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Abstract—As Deep Neural Networks (DNNs) have been successfully applied to various fields, there is a tremendous demand for
running DNNs on mobile devices. Although mobile GPU can be leveraged to improve performance, it consumes a large amount of
energy. After a short period of time, the mobile device may become overheated and the processors are forced to reduce the clock
speed, significantly reducing the processing speed. A different approach to support DNNs on mobile device is to leverage the Neural
Processing Units (NPUs). Compared to GPU, NPU is much faster and more energy efficient, but with lower accuracy due to the use of
low precision floating-point numbers. We propose to combine these two approaches to improve the performance of running DNNs on
mobile devices by studying the thermal-aware scheduling problem, where the goal is to achieve a better tradeoff between processing
time and accuracy while ensuring that the mobile device is not overheated. To solve the problem, we propose a heuristic-based
scheduling algorithm to determine when to run DNNs on GPU and when to run DNNs on NPU based on the current states of the
mobile device. The heuristic-based algorithm makes scheduling decisions greedily and ignores their future impacts. Thus, we propose
a deep reinforcement learning based scheduling algorithm to further improve performance. Extensive evaluation results show that the

proposed algorithms can significantly improve the performance of running DNNs on mobile devices while avoiding overheating.

Index Terms—deep learning, mobile computing, power management

1 INTRODUCTION

Over the past years, Deep Neural Networks (DNNs) have
made tremendous progress and have been applied to vari-
ous fields such as natural language processing [1], computer
vision [2], [3], speech recognition [4], augmented reality [5],
health care [6], etc., and many applications based on DNNs
have been developed for mobile devices. For example, some
apps can recognize users’ voice as text input, help tourists
identify well known landmarks, and monitor users’ health
conditions. Although DNNs can improve user experience
by providing more accurate results, deep learning mod-
els are by nature computationally intensive, making them
challenging to deploy on battery powered mobile devices.
To address this problem, mobile devices can run DNNs
on mobile GPUs. Some deep learning frameworks such as
Tensorflow and Torch include tools and libraries to run
existing DNNs on mobile GPU. Although the processing
time can be significantly reduced, running DNNs on mobile
GPUs consumes a large amount of energy. After a short
period of time, the mobile device may become overheated,
in which case the processors are forced to reduce the clock
speed, significantly reducing the processing speed.

A different approach is to leverage the Neural Processing
Units (NPUs) equipped with mobile devices. In recent years,
many companies such as Huawei, Qualcomm, and Samsung
have developed dedicated NPUs for mobile devices, which
can process Al features [7]-[9]. Compared to GPU, NPU is
much faster and more energy efficient. With NPU, the mo-
bile device is unlikely to overheat even after continuously
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running DNNs for a long time. However, NPU has some
fundamental limitations, such as low precision of floating-
point numbers and limited memory space [10]. The DNNs
have to be compressed and run with 8-bit integers or half
precision floating-point numbers on NPU. As a result, the
accuracy of running some DNNs on NPU is lower than that
of GPU or CPU.

There is a performance tradeoff between the GPU-based
approach and the NPU-based approach. The GPU based
approach has higher accuracy, but it has higher energy
consumption. Running DNNs on GPU continuously will
cause the mobile device to overheat and result in poor per-
formance. On the other hand, the mobile device is unlikely
to be overheated in the NPU based approach, which is faster
and more energy efficient. However, running some DNNs
on NPU may result in low accuracy due to the use of low
precision floating-point numbers.

To address this problem, we propose to combine these
two approaches to improve the performance of running
DNNs on mobile devices. The major challenge is to de-
termine when to run DNNs on GPU to achieve better
performance and when to run DNNs on NPU to avoid over-
heating. Consider an example of a flying drone. Its camera
captures videos which are processed in real time to detect
nearby objects to avoid crashing into trees or buildings. If
the device becomes overheated, the processing speed will
suddenly drop, which increases the risk of collisions. As a
result, besides considering processing time and accuracy, it
is also critical to avoid overheating (thermal throttling).

In this paper, we study the Thermal-Aware Scheduling
(TAS) problem, where the goal is to achieve a better tradeoff
between processing time and accuracy while ensuring that
the mobile device does not overheat. To solve the problem,
we propose a Heuristic-Based Scheduling (HBS) algorithm
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Fig. 1: Performance comparisons of running DNNs on NPU and GPU.

to determine when to run DNN on GPU and when to run
DNN on NPU based on the processor usage, the clock speed,
and the temperature of the processor. The heuristic-based
algorithm makes scheduling decisions greedily and ignores
their future impact. To address this issue, we propose a
Deep Reinforcement Learning based Scheduling (DRLS)
algorithm to further improve the performance. In DRLS,
deep Q-learning [11] is used to evaluate the future impact
of a scheduling decision. In the training procedure of DRLS,
we carefully design the reward function and propose tech-
niques for replay buffer management.
Our contributions can be summarized as follows.

e We measure the performance of running DNNs on
GPU and NPU, and identify the limitation of the cur-
rent mobile architecture such as overheating when
running computationally intensive DNNS.

o We formulate the Thermal-Aware Scheduling (TAS)
problem and propose Heuristic-Based Scheduling
(HBS) algorithm and Deep Reinforcement Learning
Scheduling (DRLS) algorithm to solve it.

e We implement the proposed algorithms on mobile
devices with NPU. Extensive evaluation results show
that the proposed algorithms can significantly im-
prove the performance of running DNNs on mobile
devices while avoiding overheating.

The rest of the paper is organized as follows. Section 2
compares GPU-based approach and NPU-based approach,
and provides the motivation of Thermal-Aware Scheduling.
In Section 3, we formalize the Thermal-Aware Scheduling
problem. Section 4 presents the HBS algorithm and Section
5 presents the DRLS algorithm. In Section 6, we give the
evaluation results. Section 7 presents related work and
Section 8 concludes the paper.

2 PRELIMINARY

In this section, we first use some measurement results to
identify the strengths and weaknesses of GPU and NPU,
and then give the motivation of thermal aware scheduling.

2.1 Comparison Between GPU and NPU

To have a better understanding of the characteristics of GPU
and NPU, we compare the processing time, accuracy and
power consumption of running different DNNs on GPU and
NPU.

