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ABSTRACT Artificial Intelligence (AI) has been widely adopted in numerous fields and enabled various
smart systems because of its strong ability to perform tasks, including prediction, event detection, and status
estimation, among others. As one of the typical smart systems empowered by Al and Internet of Things
(IoT) technologies, the smart transportation system has made dramatic progress for traditional transportation
in numerous aspects, including autonomous driving, smart traffic lights, navigation, and traffic forecasting,
among others. Deep learning is an essential component to enable such smart systems. Typically, specific deep
learning models, e.g., Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), can
be trained on collected transportation data for a particular task. However, traditional deep learning techniques
rely on data sufficiency to build an effective model. Additionally, each trained model can only work on one
single task. This has limited the efficacy of deep learning techniques in numerous application scenarios.
To this end, multi-task learning (MTL) has been studied to train a single model that can work for multiple
tasks. This technique effectively allows the learning model to expand to specific tasks with only a limited
amount of data affiliated. In the meantime, MTL significantly reduces the training time of each task. The
success of MTL requires that there are potential relationships among different tasks. Many tasks in the
smart transportation system are related. For instance, traffic speed and vehicle volume estimations for each
road are highly correlated. Based on this, research on applying MTL in smart transportation systems has
been studied recently. This paper reviews the recent efforts to use MTL in smart transportation systems
and conducts an extensive survey to provide insights. In particular, we categorize the MTL applications in
smart transportation systems into traffic forecasting, traffic sign recognition, vehicle recognition, travel time
estimation, road safety estimation, taxi demand prediction, and autonomous driving. Ultimately, we discuss
challenges and future research directions in applying MTL in smart transportation systems.

INDEX TERMS Multi-task learning (MTL), smart transportation, deep learning.

I. INTRODUCTION

Smart transportation has been widely studied nowadays,
which plays a vital role in dealing with traditional trans-
portation problems by integrating artificial intelligence (AI)
technology with transportation systems [1], [2], [3], [4].
In particular, smart transportation has dramatically improved
traffic efficiency, security, reliability, and others. There
are numerous characteristics of the smart transportation
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system [5]. First, there are massive amounts of collected
data as the system integrates many technologies that could
contribute to generating a large volume of data. Second, such
data could be heterogeneous since the smart transportation
system uses a variety of ways to collect data (e.g., sensing data
collected by sensors deployed in vehicles, text data captured
from social media, and geo-data captured from maps). Third,
the data is generated rapidly since the smart transportation
system needs to provide real-time decisions. For instance,
the data will be collected continuously to carry out traffic
speed prediction. Fourth, the data captured by the smart
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transportation system needs to be reliable and trustworthy
to support applications (e.g., autonomous driving). In those
applications, the quality of the data is a crucial factor.
Furthermore, smart transportation systems introduce many
applications to improve services, including intelligent traffic
management, traveler management, autonomous driving,
advanced public and rural transportation, commercial vehicle
operation and management, and others [4], [6], [7], [8], [9].
In the meantime, a vehicular ad hoc network (VANET) is
developed for vehicle communications through a wireless
communication network. Such a network has been introduced
in smart transportation systems to assist the vehicle in taking
proper action [10].

Deep learning is one of the main techniques to enable
smart transportation. The deep learning model can be trained
via using the collected data in the transportation system
to perform specific tasks such as traffic forecasting, traffic
light management, traffic sign recognition, etc. [11], [12],
[13]. Security and privacy are also considered important
factors in the current smart transportation systems [4],
[14]. Deep learning is adopted to help enhance the system
resilience that deals with malicious attacks and preserves
the users’ privacy [15]. Specifically, varied deep learning
models are adopted in the smart transportation system,
including Deep Neural Networks (DNN), Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN),
Deep Reinforcement Learning (DRL), and Graph Neural
Networks, among others [16], [17], [18], [19], which have
been applied to various IoT systems. However, traditional
deep learning relies highly on the amount of data to build
effective learning models. The shortage of data may cause the
model to overfit and lead to poor prediction accuracy. On the
other hand, the typical deep learning model is only trained
for a single task, meaning that the users need to train a new
model from scratch for a particular new task, as shown in
Fig. 1. This training process can be highly data-driven and
time-consuming. Such concerns are the main limitations of
applying traditional deep learning to the smart transportation
system.

Input Data

Input Data Input Data

FIGURE 1. Training tasks in separate models.

To address the aforementioned issues, Multi-Task Learning
(MTL) has been studied, which tends to train a single model
to make predictions for different tasks. In MTL, the model
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can be enhanced by concurrently training related tasks. It can
improve the accuracy of the output for the original task,
discriminate the related or unrelated features, and help tasks
learn from each other, as shown in Fig. 2 [20]. It is worth
noting that the MTL shows its effectiveness in numerous
applications such as natural language processing, speech
recognition, computer vision, and healthcare. In addition, the
MTL can reduce overfitting, which is when a model works
better for training data than it does with the new data [20].

Input Data

" Task Shared

FIGURE 2. Training related features concurrently in the shared model by
MTL and sharing these features among tasks.

The reason for the MTL being successful is that certain
common patterns exist between specific related tasks. For
instance, traffic speed estimation and traffic volume estima-
tion could be highly correlated tasks. Thus, the model trained
for traffic speed estimation also learns the patterns helpful in
estimating the traffic volume. Using MTL, the model trained
on one task can be easily applied to another task using only a
few data samples. Such a method allows the model to perform
the task when a limited amount of data is affiliated. By doing
this, we can significantly reduce the training time that the
traditional deep learning model requires for each new task.
Many IoT systems, such as the smart transportation system,
generally require timely decisions.

When it comes to transportation applications, researchers
realize that many tasks in the smart transportation system
are correlated and fit for the scenario of MTL. A number of
research efforts have been studied to apply MTL in smart
transportation systems, expanding the learning tasks and
enhancing the efficiency of the training process. In particular,
compared with regular deep learning models, MTL has
further increased the prediction accuracy, training efficiency,
model reliability, and scalability in the smart transportation
system. Many tasks in the smart transportation system are
related, and training them together in one model makes all
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tasks share important features without missing any important
information. There are challenges concerning accuracy if
many variables reduce the quality of prediction. MTL has
been used in smart transportation systems in ways like traffic
and taxi demand prediction and travel time estimation with
various objects they have. Also, it is used to distinguish
between the multiple types of traffic signs and vehicles.
In addition, MTL is used to detect objects to enhance road
safety and autonomous driving. MTL has shown its strong
capability and is an important and promising tool to increase
smart transportation performance and accuracy.

This paper summarizes the existing research efforts on
applying MTL in smart transportation systems and conducts
a systematic survey. We categorize the applications of MTL
in smart transportation systems into the following aspects:
traffic forecasting, traffic sign detection, vehicle recognition,
travel time estimation, road safety, autonomous driving, and
transportation demand prediction. Through the aforemen-
tioned aspects, we systematically review and discuss the
existing efforts in using MTL to improve prediction and
performance via sharing the features associated with learning
tasks in smart transportation systems. We also highlight the
benefits of MTL in terms of training efficiency, scalability,
and model robustness and discuss its limitations concerning
performance, security, and privacy. Finally, we outline future
research directions that require further study concerning task
similarity determination, feature selection, data distribution,
and robust and privacy-preserving learning.

The remaining paper is organized as follows. In Section II,
we give the overview of MTL. In Section III, we conduct a
comprehensive review of the existing research efforts on the
use of MTL in the smart transportation system from different
aspects. In Section IV, we discuss the challenges and outline
future research directions of MTL in the smart transportation
system. Finally, we conclude the paper in Section V.

Il. OVERVIEW OF MULTI-TASK LEARNING
MTL is useful for training multiple tasks with related features
and extracting all the information among tasks to enhance
the models’ knowledge. There are two methods used to
train the associated features in MTL. One of them is the
hard parameter that shares the hidden layers in the neural
network among tasks as it is shown in Fig. 2. The features or
representations will be trained in the shared layers, and they
will be shared between the tasks. This is considered the most
common method in MTL. The other one is the soft parameter
in which each task has its model, as it is shown in Fig. 3.
The models in soft parameters are connected and will share
the features. The hard shared parameter is better than the soft
shared parameter because it can reduce overfitting. Also, hard
shared parameters reduce the training time and storage cost.
However, the tasks have to be related to each other to
increase the performance quality. Using related tasks as
auxiliary tasks to the main task will improve performance.
Still, sometimes the associated tasks are not labeled, so the
adversarial loss will be used to solve this issue. In addition,
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FIGURE 3. Soft parameter sharing for MTL.

auxiliary tasks can be used to concentrate on training specific
parts, which is called focus attention, like in images, for
example. Also, the loss function, which computes the errors
between the algorithm output and the target value, is used to
evaluate the performance.

MTL is typically set up as supervised learning. There are
certain vital factors for MTL performance. Three typical
ones are feature similarity, parameter suitability, and data
quality [21]. First, depending on the similarity of the features
across different tasks, the model will take advantage of
that and learn according to the similarity of the tasks’
features. Second, focusing on the parameters of each task,
the parameter has to be suitable for each task to make the
learning more efficient. Third, data quality is important so
that the informative data could help the target tasks to learn
more insight knowledge from other tasks.

In addition to supervised learning, unsupervised learning
methods are used to improve MTL performance. For instance,
clustering and dimensionality reduction are two unsupervised
learning techniques that are widely used to improve data
quality. Clustering is used to group similar data instances
from multiple datasets without knowing what they represent.
For instance, in some existing studies, clustering helps
MTL to organize related tasks and makes these tasks more
efficient for MTL by facilitating the sharing of knowledge
between them [22]. Dimensionality reduction can be used
to simplify the data to enhance the quality and efficiency
of large amounts of data. It keeps the crucial features of
the original data [23]. Additionally, autoencoder has become
one viable unsupervised learning method to enhance the
data representations of the model, improving supervised
learning performance by making the data more meaningful
and facilitating task training [24]. In addition to supervised
and unsupervised learning, online learning is adopted in some
MTL models to help train sequential data and continually
update the learning model based on newly available data [25].

