defined in (3.19) and
(3.20).

@ Springer



1088 P. Grazieschi et al.

Proof The proof is analogous to the proof of Theorem 3.5, where we use the recur-
sive definition (3.30) and the fact that the martingales M, satisfy Assumption 1. The
restriction L™ (V) € p~!(1) in the sum in (3.32) follows from the uniform bound on
the integral with the label V. O

Remark 3.10 The same argument as in Remark 3.7 implies that as ¢ — 0 the non-
vanishing expectations (3.32) are those with contractions y having components of
cardinalities at most 2 and functions p satisfying p~'(c0) = @ and p~'(2) = I'(y).

4 Kernels given by generalised convolutions

In this section we prove moment bounds for the iterated integrals (2.11), when the
function F is given by convolutions of singular kernels (similar to the one introduced
in [30, Appendix A]). This type of kernels appears in canonical lifts of random noises
in the theory of regularity structures. However, the result presented in this section is
different from [30] because of two reasons: first, our noise is non-Gaussian, and second,
we prove bounds on the stochastic integrals rather than on deterministic objects which
appear after Wick contractions of Gaussian noises. Moment bounds for stochastic
integrals driven by a general stationary non-Gaussian noise were proved in [7]. In the
latter work, the authors generalised the framework of [30, Appendix A] which allowed
them to deal with more general contractions of noises. In our setting, we need to use
Theorem 3.9, which requires estimating more complicated norms of the functions, in
contrast to the L2 norms when the noise is Gaussian. Since we adjust the ideas of [30,
Appendix A] to our framework, we equip our results and definitions with references
to their analogues from this article.

We will work in the space R*! with the parabolic scaling s = (2,1,..., 1),
where the first coordinate is time and the other d coordinates are spatial. We denote
ls| := 2+d,and ||z||s := |£|"/?+]|x|forany z = (r, x) € R¥T! and A%z := (A%t, Ax).
For a multi-index k = (ko, . .., ks) € N&*! we define k|5 := 2ko + "%, k;. Then
we denote by ¢ the space of function on RY*! with bounded mixed derivatives of
the scaled order not exceeding r.

It will be convenient to consider processes M (7, x) defined on the whole time line
R. For this, we denote by M, (¢, x) an independent copy of M, (¢, x) and define

M, (¢, fort > 0,
M, (1, x) = | et fort > @.1)
Mg (—t,x) fort <0,
for all ¢ € R. Then the stochastic integral (2.10) can be naturally extended as
oo
/ F)dM(z) =& ) f F(s, x) dM (s, x)
Rx A, xEA, s=0
oo ~
+el / F(—s, x) dM, (s, x). (4.2)
s=0

xelg
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Viar| O\

Fig. 1 An example of the graph G, where the green edge connects the distinguished vertices x and vI . The
white vertices are in Vi3 and have only outgoing edges. The distinguished vertex x has an incoming edge,

but it cannot come from vI (colour figure online)

The multiple integrals developed in Sect.2.3 can be then naturally extended to whole
R in the time variable. With a little ambiguity we will use the notation as in Sect. 2.3
for the integral defined with respect to M; on R x Ag.

Following the idea of [30, Appendix Al], it will be convenient to describe generalised
convolutions using labelled graphs. More precisely, we consider a finite directed graph

= (V, E) with a set of vertices V and with edges e € E labelled by pairs (a,, r.) €
R, x Z. We assume that the graph is weakly connected and loopless, i.e. every vertex
has either an outgoing or incoming edge, and there are no edges from a vertex to itself.
We require G to contain a distinguished vertex * € V, connected by an outgoing

edge with exactly one other vertex, denoted by vI € V\{x}. We also allow % to
T

have incoming edges, which by the loopless assumption above cannot come from v, .
Finally, we assume that the graph contains a set V5, of distinguished vertices, which
can be empty and which satisfies x ¢ V5, and if it is non-empty, then it has only
outgoing edges (“var” stands for “variables” because these vertices correspond to
the variables integrated in the stochastic integral). This implies that there are no edges
connecting two vertices from Vy.,.. In Fig. 1 we provide an example of such graph G,
where we omit labels and use various decorations for nodes and edges.

We define the set V; := V\ {x} and for a directed edge e € E we write ey and e_
for the two vertices such that e = (e_, ey ) is directed from e_ to e;. We make the
following assumption on the labels of the edges.

Assumption 2 The described graph G has the following properties:

every edge e containing x has r, = 0;

the edge e = (%, v;)) has the label (a., r.) = (0, 0);

at most one edge with r, > 0 may be incident to the same vertex;

if there are two vertices e_ and e such that the edge e = (e_, e;) hasr, < 0,
then e_ and e have no other incident edge.

N =

Let |Vyar| = n > 1. Then we label the elements V5 by 1, ..., n, which gives a
bijection between V5, and [r]. Using the notation of Sect.2.3.1, we write €(Vy4y)
for the set €(n) of all contractions on V.. For a graph G = (V, E) and a contraction
y € €(Vyar) we define the multigraph (i.e. two vertices are allowed to be connected
by multiple edges) G, = (V, E), with labels (G, 7.), in the following way: the set
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of vertices V C V is obtained from V by identifying those vertices from V5, which
belong to the same component in y . We denote this “identification” by a surjective map
i V- V. In particular, i,, maps the vertices from V\V,,, (which includes *) to
themselves. We define Vvar to be the image of ;5 under the map i, . Then we define
the set of edges [E on V to contain & = (iy(e-),iy(eq)) foralle = (e_, ey) € E, with
the label (az, ;) = (ac, ). In what follows, we call G, = (V, E) the contracted
(multi)graph corresponding to G and y. To consider renormalised integrals, we will
use a labeling L of the components of the contraction y, defined as in Sect.3.2.1. We
by analogy with (3.31) we define the set of vertices

P(y) = 1{v € Voar : i ()] = BULT'(0), 4.3)

which correspond to the variables integrated with respect to martingales. Throughout
this section we will use the shorthand I' = I'"(y) because the contraction y will be
always fixed.

A special case is V5, = &, in which all the definitions in the previous paragraph
make sense for the identity contraction y, and the contracted graph G, coincides with
the original one G.

It will be useful to define a simple (containing no multiedges) graph (V IE) such
that V = V and the unique edge e € E from e_ to e is obtained by contracting all
edges € from e_ to e4 in |E, with the label (@, r.) of e being the sum of the labels of
all such parallel edges e. It follows from Assumption 2 that if there is more than one
edge connecting e_ to e, in G, then the value r, associated to the contracted edge
is either O (if all these edges e € E have r; = 0), or coincides with the only value
rs > 0, for & € E connecting e_ to e;. We can have r, < 0 only if there is a unique
edge ¢ from e_ to ey withr; < 0.

For a subset V C V we define the outgoing edges ENV):={e € E:e_ €V},
incoming edges IE¢ V) = {e € E: ey € V}, internal edges EO(V) feeE: e €
V}, and incident edges E(V):={ecE:e_eVor ey € V3.V =V, we simply
write ET, EV, etc. Furthermore, we define the sets IEJF(\_]) = {e € E(\_’) tre > 0},
E_(V) :=fe e E(V) : r, < O}, El := E; NE" and E¥. := E, NE'. These sets,
defined for the edges E and E, will have the respective decorations.

Then we require the contracted graph to satisfy the following assumption, which
we state for the simple graph (V, [E) defined above.

Assumptiorl 3 The graph G = (V, E) and the contraction y € €(V,,,) are such that
the graph (V, [E), defined above, has the following properties:

1. for any edge e € ﬁ on/e\has o+ (re NO) < |5];
2. for every subset V C V; of cardinality at least 3 one has

|s|

3 ae<(2|§7|—|x'mr|—1— - Q) =
el (V)
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3. for every subset V C v containing » of cardinality at least 2 one has

~ " 5 o Is|
Z_ a, + Z @e+re—1)— Z re < <2|V| - |er|)7;
e€Eo(V) el (V) ecBL (V)

~
*

4. for every non-empty subset V C V;\{ vI } one has

oatr Y - Y (re—1)>(2|§f|—|§mr|)|;—|.

ceBON\EL () ekl (V) kY (V)

Remark 4.1 Assumption 3 coincides with Assumption 3.17 in [7] on an “elementary
graph”, where the set of “external vertices” (see Definition 3.13 in [7]) is given in our
case by the set I'.