The experiment was conducted on HUAWEI mate 10
pro which has NPU and GPU, and the evaluations are
based on the following DNN models: 1) VGG model [12]
with the LFW dataset, 2) SqueezeNet model [13] with 4000
object images randomly chosen from the FCVID dataset
[14], 3) GoogleNet model [15] with the same dataset as
the SqueezeNet model, 4) YOLO Small model [3] with 100
images randomly chosen from the COCO dataset [16]. As
shown in Figure 1(a), compared to GPU, running VGG,
SqueezeNet, and GoogleNet on NPU can reduce the pro-
cessing time by 50-65% compared to using GPU. From
Figure 1(b), we can see that the speed improvement of NPU
is at the cost of accuracy loss, although the accuracy loss
of using NPU is different for different DNN models. For
example, compared to GPU, using NPU has similar accu-
racy when running VGG, 15% accuracy loss when running
SqueezeNet and GoogleNet, and the accuracy drops by 45%
when running YOLO Small.

The accuracy loss is mainly because NPU only supports
FP16 operations. This design option can reduce the pro-
cessing time but may increase the accuracy loss because
of floating-point number overflow or underflow. Although
well-known deep learning frameworks such as Tensorflow
Lite also use FP16 operations, these FP16 operations are
limited to store model parameters and input data, and FP32
are still used to store intermediate results and for most
operations (e.g., accumulation).

The amount of accuracy loss is related to the DNN
model. In VGG, the extracted feature vectors are compared,
and they represent the same person if the similarity is
above a predefined threshold. Although NPU introduced
error may change some values, the relationship between the
similarity and the threshold will remain and thus keep the
same level of accuracy. SqueezeNet and GoogleNet classify
images based on the largest element in the extracted feature
vector. The NPU introduced errors may increase or decrease
the value of some elements, and then classify an object as
something else. In YOLO Small, there is more information
such as location, category and size of the objects in the
feature vector. Since any error in the feature vector can
totally change the detection result, its accuracy loss is much
higher.

We also compared the power consumption of GPU and
NPU. We use the fuel gauge on the mobile device to retrieve
battery voltage and current information. Such information
can be obtained using the Android SDK and we have devel-
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Fig. 2: The relationship among processing speed, temperature and processor clock speed

oped a mobile app to record the instantaneous voltage and
current of the battery every 100ms. As shown in Figure 1(c),
the power consumption of NPU is about 85% less than that
of GPU. Considering that the processing time of running
DNN on GPU is also much longer than NPU (see Figure
1(a)), the NPU-based approach is about 10-20 times more
energy efficient than the GPU-based approach.

2.2 Motivation

The current mobile architecture is not designed for run-
ning computationally intensive DNNs, especially when the
DNNs are required to run for some amount of time. This
poses research challenges for supporting some deep learn-
ing based applications (e.g., video analytics). When running
these deep learning applications, the processor works at
high clock speed and its temperature increases sharply.
Within a short period of time, the mobile device will over-
heat and the processor will be forced to reduce the clock
speed, significantly reducing the processing speed.

To illustrate this problem, we conducted some exper-
iments using HUAWEI Mate 10 pro. We developed an
Android application which runs as a background process
to record the processing speed and the temperature of
the processors every 100ms. Moreover, we also use ARM
Streamline, which is a professional performance profiling
software, to monitor the clock speed of GPU. In the experi-
ment, GoogleNet is run on GPU to process videos randomly
selected from the FCVID dataset.

Figure 2(a) shows the processing speed and the tempera-
ture of the GPU over time. In the beginning, the temperature
is low, and GoogleNet is processed quickly on GPU. After
time 385s, the GPU temperature increases to 67°C, and
the device overheats. The system cools down the device
by reducing the power consumption of the processors and
forcing them to work at a low frequency, i.e., the GPU clock
speed drops from 600 to 200MHz as shown in Figure 2
(b). As a result, the GPU processing speed becomes much
slower; i.e., drops from 10 frames per second (fps) to 2 fps
as shown in Figure 2 (a). When the GPU temperature drops
to 56°C, the system increases the GPU clock speed and the
processing speed increases back to 10 fps. This phenomenon
is not limited to a specific type of smartphone. In Figure
3, we performed the same experiment on two different
smartphones, Samsung S20 and Pixel 4. On Pixel 4, the data

from the GPU temperature sensor (obtained from the /sys
folder) consists of random numbers. Therefore, we approxi-
mate the GPU temperature using CPU temperature for both
devices. As shown in the figure, the performance of running
DNN on GPU drops as the GPU temperature increases. In
Samsung S20 and Pixel 4, automatic shutdown occurs after
multiple clock speed reductions during overheating. As a
result, Figure 2 looks different from Figure 3, where Mate 10
Pro recovers from overheating by significantly reducing the
clock speed.

Based on Figures 2 and 3, we can see that the GPU
processing speed experiences a significant drop when the
system overheats. To address this problem, we leverage
NPU to avoid overheating and improve performance. Since
NPU consumes much less power and generates much less
heat, it does not overheat and can maintain the high pro-
cessing speed. As shown in Figure 1(c), NPU only consumes
about 16% of power compared to GPU. Moreover, the heat
generated by NPU can be absorbed and dissipated quickly,
as shown in 2(c). Note that we use the CPU temperature
to approximate the temperature of NPU since it cannot be
directly obtained from the system. In this experiment, we
run GoogleNet on NPU, and measure its processing speed.
Since there is no temperature sensor on NPU, we show the
temperature of CPU which is in the same System on a Chip
(SoC). As shown in the figure, there is no significant tem-
perature increase for CPU since it works at low utilization,
and there is no overheating. The processing speed of NPU
(25 fps) is much faster than GPU.
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From Figures 1 and 2, we can see that NPU is much
faster and more energy efficient than GPU. When DNN
is run on NPU, the device does not overheat since the
temperature of the processors remains low and stable. How-
ever, the accuracy of some DNNs drops on NPU and it
is difficult to satisfy the accuracy requirements of some
mobile applications. On the other hand, the accuracy of the
GPU based approach is higher, although the device may be
overheated and the performance becomes much worse after
continuously running DNN for a period of time. To address
this issue, we combine these two approaches to achieve bet-
ter and robust performance under thermal constraints. We
first formulate the Thermal-Aware Scheduling problem and
propose a heuristic-based scheduling algorithm to solve it.
Then, we propose a deep reinforcement learning scheduling
(DRLS) algorithm to further improve the performance.

3 THE THERMAL-AWARE SCHEDULING (TAS)
PROBLEM

In this section, we study the Thermal-Aware Scheduling
(TAS) problem. The utility is defined as a weighted func-
tion of accuracy and processing speed, and our goal is to
maximize the utility while ensuring that the device does not
overheat.