DNN trains the inputs with different weights and extracts
the outputs (e.g., input the road path images to predict the
travel time). DNN capacity is considered more than the
traditional neural network [3], [19], [26]. Also, RNN are
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used more for sequential data like the historical data from
the Global Positioning System (GPS). Moreover, CNN is
used when there are spatial dependencies, like in GPS trace.
Graph Convolutional Networks (GCN) is the semi-supervised
network representing the CNN variants on a graph [27].

Ill. FOCUSED TOPIC AREAS

In smart transportation systems, many related features and
representations must be trained together by MTL to achieve
accurate predictions and better performance because crucial
information will not be missed. In this section, we illustrate
the effectiveness of MTL in increasing the accuracy and
performance of various applications in smart transportation
systems.

A. MTL FOR TRAFFIC FORECASTING

Determining traffic forecasting precisely is essential in deep
learning and is considered the most crucial mission for GPS.
It is challenging to increase its accuracy because many traffic
variables, such as flow, speed, travel time, etc., need to be
determined together. Training those variables individually
made the performance quality low because these variables are
related. Combining them with MTL can increase the accuracy
rate because the models will learn the whole knowledge about
the traffic.

Historical Data
Collected by Traffic
Sensor in the Road

Data Collected from
GPS

Feature Extraction
GRU Layers GRU

Fully Connected
Layers

GRU GRU
Task Specific

Dropout Layer Layers Dropout Layer
: Fully Fully :
i | Connected Connected
Layers Layers

Task 1: Flow Task 2: Traffic

Prediction Speed Prediction

FIGURE 4. MTL based on GRU to predict the traffic flow and speed
concurrently.
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1) FLOW AND SPEED

The flow and speed are considered necessary tasks for traffic
forecasting. Predicting them separately makes traffic fore-
casting inaccurate because there will be limited knowledge
about how fast the cars move according to the traffic. The
speed is related to predicting how fast the vehicles move
based on the traffic condition, while the flow is associated
with predicting the number of cars in the traffic. Buroni et al.
confirmed that the MTL could accurately enhance the speed
and flow prediction at the road network [28]. They separated
the work by using GCN, which represents the road networks,
to obtain the spatial features and GRU to obtain the temporal
characteristics for the traffic, the flow, and the speed as level
one. On the other level, a Fully Neural Network (FNN)
and temporal attention block will determine the hidden
representations for the related tasks in the first level. Also,
Zhang et al. showed the progress of using MTL with GRU to
predict the speed and the traffic more than what the Single-
Task Learning (STL) could [29]. They noted that STL used
the flow and traffic as single tasks, while MTL used both
as related tasks, taking advantage of all the information for
the tasks. In this way, the result of the speed and traffic
forecasting can be improved. Fig. 4 illustrates the use of
MTL based on a Gated Recurrent Unit (GRU) to predict
both the flow and speed tasks concurrently to enhance traffic
forecasting. GRU is considered type of RNN architecture that
is used in this method to extract the sequential data that are
collected from traffic sensors and GPS. The fully connected
layer is used to transfer the features that are extracted to
grouped sequential values. There are GRUs for each task as
task-specific layer. The dropout layer is used in this method to
drop random neurons on the layers to prevent the overfitting
of the sequential data before predicting the flow and speed
based on a fully connected layer.

Determining the traffic flow precisely helps to enhance
traffic forecasting prediction. Using time series information,
which is a sequence of data collected over a specific
time, for traffic flow independently can lead to missing
crucial information, while using them together will exploit
every vital information, enhancing the model prediction. For
example, Sun used the road links to determine the time
series information for the traffic flow concurrently based
on both bagging, which is an ensemble learning algorithm
used to make better accuracy and prediction by combining
many models prediction, and MTL [30]. The experimental
results confirmed that MTL could lead to a better effect
than STL because the traffic flow information (e.g., the
interaction among the drivers and the vehicles based on
MTL) will be trained together, and that helps to share similar
features among them, which leads to include all important
information. Jin et al. showed the traffic flow in the road
junction has a relationship with the traffic at the adjacent
moment, so using historical data of the time series based on
MTL, sigmoid function, and Backpropagation (BP) network,
which combines the traffic flow of the sequence of contiguous
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time interval, could enhance the prediction of the traffic
flow [31]. Likewise, Huang et al. explained that the road
networks are related to each other. They adopted the Deep
Belief Network (DBN) to classify the traffic flow non-prior
knowledge features and used MTL to train the time series of
traffic flow information of road loops detectors and stations
concurrently, thus improving the accuracy of the traffic flow
detection [22]. The inductive loop detectors in this study were
used to detect the vehicles at intersections or toll collection.

2) ROAD TRAJECTORIES TRAFFIC DETECTION

Predicting the whole road traffic trajectories efficiently helps
to increase traffic forecasting accuracy. MTL based on Graph
Neural Network (GNN) has its effectiveness in predicting
both the traffic trajectories, which is the path of the vehicles,
and the interactive behaviors like changing the lane and
speed based on time series and Long Short-Term Memory
(LSTM) [32]. In addition, regarding Ren et al., MTL could
be used to enhance the detection of the road trajectory by
training concurrently the moving ratio, which is the driver
move or speed, and the road segments based on the spatial-
temporal dependencies [33]. They used an encoder for the
sequential data and a decoder to determine the moving ratio
and the road segments in their proposed method.

3) TRAFFIC SITUATION

MTL also shows its effectiveness with traffic forecasting
by using a clustering algorithm that considers every traffic
situation and reason, such as rush hours, accidents, or con-
struction, as Deng et al. explained [34]. They linked the
MTL in their proposed method to traffic situations instead
of linking it to sensors, which improves the efficient traffic
forecasting prediction. Furthermore, this study illustrates that
training the traffic situation and reason tasks independently
could affect traffic prediction accuracy because the training
samples are limited. These situations have similar features,
and using MTL with lasso regularization to select similar
features for the tasks could improve the accuracy by
preventing overfitting.

4) TRAFFIC TIME

Traffic time in different cities has a relationship because
the work, school days, or the holidays, for example, usually
are at the same time in different cities. Sharing the trained
knowledge among other cities using MTL and combining
both temporal and spatial is helpful for traffic forecasting
based on Zhang et al. [35]. They used the cities as multiple
tasks because many factors in different cities could make
the traffic related to each other. The traffic peaks according
to work days and holidays in different cities are similar,
so sharing this knowledge between cities using the MTL
is capable of enhancing accuracy. Also, one city’s temporal
correlations and spatial dependencies could affect the traffic
flow in different cities. 3D convolution kernels are used in
this method to find the spatial and temporal dependencies.
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Many attributes in the road network are related to each
other. Using them individually reduced the accuracy of the
prediction of the traffic. Using MTL can lead to tremendous
results in traffic forecasting prediction by considering road
attributes (speed, traffic flow, travel time, traffic time,
traffic situation, traffic trajectory, etc.). MTL has been used
with traffic forecasting, showing its ability to increase the
reliability of predicting traffic and its attributes and make it
more efficient for GPS users.

B. MTL FOR TRAFFIC SIGN

Traffic signs have various purposes (e.g., speed limits,
mandatory signs) and many attributes (e.g., colors, shapes).
Distinguishing between these traffic signs for autonomous
vehicles is considered a challenging problem. Training
the traffic sign tasks individually can make progress in
differentiating between the traffic signs for autonomous cars.
However, it still takes a long time and needs to be more
accurate. Training all these tasks together using MTL leads
to better prediction of the different kinds of signs because
the models can have better knowledge of traffic signs, further
increasing the ability to differentiate between traffic signs
precisely. Also, optimizing traffic light detection based on
MTL is crucial for enhancing the control of autonomous
vehicles with traffic signals.

g o

S

T > i

5 5

L2 Bounding Box for
CNN <«—— Traffic Sign

Symbol Detection

Fully Fully
Connected Connected
Layers Layers
Sign Text
Classification Recognition

FIGURE 5. Signs classification and texts recognition of traffic signs based
on MTL.

1) TRAFFIC SIGNS DETECTION

Traffic signs have different purposes, such as prohibition,
speed limits, and mandatory signs with various attributes
such as colors and shapes. Lu et al. improved the detection
of different signs by dividing the traffic signs into six
subsets in a tree structure according to their type and the
similarity among the signs [36]. Then, they used MTL to learn
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TABLE 1. MTL with traffic forecasting prediction.

Year | Authors Contribution
2021| BURONI et al. [28] if:;dlctlng traffic flow and speed concurrently based on MTL to improve traffic forecast-
2020| ZHANG et al. [29] Using MTL with GRU to predict the speed and traffic increase the traffic forecasting
performance
. Predicting traffic trajectories and road interactive behaviors based on MTL and GNN
2021 Lietal [32] improve the traffic prediction.
2017| Deng et al. [34] eCfcf)gil;ré;g traffic situations and reasons based on MTL to improve the traffic prediction
Considering the relationships between traffic time of the cities based on MTL improves
2021| Zhang et al. [35] traffic forecasting prediction.
2009| Sun [30] Combining the time series of the road traffic flow information based on MTL to enhance
traffic forecasting.
. Combining the relationship of traffic flow of a road with an adjacent road based on MTL
2008| Jinetal. [31] to enhance the traffic forecasting prediction.
2014| Huang [22] Predicting concurrently the traffic flow time series of road loop detectors and station data
& based on MTL and DBN to increase the traffic forecasting accuracy.

these tasks concurrently. Their proposed method confirmed
that MTL based on altering direction method of multipliers
(ADMM), which is used for complex features optimization,
could improve the performance of traffic signs prediction.
Using MTL can also assist in reducing the processing time
for autonomous cars to detect traffic signs and surrounding
vehicles, and recognize lane segmentation, concurrently as
Bui et al. showed [37]. Their proposed method extracted the
features of traffic signs, lane segmentation, and surrounding
cars tasks through a single encoder. Also, they used traffic
signs and object detection in one decoder and lane line seg-
mentation in another decoder based on MTL, increasing the
detection efficiency performance for these tasks. As shown in
Fig. 5, MTL can be used for concurrently sign classification
and text recognition of traffic signs. A bounding box detects
extracted traffic sign symbol features in the images based
on a Fully Connected Neural Network (FCNN). The fully
connected layer for each task will be used to transfer the
extracted features into grouped representations to recognize
the text and classify the traffic signs.

