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Abstract—Tropical cyclones can produce devastating effects on
humans, animals, and the environment. Globally, it has been a
recurring problem across different continents. This has necessi-
tated conducting research on different aspects relating to Tropical
cyclones. To contribute to this research domain, in this study,
three Deep Learning (DL) models were developed to predict
Tropical Cyclone (TC) intensity. The study used the Hursat and
Bestrack datasets from the United States National Oceanic and
Atmospheric Administration and employed Convolutional Neural
Networks (CNN), Longest Short-term Memory (LSTM), and a
combination of CNN and LSTM (CNN-LSTM) to predict TC
intensity. Results obtained from the study show that the LSTM
model achieved the best results although the difference between
the three models was not wide. Contributions from this study can
aid in reducing damages to life and properties associated with
ropical Cyclones by improving the prediction of TC intensity.

Index Terms—Deep Learning, CNN, LSTM, Hybrid, Cyclone
Intensity, Prediction

I. INTRODUCTION AND RELATED WORK

The intensity of a Tropical Cyclone TC according to [1], is
defined as the per-minute maximum sustained winds speed at
10m over the surface of not less than 74mph. The prediction
of this natural phenomenon is deemed a herculean but critical
task for both stakeholders and researchers as this knowledge
can help to devise a means to curtail the devastation and loss
of life and property. Recent improvements in data collection
technologies have enabled capturing more data at a higher
level of complexity rendering the traditional mathematical-
based numerical weather prediction system used in simulat-
ing short-term climatic conditions days in advance and the
statistical regression methods used for long-term predictions
inadequate for the prediction of TC intensities [2], [3], [4],
[5].

Machine learning methods have recorded reputable achieve-
ments in prediction tasks in recent times. ML techniques have
greatly been used for weather-related research. It has been used
for both short and long-term TC predictions using data divided
into a suitable ratio of training, testing, and validation. Trained
models are tested and validated to ascertain model conformity
with real data. When applied to TC intensity prediction, ML
methods have shown to be able to predict TC intensity with
moderate success [6]-[8] however, ML models suffer from
the difficulty in addressing the complex relationships between
the ever-changing mechanism of hurricane formation termed

as genesis, the path it takes known as track and the level of
severity known as intensity [9]-[11].

Deep Learning (DL) is a subset of Artificial Intelligence
that centers on using neural networks to create decisions
based on previously available data. DL works explicitly where
datasets are multidimensional, complex, and voluminous and
has seen increased use in a number of domains including, can-
cer detection, document analysis and recognition, healthcare,
object detection, speech recognition, image classification and
recognition, pedestrian detection, natural language processing,
voice activity detection, etc. [12], [13]

Several studies have applied a number of methods to predict
variables related to tropical cyclones (TC). In a study by [14]
on short-time ionospheric total electron content, the authors
compared DL and statistical techniques where LSTM and
Seq2seq were modeled as DL techniques, and ARIMA was
modeled as a statistical technique. Results from the study
show that LSTM outperformed both Seq2seq and ARIMA
models. In a related study, [15] proposed an LSTM model for
forecasting storms making landfall within a 24-hour period
in China. Finally, and most related to this study, is [16]
where a Tropical Cyclone TC intensity prediction framework
based on neural network called TCPred was proposed as an
early warning system for emergency decision-making. In the
study, they compared a number of deep learning models in
their ability to predict TC intensity based on a number of
atmospheric and oceanic datasets, where a convolutional GRU
model achieved the best performance.

Addressing the problem of sparse data in Tropical cyclone
analysis during the formation stage, [17] proposed a multi-
modal multitask learning system to predict Hurricane genesis.
The model outperformed standard models achieving high
accuracy.