3.1 Problem Formulation

Let n denote the total number of video frames that needs to
be processed, and each frame can be skipped or processed
on GPU or NPU. Let P denote the set of processors (NPU
or GPU) on which the DNNs can be run. Let A(j) denote
the accuracy of running DNN on the j*" processor. More
specifically, A(1) is the accuracy of running the DNN on
GPU and A(0) is the accuracy of running the DNN on
NPU. Let o denote the tradeoff parameter between accuracy
and the processing speed. The utility can be computed as

S X, AGX] =
which processor is used to process the frame. If X] = 0,
the i*" frame will not be processed on the j*" processor. If
X} =1, the i*" frame will be processed on the j processor.
Let T'(t) denote the temperature of the CPU at time ¢ and let
T, denote the overheating threshold of the CPU. Then, we
have T'(t) < T,.

Although the DNN is run on GPU or NPU, we only
consider the temperature of CPU (7} and T,) for the fol-
lowing reasons. First, even though the DNN is run on
GPU, the temperature of the CPU is the highest among all
the processors. This is because the CPU needs to perform
many operations such as data preprocessing (i.e., scaling
and normalization) and copy data from main memory to
GPU or NPU [9], [17], [18]. Moreover, all the processors
are located on the same SoC in mobile devices and the
temperature of GPU also affects that of the CPU. As a
result, the temperature difference between CPU and GPU
is usually within 2 degrees Celsius. Most importantly, the
mobile devices determine whether the device is overheated
or not based on the temperature of the CPU instead of GPU
or NPU. Therefore, we only consider the CPU temperature
in this problem formulation.

X7 is a variable to show

4
Notation | Description
I; The " frame
A(j) The accuracy of running the DNN on
the j* processor
f Processing speed (fps)
T(t) The temperature of the CPU at time ¢
T, The overheating temperature threshold.
Ty, The predefined temperature threshold
used in HBS and DRLS
n The number of video frames that needs to
be processed
X7 a variable indicating that the i*" frame
is processed on the j*" processor.

TABLE 1: Notations

The notations used in the problem formulation and the
algorithm design are shown in Table 1. The problem can be
formulated in the following way.

n n J
max ZZA(])XZJ —l-aM (1)

i=1jeP n

s.t. T(t) < T, Vt )
» X] <1,Vie[ln] 3)
jeEP

Objective (1) is to maximize the utility of the processed
frames. Constraint (2) ensures that the device temperature
is below a predefined threshold at any time. Constraint (3)
specifies that each frame can be either skipped or processed
on GPU or NPU.

The formulation is difficult to solve directly due to the
following reason. First, it is hard to model the thermal
changes of the mobile device directly [19]. The temperature
change of the mobile device depends on many factors such
as the clock speed of the processors, the environment, and
other components of the mobile device, which are difficult
to model [19]-[21]. For example, it is hard to model the
heat exchange among different components of the mobile
device. The temperature of a processor is not only based
on its clock speed and utilization but also affected by
other processors due to the physical proximity. Similarly,
it is hard to model the heat exchange between the mobile
device and the environment, since it is affected by the
environment temperature, the device material and its heat
dissipation. Moreover, even if a device temperature model
can be built, solving the nonlinear optimization problem
will take too much time. With limited computational power,
it is impractical to implement such a complex algorithm
on mobile devices. Therefore, we first propose a heuristic-
based solution to solve the problem and then design a deep
reinforcement learning based solution to further improve
the performance.

3.2 Overview of the Thermal-Aware Scheduling Frame-
work

An overview of the Thermal-Aware Scheduling framework
is shown in Figure 4. Since some applications continuously
work for a long time, the mobile device may overheat after
several minutes and the performance drops significantly.
The thermal-aware scheduling algorithms ensure that the
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temperature of the device does not exceed a predefined
threshold. To avoid overheating, the scheduling algorithm
needs to adjust the processing frame rate by skipping some
video frames and determine which processor should be
used for processing the frames to achieve better perfor-
mance.

4 HEURISTIC-BASED SCHEDULING ALGORITHM

Since it is impractical to solve the TAS problem directly, we
propose a heuristic-based scheduling (HBS) algorithm. In
HBS, time is divided into time intervals. At the beginning of
each time interval, the HBS algorithm makes a scheduling
decision to determine where to run the computation and
how many frames should be processed, through the follow-
ing procedure. First, HBS predicts the temperature change
based on the processing speed, the processor usage, and
the history data. Then, a scheduling decision is made to
maximize the utility within the temperature threshold.

4.1 Predicting the Temperature Change

Many factors such as DNN architecture, clock speed of the
processor, and the environment affect the temperature of
the mobile device. To predict the temperature change, we
extract features related to the DNN model and the mobile
device. Our feature vector 7 = (x1,%2,...,2y,) contains
three parts: the DNN features, the processor features, and
the thermal features. The DNN features include the process-
ing time of the DNN and the processing frame rate. The
processor features include the clock speed of the processor
and the processor usage information. The thermal features
include the temperature of different components in the
mobile devices (e.g., processor, display and battery). Since
the extracted features have different ranges, we use Min-
Max normalization to re-scale the range of features to [0, 1].

With the extracted features, HBS predicts the tempera-
ture change based on the historical data. More specifically,
let f denote the processing speed and let p denote the
processor being used. HBS maintains the historical data in a
setof lists {I(f1,p1),1(f2,02)s - - - I(fm, Pm) }- 1(fi, ps) is a list
of pairs ( z, AT'), where the feature vector z represents the
current state of the mobile device and AT is the CPU tem-
perature change after running DNN on processor p; with
processing speed f;. A new pair is added to the list I(f;, p;)
as follows. Suppose at the beginning of a time interval, the
extracted feature vector is 7, and HBS determines that the
processing speed should be f; and the computation should
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be run on processor p;. At the end of the time interval,
HBS obtains the CPU temperature change AT'. Then, a pair
(2, AT) is added to the list I( f;, p; ).

Assume that the feature vector representing the current

state of the mobile device is . If the processing speed is
f’ and the DNN is run on p’, HBS predicts the temperature
change as follows. It searches the list I(f’,p’) to find the
pair (:?Z, AT*) with the smallest d(7, z"). Here, d(Z, z)
is the Euclidean distance of vectors, and it is defined as
V> (x; — x})2. Then, the predicted temperature change is
AT™.