Moreover, traffic signs have different types of signs such as
symbols and text data (the letter in the traffic sign), and both
of them need to be detected accurately to increase the traffic
sign classification. Using them together improves traffic sign
detection based on Luo et al. study [38]. Luo et al. studied
that traffic signs detection performance could be improved
by using Maximally Stable Extremal Regions (MSERs) to
extract traffic sign regions of interest (ROI) and MTL based
on CNN to detect the traffic sign texts and symbols images
and the street views. In addition, Qian et al. explained that
MTL effectiveness is not only in the traffic sign detection
but also in detecting the text in the traffic sign [39]. Their
proposed method used RGB images (red, green, and blue)
with input images and connected component analysis (CAA)
to group the related pixels. Additionally, they employed MTL
based on CNN and Rectified Linear Units (ReLU) to improve
the accuracy of features and image detection for the traffic
sign and the text.
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2) TRAFFIC LIGHT DETECTION

The traffic light detection for autonomous vehicles was
improved by using MTL based on encoder and decoder [40].
The study found that MTL based on the Conditional Imitation
Learning (CIL) framework could lead to the improved
efficiency of traffic light detection. It trains and learns
together road scenes (based on depth estimation and semantic
segmentation) and traffic lights (yellow, green, red), as sub-
tasks with driving control, as a primary task, based on RGB
camera images. The driving control is adopted in this method
to predict the steering, throttle, and brake of the autonomous
car.

The various features of traffic signs can complicate the
detection of these signs. Before, there were many issues of
detecting the signs by autonomous vehicles because of the
limitations of the knowledge. On the other hand, MTL is
capable of sharing the features of various traffic signs with
each other, improving the detection percentage performance.
Taking into account different attributes of the traffic sign
(prohibition, speed limit, mandatory sign, traffic light, etc.),
and additional traffic sign features (e.g., color, shape) based
on MTL could increase the knowledge among tasks. In this
way, the traffic signs prediction performance can be improved
while the low processing time of the traffic signs detection
can be maintained.

C. MTL FOR VEHICLE RECOGNITION

The vehicles have different features, and they share similar
features (color, shape, model, etc.). Training these tasks
individually could affect the accuracy of vehicle recognition
because of the limitations of the model. In contrast, training
them together by MTL can improve the model knowledge
and lead to improved recognition detection accuracy. Fig. 6
illustrates a typical way to use MTL to predict concurrently
the vehicle type, color, and license plate. The vehicle image
features are extracted by using CNN, and fully connected
layers are used to transfer the vehicle features into grouped
pixels. Each task has a dedicated task-specific layer based on
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TABLE 2. MTL with the traffic sign detection.

Year | Authors Contribution

2022 | Buietal. [37]

Predicting the traffic signs, lane segmentation, and surrounding cars concurrently based
on MTL to decrease the detection processing time.

2017 | Luetal. [37]

Dividing the traffic signs into different subsets based on their type and training them by
MTL to enhance the traffic sign detection.

2018 | Luo et al. [38]

Predicting the text and symbol traffic sign features based on MTL to improve the traffic
sign detection accuracy.

2020| Qian ef al. [39]

Training both the traffic sign and the text in the traffic sign based on MTL to enhance the
detection accuracy of the sign.

2021 | Ishihara et al. [40]

prediction.

Training road scene data (based on depth estimation, semantic segmentation), traffic light
data (yellow, green, red) and driving control concurrently to improve the traffic light

fully connected layers architecture to predict the output of
the type of vehicle, the color of the vehicle, and the license
plate number. For the license plate number task, Single Shot
MultiBox Detector (SSD) is used to detect the license plate
by using the bounding box. Connected Component Analysis
(CCA) is leveraged to group the pixels of the license plate
characters.

Input: Car Image

i

Fully
Connected
Layers

Object
Detection
' | by SSD
Connected l
Layers | ;

CCA for
Character
Segmentation

" Shared Layers

=
g2 Fully Fuilly
10 7 | Connected Connected
P8 Layers Layers
R i 7777777
Task1: Task 2: . .
Car Type Color -

FIGURE 6. Predicting vehicle’s color, type, and license plate together to
increase the accuracy for vehicle recognition based on MTL.

1) SIMILAR VEHICLES DETECTION

Different types of vehicles have similar shapes, making it
difficult to recognize their type and model. The use of CNN
based on MTL and a large number of car images as input to
classify different features and train-related or similar types
of vehicles make it efficient to predict both the kind and
the year of the cars concurrently. It can achieve a better
result than using STL as Avianto et al. explored [41]. This
study used the VGG architecture algorithm to extract the
vehicle image features. In addition, Sun et al. used MTL
based on CNN to solve the similar car appearance by train
together the brand and color [42]. Softmax was used in this
method to classify the pixel images into different classes,
representing the brand and the color of the vehicles. Their
results showed training the vehicle’s characteristics jointly
increases the efficiency of detecting the car. Also, Huo et al.
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confirmed that using various views of the vehicles, such as
the front, back, and side, with the lightning condition of the
cars perspective as semantic global attributes using MTL to
determine the type of vehicles show an incredible result in
the detection performance [43]. Semantic global attributes
are known and shared between different classes within
the neural network. Region-based Convolutional Neural
Network (RCNN) was used in this method to determine the
vehicle classes. In addition, Chen et al. showed that vehicle
recognition could be more accurate when MTL is used to
concurrently classify in detail the type of vehicles as the main
task with detecting the vehicle from different angles by 3D
bounding box as auxiliary tasks [44].

With the massive amount of data and the similarity of
vehicles, searching for a specific kind of vehicle is more
complicated. Deep hashing based on DNN, which shows its
efficiency for the search for similar images [45], employed
ReLU as an activation function to enhance the learning pro-
cess. The method also utilized GoogLeNet to improve image
classification. It implemented MTL to concurrently learn
the vehicle’s ID, color, and model, effectively addressing
the issue of similarity search for images as Liang et al.
illustrated [46].

Moreover, using the heatmap and instance segmentation
based on MTL to train the attributes of the vehicle (e.g.,
model, color, orientation) concurrently or pose with different
backgrounds to concentrate on the related information shows
its effectiveness in recognizing and detecting the differences
between the similar cars in different angles [47]. Also,
Rajamanoharan et al. illustrated that training the vehicle
identification (vehicle ID) alone is not sufficient to detect
the vehicles properly because many cars have the same
shape [48]. They proposed an efficient method that utilizes
MTL based on CNN and FNN to address the issue. Their
approach concurrently trains vehicle ID, multi-scale that
re-scaled the vehicle ID image to improve the accuracy,
and gray-scale image, which concentrates on the vehicle
information and orientation. To classify the vehicle ID and
orientation, their proposed method employs Softmax.

2) VEHICLE LOGO AND LICENSE PLATES DETECTION
The vehicle logo and license plate detection have been
detected powerfully after using MTL. For example, Xia et al.
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showed that employing Multi-Layer Perceptrons (MLP) for
classifying logos of different vehicles and predicting logo
attributes could concurrently be based on MTL enhances the
efficiency and performance of vehicle logo detection [49].
The MTL approach is used to predict segmented vehicle logos
and logo attributes, such as central symmetry, X-axis, and
Y-axis Symmetry, which determine whether the vehicle logo,
based on its brand, possesses the presented attributes. In addi-
tion, MTL contributes to enhancing the detection accuracy of
vehicle license plates based on Goncalves et al.’s study [50].
Their study shows that by performing segmentation to focus
on the license plate characters and recognition to detect the
characters of the license plates concurrently based on MTL,
the performance for detecting low-resolution license plate
images can be achieved.

3) AMBIGUOUS VEHICLE APPEARANCE DETECTION

In prior works, independently detected vehicle ROIs have
been shown to impact vehicle prediction accuracy, especially
if the vehicle’s appearance is unclear. Detecting vehicles’
ROIs concurrently based on MTL could enhance vehicle
detection even if the vehicle’s appearance is ambiguous [51].
They used many tasks for the training, such as subcategory,
which trains the model in different vehicle views, region
overlap, which enhances the measurement of the vehicle
detection, bounding-box regression, and category of each
training Rol of vehicle attributes based on MTL.

Furthermore, detecting instance segmentation of the
vehicle is considered a challenging problem. Training
concurrently both vehicle semantic segmentation (which
is used to help identify each object around the vehicle’s
image), and semantic boundary detection (which is used to
distinguish between the vehicles at various distances based on
MTL) could improve the performance of the vehicle instance
segmentation detection [52].

Nowadays, the detection of the vehicle is burdensome
because of the similarities of the vehicle’s shape, type, colors,
logo, etc., and ambiguous vehicle appearance. Sharing the
features of the vehicles between the tasks and training them
concurrently based on MTL can enhance the knowledge of
the vehicle’s type and help the models distinguish between
the vehicle’s types accurately.