The hybridization of algorithms is a common trend adopted
by researchers in order to produce a more robust model that
can potentially draw on the strength of the different algorithms.
In a study by [18] a CNN-LSTM based on 2D and 3D CNN
was hybridized to produce a model that would be used to
establish the relationship between the features of typhoon for-
mation for better forecasting. Rigorous experiments featuring
a wide range of data including Western Pacific, Eastern Pacific
and Northern Atlantic Oceans sourced from IBTracs and ERA
were conducted. Training, testing, and validation were done
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using past data on meteorology in the Pacific and Atlantic
Oceans with results yielding improved accuracy.

Most similar to this paper, [19] developed a DL-based
multilayer perceptron (MLP) TC intensity prediction model
by conducting experiments using the SHIPS dataset. The
leave-one-year-out LOYO scheme was adopted to evaluate the
performance of the MLP which was found to outperform other
models when compared.

Although the application of deep learning algorithms on
TC prediction tasks has achieved encouraging performance,
there are still shortcomings in terms of approaches employed
by existing studies because the prediction based on time-
series approach using LSTM and CNN is yet to be proposed.
Based on existing studies, both LSTM and CNN as individ-
ual or hybridized algorithms have proven to be efficient by
recording remarkable performance in several TC prediction
related tasks as evidently reported in [14], [15], [16], [17],
and [18]. Therefore, in this research, the performance of
CNN,LSTM,CNN-LSTM modles are tested in the task of TC
intensity prediction based on time-series approach. The models
are trained and tested to predict windspeed as the target value
using both Hursat and windspeed corresponding values from
Best Track available at the National Centres for Environmental
Information(NCEI) [20] and SHIPS datasets.

The rest of the paper is organized as follows. Section 2
presents the research methodology and the proposed archi-
tectures and evaluation techniques adopted. Section 3 shows
the results of the experiments conducted and a discussion of
the results from each experiment followed by section 4 which
summarizes the performance of the models in comparison to
similar works and future research directions.

II. METHODOLOGY

This section outlines the different steps of the proposed
approach. In stage one, a set of pre-processing activities
performed on the dataset to ensure that it conforms to our
proposed standard i.e. having a set of predictors and a tar-
get(wind speed) attribute. In the modeling and evaluation
stage, the deep learning approaches are trained and tested on
their performance in TC intensity prediction. In the evaluation
stage the performance of each model is evaluated based on
the standard prediction evaluation metrics including the Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE). Each of these
stages is presented individually in the subsequent sections.

A. Data

The data used in this study is obtained from the hurricane
satellite (Hursat) archive and the BestTrack hurricane dataset
both available at the National Centres for Environmental
Information (NCEI) [20] The Hursat dataset is a popular
dataset that has been used by several researchers’ hurricane
and tropical cycle research activities. It contains data from
1978 to 2016 in Network Common Data Form (NC) format.
Five years of data were used in this study i.e. 2012, 2013,
2014, 2015, and 2016.

Also, a combined dataset (SHIPS, GTCD and NOAA) used
by [19] was applied to our proposed model in comparison with
the model by [19]. This is done so that a fair comparison can
be conducted on the same dataset by our proposed model and
the model by [19].

1) Data Description: Observational datasets from different
sources were used in this study. This section provides a
description of each of these datasets.

o International Best Track Archive for Climate Steward-
ship(IBTrACS): This dataset is composed of more than
3,000 tropical and extra-tropical storm tracks since 1979,
extracted from the NOAA database. The dataset provides
global tropical cyclone best track data in a centralized
location to help in understanding the distribution, fre-
quency, and intensity of tropical cyclones worldwide.
Produced by multiple governmental agencies, it includes
attributes such as position, wind, and pressure [21]

o Hurricane Satellite: The HURSAT dataset provides geo-
stationary satellite imagery on TCs in the IBTrACS
dataset [22]. Primarily developed to produce a homo-
geneous analysis of TC intensity through time [23]. In
this study, HURSAT version 6 is used. It covers the
years from 1979 to 2015, with hundreds of images from
geostationary satellites analyzed and stored in NetCDF
file format.

o Statistical Hurricane Intensity Prediction (SHIPS): This
is a statistical-dynamical model that is employed op-
erationally at the National Hurricane Center (NHC) of
the U.S. National Weather Services. It is based on a
multiple linear regression approach that features persis-
tence, climatological, and synoptic predictors [24]. These
predictors such as zonal and meridional wind, shear,
vorticity, and divergence. etc. are derived from the global
forecasting system(GFS) of the National Centers for
Environment Prediction (NCEP).