Since HBS is frequently called and the mobile applica-
tions may run for a long time, The efficiency of HBS may
become worse when a large number of pairs are added to
the list I(f,p). To address this issue, HBS only keeps 50
historical data pairs in I(f, p). When |I(f, p)| = 50 and a new
pair is added to I(f, p), HBS calculates the similarity among
pairs based on the Euclidean distance and keeps the 50 most
different pairs. More specifically, a minimum spanning tree
algorithm is run to remove a pair from [(f, p). Each pair in
I(f,p) is a node in the graph. The distance between two

nodes (7, AT) and (7, AT) is defined as ﬁ. HBS
runs Prim’s algorithm to create the spanning tree and the

last pair added to the tree will be removed from I(f, p).

4.2 Making a Scheduling Decision

In the HBS algorithm, because the temperature prediction
may have errors and a small error may cause overheating
and reduce the performance, instead of using T,, HBS
defines a threshold T}, which is several degrees lower than
T,. HBS ensures that the device temperature is around Tj,.
In Section 6, we will experimentally choose the value of T,.

Based on the temperature estimation, HBS determines
the processor p and its processing speed f to maximize
the utility. More specifically, for each possible scheduling
decision f and p, HBS predicts the temperature T". If " > T},
HBS will not consider this scheduling decision since HBS
needs to control the temperature of the device to avoid
overheating. If T' < T}, HBS will calculate the utility as
A(p) + af.

The HBS algorithm is summarized in Algorithm 1. Lines
2-5 maintain the list I(f,p). In Lines 6-14, HBS finds the
scheduling decision to maximize the utility. In the algo-
rithm, Upest, frest; Prest are used to keep track of the best
utility and the best scheduling decision that have been
found so far. The running time of the algorithm is O(ny),
where n; is the number of processing speeds for running
the DNN.

5 DEEP REINFORCEMENT LEARNING BASED
SCHEDULING ALGORITHM

The HBS algorithm can be used to improve the performance
and the robustness of running DNNs on mobile devices by
ensuring that the device temperature does not exceed the
overheating threshold. However, HBS has some limitations.
For example, HBS makes greedy scheduling decisions based
on the current state of the mobile device, and ignores the
future impact of the scheduling decision. To address this
issue, reinforcement learning technique is used to find a
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Algorithm 1: Heuristic-Based Scheduling Algo-
rithm

Input : The processing speed fP"°” and the
processor pP"*” used in the last time
interval.

Output: The processing speed f, the processor p
used for running DNN

1 Extract the feature vector 2’ and the current device
temperature T
Add (2/,T") to I(fP7ev, pPTev).
if [I(fP7e?, pPme?)| > 50 then
Use Prim’s algorithm to create minimum
spanning tree.

=W N

5 Remove the last pair added to the spanning tree.
6 foest < fmazsDbest < 0

7 Upest < A(pbest) =+ afbest

8 forp+ 0to1ldo

9 for f < 0to finas do

10 (? T*) + argmi d I z

11 if T* < T} then

12 u<+ A(p) + af

13 if u > Upest then

14 Ubest —u, fbest — fr DPbest < P

15 return fuest, Doest

better schedule decision based on the status of the mobile
devices.

5.1 Markov Decision Process (MDP)

Typically, a reinforcement learning problem can be modeled
as a Markov Decision Process (MDP) [22] which consists of
an environment and an agent. In our problem, the environ-
ment is the mobile device, which runs a program to process
the frames on GPU or NPU, and the agent is our scheduler
which gets information from the environment and makes
scheduling decisions.

The information which is obtained from the environment
is called the state. Let s; denote the state of the environment
at time 4, and s; is a feature vector which includes the
temperature of different components in mobile devices and
the clock speed of the processors.

Given the state s;, the agent generates an action a; based
on a policy 7(a;|s;). In our problem, the actions a; is the
schedule decision which determines the processing speed
and the processor used for i‘" time interval, and the policy
7(a;|s;) is the probability P(a;|s;) that the agent takes
action a; at state s;.

By performing an action a;, the agent changes the
state of the mobile device and gets a reward R(s;,a;),
which is equivalent to the utility of the processed frames.
To evaluate how well the agent performs from time
t = 0 to T, a value function V;(sg) is used. It repre-
sents the expected reward and can be computed as fol-
lows Vi(s0) = E[X}_, 7' R(s:,a:)|s0], where v € [0,1]
is the discount factor. The goal of our problem is to
maximize the value function V;(sg) by finding the op-
timal policy 7* = argmaxV;(so). Based on Bellman’s
equation, the optimal value function can be expressed
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as follows V*(s;) = max,, Q(si,a;) = R(s;a;) +
maxg, VY s, ,, es Fai(8i+1,8:)V*(si11), where Q(s;,a) is
the Q-value which represents the expected discounted re-
ward that can be achieved if perform a; at state s; and
then follow optimal policy 7* from then on. If an action can
result in higher Q-value, the agent should be trained to favor
this action. Py, (Si+1, 8;) is the probability of transiting from
state s; to s;4+1 under action a;. In other words, the state
transition depends on the schedule decision and the current
state of the mobile device.

However, we could not apply the MDP to our problem
directly for the following reasons. Firstly, the state of the
mobile device is continuous instead of discrete as required
by the MDP model. For example, the temperature of the
mobile devices is not discrete and there are infinite possi-
ble states. Moreover, the state transition P,,(S;+1,8;) is a
known prior in the MDP but it is unknown in our problem.
To address this issue, we propose a Deep Reinforcement
Learning Scheduling (DRLS) algorithm which is based on
deep Q-learning to solve the problem.

5.2 Deep Reinforcement Learning Scheduling (DRLS)

The overview of DRLS is shown in Figure 5. Compared to
the MDP model, DRLS is based on deep Q-learning, it uses a
deep neural network to evaluate the Q-value. Different from
MDP, the reward in DRLS cannot be simply defined as the
utility used in the problem formulation since DRLS needs to
avoid overheating and utility does not include the penalty
for overheating.

e N
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Replay Buffer
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Fig. 5: Overview of DRLS.