D. MTL FOR TRAVEL TIME ESTIMATION

Travel time estimation is an important factor for the GPS to
increase the efficiency of estimation arrival time. It has some
challenges because many attributes must be included, such
as changing the traffic conditions or the driver’s preferences,
departure time, arrival time, transportation modes, and days.
Considering these attributes based on MTL can enhance the
detection of estimated arrival time.

1) ROAD HISTORICAL INFORMATION
The previous methods focus more on using road dis-
tance information without considering some historical road
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attributes. For example, Li et al. proposed a technique that
enhances the prediction of real-time travel time by taking all
road information history, including the distance with traffic
lights and turns as auxiliary tasks based on MTL [53]. The
road information in their study includes the spatiotemporal
dependencies and prior knowledge of the road network (e.g.,
the source, destination, departure, travel time, and path). The
spatial knowledge is represented as a graph that illustrates the
regions and the temporal graph that represents the times and
days.

2) TRANSPORTATION MODES

The travel estimation time is different from one transportation
mode to another. Using the travel time of transportation
modes (i.e., buses, riding, bike, or walking) separately could
reduce the travel estimation time for each mode to the
users’ accuracy on the GPS. Nonetheless, incorporating
these transportation modes’ tasks together based on MTL
and the travel time could increase the knowledge of the
transportation’s travel time. That can further improve the
travel estimation time on the GPS devices, according to
the transportation modes used by users based on Xu et al.
paper [54]. They concurrently combined the travel time with
transportation modes recommendation, leveraging historical
road segment paths with spatial-temporal dependencies
information by considering the week, holidays, and weekend
days based on MTL.

3) DRIVERS BEHAVIOR

The travel estimation time can be affected by the driver’s
behaviors like speeding, sudden braking, and lane change.
These behaviors need to be determined to make the
travel time prediction more accurate and improve the GPS
navigation prediction. For example, Gao et al. illustrated a
method that improves the travel time estimation prediction
based on the driver behavior and links road data collected by
GPS, road network, and sensors that measure the vehicle’s
motion as inputs. MTL based on LSTM is used in their
method to predict jointly the travelers’ speed behaviors and
the travel time to enhance the travel estimation time [55].

4) SPATIO-TEMPORAL DEPENDENCIES WITH
CONTEXTUAL-INFORMATION

The travel estimate time is also considered a challenge
because of many elements involved, such as spatial and
temporal data and weather or weekdays. Predicting the local
path with the entire path concurrently and considering the
spatial and temporal dependencies and the other conditions,
such as weather or weekdays raises the quality of the accuracy
of predicting the travel estimate time [56]. Using both traffic
prediction with spatial and temporal graphs and contextual
information, which is the relation between roads, based
on MTL could enhance the travel estimation time [57].
Yang et al. assured that the temporal and spatial (distance
between cars, road segments, speed, traffic, etc.), as well as
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TABLE 3. MTL for vehicles recognition accuracy.

Year

Author

Contribution

2022

Avianto et al. [41]

Training concurrently the year and the kind of the vehicles to improve the vehicle
recognition performance.

2019

Sun et al. [42]

Predicting the vehicle’s color and brand by MTL to improve the detection of
similar vehicles

2016

Huo et al. [43]

Increasing the vehicle’s type detection by combining different views of the
vehicles and considering the lighting conditions of the car’s perspective using
MTL to improve the car recognition performance.

2020

Chen et al. [44]

Classification of the vehicle’s type with the vehicle maker and model using MTL
to enhance the prediction of vehicles with similar appearance.

2016

Liang et al. [46]

Combining learning vehicle ID, color, and model concurrently based on MTL to
increase the vehicle recognition accuracy.

2019

Tang et al. [47]

Training the vehicle attributes like model, color, and orientation concurrently
based on MTL to enhance the vehicle recognition.

2019

Rajamanoharan et al. [48]

Training concurrently vehicles ID and the orientation of the vehicles using MTL
to increase the vehicle recognition efficiency.

2016

Xia et al. [49]

Training various types of vehicle logos and logo attributes using MTL to improve
the detection of vehicle’s logo.

2019

Goncalves et al. [50]

Combining the segmentation of the license plate characters and recognition of
the license plate characters concurrently to enhance the license plate detection.

2019

Chu et al. [51]

Training different vehicle views, region overlap, bounding-box regression, and
category of the vehicle’s attributes based on MTL to increase the vehicle recog-
nition performance.

2018

Mou et al. [52]

Training concurrently both vehicle semantic segmentation and semantic bound-
ary based on MTL to improve performance of the vehicle instance segmentation
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detection.

the road segments (e.g., highway or local street), are related to
each other and they can affect the travel time [58]. Using MTL
based on LSTM and GCN, for dealing with temporal and
spatial data, to train them concurrently increases efficiency.
In addition, Xu et al. [59] illustrated the use of the LSTM
to extract the temporal dependencies for the travel time and
traffic speed estimation by using the traffic speed history.
Their study showed that MTL based on CNN to train them
concurrently demonstrates its progress in the prediction of the
future estimate for travel time and traffic.

Dividing the road segments and intersections into separate
models affects the travel time estimation. In this direction,
Jin et al. showed that MTL increases the performance of time
estimation of the whole road [60]. They explained that the
relationships of road segments and intersections are extracted
by using spatial and temporal graphs. The graphs contain
GCN, temporal convolution network (TCN), and GRU to
capture spatial and temporal knowledge. Then, the MTL is
used to train both the road segments and intersections based
on the data on the graphs concurrently.

Travel estimation time for the GPS includes many
factors that can affect its performance. Considering elements
(weather, intersection, departure time, speed, etc.) based on
MTL could enhance the estimation of the arrival time because
the model can have complete knowledge about the road
conditions, improving travel time estimation.

E. MTL FOR ROAD SAFETY

Object detection on the road is considered a huge challenge,
especially for autonomous vehicles. Most previous methods
used to detect road risks were collecting the information
manually, which had enormous errors. Also, recognizing
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objects, such as vehicles surrounding the autonomous car,
had some obstacles because the related object’s features
were trained separately in different models, resulting in
negative detection performance. Nonetheless, considering
all the road features (road objects, curved and straight
roads, intersections, traffic signs, etc.) and training them
together using MTL could improve car safety on roads.
Fig. 7 illustrates the detection of the drivable area and the
vehicle surrounding the autonomous car. The images of
the drivable area and vehicles will be extracted using an
autoencoder to emphasize specific areas (e.g., surrounding
vehicles and drivable area) within the image. Feature pyramid
network (FPN) is used as task-shared layers to make the
extracted features clearer to the network, such as determining
the shape and size of the object. Two decoders are used
that contain CNNs and FCNNs to group the features on
the image for the network. FCNNs are utilized as task-
specific layers for each respective task. One FCNN is
dedicated to detecting the drivable and non-drivable areas
through semantic segmentation. Additionally, another FCNN
is employed to perform car detection using bounding boxing.

1) ROAD CONDITIONS PREDICTION

Detecting road conditions is essential in maintaining
autonomous vehicles’ safety. By using MTL, the accuracy
of road detection could be increased. For example, Li et al.
showed that MTL could have a significant impact on road
condition prediction by proposing a method that concurrently
trains both geometric deformations of road segments using
a data augmentation algorithm, which determines the shape
of straight and curved roads, and segmentation optimization
of the road samples based on encoder [61]. These samples
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TABLE 4. MTL for travel estimation prediction.

Year | Author Contribution

2018 | Lietal. [53]

Including the road information history with spatial and temporal data based on
MTL to increase the travel time estimation prediction.

2022 | Xuetal. [54]

Combining the travel time and transportation modes based on MTL to improve
the travel time estimation performance for each mode.

2019 | Gao et al. [55]

Combining both the travel speed and the driver’s behaviors based on MTL to
increase the estimation of travel time.

2018 | Wang et al. [56]

Predicting concurrently the local path with the entire path including the spatial
and temporal to enhance the travel time estimation.

2022| Yang et al. [58]

Using Spatial, temporal element, and related road segments with MTL to improve
travel time prediction.

2021| Xu et al. [59]

Predicting jointly the temporal and the spatial knowledge, and the traffic speed
history based on MTL to increase the travel time estimation.

2022 | Fang et al. [57]

Combining the spatio-temporal dependencies and the road contextual informa-
tion using MTL to increase the travel time estimation accuracy.

2021 | Jin et al. [60]

Combining road segments and intersections data using MTL to enhance the travel
time estimation performance.
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FIGURE 7. The detection of the drivable area and the vehicles that are
surrounding autonomous vehicles concurrently based on MTL to enhance
the autonomous car driving safety.

are divided into road and background to enable precise
detection for any road vision condition based on MTL and
ResNet, which solve the pattern complexity by skipping
some layers. This combination enhances road detection and
safety for autonomous vehicles. Furthermore, predicting road
conditions, especially in winter, is an essential factor for car
safety. Likewise, Liu et al. showed that MTL could help
improve the detection of the road [62]. They train together
the road segments as auxiliary tasks to concentrate on the
road objects and friction estimation coefficients as the main
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task. Friction estimation coefficients were used based on
datasets that contain images of the road surface. This helps
enhance the detection of the road objects in the image.
Also, Atrous Spatial Pyramid Pooling (ASPP) was used to
improve the accuracy of the semantic segmentation of the
image.

2) ROAD ASSESSMENT

Automatic recognition of road conditions is vital for increas-
ing road safety. MTL has improved road safety assessment
by enhancing the automatic recognition of road safety
rather than relying on manual assessment. MTL makes road
assessment automated by concurrently training usRAP, which
is used to rate the road conditions, along with auxiliary
tasks such as intersection, lane numbers, and road conditions
as auxiliary tasks based on Song et al.’s study [63]. Their
experiments showed that using MTL with the CNN-based
VGG architecture helps enhance the precision of road rating
and improve the estimation of some road risk attributes,
including roadside hazards and lane width, by utilizing
attention layers. Additionally, MTL based on CNN could
improve the performance of iRAP, a charity aiming to rate
road safety and enhance road assessment, by concurrently
training iRAP attributes derived from segments of sequential
video input [64]. The attributes of the iRAP methodology
are divided into seven categories: road details, observed
flow, speed limit, road middle-side objects, roadside objects,
intersections, and road user vulnerability factors such as
pedestrians.