4.1 Kernels associated to the graph

Given a graph G = (V, E) as above, to each edge we associate a kernel and each
vertex corresponds to a variable in the domain RI+HL, Then, for e € E, the values
a, will describe the order of singularity of the kernel associated to the edge e. The
value r, will describe the order of renormalisation of this kernel. For every vertex
v ¢ Vyar U {x} we assume to be given a measure ;% on R?*! of the form

uf(dz) =& > 8(y —x)dtdx, (4.4)
yeeZd

where z = (¢, x) withr € Rand x € Rd, and where § is the Dirac delta function on
R“. This measure counts the points in the space lattice and is the Lebesgue measure
in time. Notice that, as ¢ — 0, the measure u{ converges in the weak-x* topology to
the Lebesgue measure on R4+,

For each edge of the graph we associate a kernel with the following properties.

Assumption 4 For every e € E we consider a smooth! kernel K o RI*H R, which
can be written as K2 (z) = Y_o K& (z) for N = —|log, ¢] and for some ¢ € [, 1],
where the smooth functions {K; ’"}osnf n have the following properties:

1. the function K" (z) is supported in C127" < ||z]ls < C227" for some 0 < C| <
Cy;
2. for any g > 0 and for some C > 0, independent of ¢ and ¢, one has

|DkKeS,n (Z)| < C2’1(ae+|k|5)’ (45)

uniformly in z, |k|s < g and 0 <n < N;

! In all our applications it is sufficient to have kernels sufficiently many times differentiable. For example,
we can take them to be in (Kg forg =3 ,cg(lrel +2).
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3. ifr, < 0,thenforall0 <n < N and |k|s < |r.| one has

/R . FKEM (), (dz) = 0. (4.6)

The necessity to introduce a new parameter ¢ can be seen in our application in
Sect. 5, where the mesh size of the grid is £ and the interaction range is defined on the
scale s% > e.

We see from (4.5) that the value a, characterizes the order of singularity of the
kernel. Moreover, the value r,, assigned to an edge e € E, describes a renormalisation
of the singularity, which for positive and negative values are defined in different ways
in the following section.

Lemma 4.2 If Assumption 4 is satisfied, then for any q > 0, the following quantity is
bounded uniformly in ¢ € [¢, 1] and ¢ € (0, 1]

IKENS, = sup sup (llzlls + )% ¥ D¥KE (). 4.7)

ZERd'H lk|s<q

The reverse statement if also true, i.e. if for a kernel K¢ the quantity (4.7) is bounded
uniformly, then it has all the properties listen in Assumption 4.

Proof The bound (4.7) is a direct consequence of Assumption 4(1.)—(2.). The second
part of the lemma follows by repeating the proof of [29, Lemma 5.4]. O

4.1.1 Renormalisation

If r. # 0, then the kernel corresponding to the edge e requires renormalisation. For
positive and negative values of r, the renormalisation is defined different. For r, > 0
the renormalisation of the smooth kernel is required to get a sufficiently fast decay of
the kernel at the origin. In the case r, < 0 the renormalisation is required to make the
kernel, with a very strong singularity at the origin, integrable.

In the case r, > 0, we define the renormalised kernel

k
~ Z
Kizeoize,) = Ki(e, —2e)— %Dkl(j(—ze_), (4.8)

[klg<re

where the sum runs over all multi-indices k € Ng+1 such that |k|s < r,.. In the case
re = 0 we simply define K o (Ze_, 2e,) = K[ (ze, —2zc_). The positive renormalisation
(4.8) allows to define kernels, which have sufficiently fast polynomial decay at the
diagonal z,_ = z.,. This is the case when K/ is smooth with uniformly bounded
derivatives.

If r, < 0, then for a smooth and compactly supported function ¢ on R¢+! x RI*!
we define the expansion

_— (Z€+ - Zef)k k
(T @)@ s 2e) = 9o 2 ) = Y = Dige 2e), (49)

kls<lrel
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where the sum runs over all multi-indices k € Ng“ satisfying |k|s < |re|, and where
Dlz‘ is the multi-derivative in the second argument. Furthermore, we associate to K
the distribution

Ko (p) = /Rd+1 /Rd+1K:(Ze+ — 2e )T, 9) (Ze_ Zey) My (dze )i, (dzey), (4.10)

which is obtained from K by subtracting delta-functions and their derivatives. Expres-
sion (4.10) is just another way to write the integral

/M /MKZ"(ZE+ = 2e )9(Ze s Zey) My (dze )ptg, (dze,),
R R

since fRd+1 KZ (2)Z* u§+ (dz) = 0 and the measure ,u§+ is translation invariant.

Example 1 In all of the applications that we have in mind, we deal with labels r,
taking values 41, 0 or —1. In Sect.5, for example, we have r, = 1 only for the tree
in Sect. 5.4; we use negative renormalisation with r, = —1 only for the tree which is
dealt with in (5.16). All the other edges in the trees of Sect.5 always have r, = 0.

Clearly, whenr, = 0, we have no transformation to do on the kernels. Whenr, = 1,
on the other hand, we have

k\j(ze_v Ze+) = Kj(ch_ —Ze) — Kj(_Ze_),

while when r, = —1, we get

K:(ze rze,) = KE(ze, — 26.) — </

. K{(zey — Ze Mg, (dze+)) 8(zey — Ze_)s
R

where § is the Dirac delta-function. Observe that positive renormalisation corresponds
to subtracting the value of the kernel itself at the “base” point z,_, while negative
renormalisation means removing singularities at the base point.

4.1.2 A generalised convolution
Let us fix a graph G = (V, E) as described above. Then for a smooth and compactly

supported function ¢ : RIH R, for z = (t,x),z = (f,X) € R*! and for
A € (0, 1] we define its rescaling and recentering

o2 (2) =272 — D), 27 (x - B)). 4.11)

For fixed zV2* € (R%t!)War we define the product measure on z € (R4 Vs

W@ = ([T mi@z0)( [T ocw—2idzn).  @12)

veVi\Vyar weVyar
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where again § is the Dirac delta-function, and where z = (z, € RIt! .y € V5) and
778" = ()% € R v € Vyar). In other words, the variable z,, corresponding
to the vertex v € V;\Vy,r, is integrated with respect to the measures uf, and the
variables corresponding to the vertices in V5, are fixed to be equal to z"3*. These are
the variables which we want to integrate with respect to martingales. Then we define
the generalised convolution

Kk (77 = /(RM)V (HK (e 260) )0 (2, M e (@), (413)

Since the kernels K; are smooth, our assumptions on the graph guarantee that the
generalised convolution (4.13) is well-defined.

We fix any order of the elements in V5, (which respectively fixed the order of the
variables in Ké;’s(z"ar)) and we define

TEPRES ) = Y @KL ) (4.14)

o€y,

where the stochastic integral If,f; is defined in Sect.3.2.1 with respect to the fixed

order of the variables. The following is our main result of this section.

Theorem 4.3 Let G = (V, E) be a graph with labels {a,, r.}cck satisfying Assump-
tion 2, let y € Cpu(Vyar), with 1 < m < |Vyar|, be a contraction with a labeling
L such that Assumption 3 is satisfied. Let the measures be defined as in (4.4) and let
the kernels satisfy Assumption 4. Let furthermore I;’;’L be a stochastic integral with
respect to cadlag martingales satisfying Assumption 1, let the set I be defined in (4.3),
and let

— Jsli%\ & - |F| D@ <0. (4.15)

ecl

Then for any p > 2 and 0 > 0 there is a constant C for which the following bound
holds

1
P
(E[sup|(I§’LiCé;;s),|” ]) < CAV > @@ (4.16)
1€R peZu:p~l(1HNM=2,
L), p (c0)=2

Lo ) ot )08, @)

peZu:p t(HNr=2,
Ll wcp~ (), p~ o) £
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uniformly in A € [e, 1], ¢ € [e, 1] and ¢ € (0, 1], where the set of functions &, is
defined in Sect. 3.2, the constant a, (p) is defined in (3.19), and

|s]

8, (p) == 3(2m—1<oo> \T|+p o) NT|+p 1 2)\ F|). (4.17)

We prove this theorem in Sect. 4.4, and before that we need to get some preliminary
results.

Remark 4.4 From the proof of Theorem 4.3 we can see that there exists a value ¢ > 0
and a compact set & C R?*!, such that the constant C in (4.16) is proportional to

(TTran2)( TT iy,

ecE Vg Vyar Ufx}

which by our assumptions is bounded uniformly in € and e. For example, we can take
a very rough value ¢ = Y, g (Ire| +2).

If we would like to consider a recentered test function (p%‘ (z), we need to shift
respectively all the variables in the generalised convolution:

A€ o =2 = = A
K5 27) 1= /(RM)V* (171[: K (Ze. —Z,2e, — z))cpz (2,1 )1, gvar (d2). (4.18)
ec

Then the following result can be proved as Theorem 4.3, by changing the value of the
variable z, from 0 to z. Uniformity in z holds, because the norms of the kernels (4.30)
are independent of this variable.