Intuitively, the reward should encourage DRLS to max-
imize the utility under the temperature threshold 7, and
prevent DRLS from making scheduling decisions that can
cause the device to overheat. When the temperature is
approaching the threshold, the reward should be smaller
or even be negative. More specifically, similar to the HBS
algorithm, DRLS aims to control the temperature around T},
(I3, < T,). When the temperature is below T}, the mobile
device is considered to be cool and the reward is the same
as the utility. When T}, < T < T}, + %(To —Ty) = %To + iTh,
the device temperature is already above the temperature
threshold, the agent should get a negative reward when
the temperature increases and get a positive reward if the
temperature drops. When T}, + %(TO —Ty) < T < T, the
temperature is close to the overheating threshold, the agent
should get a negative reward. If the temperature is above T,
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the algorithm fails to control the temperature of the mobile
device and the agent will get a large negative reward. The
definition of the reward in DRLS can be summarized as
follows.

Alp) +axf, T € [0,Th)
r(fp) = —02x (3T, + 11, - T), T e[l 3T, +1T))
' -10, Tel2T,+ 1Ty, T,)
-99, T € [Ty, +0)

For the reward parameters, we heuristically tried differ-
ent options using beam search algorithm and use the best
one in reward function.

In deep Q-learning, a DNN is used to estimate the Q-
value for each possible action based on the current state.
DRLS implements a 2-layers fully connected feedforward
DNN, which has 128 units in the first layer and 64 units in
the second layer, for Q-value estimation. To train the DNN,
the Bellman equation is used to update the Q-values.

More specifically, the parameters of the DNN are initial-
ized to random values. At the it" time interval, the agent
makes a scheduling decision a; and gets a reward IZ;. The
state is changed from x; to x;11. The loss L;(f;) can be
expressed as follows L;(0;) = R; + ymax, Q(x;11,a) —
Q(z;, a;), where the 0; is the weights in the DNN. With
the loss, the gradients in each layer can be computed, and
the parameters are adjusted to better fit the new Q-values.
The agent continuously makes scheduling decisions and
observes rewards and state changes of the mobile device.
After thousands of iterations, the loss is minimized and the
DNN is trained for estimating the Q-values.

HBS
Video Frames
DRLS
JavaCV

( Optimized DNNs )<

( Tensorflowlite | ( NPusDK |
Processors H

[ GPU J [ NPU J

Mobile Device

DRLS Offline Training

P Replay Buffer

DNN

DNN Optimizer

HUAWEI DDK

Tensorflow

Desktop

Fig. 6: The implementation details.

To improve the accuracy of Q-value estimation, a replay
buffer is used to remember the old sample data and the
DNN is trained using both new and old sample data. The
replay buffer must be carefully designed in order to achieve
high performance. For example, if DRLS is trained with a
FIFO replay buffer, it will not process the frames with the
highest processing speed on GPU even though the mobile
device has a very low temperature. This is because, as time
goes by, the replay buffer is dominated by the sample data
which represents that the device has a high temperature.
The device keeps running computationally intensive appli-
cations and it is impossible to cool down the device to a

7

low temperature. DRLS keeps learning how to make good
scheduling decisions when the device temperature is high
but forgets how to find a good scheduling decision when the
temperature of the device is low. This phenomenon is called
catastrophic forgetting, which means the model learns new
knowledge but forget the previous knowledge.

To avoid catastrophic forgetting, the replay buffer in
DRLS should not be a FIFO queue. Instead, we use similar
idea in the HBS algorithm (i.e., using Prim’s algorithm to
remove redundant pairs in the list [(f,p) ) to maintain the
replay buffer. More specifically, the items in replay buffer
can be represented as b; = (7,», fip, s, 7i+1). Suppose the
replay buffer is full and a new sample arrives. Similar to
HBS, DRLS runs the Prim’s algorithm to generate minimum
spanning trees of the items. Each item can be considered as
a node in the graph and the distance between item b; and
b; is ﬁ%ﬂ Then, the last item added to the minimum
spanning tree will be removed from the replay buffer. If
the last item is newly added, it will be kept in the replay
buffer and the second to last item added to the tree will be
removed.

We also set a timer in the training procedure. When the
time is up, the device will sleep for 10 minutes so that it
can be completely cooled down before next iteration. When
the device restarts the training procedure, more sample data
which represents the device has low temperature, can be
collected. With the above method, the DRLS can be trained
to make good scheduling decisions.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
thermal-aware scheduling algorithms on smartphones. We
first present the evaluation setup and then present the
evaluation result.

6.1

In the evaluations, we use a HUAWEI mate 10 pro,
which is equipped with 6 GB memory, octa-core CPU with
big .LITTLE architecture (4x2.4 GHz and 4x1.8 GHz) [23] and
a Cambricon NPU. To run the DNNs on GPU, we leverage
the Tensorflow Lite library [24]. Since the architecture of
NPU is different from CPU or GPU, the existing DNNs
must be optimized before running on NPU. HUAWEI has
published the SDK called HUAWEI DDK which includes
toolsets to perform such optimization. DNNs trained with
Caffe [25] and Tensorflow deep learning framework can be
optimized and run on NPU.

To make scheduling decisions, both HBS and DRLS
need information related to the mobile device status (e.g.,
processor clock speed and temperature). Since some infor-
mation cannot be accessed through the Android SDK, we
wrote a program to obtain such information by reading the
system files. More specifically, our program reads the files
in the directory /sys/devices/virtual/thermal/ to obtain
temperature information, and it takes about 10ms to get all
information from the system files.

In the experiment, the smartphone continuously runs
object classification tasks which are commonly used in
many deep learning based mobile applications. We use

Evaluation Setup
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SqueezeNet [13] and GoogleNet [15] in the evaluation be-
cause they are well known models and are widely adopted
by many researchers for different tasks. Moreover, both
SqueezeNet and GoogleNet have compact structures and
they are very suitable to be run on smartphones which have
limited computational power.

To measure performance, we use video frames from the
FCVID dataset [14], which is used for training DNNs related
to object classification and activity recognition. The FCVID
dataset includes many real-world videos, with data size
about 1.9 TB. Since the dataset is very large, it is impossible
to process all video frames on smartphones.

We randomly choose 60 videos from the dataset for
object classification, and we filter out the noisy data. Before
running the DNNs, the video frames should be prepro-
cessed, for example, the frames need to be normalized or be
resized to the input size of the DNNs. In the experiment,
we use JavaCV to perform such frame preprocessing on
smartphones.