3) REDUCING CAR ACCIDENTS

MTL has reduced the possibility of car accidents by predict-
ing the risk of traffic accidents. Predicting both fine-grained,
which predicts the detailed traffic accidents (e.g., the accident
location) and coarse-grained, which predicts the traffic
accidents in general (e.g., the accidents rate) concurrently
based on MTL has its effectiveness to improve the accidents
risk prediction as Wang et al.’s study showed [65]. Based
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on their study, fine and coarse-grained accidents with GCN
and temporal dependencies make progress for traffic risk
prediction. Their proposed method used GCN to predict the
spatial risk accidents if they are low, medium, or high and
to represent the road and the region in a graph. Also, their
proposed method could capture the temporal dependencies by
LSTM. In addition, autonomous cars have to detect the road
carefully to avoid car accidents. To improve road detection,
Lee proposed a method that predicts drivable area and lane
line simultaneously by classifying pixels in the images using
an encoder and decoder based on semantic and instance
segmentation, respectively. Additionally, it classifies pixels
in the image to determine the road type [66] as shown
in Fig. 7.

4) CAR DETECTION OF ROAD USERS

MTL has improved the detection of the people or cyclists
who intend to cross the road by combining their actions, such
as stopping for traffic, waiting for other cars, or walking,
their crossing intents, and the road trajectory [67]. These
actions can be extracted by detecting pedestrians from video
sequences by using semantic segmentation and 2D pose.
This enhancement has improved accuracy in predicting future
crossing. Saleh et al. showed progress in predicting the intent
of road users from image classification by using a bounding
box by training both head and body positions for pedestrians
concurrently using MTL and CNN [68].

5) CARS AND DRIVERS BEHAVIOR DETECTION

The autonomous cars’ behavioral modes (stopping, inter-
section crossing, lane following, etc.) shall be considered
together. Training all of them by using MTL enhances
the performance of the autonomous vehicle and increases
the safety of the use of the autonomous vehicles [69].
In addition, identifying and understanding driver behaviors
such as sudden braking, speeding, and lane changing are
considered challenges. It is a crucial factor for vehicle
driving safety. Moreover, MTL enhances the prediction of the
driver’s behavior based on the driving styles data, including
aggressive, calm, and moderate driving. Using GCNNS,
which uses fine-grained driving behavior at a detailed
level, and semi-supervised learning to classify the driving
styles based on MTL, showed its ability to enhance the
predicting of the driver’s behavior by concurrently training
the diver’s styles data [70]. That further increases the safety
of autonomous vehicles.

6) ROAD OBJECTS DETECTION

Detecting road objects is essential for autonomous vehicles’
safety. Detecting the road objects and predicting their
distance (pose, size) independently can negatively affect road
object detection performance by missing crucial knowledge.
This missed knowledge could result in weak prediction of
the road objects and their distance, further posing accidents
and hurting the autonomous cars’ safety. To this end,
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Chen et al. [71] used MTL based on Cartesian product to
perform all possible combinations of both road objects by
using bounding box and their distance classes concurrently,
and their experiments showed that using both tasks together
enhances the accuracy of the road objects detection and
distance detection.

7) INSPECTION ACCURACY

MTL plays an essential role in increasing inspection accuracy
by automating detection and reducing human mistakes,
ultimately improving safety. For example, Gibert et al.
demonstrated how MTL could enhance railway inspection
by proposing MTL to solve the problem of the segmentation
of the railway detectors [72]. By using MTL, they trained
multiple railway detectors concurrently, including good, bad,
or missing fasteners, and also chips and crumbling concrete
ties. Their results showed that MTL could enhance the
accuracy of the railway detector inspection. Note that car
accidents have risen due to the low quality of detecting
risk objects and the surrounding cars. MTL has been used
to automate detection and train the different road objects
concurrently, resulting in improved detection and progress in
road safety.

F. MTL FOR AUTONOMOUS DRIVING

Detection of objects or cars that are surrounding the
autonomous vehicles precisely is considered one of the most
crucial factors that increases the capability of autonomous
vehicle’s performance. Training these objects or surrounding
cars separately by STL can reduce the efficiency of the
autonomous vehicle’s detection due to the limitation of the
knowledge among the tasks. Nonetheless, sharing informa-
tion and features between tasks based on MTL increases
the accuracy and performance of autonomous vehicles. This
concept is shown in Fig. 8, illustrating the prediction of
steering angle and the speed control tasks concurrently.
Steering angle features are extracted by using CNN, while
LSTM is used to capture the sequential data of the speed
control task. Fully connected layers are used as shared layers
to transfer the pixels of the features into grouped pixel
representations. Task-specific layer for each task helps to
predict the output values for both the speed and the steering
angle.

/" Shared Layers ;" Task Specific
Layers
Video Streams ully Steering
Captured by Car —> CNN Connected
Camera Layers
\4 Fully
Connected
/ Layers
Speed Value N Corf:gt}:,te d }»){ Speed
Captured by Car —> LSTM ‘ Control
: ; Layers ;

Sensors

FIGURE 8. Predicting steering angle and speed concurrently using MTL to
enhance the autonomous car control.
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TABLE 5. MTL for road safety improvement.

Year | Author Contribution

2021 | Lietal. [61] Using geometric deformation of road segments and optimization of the road samples based
' on MTL to increase the efficiency of road condition detection.

2022| Liu et al. [62] Predicting together road segments and friction estimation of the road based on MTL to

increase the road detection performance

2018

Song et al. [63]

Using usRAP with auxiliary tasks such as intersection, lane numbers, and road conditions
based on MTL to increase the road safety assessment.

2020

Kacan et al. [64]

Training concurrently iRAP attributes based on MTL to enhance the rating of the road.

2021

Wang et al. [65]

Combining fine and coarse-grained traffic accident data concurrently based on MTL to
enhance the future accident prediction.

2021

Lee [66]

Combining the derivable areas and lanes tasks based MTL to increase the driving safety.

2020

Ranga et al. [67]

Combining the pedestrian’s actions, cross intent, and road trajectories based on MTL to
enhance the detection accuracy of pedestrians.

2017

Saleh et al. [68]

Combining both head and body positions for the pedestrians concurrently based on MTL
to enhance the detection of the intent of crossing the road.

2019

Chowdbhuri et al. [69]

Training different vehicle behavior modes based on MTL enhances the safety performance
of autonomous vehicles.

2016

Chen et al. [70]

Predicting fine-grained driving behavior and classifying the driving styles concurrently
based MTL enhances the detection of the driver’s behavior to improve the vehicle safety.

2018

Chen et al. [71]

Combining the objects detection and distance prediction based MTL to enhance the road
object detection.

2016

Gibert et al. [72]

Combining the railway detectors based on MTL to improve the inspection accuracy.

In addition, Abbas et al. illustrated that combining the
autonomous car tasks performs better than predicting them
separately [73]. They confirmed that combining the segmen-
tation of brake, steering angle, accelerating of autonomous
cars, and estimating the lanes around the vehicle based
on MTL could lead to better performance in improving
the prediction of these tasks. The different behavior of the
tasks in this study was solved by an inverse validation
loss weighted scheme based on the normalization scheme.
Their designed scheme aims at enhancing the performance
of tasks with lower accuracy to establish interrelated task
features.

1) SURROUNDING CARS DETECTION

The accuracy of detecting cars surrounding autonomous cars
is essential to increase the efficiency of the autonomous car’s
performance. Including many factors concurrently could
enhance the efficiency of detection. Using MTL is effective
in concurrently predicting the semantic segmentation for
labeling each object in the image, depth estimation for
object distance measurement, light detection and ranging
(LiDAR) segmentation for distance measurement in different
environmental conditions, and bird’s eye view to provide
a comprehensive view of the environment that around the
autonomous vehicles [74]. The imbalanced learning problem,
which leads to having a preference for one task more than
others, was solved in this method by a loss weighting
algorithm.

Furthermore, combining semantic segmentation, boundary
prediction to provide instance segmentation of various
objects, and object detection by using a fisheye image,
which is used to capture a comprehensive view around the
vehicle, based on MTL, improves the detection of the objects
around the autonomous vehicles [75]. Moreover, the fisheye
images show its effectiveness through the use of MTL,

17034

which enables concurrently prediction of six tasks: depth
estimation, visual odometry to capture the object movement
around the car, semantic segmentation, motion segmentation
to differentiate between car movement and other objects
movement, object detection, and lens soiling detection to
detect when the camera vision is not clear, for example,
by dirt [76], synergized decoders was used in this method to
make the tasks related to each other.

2) UNEXPECTED SITUATIONS DETECTION

There are unexpected situations such as sudden stops or
turns that may affect the use of autonomous vehicles.
However, considering the future prediction of unforeseen
situations with considering the autonomous vehicle’s control
and position based on MTL enhances the forecast for these
situations. For example, Kim et al. proposed a method that
shows the effectiveness of including autonomous vehicle’s
control and position tasks concurrently based on MTL with
the unexpected situations prediction task [77]. They divided
the tasks into positional and heading angle tasks, which focus
on the position and orientation of the vehicle, and longitudinal
and lateral tasks, which control the speed and the direction of
the moving vehicle.