Corollary 4.5 Under the assumptions of Theorem 4.3, the bound (4.16) holds for the

multiple integral I?LIC?(‘}’EZ, locally uniformly in Z.

Applying Minkowski inequality, we get from the definition (4.14) the bound

E, sup |(ZEKE) | < Y B, sup [(ZELKES)|. (4.19)
IGR+

p|
oex, teRy

In the rest of the section we are going to prove the bound (4.16) for the integral 77, o
with a fixed o. One can see from the proof, that this bound is independent of the

order of the variables (although the order plays a role in some intermediate results like
Lemma 4.7), and the same bound (4.16) holds for every integral Ii’f; in (4.19).

4.2 Multiscale decomposition of the generalised convolution

Our aim is to write the kernels K/ in the generalised convolution (4.13) as sums of
localised functions. For the edge (x, UI ), we view the test function goé (zv¢ )in(4.13)asa

@ Springer



1096 P. Grazieschi et al.

new kernel K+ (z,1), supportedon |z ¢||5 < »andsatisfying [ K, 1 llo;g S < plsl
(recall that this edge has the labels a, = re = 0 in the graph).

Our next aim is to decompose the kernels in (4.13) into sums of localised functions.
To this end, for e € E with r, > 0, we take any smooth functions y ¢ : R¥t! — R,
such that " (z) is supported in C;27" < |z|]ls < C227" (where C;, C; are from
Assumption 4), scales as 27" and satisfies Z,]lvzo Yy (&M (z) = 1 forall z. Let us denote
for convenience N<y := {0, 1,..., N}. Then forr, > O and n = (k, p,m) € N3<N
we set

Koz, 2) =y 0@ - 2y @D @y @™ ()KL (2. 2), (4.20)

where the kernel K. - has been defined in (4.8). For n e N3S v and e € E such that
re < 0, we define the function

ek = . _
Ron(z,2) = Ko (z—2), ifn=(k0,0), 0<k<N,
0, otherwise,

where we made use of the expansion of the kernel from Assumption 4.
For A € (0, 1] we define the set N of functions n: E — N3§ N satisfying

LN . . . .
2 eah < A Ve, with n ot belng the evaluation of the function n on the edge

(*, v*) Then for a functlon ne /\/’e and a point Z = (z, : v € V;), we define

Ko@) =[] KE™ e 2e.) 4.21)
eckE

where z, = 0. Since the functions w(s’") sum up to 1 and since we consider the test
function (pé as a kernel, one can rewrite the generalised convolution (4.13) as

Kg' @)= ) Kg"@™), K@) := K@) 1, e (d2).
(Rd+1)V*
neN;
(4.22)

Since we are interested in estimating the integrals I;:{;IC&";, we can exploit the
fact that the integration variables z, in the kernel (4.22), for vertices v belonging to
the same component of y, are equal. More precisely, we define the set Ny y in the

same way as N, but using the contracted graph G, = (V, E). Then for a function
ne Nf’y andapointz = (z, : v € V;), we define the kernel f(\g*“(z) asin (4.21), but

with the product over E. Furthermore, we define the measure u% on (Rd'H)V‘

V,, , zvar
by

MG, par (d2) 1=( I1 Mi(dzv))( I1 (Szw_zmrdzw), (4.23)

vev;\vvar wevvar
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where wy is the first element (with respect to a chosen order of vertices) in i L(w),
and the map i, has been introduced in the beginning of this section. In other words,
this measure identifies the variables in Vvar which correspond to the same component
of y. Then we define the kernel

&N, vary .__ Z&,n )
G, (z"%) = /(Rd+1)V;K (z) p«@;’zvar (dz), (4.24)

and write the multiple stochastic integral as 7}, (T;IC?(ES = e NE 7y L IC‘€ ", Using this
expansion and applying Minkowski’s inequality, we obtain the bound

E, sup [(Z5LKE )] < > E, sup (ZELKE n),| (4.25)
1eR4 ’ ne/\fe

Bounding a multiple integral of the generalised convolution boils down to bounding
integrals in (4.25) and summing over the functions n € N5 oy . This is what we do in the
next sections, where, following the idea of [30, Appendlx A.2], we use a multiscale
clustering in the sum over n.

4.3 Bounds on iterated integrals

We associate to every point z € R4V a rooted labelled binary tree (T, £), such
that ||zy — Zwlls ~ 2=t and fypy € N<y, where v A w is the closest common
ancestor of v and w. Moreover, the labels ¢ satisfy £, > £, whenever v > w, where
v > o means that w belongs to the shortest path from v to the root of the tree 7. See
[30, Appendix A.2] for construction of such tree and also for the terminology which
we are going to use. Given a set of vertices V, we denote by T¢ (V) the set of rooted
labelled binary trees (T, £) as above, which have V as their set of leaves. Denote
furthermore by Ty (V) the subset of those labelled trees in T¢(V) with the property

- 4
that2 *"ox <A,

Our next aim is to write summation in (4.25) over such labelled trees (7', £) and
then over those functions n which are close in some sense to the labeling £. To this
end, for the constant,” ¢ := (log, |§7| + |log, C1]) Vv |log, C2|, where the constants
C1, C; are from Assumption 4, we define the set V. )f (T, £) consisting of all functions

K — N3 N such that

1. for every edge ¢ = (v, w) with r, < 0, one has n, = (k,0,0) € N351v with
|k — Lyrwl < c,

2. for every edge ¢ = (v, w) with r, > 0, one has n, = (k, p,m) € N N with
|k — Loawl < ¢, |p =Lyl < c,and [m — Lyai| < c.

2 Qur value of c is different from the analogous value in [30, Definition A.8] because the kernels K"
from Assumption 4 have a different support. The need to define ¢ in this way can be seen from the proof of
[30, Lemma A.9].
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Then we have the following analogue of [30, Lemma A.9], which is proved in exactly
the same way.

Lemma 4.6 Let us fix a point 7V € (R4TYVvar Letn: E — N?;N be such that the
kernel E}: (zV8T) defined in (4.24) does not vanish. Then there exists a labelled tree

(T, £) € Tf (V) such thatn € N3(T, ).

Using this result, the right-hand side of (4.25) can be estimated as

E, sup [(Z55Kg <= ) Y E,sup|[@poKgh|. (4.26)
teRy (T, é)e'ﬂ“(V) nENz(T 0 teRy

We will now modify the kernels in (4.21) in the same way how it was done in [30,
Appendix A.5]. Let A~ € E contain those edges e = (e—, e4) which have the label
re < 0, and for which any two vertices {u, v} satisfying u A v = e_ A e coincide
with {e_, e4+}. Then we can factorize (4.21) as

Rr@) =@ (] Ri™Gezen). G = [ Re™Geze).
ecA™ et A~
(4.27)

For e = (e_, e4) and r > 0 we define the operator %" acting on sufficiently smooth
functions V : (RYtH)Y — Ras

, . (Ze, — Ze,)k k
V@) :=V@)— ) — (D, VI(Pe(@)),

|k|s <r

where Dlg+ is a derivative with respect to z., and where (P, (z))y, = zy if v # ey
and (P,(z)), = z._ if v = e,. Furthermore, writing A~ = {e(", ..., ¢®)} for some
k > 0, we define the kernel

ke n(z) = ( (zgk) .. @(Tﬁl) G “(Z))( 1_[ [’(\j,ng (ze, Ze_,_))' (4.28)

ecA™

Then for every zV3* we have

/ K@, (o) = / KM@l D, (429)
(R£1+1)V; *Z (R£1+1)V; *Z

which is just a reformulation of the argument below [30, Equation A.26] in our context.
Then (4.26) can be written as

E, sup [(Z55Kg <= Y Y E,sup|[@poKEh], 4.30)
IER+

(T, Z)E'JT‘(V) nEN‘(T 0) 1€Ry
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with the new kernels

&M o vary .__ o €,1 &
Gh@’e) = /<Rd+1>v;K @) 1, 0, (d2). 4.31)

Using the notation (2.18), we denote with (I@E:)V*” : (Rd“)vvar — R the kernel

which is obtained from léfG'yl by making all the variables from the same component
of y equal. We would like to apply Theorem 3.9 to bound the stochastic integrals in
(4.30). For this, we need to estimate the norms (3.16) of the kernel (I@E:)V"’ (zVer),
which is what we are going to do now.