Since the HBS algorithm is easy to implement, no addi-
tional library is required. In contrast, the DRLS algorithm is
more complex, where a DNN is trained to estimate the Q-
values for every scheduling decision. Training the DNN on
Android is not easy due to the following reasons. First, most
existing Android deep learning frameworks such as Torch,
Tensorflow Lite have limited support on running a pre-
trained DNN on smartphones, and the API is not flexible
for training the deep reinforcement learning models in these
frameworks on mobile. Even though some frameworks such
as Deeplearning4j [26], can be run on Android devices
to train deep reinforcement learning models, the API is
not flexible enough to manage the replay buffer, which is
important for DRLS to achieve better performance. Second,
the smartphones have limited computational resources and
it is time consuming to train DNNs on smartphones.

To address this issue, the training procedure includes
multiple rounds of offline training. More specifically, in
each round, the DRLS algorithm is run to make scheduling
decisions and the sample data is collected from the mobile
devices. After 30 minutes, the sample data is offloaded to a
powerful desktop which is equipped with Intel i7-10700K,
NVIDIA GeForce RTX 3080 and 32GB memory. The DRLS
algorithm is fine-tuned with the latest sample data. Then,
the updated DRLS is deployed on the smartphone and a
new round of offline training is started. The implementation
of our framework is shown in Figure 6.

In the experiment, our algorithms are tested in two
different environments. The first one is in the open space,
where the smartphone is placed on the table. The other
one is inside the VR headsets, such as Google cardboard
where the smartphone is tightly wrapped by the cardboard.
Many mobile VR applications have been developed and
they may run DNNs in the background to provide better
user experience. For example, a DNN may be run in the
background to accelerate the VR scene rendering speed by
predicting the users’” head movement. Compared to open
space, it is more difficult for the smartphone to dissipate
heat and cool down in the confined space.

8
Method | MSE | ME
Android | 0.013 | 1.25
HBS 0.001 | 0.45

TABLE 2: The comparison between Android based approach
and HBS

6.2 Temperature Estimation in HBS

The HBS algorithm leverages the historical data to estimate
the temperature changes, and we evaluate the effectiveness
of our temperature prediction in this subsection. We com-
pare our method with the one used in Android SDK which
estimates the thermal headroom with a linear regression
model based on the recent temperature data. We first run
the HBS algorithm on the smartphone and collect the data
trace. Then, we implement the same Android SDK (API 30)
algorithm on a desktop and replay the data trace to predict
the temperature of the next time interval. The evaluation is
based on two commonly used metrics, Maximum Squared
Error (MSE) and Maximum Error (ME). MSE measures
the difference between the ground truth temperature and
the predicted temperature. It measures the average per-
formance of temperature estimQation on all the data and
can be expressed as W, where y; represents the
ground truth in the i** time interval and §; represents the
predicted temperature. Different from MSE, ME focuses on
the maximum difference between the ground truth and the
predicted temperature. ME is defined as max |y; — ;|, and
it is important in thermal-aware scheduling. This is because
the processors are forced to run at a low clock speed when
the temperature reaches the overheating threshold. Even
though most predictions are correct, a large error in the
estimation may still cause thermal throttling. As a result,
the ME should be as small as possible.

We compare the MSE and ME of both methods in Table
2 and plot the CDF of the prediction errors in these two
methods in Figure 7.

As shown in the figure and table, the temperature pre-
diction in HBS outperforms the linear regression algorithm
due to the following reasons. The linear regression is based
on the most recent temperature data, but the device temper-
ature is not growing linearly since the scheduling algorithm
keeps changing the processing speed and the processor
running the computation. When a new scheduling decision
is made, the device temperature may not keep increasing
and decreasing linearly. As a result, the Android based
approach underperforms.

6.3 Determining Threshold 7}, in HBS

In the HBS algorithm, the threshold 7}, is used to control
the temperature of the device. To set the threshold properly,
we use different thresholds 7}, to evaluate the performance
of the HBS. In the experiment, we test the HBS algorithm in
the open space environment.

Figure 8 shows the performance of HBS under different
thresholds T},. As shown in the figures, the performance of
the HBS algorithm is better when T}, becomes larger. This
is because HBS can improve the utility by processing more
frames on GPU and the device temperature can drop more
quickly as T}, increases. When T}, > 52°C), the performance
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Fig. 7: The CDF of the temperature prediction errors in HBS
and Android based approach.

of HBS only improves slightly as 7}, increases. This is

because the heat dissipation rate is almost the same when
T}, > 52°C and HBS makes similar scheduling decisions.
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Fig. 8: The performance of HBS under different thresholds
Th

Based on the experiment results, we set T}, to be 52 in the
experiment for the following reasons. First, the performance
of HBS with 7}, = 52°C can achieve high utility (only
1% lower than the maximum utility in the experiments).
Moreover, in the real world, the smartphone may run other
programs in the background. Setting a higher threshold will
leave HBS with less chance to adjust the device temperature
and increase the risk of overheating. Therefore, we set T}, to
be 52°C such that HBS can achieve high performance and
minimize the risk of overheating.

6.4 Comparisons of Different Algorithms

Since SqueezeNet and GoogleNet have different model
structure, their processing time is different. Based on their
processing time limitations, we set the maximum processing
speed for GoogleNet and SqueezeNet to be 10 fps and 15
fps, respectively. The running time of HBS and DRLS is
about 1ms, and they only run at the beginning of each
time interval which is about 1 second long. As a result, the
scheduling overhead is negligible.

To evaluate the performance of our algorithms, we com-
pare them with the following methods, All-GPU, All-NPU
and GPU-DVFS.

All-GPU: All frames are processed on GPU. There is
no scheduling algorithm used to control the temperature,
and the frames are processed at the highest speed. The All-
GPU method does not control the device temperature and
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Fig. 9: The GPU processing speed in relation to different
clock speeds.
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Fig. 10: The performance comparison of different ap-
proaches using GoogleNet.

the smartphone becomes overheated after some period of
time. Thus, we set the utility to be -5 as penalty when the
smartphone is overheated.

All-NPU: All the frames are processed on NPU. No
scheduling algorithm is used to control the temperature of
the device, and the frames are processed at the highest speed
on NPU.