3) LANE LINE DETECTION

The lane line detection of autonomous vehicles is improved
by using MTL. Many tasks have to be considered in lane line
detection (e.g., multilabel classification), which classifies the
image of the lane line; grid box regression, which detects
and locates the lane line; and object mask, which focuses
on the line and eliminates the background. For example,
Li et al. [78] showed that using multi-label classification,
grid box regression, and object mask concurrently based on
MTL could increase the quality of the lane line prediction for
autonomous cars.
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4) AUTONOMOUS CARS DIRECTION

Many factors (steering angle, speed, etc.) affect an
autonomous car’s direction or motion control. Training them
separately can decrease car control performance because
they are related. Combining the steering angle and the speed
detection of the autonomous car based on MTL enhances
car control [79]. Furthermore, Li et al. showed, in their
study, the effectiveness of MTL in improving autonomous
car’s control by predicting concurrently the distance to lane
marking, the heading angle distance between the car and
lane, and track direction [80]. Moreover, MTL contributed
to the growing quality of predicting objects and instance
segmentation. Likewise, Chang et al. showed how MTL could
enhance the car control decision by using an encoder and
decoder based on ShuffleNet and FPN to track and predict
the objects of the road and instance segmentation [81].

5) PEDESTRIANS DETECTION

Pedestrian detection from far distances is considered a
challenging issue for autonomous cars. Nonetheless, the
quality of the pedestrian detection has been improved by
concurrently using Region Proposal Network(RPN), which
is used for objects’ location detection on the images [82],
to find semantic segmentation of the pedestrians. Region-
based Fully Convolutional Network (RFCN), which detects
objects within an entire image [83], refines the instance
segmentation that is in RPN by using a bounding box based
on MTL [84].

One of the most crucial things in the autonomous car is
detecting objects accurately. Having these objects in different
models will reduce the accuracy performance because of a
lack of knowledge among these tasks. Sharing this knowledge
in one model using MTL could improve the detection of
objects accurately and the control of autonomous cars.

G. MTL FOR TRANSPORTATION DEMAND PREDICTION
Demand transportation prediction has some problems
because of the need for more prediction of the distance
between the transportation and the users, which is considered
one of the most crucial factors for both users and drivers.
Nowadays, many factors could affect the prediction of the
distance accuracy, such as traffic, and can cause longer
waiting time for users. Taking into account the different road
features together by MTL can be helpful to address this issue
and lead to tremendous prediction results.

1) TAXI DEMAND PREDICTION

Considering that the existing study did not concentrate on the
relationship among the region’s data, which negatively affects
the accuracy of passengers’ taxi demand, and features such as
weather and holidays were not carefully considered, Bai et al.
showed a study that helps to increase the accuracy by using
the historical information of passengers’ demand according
to regions and using CNN to obtain similar spatial and LSTM
for temporal relationships and focus more on the holidays
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and weather features to be part of the MTL [85]. Also, the
passenger demand is either high or low estimated.

There is a relationship in the taxi demand prediction
between pickup and drop off the passengers. For example,
Zhang et al. noted that training both of these tasks together
based on MTL-based CNN and LSTM, which identifies the
spatial and temporal dependencies for these tasks, is critical
to have a better prediction of the passenger’s taxi request and
reducing the passengers’ wait time [86]. Also, Kuang et al.
assured that using LSTM with MTL and 3D CNN to find
spatiotemporal features and having pick up and drop off as
related tasks by taking the weather, days, and transportation
conditions into account could increase the accuracy of
predicting the taxi demand for passengers, driver, or taxi
demand applications [87]. Likewise, Wu et al. illustrated that
using both spatial and temporal graph attention networks
(GTA) together to find the relationship among the road
regions to capture the taxi pick up and drop off information
and train them concurrently with MTL make improvement
better than using only the spatial dependencies [88].

Combining many road zones with considering the tem-
poral and spatial dependencies could improve taxi demand
prediction. For example, Luo et al. showed that dividing the
road zones and training them concurrently based on MTL and
spatial-temporal dependencies of the zones have the efficacy
of the taxi demand prediction [89]. The relationships of the
temporal and spatial dependencies among the zones in their
study were acknowledged by nonlinear Granger causality
analysis, which measures the relationship between different
time series data based on LSTM.

Furthermore, using GCN to find the spatial dependencies
by taxi trips on the network and finding the temporal
dependencies based on LSTM and then train them using
MTL could lead to better taxi demand prediction as
Chen et al. explained [90]. They illustrated that the spatial
dependencies in their method are local and global, which
are the relationships of taxi departure or arrival flow of the
adjoining and disconnected roads, respectively.

Moreover, there are various service modes like shared or
unshared taxi for the taxi demand platforms (Uber, Lyft, etc.),
which are highly related. For example, Ke et al. proposed
Multi-Graph Convolutional (MGC) to capture different taxi
demand services for taxi rides and then use MTL to train
together the knowledge captured by MGC [91]. Also, they
used Multi-Linear Relationship (MLR) and Regularized
Cross-Task (RCT) learning, which are MTL structures,
to determine how the knowledge is shared among tasks.

Considering the original distance (OD) in taxi demand
prediction is vital as it provides more detailed information
about the trip of the taxi. Using the OD with the road zones of
the riding requests based on MTL concurrently is considered
necessary to predict the taxi demands of future trips in a short
time [92]. The collection of the relationship of the spatial
and temporal dependencies in this study for the road zone
uses a Mixture-Model Graph Convolutional based on GCN.
Also, Wang et al. showed that training the OD trips between

17035



IEEE Access

M. Alzahrani et al.: Survey on Multi-Task Learning in Smart Transportation

TABLE 6. MTL for autonomous vehicles.

Year

Author

Contribution

2021

Abbas et al. [73]

Combining brake, steering angle, accelerating of the autonomous cars, and estimating the
road lanes tasks based on MTL to enhance the prediction performance of these tasks.

2022

Natan et al. [74]

Concurrently predicting the semantic segmentation, depth estimation, light detection,
and ranging (LiDAR) segmentation by using fish eyes view to enhance the detection of
surrounding objects for autonomous cars.

2019

Arsenali et al. [75]

Combining semantic segmentation, boundary prediction, and object detection to improve
the detection of surroundings around the autonomous cars.

2020

Kim et al. [77]

Enhancing predicting unexpected situations for the autonomous cars by including the car
control task and car position task with unexpected situations task based on MTL.

2021

Liet al. [78]

Improving lane line detection by using together multilabel classification, grid box regres-
sion, and object mask based on MTL.

2018

Yang et al. [79]

Improving the car control and direction by combining steering angle and the speed
detection of the autonomous car based on MTL.

2019

Li et al. [80]

Improving the autonomous car control by predicting concurrently the distance to lane
marking, the heading angle distance between the car and lane, and tracking the direction.

2021

Chang et al. [81]

Increasing control decision of the autonomous car by predicting the tracking of the road
objects and instance segmentation based on MTL.

Improving pedestrians detection by concurrently identifying semantic segmentation of the

2022 | Zhou et al. [84]

pedestrians and refining the instance segmentation based on MTL.

different areas and the spatial information concurrently based
on MTL could improve the prediction of taxi demands [93].

2) PUBLIC TRANSPORTATION DEMAND PREDICTION

Public transportation has related temporal and spatial depen-
dencies. Predicting different modes (e.g., busses, light trails,
ferries) individually will negatively affect the transportation
demand prediction because important information could be
missed while predicting the accurate distance of each mode
for the user. Using the knowledge from station-intensive
transportation modes such as buses with station-sparse
transportation modes (train, light rail, and ferry) concurrently
based on MTL could increase the transportation demand
accuracy for each mode as Li et al. illustrated [94]. LSTM
was leveraged to capture the temporal information in their
method based on a Memory-Augmented Recurrent Network
(MARN), to retrieve the historical data for the modes.

In addition, considering the relationship between the spa-
tial and temporal in transportation modes such as subway or
taxi apps is essential in the transportation demand prediction
to make it more accurate. For example, Liang et al. illustrated
that train both spatial dependencies, which is captured by
using the relationship of the intra-modal relation graph
and inter-modal relation graph, and temporal dependencies,
which are captured by using historical time series data,
based on MTL, could increase the prediction accuracy
of transportation demands [95]. The inter-modal relation
graph points to the relationship of the spatial dependencies
in the same transportation mode. In contrast, the inter-
modal relation graph points to the relationship of the spatial
dependencies between the different transportation modes.

Furthermore, time series is considered an essential part
of smart transportation as it could affect the travel demand
estimation in public transportation. It shows its efficiency
when used with MTL because it takes advantage of all the
time series information in the travel demand. Chidlovskii

17036

showed the preference of using MTL over STL to train
the time series in public transportation concurrently by
measuring the passengers riding public transportation over
a specific period of time [96]. In their proposed method,
many factors that could affect the travel demand (weather,
weekdays, and holidays) are considered. Dynamic time
warping was also leveraged in their method to capture
the similarity or the correlation among time series. Also,
support vector regression was used in their method to select
appropriate predictions for the dependent time series values
by finding appropriate weights for the time series data.

Factors (pickup, drop-off, road networks, spatiotemporal
dependencies, etc.) shall be included in one or shared models
to make the transportation demand prediction accurate.
Having the knowledge and sharing it among these factors
by using MTL showed progress in the demand prediction
accuracy in many areas, and it could reduce the user’s waiting
time as well.

IV. DISCUSSION AND FUTURE CHALLENGES

Through the literature, we have indicated that using MTL can
enhance prediction and performance by sharing the tasks’
features. In this section, we discuss the significant benefits
and limitations of using MTL in smart transportation systems
and possible challenges that require further study.

A. MAIN BENEFITS OF MTL

1) TRAINING EFFICIENCY

MTL has better training capability because it uses a pre-
trained model instead of training it from scratch. Normally,
in MTL, a new task can be trained on a model that is pre-
trained by other tasks. Since such a model is already trained
by other related tasks, it can extract informative features that
might be useful for the new task. To maintain the quality
accuracy of MTL training performance, many factors have
to be considered, such as fine-tuning, sharing knowledge
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TABLE 7. MTL for transportation demand prediction.