Let T° denote the set of interior nodes of the tree T. Then for e € E let us define
the function n, : T° — R by

Ne(v) == _a\e]lq (v) + re(ﬂe+/\*(v) - ]le¢ (U))]lr(,>0, epNx>eq
+ 1 —re _/a\e)(]le_/\*(v) - ]le¢ (U))]lrg>0‘ e_Nx>ep>

where 1,(w) := ly—y and ey :=e_ Aey € T° foranedge e = (e_,ey) € E. The
function 7, coincides with the one defined in [30, Equation A.20] and is used to bound
the generalised convolution without taking into account negative renormalisation. To
consider negative renormalisation we define by analogy with [30, Equation A.27] a
modified function

n) == s| + Z Ne(v), Ne(V) = Ne(V) — re Loca- (lq (v) — 1, (U))v
eckE

(4.32)

where the interior node eq € T°° is of the form w Ae_ with w ¢ e which is the furthest
from the root.

From the fixed order o of the variables in (4.14) we obtain an oder of the vertices in
@var. Then we write WN/var = (v1, ..., vy) according to this order. For every v € “N/var
we denote by v the element following after v with respect to this order, and in case
when there is no following element we define v~ = x. For A C Vvar, let T4 be the
subtree of T containing all the leaves v and v, for v € A U {x}, and all the inner
nodes v A v™ for such v. Let T;§ contain the inner nodes of Ty.

Then we have the following bound on the norms (3.16) of the kernels (I%E?)V"’.

Lemma4.7 In the setting of Theorem 4.3, let p be one of the functions in the sum in
(4.16). Then for any labeled tree (T, £) € Ty (V) there is a constant C such that for
everyn € ./\/)f(T, L) one has the bound

[&emy ]y < e (T 27270) (]] 2fv|5|)%, (4.33)

veT®° vely
where we use the norm (3.16) and the constant §, (p) defined in (4.17).
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Proof We are going to prove a more general result; namely, we will prove a bound
on the norm of the kernel (ICE:)V’” some of whose variables are fixed. For this, we

take 0 < M < m and the set D = {vpy+1,...,Un} < Vvar of vertices and we
will fix the values of the variables corresponding to these vertices. More precisely,

forzp € (RHP we write (Iﬁan)y"’ |ZD for the function from (R4+1)War\D to R,
Y

which is obtained from (I%E?)V"’(z"ar) by fixing the values of the variables z73%
with v € D. We extend this definition for D = @ (which corresponds to M = m) by
21N (VR Ny,
Kehrel, = Kghre.
For 1 < M < m and for a function p € &%, we are going to prove the bound

kel e <e(TT 2 ) (T 2#)( IT 2#)°

o o
veT VGTuup*uoo) eTp 1)

(4.34)

uniformly inzp € (R4 P Moreover, we will show that for M = 0 (in which case
D = V,4,) the same bound holds for the absolute value of (ICs ")V o |

We can see that the bound (4.33) follows from (4.34) in the partlcular caseM =m
corresponding to D = &. To see it, we note that (4.34) simplifies to

”(KE:)VUHLE < C(l—[ 2—51)77(\)))( l—[ 2%\5\)( l_[ 2%\5\)%_ (4.35)

veT®° veT® veT®

p (o0 )

Our next goal is to replace the product over v € T° by the productoverv € 7. We

P2
do it by noting that Voar =p ' (D) up~ 1) up!(c0) and using simple operations
on the sets. Namely, we have p~'(2) = (T u (p~'(2)\I"))\(p~'(c0) N T'), where
we used the assumption p_1 (H)NT = @ in (4.16). Then we write the products over

veT 1) &

[T 2= (1—[ zzv|s|>( 1—[ 2Ev|s|)( I z—ev|s|>_

° o o o
veTp 1) velf veT 1(2)\T VGTpfl(oo)mTl“

Hence, the product on the right-hand side of (4.35) equals

(H z—zuﬁm)(n 26U|s|)f< I1 2&\5\)( 1—[ 2z.,|s|>7

veT®° vely veT® veT \T2

X( I1 24”\5\>%

veT® L (oo )OTIE

pl(oo) —' @
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1

= (1_[ 2_4”'7(”)>(]_[ 2“'5')7( l—[ 2z‘,|s|)( l‘[ b \s\)f

veT° veTp veT® veT0 oo )ﬂTli’

P EONTR -
1
2
<(IT 2)*

o o
VETP—I(Z)\TF

According to our definition of the labels £ in Sect.4.3 we have 2=t > ¢, and we can
bound the preceding expression by the right-hand side of (4.33).

Now, we turn to the proof of (4.34). From [30, Lemma A.16] we conclude that the
kernel (4.28) satisfies

sup K@) $ [ 2700k, (4.36)

ze®4T1H)% veTe

uniformly over alln € N}f (T, £). We will use this estimate to bound the norms (3.16).

Let us first consider the case M = 0 corresponding to D = \vaar We have
(ICE ")V 4 ] = (K% ")V "% (zp), and we are going to bound it absolutely. From (4.23)
and (4 31) We get

(KgHre

var —yg 1_[ 'uf) (dZU) (437)

- / Ry @)
Zp (Rd+1)V;\Vvar 4 z Bl
veVi\Vyar

. P var o . . .
We write z = (ZV;\Vvar’ zV2%), where AT contains the variables z, with v €

¥:\Vyar. The definition of the kernel and properties of the measures p’ allow to
bound the preceding expression by a constant times

e . 220 | W
|Ay | ‘V;\Vvarl Sup S |K (ZV;\Vvar ? ZD) | ?
Z\“’; \\_’var € (Rd+l )V; \oar
where we write | - |, for the («¢|s|)-dimensional Lebesgue measure, and the set Af,
contains all points {z, : v € @';\Qvar}, satisfying the conditions

lzo = zwlls < €270 forv, w € Vi \ Voar,
lzo — 232 lls < €27 forv € Vi \ Vour, w € Vi
Here, we use the fact that 2~ %"» > ¢, which is a consequence of the assumption
(T,?) € Te(V) For an interior node v € T°, let us choose vy € V to be such

that v— A vy = v and there is an edge from v_ to v. Then the collection of edges
{(v—, v4) : v € T°} forms a spanning tree of V, and Af, is a subset of
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1102 P. Grazieschi et al.

d+1\Vi\Var . 15—t g
{Z@;\@Var € (R + ) \Woar ||Zv+ — 2o lls <C27" YveT° vt ¢ Voar,

lzu, — 203 ls < C'27% Vv e T v_ ¢ @var},

where z, = 0. Here, we used the property that the vertices in Vyar have only outgo-
ing edges. Next, we compute the Lebesgue measure of this set. We integrate out
the variables z, one by one, for v ¢ V,ar, which gives an expression of order
HVGT°\T§ 2~ 618l Hence,

var

e . . < —4,|s]
Al S [T 27"
veT\TE

'var

combining which with the estimate on the kernel (4.36) we get

< ( I 2—ev\s\)<l—[ z—ev(ﬁ<v>—|s|>)
veT°

&Ny, 0
&Emrel,,

VET\T?
S(TT27%)( IT 2%™). (4.38)
veT®° veT§

Recalling that D = Vvar, this is exactly the right-hand side of (4.34) with p_l (00) =
-1
p (2=
Now we proceed with the proof of (4.34) by induction over M = 1, ..., m. For
p € Py with M > 2, let p be the restrictionof pto {1, ..., M —1}. Let us furthermore
define the function with respect to the variable z,,, corresponding to the vertex vy:

n
Flaw) = |REY | (439)
if M > 2 and F(zy,) = (IC‘E n)V "|ZD if M = 1. Then we use the definition
Ufvpr)
(3.16) to write
JRED7 L,y o = 171 . (4.40)

We got an inequality because we omitted the indicator functions in the definition
(3.16), which corresponds to increasing the domain of integration of the function. We
need to bound the norm on the right-hand side of (4.40), for what we consider all
possible values of p(M) one-by-one.

If p(M) = 2, then the definition (1.6) yields

||F||L3=< Z/ F(r, x)zdr> : (4.41)

xelg
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The norms (3.16) are defined on the time interval [0, 7|, which means that the integral
in (4.41) with respect to r should be on [0, T']. Since the kernel (I@E?)V’” is compactly
supported, we can take 7 big enough so that the integrals can be written on [0, o).
We use this convention in all formulas below.