2) Data Preprocessing: The pre-processing activities per-
formed on the dataset are: feature extraction, data merging, and
data transformation. These techniques are used to transform
data into forms that are easy to proccess into DL tasks
which enables among other things, improvements in accuracy,
prevent overfitting, and interpretability of the resulting model.

o Feature Extraction:In the HURSAT dataset, TC images
are contained in the middle of each image where the vital
information about the intensity is located. Consequently,
these images were cropped to a 50 by 50 pixel dimension
to remove the outer part of the TC from the image. The
outcome is converted into a CSV file that contains 2500
pixel value for each TC in the dataset, and would finally
be merged with the windspeed from the best-track dataset.

o Data Merging: In this stage, the features extracted from
the HURSAT satellite imagery are merged with their
corresponding windspeed from the bestrack dataset in
IBTrACC. Each satellite image record only provides
extracted pixel values and does not provide the corre-
sponding windspeed of the TC, therefore, the windspeed
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of each TC is retrieved from the bestrack dataset and is
correspondingly appended (and set as the target value)
with the TC record extracted from the HURSAT dataset.
The outcome of this adds one column to the existing 2500
extracted features as elaborated in the feature extraction
section.

o Data Transformation: Reframing multivariate time series
into multi-step supervised learning problems. This would
help in exploring different framings of a time series to
know which of the framings can give us better results.
The outcome of this framing would be a data frame with
columns each suitably named by both the variable number
and the time step.

B. Modelling

After pre-processing the dataset, three deep learning algo-
rithms were trained to predict TC intensity. This includes,
CNN, LSTM, and a hybrid CNN-LSTM model. The modeling
is based on the prediction of wind speed in accordance with
the Saffir-Simpson Hurricane wind scale [25].

1) Network Design and Training:

o Convolutional Neural Network (CNN): The CNN algo-
rithm is made of several layers that continuously extract
abstract features of input data, then match the features
to a target based on specified tasks such as prediction
or classification [26]. Generically, every layer is made of
several neurons that calculate the weighted combination
of inputs linearly and then train the model on the dataset.
A nonlinear activation function is used to optimize the
model parameters. The nonlinear activation function used
in this study to map relationships between the input and
output variables is the Rectified Linear Unit (ReLU).
ReLU, defined as f(x) = max(0, x) where x represent the
input to the neuron. The function returns positive values
for any positive input but returns zero for any negative in-
put thus prevents the exponential growth of computations
required to manage the neural network. This was done
to efficiently minimize inherent neural network gradient
disappearance problems and error backpropagation.

The CNN modelling for this study as shown in Figure 2
is based on the following; input of the model of 2501x1
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Fig. 2. Proposed CNN Architecture

tensor, three convolutional layers where the first, second
and third layers has 64,64 and 32 layers respectively,
kernel size of 10 and ReLU as activation funtion. The
first,second and third pooling layers apply a 10 max
pooling, the fully connected layer has 50 units, a Dropout
rate of 0.2, and finally a single output unit.

2) Long Short-Term Memory (LSTM): : Long-Short-
Term Memory is a type of Recurrent Neural Network-
RNN. It is made up of a memory block, which contains
one or more memory cells and three adaptive generative
layers shared by all cells in the block that regulate the
flow of information into and out of the cells [27]. The
cells recollect values over arbitrary time intervals and
it is possible to trim the input, forget, and output units
to ascertain the type of data that should be stored and
manipulated. This allows the LSTM to output selective
information about present and future time intervals [28],
[29].