Year

Author

Contribution

2019

Bai et al. [85]

Enhancing the taxi demand prediction accuracy by using historical taxi demand informa-
tion of the regions and their similar spatio-temporal information based on MTL.

2022

Zhang et al. [86]

Reducing the taxi demand wait time by combining the pickup and drop off data based on
MTL and LSTM.

2019

Kuang et al. [87]

Increasing the accuracy of predicting the taxi demand based on MTL and LSTM by
combining pick-up and drop-off tasks, including spatio-temporal information.

2020

Wu et al. [88]

Improving the taxi demand prediction by using both spatial and temporal information of
the road regions and combining the taxi pick up and drop off information based on MTL.

2021

Luo et al. [89]

Improving the taxi demand performance by training the road zones concurrently based on
MTL and spatio-temporal information of each zone.

2020

Chen et al. [90]

Improving the taxi demand prediction by combining both temporal and spatial information
based on MTL.

2021

Ke et al. [91]

Improving the taxi demand prediction by training the service modes concurrently based
on MTL.

2021

Feng et al. [92]

Enhancing the taxi demand prediction performance by concurrently including the original
distance and road zones of the user’s requests based on MTL.

2019

Wang et al. [93]

Enhancing the taxi demand prediction performance by concurrently utilizing the original
distance and spatial information of taxi trips.

Using the knowledge of station-intensive transportation modes with station-sparse trans-

2020| Lietal [94] portation modes concurrently based on MTL increases the transportation demand accu-
racy.
2022| Liang et al. [95] Training both spatial dependencies and temporal dependencies based on MTL to increase

the transportation demand prediction.

2017

Chidlovskii et al. [96]

Training concurrently the number of passengers and the travel time in the public trans-
portation based on MTL to increase the efficiency of time series in travel demand

IEEE Access

estimation.

among tasks in an independent model, and learning shared
representations [97], [98]. Fine-tuning is the process of
adjusting a pre-trained model to make it more suitable for
a specific task or dataset. Additionally, sharing knowledge
between tasks in multiple models allows them to leverage
valuable information across different tasks. Learning shared
representations involves training the model to enhance its
understanding of common features among various tasks. This
leads to improved performance in handling shared features
among tasks and enhances the ability to train on multiple
tasks concurrently. In this way, the pre-trained model can
be easily adjusted to the new task and substantially reduce
the training time for the new task. In addition, through the
studies, MTL can not only make the training more efficient
but also increase prediction accuracy and furthermore reduce
overfitting.

2) SCALABILITY

Compared with using STL to deal with each task, using
MTL is more practical, especially when the size of data and
number of tasks are large. The reasons are as follows. First,
the overhead of training a model for each task might be
large and acceptable. Having the STL model trained from
scratch could take a lot of time and use more computational
resources. Inversely, MTL tries to adopt a pre-trained model
for new tasks; hence, making learning new tasks much
more efficient. Second, MTL might perform better than STL
with informative data and high model capacity. With the
good design of the MTL model (model structure, number of
parameters, etc.), the model can learn informative patterns for
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different tasks. Based on these factors, utilizing MTL in large-
scale data and tasks is efficient and effective.

Regarding the smart transportation system, MTL has
enhanced applications’ scalability, such as in autonomous
cars. Many related tasks need to be detected accurately for
autonomous vehicles, including car detection, sign, light
recognition, etc., and having a massive number of datasets
for these tasks can improve the detection. Also, it increases
the ability to distinguish between these tasks, making the
prediction faster and decreasing detection errors.

Fig. 9 demonstrates the training time efficiency of MTL
compared to STL across different methods. The datasets
are used to predict the user demand prediction for taxis in
multiple zones. It is evident that leveraging users’ demands in
various areas as different tasks based on MTL, which includes
pick-up time and information as well as drop-off time and
information, leads to better training time performance and
prediction accuracy. A comparison of different methods
shows that multi-task learning temporal convolutional neural
network spatiotemporal dynamic time warping (MTL-TCNN
(ST-DTW)), MTL-ConvLSTM, and MTL-LSTM achieved
3.16, 5.60, and 5.39 training hours, respectively. In contrast,
single-task learning temporal convolutional neural network
(STL-TCNN), STL-ConvLSTM, and STL-LSTM achieved
3.70, 6.22, and 6.18 training hours, respectively [99].
These results demonstrate that methods based on MTL
outperformed STL concerning training times. Furthermore,
this study illustrates that the MTL model has better scalability
than STL. It included a large collected dataset, which contains
63 zones, about the users’ taxi demand, and it showed MTL
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TCNN (STDTW) has better performance with a considerable
dataset compared to the other methods, including STL
methods.

TIME (Hour)

7

6
4
3
2
1
0

MTL-TCNN(ST-DTW) STL-TCNN MTL-ConvLSTM STL-ConvLSTM MTL-LSTM stsrw Model

FIGURE 9. Methods based on MTL show better training efficiency and
lower training times compared to STL methods.

3) MODEL ROBUSTNESS
MTL increases the strength of the model by training
multiple tasks concurrently, which can result in knowledge
improvement for the main and auxiliary tasks. This could
make the model to have more data efficiency and make
better decisions. Sharing information among tasks can also
enhance the model’s robustness by making the model provide
more information. Furthermore, MTL makes the model
more adaptive to new data and data changes by making
regularization in the model, which preserves the model’s
performance if new data are acquired and prevents overfitting.
Table 8 shows the robustness performance of MTL models
compared to STL across different methods. Metrics such
as Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) were used for evaluation. First, methods
presented in the table include sLSTM (STL-based) and
pmILSTM (MTL-based) based on [86]. These methods
are used to predict taxi demand from diverse datasets in
different areas. They used factors like pick-up and drop-
off data for a taxi to have better prediction performance.
The results indicated that leveraging the relationship between
these factors is more effective than training them separately.
Furthermore, multi-task federated learning (MT-FL) and
single-task federated learning (ST-FL) methods were used
to predict the speed in various traffic situations [100].
MT involved training speed with different traffic conditions
such as weather, time, and events. Leveraging the speed
with these traffic conditions under MTL showed fewer
errors than STL across short, medium, and long terms.
In addition, MTL stacked autoencoders (MSAE) based on
MTL outperformed STL stacked autoencoders (SAE-STL)
based on [101]. Dividing the traffic flow of different areas
into different tasks and training them concurrently shows its
effectiveness in predicting traffic based on MAE and RMSE
results. Finally, the multi-task adversarial spatial-temporal
network model (MT-ASTN) achieved lower errors than the
single-task spatial-temporal network model (ST-STN) in both
MAE and RMSE based on [102]. These models were used
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for predicting crowd flow in the streets across different cities,
utilizing data collected from two datasets—one from bikes
and the other from taxis. MT-ASTN based on MTL used
the crowd flows and the flow original distance concurrently
exploiting shared knowledge between them. Based on the
results, MTL achieved better results in different methods and
conditions. That proves the robustness of MTL models than
STL.

TABLE 8. The MTL model shows its strength and robustness across
different methods and conditions.

Metrics
Methods
MAE RMSE
pick-up drop-off pick-up drop-off
SLSTM based on STL | Dataset | Dataset | Dataset | Dataset | Datasetl | Dataset2 | Datasetl | Dataset2
186] 1 2 1 2

6.359 16.529 | 5.630 14.941 | 9671 26.813 8.248 22.984
PmILSTM based on | 6.202 | 16.176 |5.533 |14.499 | 9399 |26.311 |8.130 |22.411

MTL [86]
AMAE ARMSE
MT FL [100] Short-term | Mid-term | Long-term | Short-term Mid-term Long-term
0.737 1.378 2.077 1.186 2.695 4.118
ST FL [100] 0.894 1.827 2.951 1.401 3.307 5.144
MAE RMSE
SAE-STL [101] 34.56 49.00
MSAE based on MTL | 31.72 45.16
[101]
MAE RMSE
Crowd Flow Flow OD Crowd Flow Flow OD

ST-STN based on Dataset | Dataset | Dataset | Dataset | Dataset | Dataset | Dataset | Dataset

STL[102] 1 2 1 2 1 2 1 2
1.562 | 7.604 | 0.015 | 0.077 3.103 15.699 0.112 0.131

MT-ASTN based on 1.413 6.417 0.011 0.030 2.995 12.299 0.074 0.087
MTL [102]

B. LIMITATIONS

1) PERFORMANCE

As aforementioned, the MTL could increase the performance
on each task. However, it can only be achieved under certain
conditions. First, high task similarity is one of the important
premises. The task similarity depicts whether it is fit to
apply MTL to the tasks. The high task similarity reflects
that there might be more common patterns existing among
tasks. Hence, a well-trained MTL can perform all tasks well.
Applying MTL to tasks with low task similarity could cause
the model to miss the crucial patterns for specific tasks and
further affect the model’s performance.

However, analyzing the task similarity and grouping
related tasks together are challenging in MTL. Based on our
findings, estimating task similarity is still an open research
area yet to be thoroughly studied. Most existing methods still
have limitations, e.g., high complexity and time-consuming,
which makes it hard to apply in real smart transportation
applications.

Second, the data is crucial for MTL to reach effective
performance. The informative and clean data enable the MTL
to capture the patterns among data more effectively and
reduce overfitting. The data collected for different tasks might
be noisy and imbalanced regarding the smart transportation
system. Furthermore, considering the distributed manner
of current smart transportation applications, e.g., collected
by IoT devices, the data might be multimodality and
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heterogeneous, e.g., non-independent, identically distributed
(non-i.i.d.) data. Such data makes the learning process of
MTL more challenging. For instance, in non-i.i.d. data, data
distribution can differ from task to task. Thus, balancing the
different data distributions to avoid bias toward specific tasks
in the result is considered a challenging issue.