Recalling the definitions of the kernel (4.31) and the function n in Sect.4.3, we
conclude that the function F(zy,,) is supported on [|zy), — zuy:lls S 2 M We
recall that vy, = vy 41 if M < m and v, = . Then the norm (4.41) can be bounded
as

1

_ - 2
IFlz2 S (z Coyrnogy 1o! sup F(ZUM)2> : (4.42)

—¢ N
vp AU
”ZUM _Zv}\_/; HBSZ M”™ Uy

If M = 1, i.e. the set D U {v1} in (4.39) equals Vvar, then the function F(zy,)
satisfies the bound (4.38). Then the expression (4.42) is bounded by a constant times

2_Zvlm;l_"5‘/2( 1_[ Z—Zv;l(‘))>< l_[ 2Ev|5|)

veT®° veT§
- (1—[ 24uﬁ<v>)< I1 zev\s\>2£w; Isl/2. (4.43)
veT?° veT\S;var\{vl/\vf}
Since T2 \{viAvy'} =T o },thisisexactly 4.34)withp~'(2) = {1},p~ 1 (1) =
var var 1

P~ (00) = @ and D = Voar\{v1}. i

If M > 2, 1i.e. the set D U {vy} in (4.39) is a strict subset of V5, then by the
induction hypothesis the function F'(z,,,) satisfies the bound (4.34) with the function
p and the set D U {vys}. Then the expression (4.42) is bounded by a constant multiple
of

2—zuw;4\s\/2( 1—[ Z—emv))( 1‘[ 2@!5!)( ]‘[ z‘fvlﬁl)%. (4.44)

veT®° veT? 4 veT?
Dufvpsup™ (00) p Q2

Since Tp oy 00) — L Dup!(00)

this gives the required expression (4.34).
Now we consider the case p(M) = 1 in (4.40). Similarly to (4.42) we get

(] {UM A UM} and 512) = Tp_1(2)\{UM A UM}»

Is|

—Lypnv7
[Fllpp <2 "M sup [F (o)l (4.45)

¢ N
v AV
lzup =27 1552 MM
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If M = 1, then by analogy with (4.43) we bound the preceding expression by a
constant times

f‘zvmvﬁ‘s‘(n 24\,71(1)))( 1—[ 2lv|5|> _ (1—[ zfevﬁ(v))( 1_[ 2lv|s|>,

veTe veT? veT®° veT? \{viAv"}
Vvar Vvar

which is exactly (4.34) with D = Vvar\{vl }. In the case M > 2 we use the induction
hypothesis, and by analogy with (4.44), we bound (4.45) by a constant times

Z%UMMA;ISI(HTM,(U))( 1—[ 2ev\5\)< 1—[ 214“\5\)%,

veT®° veT?® veT?
Dup~L(co)ufvpy} 1

which is the required bound (4.34).
Finally, we consider the case p(M) = oo in (4.40). Similarly to (4.42) we can
bound

IFlr S sup |F (zop)|- (4.46)

) .
v AV
2y =205 ls <2 MM

In the case M = 1, we use (4.38) to bound this expression by a constant multiple of

(H z—mm)( I1 zeum)’

veT?° veT?

which is the required bound (4.34) with p~' (1) = p~'(2) = @, p~'(00) = {v1} and
D = Vo \{v1}. If M > 2, we use the induction hypothesis and similarly to (4.44)
we bound the expression (4.46) by a constant times

(1—[ z—evﬁ(v)>< o l—[ 2ZV|5|)( l—[ 2gv|5|)%’

veT®° vel?
Dup™ (c0){vpr}

which is exactly (4.34). O

Since the product in (4.34) is different from the one in [30, Lemma A.10], we need
to have an analogous result in our context. For this we define the function? : T° — R
by 7(v) = j(v) if v ¢ T2, and 7(v) = 7j(v) — |s|/2 if v € TZ, where we use the set
Ty introduced above Lemma 4.7.

Lemma 4.8 In the setting of Theorem 4.3, the function 7 satisfies assumptions of [30,
Lemma A.10], and

E]

A=Y 7w = 1sll%: \ () = 3@ — T (4.47)

veTe eck

@ Springer



Martingale-driven integrals and singular SPDEs 1105

Proof Using the definition of the function 7, the assumptions of [30, Lemma A.10]
follow at once if we prove the following two properties

1. For every v € T° one has ZUZU n() > ‘;—‘#{v eTf:v=>vh

2. For every v € T° such that v < v, one has szv nw) < %#{v eTR v v},
provided that this sum contains at least one term, where v, is a fixed distinguished
inner node.

These bounds can be shown by repeating the proof of [30, Lemma A.19] and using
Assumption 3. To compute (4.47) we use |T3| = [T'[. O

Lemma 4.9 Let the function 1) be defined in (4.32). In the setting of Theorem 4.3 the
following bound holds uniformly over X € [e, 1]:

Z (l_[ 2—&;%)))( 1—[ 2£v|5|/2> < )ﬁﬂ7 (4.48)

LeNF(T?) veTe veTg
where |1 is computed in (4.47).

Proof Using the function 77, defined above Lemma 4.8, we can write the left-hand side
of (4.48) as

> [

LeNF(TP) veT®
Then Lemma 4.8 implies that the function 7 satisfies the assumptions of [30,

Lemma A.10], and [30, Equation A.29] allows to bound the left-hand side of (4.48)
by )Jm, where [7] is computed in (4.47). O

4.4 Proof of Theorem 4.3
We use formulas (4.19) and (4.30), and apply Theorem 3.9 to each term:

E, sup |(Z;"Kg")|

IER+
cen\y, o By.p(P)
Se ). D YooY ErPIRENIGTT (@49)
oETy  PEDm  (T,0)eTE (V) neNS(T.0)
p (N (y)=2,
Ll(wmycp~ ()

1
K ~ B =i (Pzi) »
X( [T eIkl i) ) ’
iep~! (co)\T (¥):
i>2

for some constants k,, ; (p) > 0. Next, we are going to bound the terms in the sum in
(4.49) for different functions p.
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If the function p satisfies p~' (c0) = @, then we have By,p(P) = 1 and the product
in the parentheses in (4.49) equals 1. Then the inner double sum in (4.49) simplifies
to

er® N Y IRED e

(T,0)€Ty (V) neN(T, )

Using Lemma 4.7, we bound this expression by a constant multiple of

@t 30 3 (H z—zmw))( I1 zmm)%_

(T,0)€Tg (V) nENZ(T.0) veT® VeTR

Lemma 4.9 allows to bound this expression by a constant times £ ® e =% ®) Vv with
vy, defined in (4.15).

Let p~'(00) # @. We can bound the norm ||(ICE?)V*“ ||<Q_ (Lo defined in (3.3).
More precisely, Lemma 4.7 yields

10k (KE;‘)%UHLSC < eféy(oo)fzk( 1—[ 24&;@))( 1—[ 2&\5\)%, (4.50)

veTe° vely

for k = 0 and k = 1, where we write §,, (00) for the constant (4.17) defined via the
function p = oo, and where the derivative d,; gives the multiplier ¢ 2 (as follows
from the scaling properties of the kernels). The norm (4.50) can be brutally bounded
by a negative power of ¢ 2 &, and hence the whole expression in the parentheses in
(4.49) can be bounded by ¢ for some k¥ > 0. Hence, the inner double sum in (4.49)
is estimated by

ay, (=% envy,o 1 Br.p®)
Y ewhgrep.

(T, )Ty (V) neNZ(T . 0)

Since By, p(p) < 1 (see (3.20)), we use Jensen’s inequality to estimate this expression
by a constant times

ay (p)—% o\ Y, 0 Pr.p(®)
£ ( Yo D K" |ng> :

(T 0T (V) neN:(T,0)

We use Lemmas 4.7 and 4.9 to bound the double sum by ¢ =% ® 1" and we bound
the preceding expression by

L (=% (e—sy <p>,\uy)/3w(l’>_
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The expression in the parentheses is smaller than one (recall that we assumed v, < 0),

and this expression can be estimated by £ P75 =8, () vy Taking p sufficiently
large, we get the required bound (4.16).

5 Application to a discrete martingale model

This section is a showcase of the theory we developed in this paper. We introduce
a family of martingales indexed by points of the lattice A.; we then build trees as
iterated integrals against the martingales themselves; and we finally apply our theory
to prove uniform bounds.

The martingales in this section are chosen to resemble those that appear in our
companion paper [21], where we prove convergence of the dynamical Ising—Kac model
to CI>‘3‘ and this proof of convergence is what motivated the development of the theory
here in the first place. We have therefore chosen to present a family of martingales
which is both simpler and similar to the one found in the Ising—Kac model. In this
way, we aim to give the reader a concrete and easy example of how the theory above
can be applied.

For the proof of convergence in our companion paper [21], we use the theory of
regularity structures [26] (see also [15, 27]), together with the discretisation frame-
work by [13]. We prefer not to reintroduce all the concepts developed in these articles.
Generally speaking, however, the theory of regularity structures is used as a solution
theory for the (continuous) <I>‘31 equation, while the discretisation framework by [13]
gives us a solution theory for the discrete Ising—Kac model which preserves the for-
malism of regularity structures; [13] also supplies us with some convergence tools,
while our theory develops the missing tool for convergence of models, namely uniform
boundedness in the scaling parameter.