The LSTM model used for this study as shown in Figure 3
is based on the following: the model input is a 2501x1, 3
LSTM layers of which the first two layers with 64 hidden
layers, and the last one with 32 hidden layers. The model
uses ReLU as the activation function. All LSTM layers
are followed by dropout layers in which some neurons’
contributions to subsequent layers are excluded from the
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training data to avoid overfitting. A dropout rate of 0.2,
and a single output unit are adopted.

3) The Hybrid CNN-LSTM: : The CNN-LSTM mod-
elling for this study as shown in Figure 4 is based on the
following: an input of the model of 2501x1 tensor, 2 CNN
and 2 LSTM layers of each two layers with 64 hidden
layers respectively, ReLU as the activation function, all
layers are followed by Dropout rate of 0.2. The network
is structured based on a single output unit which is the
target i.e. windspeed to predict the TC Intensity. CNN is
for image analysis and LSTM is for time series analysis.
The reason we combine both (Hybrid) is that we believe
the Hurricane intensity can be detected from the imagery
data and also has a dependency on time domain.

o Dropout: Dropout regularization rate of 0.2 was applied to
randomly ignore a specified percentage of the input data
so as to avoid the model from overfitting, was applied for
all the models.

The input layer for the CNN, LSTM, and hybrid CNN-
LSTM models includes 2500 features, based on the dimension
of the satellite imagery of 50 x 50 pixels, where each input
feature represents an extracted pixel value. Also, each of the
three models has a single output which is the wind speed. As
elaborated earlier, wind speed can be used as the value to be
predicted to determine the intensity of a TC.

C. Evaluation

To evaluate the performance of each model in TC intensity
prediction, the Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE) are used to compare predicted values with observed
values. All the metrics(RMSE, MAE, and MAPE) represnt
error rates. For each model prediction, this means that the
lower the error rate the better the prediction. These evaluation
metrics collectively play an important role in evaluating model
performance. RMSE as shown in Equation 1 according to [30]
is used in evaluating the closeness of the predicted values
against the observed value. MAE as shown in Equation 2
according to [31] is used to measure the average magnitude
of the absolute errors between the predicted value and actual
values. MAPE as a measure of predicting accuracy according
to [32] calculates the average of the percentage error as shown
in Equation 3.

1 n
RMSE = .| = Dyre — Dact)? 1
“2( p t) €]
1 n
MAE:— D reiDa,c, 2
n;| N | )
100 <~ Dypre — Dact
MAPE = — —pre_ oo 3
n zl:| Dact ‘ ()

Where (Dgct) is the actual variable, (Dp,.) is the predicted variable,
and n is the amount of collected data.

ITI. RESULTS

The trained DL models were evaluated on their ability to predict
TC intensity by using independent data that was not included in the
training process. The RMSE, MAE, and MAPE outcome were used
to evaluate the performance of each model taking into consideration
that all data based on NetCDF format remain the same and does not
vary. Several experiments were conducted to ascertain the optimal
parameters that produce the best results from each model. The results
of the experiments are shown in Table 1.

A. Experiment 1

Results obtained from experiment 1 based on 100 epochs, pool
size of 10, kernel size of 10 and, 64 neurons for the 3 models are
presented in Table 1 The results based on RMSE, MAE, and MAPE
for the 3 models on both training validation and testing for each
model.