In addition, in MTL, data quality becomes more critical.
High-quality data may contain more common patterns for dif-
ferent tasks. Such common patterns are crucial for improving
MTL’s performance. In some situations, data may have more
task-specific patterns than common patterns. Such data can
make learning of one task affect the performance of other
tasks, hindering the achievement of optimal performance.
Also, adapting the model to the various data types/modalities
between tasks presents a substantial challenge. The transfer of
knowledge between tasks depends on their relationship, and
the diversity of tasks complicates this knowledge transfer in
MTL.

Furthermore, each task may focus on different goals.
Balancing the diverse goals of various tasks and mitigating
interference among tasks is considered a complex process.
In general, multimodality and heterogeneous data are still
some of the biggest challenges that need to be overcome.
Considering these issues, it is vital to preprocess the data and
select informative and independent features before feeding
it into the model. This is one of the significant obstacles to
applying MTL in smart transportation systems.

2) SECURITY AND PRIVACY

In addition to performance, security, and privacy are concerns
of applying MTL in smart transportation systems. Particu-
larly, most data in smart transportation systems might be
collected by IoT devices. Such devices might be smart edge
devices, roadside units, or personal devices, e.g., cell phones
or PCs. Some of this data might be private and sensitive.
The data owner may not want to share the data with others.
Considering this, how to effectively preserve data privacy
while training MTL in smart transportation systems becomes
important. To enable the training performance, the typical
MTL will inevitably cause the privacy leakage of data. This
is also a major obstacle and shortcoming of applying MTL
in smart transportation systems. To effectively train models
without leaking data privacy, federated learning has been
proposed and has become popular. Combining federated
learning and MTL is promising to enable effective learning
performance without privacy leakage.

On the other hand, regarding the distributed nature of smart
transportation platforms, various attacks and malicious infor-
mation might exist. For instance, the data with deliberately
designed noise inserted, i.e., poisoned data, could mislead
the model’s prediction. This is a critical issue, especially
regarding smart transportation applications, e.g., autonomous
driving. Such poisoned data can cause the model to fail
on car or traffic light detection, leading to critical traffic
incidents. Additionally, there are many other potential attacks
in specific applications. For instance, the attacker could
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adopt certain eavesdropping tools to steal or infer private
information or identities of different parties in the system.
Such issues are also major obstacles to applying MTL in
smart applications.

C. FUTURE CHALLENGES

In smart transportation systems, various tasks must be trained
together (e.g., weather, speed, traffic, and weekdays for
estimating travel time), and many factors must be considered
simultaneously. These factors are considered a challenge in
MTL because there are many tasks, features, and datasets.
We now describe some challenges.

1) TASK SIMILARITY

Task similarity is one of the critical factors in MTL
performance. The usability of MTL could be influenced or
compromised by the similarity and correlations of tasks. The
reason MTL can be widely used nowadays is that some
tasks are intuitively highly correlated. For example, flow
and speed tasks are related to traffic forecasting in a smart
transportation system because they can affect each other.
Road sign detection and lane detection are considered related,
where they both may use the image or video data collected
by car cameras. Meanwhile, it has been demonstrated in
many works that applying MTL to these tasks can effectively
improve training efficiency. However, it is still challenging to
develop evaluation tools or metrics to learn the task similarity
effectively. Such evaluations could help us better understand
if MTL fits the scenarios before applying it. Furthermore,
if fit, it may help us learn the number of MTL models and
their capacities that may be needed to learn the tasks. In this
way, the utility of MTL can be further improved.

Currently, the research on task similarity is not fully
explored. One approach is identifying related tasks learned
together over the MTL network [103]. This approach
trains the tasks and evaluates their inter-task affinity, which
measures how well the tasks work together during training.
It then groups tasks with high inter-task affinity, because
they work well together, to make the training process more
efficient and effective. Because there are many tasks, this
method can be costly and degrade performance, especially
if there is a change in any task over time. Also, higher-order
approximations (HOA) are used to predict the performance of
MTL networks and determine the related tasks to be trained
concurrently. However, the accuracy of the network perfor-
mance prediction for multiple tasks might not be perfect
because of HOA’s limited consideration of task complexity
and non-linearity [104]. Moreover, model agnostic meta-
learning (MAML) helps to improve grouping-related tasks by
enabling the model to generalize knowledge from one task
to another, thus equipping the model to handle related tasks
more effectively. However, it suffers from extensive memory
usage and long training time [105].

2) FEATURES SELECTION
Selecting relevant features for each task is a critical part that
may affect the MTL model performance. Choosing irrelevant
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features could make learning the model more complicated
as it can cause overfitting and noise in the training data set
and makes it complex to learn pattern recognition [106],
which shows the relationship between trained data sets. That
effect can affect the prediction accuracy of the new data.
For example, in taxi demand prediction, features such as
the weather and holidays have to be considered in historical
information on the passengers’ taxi demand to increase the
prediction accuracy.

Many methods were proposed for feature selection (e.g.,
L1 regularization, mutual information, and principal com-
ponent analysis) [107]. Those methods progress with the
feature selection and help select relevant features for each
task. The proposed methods still have some challenges,
such as choosing redundant features because each task
requires different features [108]. Selecting various features
for different tasks is challenging because there is a large
number of data, which can affect the model’s performance
in learning accurate features.

3) DATA DISTRIBUTION

Data distribution needs to be carefully addressed in MTL,
as the data may be distributed differently among tasks,
leading to imbalanced data and negatively affecting the
model’s performance. Imbalanced data can make the model
biased to the task with more or better data than other tasks.
That can negatively affect the performance of the other tasks
because that can lead to overfitting or underfitting, which
can decrease the capability of generating new data. Many
methods are used to address the data imbalance, showing
advances like oversampling and under-sampling, but there are
still some challenges like overfitting and missing important
information [109]. For example, for vehicle recognition, there
are many tasks involved in detecting the appearance of cars
such as car type, color, and license plate number. For each of
these tasks, the data might be non-i.i.d. For instance, sedan
and SUV might be more common car types than others in
the dataset. In this case, the training of the model may lead
the model to focus more on sedans and SUVs over other car
types. Therefore, the accuracy might be compromised.

4) ROBUST AND PRIVACY-PRESERVING LEARNING

Preserving data privacy in smart transportation systems based
on MTL in a cost-effective manner is a challenging issue. It is
considered one of the critical issues, especially with MTL,
because the tasks share a vast amount of features that can
lead to sensitive information leakage. For example, in traffic
forecasting, sharing the users’ data from GPS between tasks
(e.g., predicting the navigation and traffic) can lead to
exposing privately sensitive information for the users (e.g.,
users’ location and movements). Many proposed methods and
techniques exist to solve data privacy-preservation problems,
including access control, data encryption, differential privacy,
and others. Although these techniques have protected data
privacy, it is still challenging to protect data privacy in MTL,
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especially when it comes to distributed MTL applications.
The traditional way of protecting privacy in distributed
learning is to aggregate gradients of local models instead of
collecting data or models from each user. However, it is found
that it may still leak sensitive information by using certain
inferring algorithms. Considering this, the security guarantee
of the existing methods might not be reliable and could be
further improved and verified.

In addition to the privacy challenge, protecting the MTL
models from malicious attacks is a challenging problem.
Sharing vast amounts of information from multiple tasks
in MTL makes it an obstacle because it can increase the
possibility of the attackers finding vulnerable data, which
can be exploited [110]. The complexity of the MTL model’s
design makes identifying the security risks more challenging.
This is due to the concurrent operation of multiple com-
ponents, which requires comprehensive detection through
various areas to detect vulnerability. Data sanitization is one
method used against attacks, but data poisoning remains an
issue even with the method [111], noting that data sanitization
filters the training data before training them to defend against
the attacks. Also, that study indicated that data poisoning
attack strategies could avoid these defenses. One is putting
the poisoned data in a sensitive location in the model. The
other one is making a constraint attack designed to prevent
the attack’s detection.

5) OTHERS

There are many challenges with using MTL with smart
transportation systems. One of them is dealing with het-
erogeneous data, which is different features from various
sources. Designing shared representation for the tasks is
difficult because each task has a different data distribution.
That also makes communication between multiple tasks
challenging because the data features or formats of the
tasks are different. Another challenge is real-time detection,
which is an important part of smart transportation systems.
Many objects need to be detected quickly (e.g., traffic
signs for autonomous vehicles), which requires significant
computational power to deal with large data sets. Moreover,
there are many unexpected events in smart transportation
systems (e.g., weather conditions, accidents, or road risk
objects), and having a framework model, hardware device
sensors, and allocating resources that accommodate these
events and provide accurate predictions is considered a
challenge. In addition, hardware overhead is considered a
challenge. Smart transportation with MTL requires more
computational resources and memory, which can further
increase the hardware tool cost.

V. FINAL REMARKS

In this paper, we have discussed the issues in smart
transportation systems concerning the accuracy and detection
performance and how MTL uses the advantage of training
features among related tasks in shared models to solve
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these problems. After that, we systematically reviewed the
MTL’s progress in various smart transportation applications,
including traffic forecasting, traffic signs, vehicle recogni-
tion, travel estimate time, road safety, taxi demand, and
autonomous driving. MTL has shown great potential in
improving arrival time and taxi demand estimation, detecting
the various types of signs and objects, and increasing the
ability to control autonomous cars precisely. In addition,
we have discussed the MTL’s capability to leverage pre-
trained models, resulting in improved knowledge for new
tasks. We have also demonstrated MTL’s effectiveness in
handling a large amount of data and enhancing the model’s
robustness. Some experiment results from the literature have
been presented to illustrate that MTL leads to lower errors
than STL and provides better robustness against various
attacks. Furthermore, we have discussed the future challenges
in applying MTL in smart transportation.
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