As follows from [26], the regularity structure for the <I>‘31 equation has a basis which
is convenient to write as formal expressions, which are written using the symbols &,
Zand X;,i =0,..., 3. Here, the symbol E corresponds to the driving noise of the
equation, Z corresponds to the convolution map with respect to the heat kernel, and
X; are the time-space variables. For example, the expression ¥ := Z (&) corresponds
to the convolution of the heat kernel with the driving noise. The first several basis
elements of the regularity structure are 8, W, W2, W3 W2X; (U)W, T(¥3)W?,
Z(W3)W3, In this section we will prove moment bounds for a discrete model acting
only on the elements E, W, w2 T (‘113 )\Ilz, which we believe are the most interesting.
We refer the reader to our companion paper [21] for a full description of the regularity
structure for the Ising—Kac model.

A model is a pair of linear maps (IT, I') on a regularity structure, which map the
basis elements into functions/distributions. These maps are required to have certain
algebraic and analytic properties which can be found in [26]. In this section we will
consider a discrete model (in the sense of [ 13]) and, more precisely, only a discretisation
of the map I1. For this, we need to make some definitions.

For any o € (0, 1), we define ¢ := &% and the function ¥ : R® — R, by
Ye(x) := e 3 W (e~ Lx), with ¥ being a smooth function, supported in the ball centered
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at the origin and of radius 1, and satisfying ng Y(x)dx = 1. While any @ € (0, 1)
works for our purposes, we choose @ = 3/4 to be in the setting of [21]. Then forz > 0
and x € A, := (¢Z/Z)> we define the martingale

1 ~
Met.0) = —ed 3 et = (P9 = P e, D)

YEAs

where P;(x) and ﬁ (x) are independent Poisson processes of intensities 1. We extend
these martingales periodically to x € £Z> and we extend them to R in time as in (4.1).
We denote the new space-time domain by D, := R x £Z>.

As mentioned above, we want to make the family of martingales (5.1) as similar as
possible to the family of martingales of the Ising—Kac interaction system; and, by the
choice of @ = %, the two families of martingales have the same limiting behaviour as
& — 0. We refer the reader to the [21] for a more detailed explanation.

Using these martingales, we are going to define a discretisation of the map I, which
we denote by I1¢. As we mentioned above, we will bound this map only for the four
elements E, ¥, W2 and Z(W3)W? of the regularity structure, and a complete analysis
of the map in a similar context is performed in [21]. For every fixed z € D, the action
of this map on the element E is defined as

(T 8) () = AM. (), (5.2)

which means that for every test function ¢ : R* — R we have
t(MEE)(p) = / ¢(2) AM:(3).
De

where we used the extension (2.3), the expression on the left-hand side means the
duality pairing of the distribution Lg(ﬁi E) with the test function ¢, and where the
integral with respect to the martingale is defined as in (4.2).

Let P(t,x) := (4ﬂ:)3/2 ¢~¥2/41) be the heat kernel on R3. In order to integrate it
with respect to the martingales M., we need to remove the singularity of P at the
origin. For this, we will convolve P with a smooth function. More precisely, let us
take any smooth function ¥ : R* — R, supported in the unit ball with the center at the
origin and which satisfies fR4 &(z) dz = 1. Let us set Iﬁe(t, Xx) = e_SIZf(e_2t, e 1x).
Then we define a smoothened heat kernel P¢ := P x* 1}3, where the convolution is
over R*. As follows from [26, Lemma 7.7], we can write P = K¢ + R, where K¢
is a compactly supported singular part of the kernel (i.e. K¢(0) diverges as ¢ — 0)
and R? is smooth. Then we set

(MEw) @) =/ K®(z —2) dM,(3), (5.3)

D,

where we recall that ¥ = Z(E).
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We will also use the kernel K¢ := K®x.v,, where %, is the convolution on VAR
Then we set

(Mw?) @) = (A2w) @)% - ¢, (5.4)

with the renormalisation constant
cs =/ K®(2)* dz. (5.5)
D,

It is not difficult to see that 1'[8\11 converges to a distribution as ¢ — 0. This implies
that the product (1'[8 w2)(z)? dlverges in the limit, and in order to have a non-trivial
limit we need to renormalise the product by subtracting the divergent constant C7.
The precise formula for this constant will be explained in Sect.5.3 below.

Finally, for the element Z (lI'3 )\112 we set

(M2 W?) (2) = (W) (2)? /D(Kg(z -2 — Kz — ) (TIEW) (2)* dz

—3C5 (TIEW)(2), (5.6)
where the new renormalisation constant is
s =2 f / / K@K (@1 — 2K (2)K (22 — 23K (23) dz dza das.
D¢ J De J Dy

6.7
Again, we need to subtract the renormalisation constant to have non-divergent moment
bounds for the function. The formula for the renormalisation constant is explained in

Sect.5.4 below.
For a fixed ¥ > 0, we assign to these four basis elements a homogeneity | « | as

1]

2l = -2 W)= 2 N2 = —1— 26, [TWHY| = —t 5
=73 K, =73 K, = K, =73 K.

Let t be one of these elements. We are going to prove that for some k > 0, any p > 2
and any test function ¢ : R* — R the following bound holds:

E, |t (TE7) (91)] < CAITHE, (5.8)
uniformly inz € D, A € [¢, 1] and ¢ € (0, 1], where we use the extension (2.3) and a
recentered and rescaled test function (4.11). The constant C in this bound may depend

on p.
For every element t € {2, W, W2, Z(W3)W2}, we use (2.14) to write

[neh =) Z/ wz(z></ Fzm,...,z,,>dMZ(Z1,...,zn>)dz,

yel€(n)oex,
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1110 P. Grazieschi et al.

where 7 is the number of instances of E in the definition of 7 (recall that ¥ = 7(&)),
the measure M7 is the product measure built from M, and some function F'. In order
to bound such terms, we need to use martingales satisfying Assumption 1. For this,
we use the definition (5.1) and rewrite the previous expression in the form

MEoeh = Y. Y. / k()

yel€(n)oex,

Fxie)-(z1, ...y 20) ) AML (21, ..., 20) JdZ, (5.9
X(/D (( *e)- (21 z)) (z1 Z))z (5.9)

V.0

where now the measure M is built as in (2.13) using the family of martingales

M, (¢, x) 1= Ls—%(P_z,(s—lx) —P. (e7'x)) (5.10)
ﬁ & £t

and where F'* v, is the discrete convolution of F" against the function v, in each of the
variables of F'. In particular, M, are cadlag martingales, satisfying Assumption 1 with
k = —% and C; = C, = 1. We note that we can replace the Poisson processes in (5.1)
and in (5.10) by their compensated versions, because the integrals of their intensities
cancel each other. Furthermore, (2.15) allows to write (5.9) as a chaos expansion

MEoeh= Y f 0z @)Ly o (F¥ive);)dz

ye€(n)oex,

The functions (p? and F»]y, may be written in this expression as a suitable kernel
IC&’&Z in the sense of (4.18). Moreover, due to the renormalisation involved in the

definition of ﬁit we will typically write this expression in terms of renormalised
stochastic integrals (3.30) with suitable labelings L, which may be different for
different contractions y. Hence, we will write the preceding expression as

[Eneh =Y > 57Ky

ye€(n)oex,

Finally, we use (4.14) to write it as

[Eneh = > 1,7k,
yel(n)

and we are going to bound each term in this sum using Corollary 4.5.

Additionally, it is convenient to use graphical notation to represent the kernels Kk Ez
In the graphical notation, nodes represent variables and arrows represent kernels The
vertex “®” labelled with z represents the basis point z € D,. The arrow “=—>"
represents a test function gog‘. The arrow “———” represents either the discrete kernel
K¢ or K¢, and we will write two labels (a, r.) on this arrow, which correspond to the
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labels on graphs as described in Sect.4. More precisely, since the kernels K¢ and K ¢
satisfy the bound (4.7) with a, = 3 (this follows from [26, Lemma 7.7]), Lemma 4.2
implies that the kernels K¢ and K ¢ have all the properties from Assumption 4 with the
values a, = 3 and r, = 0. Hence, we will depict this kernel by “—30—". Whenever
a contracted variable z; is integrated with respect to the measure M, with n > 2, we
denote it by a node “®”. Moreover, the variable integrated with respect to M, will be
denoted by “O”. By the node “¢” we denote a variable integrated out in D;.

Using this notation, we will now prove the bounds (5.8) for each of the four elements

5.1 Theelement7 ==

The definitions (5.2), (5.1) and (5.10) yield

L (TIEE) (¢ = / (¢l*ere) (@) ML (2).