It can be observed from Table 1 that for the RMSE measured
in kts) train validation error rates, CNN-LSTM is the lowest with
14.082, followed by the LSTM with 15.42 and CNN with 18.184,
while on testing LSTM recorded the lowest error rate of 5.488,
followed by CNN-LSTM with 7.298 and lastly CNN with 12.528.
Similarly on MAE and MAPE also measured in kts, the CNN-LSTM
recorded the lowest error rates on train validation with 10.784 and
0.048 respectively, followed by the LSTM with 11.605 and 0.051
respectively, and lastly CNN with the highest train validation of
13.328 and 0.057 on MAE and MAPE respectively. On testing based
on MAE and MAPE the LSTM recorded the least error rate of
4.928 and 0.022 respectively, followed by the CNN-LSTM with 6.766
followed by the CNN with 12.167 both on MAE, and CNN-LSTM
with 0.031 MAPE which is less than CNN MAPE of 0.055 by 0.024.
On train and validation loss it can be observed that the training and
validation loss decreases to a reasonable point of stability with a
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TABLE I
MODEL EVALUATION RESULTS

Parameters | DATASET:HURSAT, POOLSIZE: 10, KERNELSIZE: 10, NEURONS:64,64,32, OPTIMIZER:ADAM
Epochs:100 RMSE MAE MAPE
MODEL TRAINING | TESTING | TRAINING | TESTING | TRAINING TESTING
CNN-LSTM 14.082 7.298 10784 6.766 0.048 0.031
CNN 18.184 12.528 13.328 12.167 0.057 0.055
LSTM 15.428 5.488 11.605 4.928 0.051 0.022
Epochs:75 RMSE MAE MAPE
CNN-LSTM 14.832 5.655 11.519 5.217 0.051 0.24
CNN 17.908 13.631 12.956 12.838 0.055 0.058
LSTM 15.434 4.450 11.792 4.049 0.052 0.019
Parameters DATASET:SHIPS, POOLSIZE 2, KERNELSIZE 2, NEURONS 64,64,32, OPTIMIZER: ADAM
Epochs:100 RMSE MAE MAPE
CNN-LSTM 3.668 3.529 3.500 3.387 3.783 3.368
CNN 7.349 7.292 7.319 7.273 5.6077 5.013
LSTM 3.668 3.529 3.500 3.387 3.781 3.366
Epochs:75 RMSE MAE MAPE
CNN-LSTM 3.668 3.529 3.500 3.388 3.785 3.369
CNN 8.828 8.773 8.803 8.757 7.427 6.075
LSTM 3.669 3.532 3.500 3.393 3.795 3.377

minimal generalization gap of 0.02kt on average, thus demonstrating
a reasonable fit.

B. Experiment 2

Results obtained from experiment 2 based on 75 epochs It can be
observed from Table 1 that for the RMSE train validation error rates,
CNN-LSTM scored the lowest with 14.832, followed by the LSTM
with 15.434 and CNN with 17.908, On testing, LSTM recorded the
lowest error rate of 4.450 followed by CNN-LSTM with 5.655 and
lastly CNN with 13.631. Comparably on MAE and MAPE, the CNN-
LSTM recorded the lowest error rates on train validation with 11.519
and 0.051 respectively, followed by the LSTM train validation of
11.792 and 0.052 respectively, and lastly CNN with the highest train
validation of 12.956 and 0.055 on MAE and MAPE respectively. On
testing based on MAE and MAPE the LSTM recorded the least error
rate of 4.049 and 0.019 respectively, followed by the CNN-LSTM
with 5.217 and 0.024, followed by the CNN with 12.838 and 0.058
both on MAE, and MAPE.

C. Comparison with State-of-the-Art

The study by [19] is based on Deep Learning Multilayer perceptron
using leave one year out LOYO and neural network optimization
and to our knowledge, is the only one that approached TC intensity
as a prediction problem rather than a classification problem. We
implemented our models CNN, LSTM, and CNN-LSTM using this
dataset and compared the performance outcome because their work
focused on the current TC intensity as the most importance predictor
scoring value of 0.101. The experimental setup for their study is
based on an adaptive learning rate, ReLu activation function, L2
regularization with alpha 0.0005 and Adam optimization. The study
recorded RMSE and MAE values of 11.07, and 8.22 respectively of
truly independent values as if in a real-time mode.