GPU-DVFS: Dynamic voltage and frequency scaling
(DVES) [19], [27]-[29] is a widely used power manage-
ment technique to save energy and it also be used to
reduce the amount of heat generated to avoid overheating.
To apply DVFS techniques on mobile devices, root per-
mission is needed to change the GPU frequency setting.
On the Huawei Mate 10 Pro, the GPU clock speed can
be adjusted to eight different frequencies, ranging from
103MHz to 767MHz. The GPU frequency is controlled by
the gpu_scene_aware governor, which is used by the system
and will be changed over time. To manually set a certain
frequency and avoid the intervene from the system gover-
nor, a background process is created to overwrite a user-
define frequency into the max_freq and min_freq files in
the system folder. This background process will overwrite
the setting every 200ms. The running time of this task is
less than 2ms and is negligible compared to the compu-
tationally intensive tasks executed on the GPU. Figure 9
shows the processing time of running different DNN models
using different GPU clock speed. As shown in the figure,
the processing speed increases when the GPU frequency
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Fig. 11: Detailed performance comparisons under

increases. In the evaluation, the GPU-DVFS method utilizes
a beam search to identify the optimal GPU frequency and
processing speed combination to maximize utilization while
avoiding overheating.

In Figure 10, we compare our algorithms with All-GPU,
GPU-DVPS, and All-NPU using GoogleNet in different
environments. In the evaluation, the parameter « is set to
be 0.05. The All-GPU method has the worst performance
among all methods. The reason can be better explained with
Figures 11 and 12, which shows the temperature and nor-
malized utility of different methods. As shown in the figure,
the smartphone overheats only in the All-GPU method. Due
to the large penalty for overheating, the utility of All-GPU
is low. Compared to the open space environment, the utility
is lower when the smartphone is placed in the VR headset.
This is because the smartphone is wrapped by the card box
and it is more difficult to dissipate the heat. The smartphone
overheats more frequently and the processors are forced to
work at a low clock speed for longer time. As a result, the
utility is lower.

Compared to the All-GPU method, the GPU-DVFS tech-
nique has better performance. This can be explained by the
Figures 11 and 12. As shown in the figures, the temperature
of GPU-DVFS method remains stable and does not reach the
overheating threshold. Therefore, the GPU-DVFS method
does not have overheating penalty and it outperforms All-
GPU significantly.

The performance of All-NPU remains the same under
different environments. This is because running DNN on
NPU generates much less heat than GPU and the smart-

open space environment when running GoogleNet.

phone does not overheat. All-NPU keeps running the DNN
with the maximum processing speed on NPU. Compared to
Figure 11(c), the CPU temperature in Figure 12(c) is higher.
This is because it is more difficult to dissipate heat in the VR
headset.

The performance of GPU-DVFS and All-NPU is nearly
identical in an open space environment, but the perfor-
mance gap widens when the mobile device is placed within
VR headsets. This is because the energy consumption of
running DNNs on GPU is much larger than that of NPU.
In open space, the device can dissipate heat more efficiently
and GPU-DVES can achieve better performance by process-
ing more frames. However, when the device is placed within
a VR headset, the processing speed of GPU-DVFS has to be
reduced and the utilization becomes lower. In contrast, since
NPU generates much less heat than GPU, the performance
of All-NPU remains the same.

Compared to All-NPU, HBS and DRLS also consider
running DNNs on GPU in addition to NPU, and then their
performance is better. Moreover, DRLS outperforms HBS in
both environments due to the following reasons. The HBS
algorithm focuses on maximizeing utility for the current
time interval without considering the future impact of the
scheduling decision. In contrast, DRLS considers the future
impact of the scheduling decision. As shown in Figure
11(e) and Figure 12(e), DRLS does not try to achieve the
best performance for every time interval. Instead, it tries to
achieve better performance for all time intervals and thus its
average utility is higher.

Compared to HBS and DRLS, the CPU temperature of
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Fig. 12: Detailed performance comparisons under VR headsets environment when running GoogleNet.
different environments. In the evaluation, the parameter
{- Google Board [ Open Space] o is set to be 0.01 and the result is shown in Figure
30 13. Compared to GoogleNet, SqueezeNet is simpler and
can be run faster. Since the maximum processing speed is
2.5 increased to 15 fps, more frames need to be processed on
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Fig. 13: The performance comparison of different ap-
proaches using SqueezeNet.

GPU-DVFS is much higher and is close to the overheating
threshold T,. This is because HBS and DRLS avoid over-
heating by controlling the device temperature around T,
which is equal to 52° in the experiments and is smaller than
T,. Therefore, GPU-DVFS method is less robust and the risk
of overheating will increase significantly when the device
temperature is changed by other factors (e.g., execution of
other background programs or environment temperature
changes).

We also use SqueezeNet to evaluate the performance
of All-GPU, GPU-DVFS, All-NPU, HBS and DRLS under

GPU and the smartphone still gets overheated in All-GPU.
As a result, All-GPU has the worst performance among all
methods. As shown in Figure 14(c) and (d), the performance
of GPU-DVEFS is much better than that of All-GPU. This
is because the temperature of GPU-DVFS remains below
the overheating threshold, leading to enhanced utility by
avoiding overheating penalties.

All-NPU outperforms All-GPU, and its performance re-
mains the same under different environments. This can be
better explained by Figures 14(e) and (f). As shown in the
figures, the CPU temperature is stable and below the over-
heating threshold. Different from ALL-GPU, All-NPU has
the same utility in both environments since frames can be
processed at the highest speed and there is no overheating.
Since All-NPU does not leverage GPU to further improve
performance, it under-performs HBS and DRLS.

All-NPU also outperforms GPU-DVEFS and the perfor-
mance difference is larger when the device is placed within a
VR headset. This is because the energy consumption of GPU
is much higher than that of NPU. When the device is placed
within a VR headset, the GPU processing speed of GPU-
DVES has to be reduced to avoid overheating. However, the
All-NPU performance remains the same in this environment
since the NPU generates much less heat than GPU.