&

This expression is not in the scope of Theorem 4.3, but we can bound it using Propo-
sition 3.2 since the right-hand side is a first-order stochastic integral. Recalling that
we extended the martingale M, to all times in R by (4.1), we write the preceding
expression explicitly as

& / T (@rre ) (0 dML(E, ) + > e / T (@rrewe) (-1, B AL B,
feezd V10 feezd U0

where M, is an independent copy of M, (see (4.1)). We bound these two integrals
using Proposition 3.2, recalling the definition (2.10), and get

1
Epyzs(ﬁ§8)<¢2>\5(e3 > /R (wﬁ*gwe)a',f)zdz‘) +ei sup [(eleeve) @ D),
veeZ’

(7. %)eD;
(5.1D)
where we used k = —%. The function ((pé‘*swe)(t_, X) is supported on (7, X) € D;

satisfying |7 — 7| < A and |¥ — x| < AV e. Moreover, this function is rescaled by A in
time and A V ¢ in space. Then the first term on the right-hand side of (5.11) is bounded

by a constant times A3 for A € [e, 1]. The second term in (5.11) is bounded by a
constant times s%k_s < k_% for A € [e, 1]. Hence, we obtained the required bound

(5.8) with |E| = —3 — « forany « > 0.
5.2 Theelement7 =Y
Using (5.3), (5.1) and (5.10), we can represent the map ﬁir diagrammatically as

([M0)()) = o—n—ee—e.
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1112 P. Grazieschi et al.

This diagram is the stochastic integral Z¢(F'), where the kernel F is in this case the
generalised convolution K?ész, as in (4.18), given by

/Cé;,’,i(z"ar) = / ¢HZ) K (Z - 27%%) dz.
D,

One can check that Assumption 3 is satisfied for this diagram, because it contains only
one edge with the labelsa = 3andr = 0, " = Q,ar = {1}, the contraction y is
trivial with only one component y; = {1}, and |§7;\{v*T }| = 1. The space-time scaling
iss = (2,1, 1, 1), so that |s| = 5 and the value of the constant v, in (4.15) is —l,
where we used |I'| = 1.

Then we can compute the quantities appearing in (4.16). There is only one function

p € 2 satisfying the conditions of the first sum in (4.16), this is the function p(1) = 2.

Using this function, the first term on the right-hand side of (4.16) is C )»_% , because
ay (p) = 8, (p) = 0 as follows from (3.19) and (4.17).

The only function p € & satistying the conditions of the second sum in (4.16)
is the function p(1) = oo. Then the second term on the right-hand side of (4.16) is
C)L_%e%_ee_% for any 6 > 0, because a, (p) = % and §, (p) = % as follows from
(3.19) and (4.17) respectively.

Hence, applying Corollary 4.5 and recalling that |t]| = —% — k, one obtains the
bound

1

1
(BleeMize@h]")" £ 37501 i) <378,

for any 6 > 0 small enough. As such, we immediately get (5.8) for the element t.
In what follows we always have |s| = 5 and we prefer not to recall it every time.

5.3 The element 7 = W2

Taking into account the renormalisation in (5.4), the map ﬁ§ T can be represented by
the diagrams

/
@ = W+ M- et (5.12)
[ J

" @—>

where the renormalisation constant is given in (5.5). We denote the first diagram by
Lg(ﬁ?lr)(wg) and the difference of the other two terms by Le(ﬁ§’2t)(<p§‘).

Let us start with the first diagram in (5.12). Assumption 3 is satisfied for it with
a trivial contraction y having two components y; = {1} and y» = {2}, and the sets
= @var = {1, 2}. Furthermore, we have |§\/;\{11,T}| = 2 and the value of the constant
vy in (4.15) is —1.

@ Springer



Martingale-driven integrals and singular SPDEs 1113

Now, we can compute the quantities appearing in the bound (4.16). Only the function
p € &% with p(1) = p(2) = 2 contributes to the first sum in (4.16). Then, according
to (3.19) and (4.17), we have a,, (p) = §, (p) = 0 and the first term on the right-hand
side of (4.16) equals CA ™.

There are three functions p € 4% contributing to the second sum in (4.16) which
we denote by p;, p, and p3. These functions are given by p;(1) = 2, p;(2) = oo,
p>(1) = 00, p,(2) = 2, and p53(1) = p3(2) = oo. According to (3.19) and (4.17), we
have a) (p1) = a,(py) = 6,(p)) = 6,(py) = % and o, (p3) = 6,(p;) = 5. Then
the second term on the right-hand side equals C1~! (28%_9 e 3 + 5707 ) for any
6 > 0. Hence, applying Corollary 4.5 to this diagram, we get the bound

1
= ? _ 5_pg _3 0 — _
(E|Lg(n§~1r)(<p§)|”)‘ SV (1 e3P 4505 Sal,

for any 6 > 0 small enough. Recalling that [t| = —1 — 2k, we get the bound (5.8).
The second diagram in (5.12) does not satisfy Assumption 3 and it needs to be con-
sidered as a renormalised integral in the sense of (3.29). For this, let us denote by “”
the variable which is integrated with respect to the martingales ¢ — (e %MS (t, X))xeA,-
where M, (¢, x) := 8%([M5(x)], — (Mg (x));). We use the multiplier 8% to be con-
sistent with our definition (2.6), and the multiplier e4+* = e equals the e-factor in

the definition (3.29) with n = 2. Then the identity (2.22) and our definition of the
renormalisation constant (5.5) allow to write

A
3.0 3,0

(20l = N7

n@—

This expression equals to a renormalised integral (3.29) with n = 2. More generally, it
is equal to an integral (3.30) with the contraction y having one component y; = {1, 2}
which is labeled with ¢. However, this diagram still does not satisfy Assumption 3,
because the kernels have very strong singularities. To resolve this problem, we notice
that multiplication of a kernel by a positive power of € decreases the order of singularity
in (4.7). Hence, for any 0 < a < 3 we can write the preceding expression as

/A

a0 a0

g2\ /| (5.13)

§@—>

where we multiplied each kernel by &3¢, For % <a< %, Assumption 3 is satisfied

with the sets I' = @var = {1}. Furthermore, we have W;\{UJH = 1 and the value of
the constant vy, in (4.15) is % —2a < 0.
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To apply the bound (4.16) to the expression in the parentheses in (5.13), we need to
compute the involved quantities. There is one function p € &7 contributing to the first
sum on the right-hand side of (4.16), and this function is p(1) = 2. Using (3.19) and
(4.17), we compute o, (p) = % and §, (p) = 0, and the first term on the right-hand
side of (4.16) equals Cr3—2g3,

The only function p € & contributing to the second sum on the right-hand side of
(4.16) is p(1) = co. Using (3.19) and (4.17), we compute o, (p) = 5 and §, (p) = %,

and the second term on the right-hand side of (4.16) equals C A324g5-0,=3 for any
0 > 0.
Hence, Corollary 4.5 yields

W

1
-~ - 5 5 7 5
(E|L5(H§’2‘[)((p?)ip) P <M (e 4 50 T) M)

for any 6 > 0. If we take a > 47'1 + 6, then the last expression becomes ¢/ A~ 1720,

Recalling that |[t| = —1 — 2« and taking 6 small enough, we get the bound (5.8).
Moreover, this quantity vanishes as ¢ — 0.

5.4 The element 7 = Z(¥3)W¥?

Using the definition (5.6) and the renormalised integrals as in Sect. 5.3, the diagrams
for the map Iz are the following:

7 7
O\ 3!0 /O (<>\30 /O 3.0 | 30 3,0 | 3,0 NN
30 \ 3.0 30 30 &:f 10 3.0 |
\'/ \T/ . T \04\310
MnEh =00 a1 P+300 w1 O4+0( P2 5 O43 3 ;o—:\.
30 ] 30 i/’o
3,0

3, 3.0 i 3.0
Ny Ny

§@—>
N @=—e
—_—
§@—>

{ ]
: °
o (<>\30 O\ 30 (. 30 /O 0 | W
30 30 ) ‘“\l 30 /3.0 \:\fj
\’T\ ‘ N> T\” 3 N> 30 T 30

© Y w
t ) t ) )
[ ] ([ ] [ ] ([ ] ([ ]
z z o z PY z z
(<>\? 0 /O (<>\*0 3!0 /O 30 JO \3'0
3,0\) ./x,o 3,0\) .) 3.0 l 3.0 ‘f
+3 3'1 _ +6O 3!1\3'0\.-% 3!1 At ll _
{/ ) (;,(] /<> 30\%% 3'0/ {CZ 0 /<> %CZO /<>
z z z z
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(@)
3i0
O
FAAY |
+6.:3,0 3!1 3’0>.—3C§ 10 (5.14)

All these diagrams, except the tenth and the last two, can be bounded by a direct
application of Corollary 4.5.