The result comparison as shown in Table 2 reveals that the
LSTM model outperformed the previous study on RMSE and MAE.
Similarly, the CNN-LSTM from this study outperformed the previous
studies on RMSE and MAE It is observed that the LSTM model from
this study outperformed the MLP approach in [19] thus highlighting
the predictive accuracy of the LSTM over CNN on Tropical Cy-
clone Intensity. This achievement is attributed to the use of Adam
Optimiser, kernel size applied as shown in the proposed multilayered
architecture approach in figures 2,3, and 4. Furthermore, the proposed

model approached the prediction as a time series problem, thus, not
only focusing on value of predictors but also the possible occurences
before each prediction. This is why the model achieved accurate
results on both datasets.

TABLE II
COMPARISON WITH PREVIOUS WORK
APPROACH RMSE MAE MAPE
MLP [19] 11.07 8.22 -
CNN-LSTM 5.655 5.217 0.024
CNN 13.631 12.838 0.0058
LSTM 4.450 4.049 0.0019

IV. DI1SCcUSSION AND CONCLUSION

Results obtained from the evaluation on the training set show
that the LSTM model performed best (by recording lower errors)
in terms of all metrics i.e. RMSE, MAE, MAPE in the majority of
conducted experiments. This was followed by the hybrid CNN-LSTM
model, and lastly, the CNN performed worse than the other 2 models.
However, despite the LSTM recording the best accuracy, the CNN-
LSTM performed significantly close to the LSTM, but in terms of
speed is the slowest compared to the other 2 models. LSTM had the
fastest performance followed by the CNN model. The conclusions
drawn from analyzing the results obtained from the testing are:

o Performance difference was observed by the respective CNN,
LSTM, and CNN-LSTM models on the two datasets, where on
the SHIPS dataset, the models performed better on RMSE and
MAE only, but for MAPE performance, the models performed
better on the HURSAT dataset. This performance difference by
the models can be attributed to the variation of the datasets
i.e. length, and number of attributes. However, despite the
performance difference on RMSE, MAE and MAPE, it was
observed that the performance pattern for each model remained
the same i.e LSTM, CNN, and CNN-LSTM achieved better
testing results than training results on both datasets.

o Among the three models experimented on in this study, the
LSTM model produced the best results, followed closely by the
hybrid (combination of CNN and LSTM) and lastly the CNN.
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o Despite having a minimal error rate compared to CNN, and the

LSTM models, the hybrid CNN-LSTM model is the slowest,
thus being more computationally expensive. This is followed
by the CNN and lastly the LSTM model. The LSTM model
having the lowest prediction error is the fastest of the models
then followed by the CNN.

The difference between all the three models in terms of error
mostly ranges between 1 to 6 kts, this implies that despite the
difference in terms of the three model’s performance, they all
perform well as the gap between them in terms of error rate is
not wide.

Considering that the modeling process plays a vital role in the
produced models’ performance, the approach employed by this study
in modeling as a Data Mining problem(by extracting features from
NOAA NetCDF to CSV) has yielded positive outcomes by producing
better results compared to studies such as [19]. However, a major
limitation of the employed approach is the time delay between
obtaining the NETCDF files to the prediction outcome. The several
steps involved such as the extraction of features from the dataset
into CSV and approaching the prediction as a time-series problem
consumes more time than approaching the prediction as a computer
vision problem where data is extracted directly from the satellite
image. In the future, we intend to further improve this study’s
approach by applying it on multiple data streams to predict TC
intensity along with Minimum Central Pressure(MCP) and TC track.
Also, we intend to test other types of deep learning models to evaluate
how they perform on the above prediction problems. In particular, we
would like to determine how closely related the TC intensity is with
the TC track. This would improve the ability to efficiently predict
both TC intensity and TC track would not only help with warning
on Intensity but also on the track of the TC.
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