As shown in Figures 14(g)-(j), although the peak perfor-



— CPU Tomporaturo__—— Normalizod Utility ] — CPU Tomporaturo_—— Normalizod Utility ] [—— CPUTemperature  — Normalized Utilty [—— CPUTemperature  — Normalized tilty — CPU Tomporaturo_—— Normalized Utility ]
57.5 54 240 54 100 49 2.380
A '
M\ 2.005
757.0 saas|y o [\ s 5492 . 748.9 I” 2.375
£ 2 3 [ no| Zsa00 n [y, 1200 J g
8 56.5 = | "\ AN 2 i (. < [ 23708
H S Ssaanfl ) / \ 236 Suaes /I \jzoss S E
£56.0 0§ ¢ /\‘ \ A ! g ¢ A { | 20008 £ 2365 §
E T Esass ; 2347 £5486 ALY/ g F
g5 58 & Y g (NP [ | AN Vg 2075 g 2.360 £
& 5 E / £54.84 VA Vvyu & | H
£ z e \/ @ %48 \ sV 200 & b z
£ @ \ 22 # £
£55.0 0 5430 v & 2.355
: : 54.82 / 2.065 ) )
230
54950 770 790 8i0 830 8502 54950 770 790 8i0 830 8502 542360 30 830 860 350 300 54.89, 4060 487955770 760 8i0 830 850°°"

Time (s) Time (s)

(a) All-GPU in open space  (b) AlI-GPU in open space

(c) GPU-DVFS in open space(d) GPU-DVFS in VR head-

‘Time (s)

(e) All-NPU in open space
sets

—— CPU Temperature _—— Normalized Utility] [==_cPU Temperature — Normalized Utility ]

[==_cPU Temperature — Normalized Utility]

—— CPU Temperature _—— Normalized Utility] —— CPU Temperature_—— Normalized Utility]

50.9

2.375 52. 3.2 52.

w
4
3

&

Normalized Utility
©
>

=
°
8

Normalized Utility

2.36

N
3

mperature (Celcius)

E!

Temperature (Celcius)

o

Temperature (Celcius)
o

N
w
3
3

©
o

3355

3.2 49

2.950

51.25 2.870

Py
o

©
>
Normalized Utility

[\

PO\ N /N

PO
© ©
2 o
3

2.945 2.86
VI

51.15
49.55 /

5110 /
49.50 /

2.940 2.866

Temperature (Celcius)
Normalized Utility
Temperature (Celcius)

3
Normalized Utility

<
>

49.45 5105

50 770 790

8io 830 8
Time (s)

(f) AlI-NPU in VR headsets

790 810
Time (s)

830 850 830 840

(g) HBS in open space

Time (s)

(h) HBS in VR headsets

&
=

860 880 O 404055790 790 sio 830 850" 51.09, g:864

Time (s)

50 770 790 810 830 85
Time (s)

(i) DRLS in open space (j) DRLS in VR headsets

Fig. 14: Detailed performance comparisons under different environments when running SqueezeNet.

mance of HBS is higher than DRLS in some time intervals,
HBS under-performs DRLS considering all time intervals.
This is because HBS makes scheduling decisions to maxi-
mize utility for the current time interval, without taking into
account its future impacts. In contrast, DRLS considers the
future impact of a scheduling decision and tends to make
decisions that are beneficial across all time intervals. As
shown in Figures 14(i) and (j), DRLS maximizes utility by
controlling the phone temperature at various levels based
on the environmental conditions.

7 RELATED WORK

Recently, there has been considerable research progress on
object recognition using DNN models [30], [31]. However,
these research results rely on machines with powerful GPU,
and most of them cannot be applied to mobile devices
with limited computation capability. Offloading techniques
have been proposed to address this problem, where com-
putational intensive tasks are offloaded to the cloud or
edge server. MAUI [32] and many other research [33], [34]
provide general offloading techniques to optimize energy
or reduce the computation time for mobile applications. To
further reduce the amount of data to be offloaded, some
local processing techniques have been proposed to filter out
less important or redundant data [5], [35]. Other research
focuses on selecting different DNN models to run locally to
satisfy the time constraints based on the network conditions
[36]-[39].

Researchers also address the resource limitations of
mobile devices through model compression and hardware
support. For example, in [40], [41], convolutional layers
and fully-connected layers are compressed to reduce the
processing time of DNN models. In [42], the authors com-
press DNN models by optimizing the neural network con-
figuration. Although these model compression techniques
can be applied to improve efficiency, the accuracy also
drops. As another approach, researchers leverage hardware
techniques or model partition techniques to improve the

execution efficiency of running DNN models on mobile
devices. For example, in [43]-[45], the authors developed
various techniques to leverage the mobile GPU to improve
performance. In [17], Tan et al. have developed model parti-
tioning techniques to schedule some neural network layers
on CPU while executing other layers on NPU to achieve
better tradeoffs between processing time and accuracy. This
model partition technique can be applied to our problem,
but there are many challenges to address. Since the problem
here is about avoiding overheating and improving accuracy,
the problem formation will be different. Moreover, to apply
model partition, we also need to consider the extra data
transmission time between NPU memory and the main
memory.

There exists a large amount of research on thermal
management for multi-core processors based on Dynamic
Voltage and Frequency Scaling (DVFS) and task migration
techniques [19], [27]-[29], [46]. Researchers have studied
this problem on heterogeneous processors [47]-[51], and
have also studied how to apply these techniques to mobile
devices to achieve better tradeoffs between performance
and energy under thermal constraints [52], [53]. In recent
years, deep reinforcement learning (deep RL) has been
applied to many decision-making tasks in various fields and
some researchers have applied it to thermal management
on mobile devices. For example, Kim et al. [19] proposed a
deep RL based algorithm to maximize the QoE for mobile
devices under different environments. However, none of
them considers the special characteristics of NPU, which is
the focus of this paper.

8 CONCLUSIONS

In this paper, we proposed thermal-aware scheduling algo-
rithms to improve the performance of running DNNs on
mobile devices. By measuring the performance of running
DNNs on GPU and NPU, we identified the performance
tradeoffs between GPU-based approach and NPU-based
approach. The GPU-based approach has higher accuracy,
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but also higher energy consumption. Running DNNs on
GPU continuously will cause the mobile device to overheat
and result in poor performance. On the other hand, NPU-
based approach is faster and more energy efficient, but
with lower accuracy. We proposed to combine these two
approaches by studying the thermal-aware scheduling prob-
lem, where the goal is to achieve a better tradeoff between
processing speed and accuracy for DNN based applications
while ensuring that the mobile device does not overheat.
The major challenge is to determine when to run DNNs on
GPU to achieve better performance and when to run DNNs
on NPU to avoid overheating. We first proposed a Heuristic-
Based Scheduling (HBS) algorithm to solve the problem.
HBS predicts the temperature based on historical data and
makes scheduling decisions based on the current state of
the mobile device. Since HBS ignores the future impact of
a scheduling decision, we proposed Deep Reinforcement
Learning Scheduling (DRLS) algorithm to further improve
the performance. We have implemented our algorithms on
smartphones and evaluation results show that the proposed
algorithms can significantly improve the performance of
running DNNs on mobile devices.
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