As a demonstration, let us bound the third diagram, which we denote by
Lg(ﬁ§’3t)(<p§‘). Let us label the vertices V5, of the first diagram in (5.14) with
1,...,5, going in the clockwise direction. Then the third diagram corresponds to
the contraction y with three components y; = {1}, y» = {2, 3,4} and y3 = {5}. After
performing contraction, we get three vertices in @Var which we label with 1, 2 and 3.
Then Assumption 3 is satisfied with ' = {1, 3}. Furthermore, we have W;\{vfﬂ =4
and the value of the constant v, in (4.15) is —3.

Now, we will compute the quantities which appear in the bounds (4.16). There is
only one function p € 44 contributing to the first sum in (4.16), which is the function
p(1) = 2, p(2) = 1 and p(3) = 2. Then (3.19) and (4.17) yield «, (p) = % and
3y (p) = 0, and the first term on the right-hand side of (4.16) equals C)L_38%. Since
A > g, we can estimate it by C)F%’(’ee for any 6 € (0, %).

There are four functions p € £ contributing to the second sum in (4.16), which
we denote by p;, p,, p3 and py, and which are given by p;(1) = 2, p;(2) = oo,
p1(3) =2, py(1) = 00, p2(2) = 00, p,(3) = 2, p3(1) =2, p3(2) = 00, p3(3) = o0,
p4(1) = 00, p4(2) = oo and p4(3) = oo. We can compute by (3.19) and (4.17) the
quantities &, (p)) = 5,8, (P)) = 5,0y () = @, (p3) = 10,8, (py) = 8, (p3) = 5,
ay(py) = 22—5 and §,, (p4) = 10. Then the second term on the right-hand side of (4.16)
equals

15 15 25
Cr3(e7 e 426107077 467 70e710),

for any 6 > 0. Recalling that . > ¢ > ¢ and taking 6 small enough, we bound this
expression by 4CA" 2 h

Hence, applying Corollary 4.5, we get
-~ 1 1
(Bl o@h|")” S 27272,

for all & > 0 small enough. Taking a suitable value of 6, we get the required bound
(5.8) with || = —§ — 5k.

Now, we will bound the tenth diagram (the one that contracts all leaves), which
we denote by tg(ﬁ?lor)(q)g‘). For this we write the product measure Mg, defined in

(2.11), as
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MI([0. 1] x A) =&Y Y (A Mg(x) =P Y AM (),

x€A0<s<t x€A0<s<t

where y € €1 (Vyar) with [Viar| = [y1] = 5 and [0,7] x A € D, where the set
D,, is defined in (2.13), i.e. it is the diagonal of DS on which all variables take the
same values. The preceding expression equals '3y _, M, (z, x) because M is a
piece-wise constant process. Then we can write

D0
N

xX€EA

A
J,

w ©
S— <z —

§ @ o —

No—>

where the stochastic integral is with respect to the martingale M. We can now view
this diagram to correspond to the contraction y with one component y; = {1}. Taking
powers of ¢ to improve the singularities of the kernels, similarly to how we did it in

(5.13), we get
(@)
0
b0
M
g2a+b=5 “«0\:}(]0 ’ (5.15)

" @—>

for0 <a <3and 0 < b < 9. If a and b satisfy b < 5and% <2a+b <17,
then Assumption 3 is satisfied with the sets I' = Q,ar = {1}. Furthermore, we have
|V;\{v,,¢}| = 2 and the value of the constant v, in (4.15) equals % — 2a — b, which is
strictly negative if 2a + b > %.

Now, we are going to apply the bound (4.16) to the diagram (5.15), together with
the multiplier £24+2=3_ There is one function p € 4, given by p(1) = 2, contributing
to the first sum on the right-hand side of (4.16). Using (3.19) and (4.17), we com-
pute o, (p) = 8, (p) = 0, and the first term on the right-hand side of (4.16) equals
Cgla+b—553—2a—b_

The only function p € &7 contributing to the second sum on the right-hand side of
(4.16) is p(1) = oco. Using (3.19) and (4.17), we compute oy, (p) = 5§, (p) = %, and
the second term on the right-hand side of (4.16) equals Cela+h=5)3-2a—bg3—0,=3 <
Cea+b=5-0)3=2a=b fo any 6 > 0.
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Then Corollary 4.5 yields

1
o~ r 9
<E|L3(H§’10‘L’)((p?)|p)p 5 82a+h_5_9)nj_2a_h.

If we take 6 > O sufficiently small and 2a + b = 5 + 26, then the last expression
turns to e?2~272. Recalling that |7]| = —% — 5« and taking 6 small enough, we get
the bound (5.8), and this quantity vanishes as ¢ — 0.

We now turn our attention to the last two terms in (5.14), which are also the most
interesting ones. Using the renormalised kernel (4.8), we can write

O O @)
3!0 3!0 3!0
o o o 0 v
30/7TY\30 e 3'0 30]TY\30 e 3|o 3.01.\30
2 .: 3,1 :. — C2 i =12 .: 30 :. — C2 i -2 .: :.
3.0 i 3.0 M4 3.0 i 3.0 M4 30 3.0
\.K T \.L/ T \.K 3,0
T ® T ® T /
([ ] z [ ] z [ ]
z z 2 (5.16)
The last diagram can be further decomposed as
(@) (@) (@) (@)
3!0 3!0 3!0 3!0
! : ! !
/3.0] \3.0\ _ /3.0/ \3.0\ + 2 /3,0/ \3,0\ + /3,0/ \3,0\
o L =X X °~ X °’~ -
3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
N 3,0 NG 30 N o 3,0 N 3,0
VP2 P2 (P
[ ] ([ ] [ ] [ ]
2 Z Z Z
and applying Corollary 4.5 with v, = —1—21, the p-th moment of each term can be

bounded by a constant times e92=22 for any 6 > 0. To obtain this bound, we need

to perform computations similar to what we did above.
The expression in the parentheses in (5.16) can be written as

(@) (@) (@) (@)

| | | |

30 30 30 30
Lo % L
5 /3,0”|\3,0\ - 3!0 _ /3.0”|\3,0\ 4 /3,0]|\3,0\ 5 /z.o]|\3,o\ o 3!0
o N @G =20l 1 Sot4el 3w SOt Ze W Sem G
30} 30 M s0_ |30 30|30 30|30 M
N~ 1‘ NP~ NP2 NP2 T
t . t t t .
[ ] z [ J [ ] [ ] z

z z z z 5.17)
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The first two diagrams above can again be bounded using Corollary 4.5 by a constant

multiple of 92727 for 6 > 0.
The last expression in the parentheses in (5.17) needs more attention. Let us define
a new kernel

_.[{_\)l

0/7

3,
ga(Zl,Zz) = .(30 30 >.’

So’i—
N

which is in fact a function of the difference of the arguments, i.e. G; (z1, z2) = G (22 —
z1). As follows from the order of the singularity of the kernel K ¢ and [29, Lemma 7.3],
the function G, satisfies |D*G,(z)| < (l|zlls + ¢)~>~ls for all multiindices k with
|k|s large enough. Then we conclude from Lemma 4.2 that the function G, has all the
properties listed in Assumption 4 with the values a, = 5 and r, = 0. We denote the
kernel G, by an edge ““wsomv". Then the first diagram in the parentheses in (5.17) can
be represented as

@ —> e W50We<30—)»
z

and one can see that this diagram does not satisfy Assumption 3(1.) (recall that |s| = 5).
To resolve this problem, we need to use a negative renormalisation (in the sense of
Sect.4.1.1) of the kernel G,.. More precisely, for any smooth function : R*xR* — R,
we define its negative renormalisation as

(%:G:) () :=/D/DQs(mzz)(n(m,zz)—n(Z1,Z1))dZ1dzz,

and we graphically depict Z. G, as “s-iwv", where the label “—1” refers to the order
of renormalisation. Since the renormalisation constant (5.7) can be represented as

3,0/ *

C; = 2 .< 3,0

3,0
Y

.
| 3‘0\
o,
e
3,0

‘o
[ J
0

the expression in the parentheses in (5.17) equals

2 @=—> e W5-1ne«30—0,
z

This diagram satisfies Assumption 3, and using Corollary 4.5 we bound its moments

by a constant multiple of 92722 for @ > 0.
By taking 6 in the preceding bounds sufficiently small, we obtain the required
bound (5.8) on the expression (5.16).
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