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ABSTRACT

The recent push for fair, trustworthy, and responsible Artificial Intelligence (AI) and Machine Learning (ML)
systems have pushed for more explainable systems that are capable of explaining their predictions/decisions and
inner workings. This led to the field of Explainable AI (XAI) going through an exponential growth in the past
few years. XAI has been crucial in making AI/ML systems more comprehensible. However, XAl is limited to
the model that it is being applied to, for both post-hoc or transparent models. Even though XAI can explain
the decisions being made by the ML systems, these decisions are based on correlation and not causation. For
applications such as tumor classification in the medical field, this can have serious consequences as people’s lives
are affected. A potential solution for this challenge is the application of causal learning, which goes beyond
the limitations of correlation for ML systems. Causal learning can generate analysis based on cause-and-effect
relations within the data. This study compares the results of explanations given by post-hoc XAI systems to
the causal features derived from causal graphs via causal discover for image datasets. We investigate how well
XAT explanations/interpretations are able to identify the pertinent features within images. Causal graphs are
generated for image datasets to extract the causal features that have a direct cause- and-effect relation with the
label. These features are then compared to the features highlighted by XAI via feature relevance. The addition of
causal learning for image datasets can aide in achieving fairness, bias detection, & mitigation to provide a robust
and trustworthy system. We highlight the limitation of XAT tools such as LIME to make predictions based on
physical features from images, whereas causal discovery can go beyond the simple pixel based perturbations to
identify causal relations from image attributes.
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1. INTRODUCTION

An increased utilization of artificial intelligence (AI) and machine learning (ML) systems within the last decade
has given rise to concerns regarding their safety and trustworthiness. These systems which have been used in a
plethora of applications, were found to be biased and unfair against different groups of populations. Examples
include Amazon’s hiring AI system which was shown to be biased against women, and META’s advertising
AT system which was biased against people of color and other minorities. These concerns have caused federal
agencies, commercial companies and academic institutions to research and implement new methodologies and
techniques that can ensure the safe use of these systems. Specific fields of research and development such as
Responsible AI (RAI), bias identification/mitigation and fairness for AI/ML systems have seen tremendous
growth. Towards this, causal learning and explainable AI (XAI) have been highlighted in the literature as
potential solutions for ensuring robustness and trustworthiness of artificial reasoning systems.!2

Even with the recent advancements in the fields of causal learning and XAI, challenges related to the lim-
itations of current methodologies and modalities hinder the further advancement. While causal learning for
experimental data via randomized control trials has been well-studied and perfected, generating causal relations
between variables in observational datasets remains a challenge. The lack of ground-truth for most observational
datasets presents a major hurdle for artificial reasoning systems. Due to these challenges most of the existing
methodologies and techniques for both causal discovery and causal inference are limited to tabular data only.
Even with a plethora of studies describing the use of causal discovery for different applications, there is a lack of
studies highlighting the use of causal discovery with image datasets. A few studies within literature have high-
lighted the use of causal discovery for images.?>® However, extensive work is still needed to advance this research



forward. In this study we propose using causal learning and XAI to generate robust explanations by comparing
and validating the causally relevant features with the results from the correlation-based model explanations.

Here, we propose the use of causal learning and XAI for image datasets using existing tools and method-
ologies. Since there are no available tools for extracting causal relations from observational image datasets,
features/attributes can be extracted from the images and exported into a tabular format which allows for the
application of existing causal learning tools. XAI can be readily applied to image classifiers based on the specific
needs and applications. Even for more advanced, black-box deep learning image models, XAI tools such as
DeepLIFT and SHAP are applicable to generate explanations for highlighting the features that have an impact
on the image classification. The paper is organized as follows. Section 2 provides the background into causal
learning via causal discovery, Section 3 provides an overview of XAI, Section 4 provides the proof-of-concept
example, while Section 5 provides the results and discussion. Section 6 includes concluding remarks.

2. OVERVIEW OF CAUSAL LEARNING

Causality can be defined as the relationship between a cause and an effect. Causal learning refers to the
utilization of causality for AI/ML applications, where artificial reasoning models are capable of generating
reasoning due to causation and not simple correlation. Here the causal learning portion of the reasoning involves
highlighting the causal relations between the variables in the dataset. It can highlight the change in the model’s
prediction caused by a change in a feature due to modifications to another feature. Here the feature that is being
modified is called the treatment, and the feature that is being investigated is called the outcome. Other features
within the dataset that can cause a change in both the treatment and the outcome are called confounders, while
background /noise variables are referred to as the covariates.

Causal relations between features in a dataset can be classified into three distinct categories referred to as
the causal hierarchy: association, intervention, and counterfactuals.”® The first level is called association and
refers to the simple statistical relations between the variables. The second level, called intervention uses the
causal structure of the variables to highlight the effect of changes to the treatment on the outcome. The last
level of the causal hierarchy is called counterfactuals and it encompasses both association and interventions to
derive the causal relations from the two former levels and make predictions based on unknown outcomes.

Causal learning for AT/ML systems can be done via two form of inquiry causal discovery and causal in-
ference.'% 1 The first one, causal discovery is utilized to discover and highlight the causal relations that exist
between the features in a dataset. The second one, causal inference can be used to investigate the extent to which
a treatment can be modified to cause a change in the outcome. To investigate causal discover and inference two
causal frameworks are available: structural causal models (SCMs) and potential outcome framework. Structural
causal models utilize structural equations and causal graphs to derive a theory for causality. 1213 Here the
causal graphs are used to highlight the causal relations between the features via a directed graph which includes
all the features in the dataset as individual nodes.® The potential outcome framework defined the potential
outcome for an event as the outcome of the instance if the specific treatment was applied.'* The estimation of
the treatment effect on the outcome can be differentiated into three separate categories based on the popula-

tion: individual treatment effect (ITE), average treatment effect (ATE), and conditional average treatment effect
(CATE).ﬁ’ 7,12,13

3. OVERVIEW OF EXPLAINABLE AI (XAI)

With the tremendous advancements in the past decade for AI/ML systems, there has been an increased call
to make them more interpretable and explainable. Even though the complexity of the models has increased,
their explainability still remains a major challenge in achieving trustworthy AI. Especially for deep learning
models which are inherently black-box, there is a need for explainable predictions. To address this challenge, the
The U.S Defense Advanced Research Projects Agency (DARPA) started the Explainable AT (XAI) program in
2017. The program defined XAl as “Al systems that can explain their rationale to a human user, characterize
their strengths and weakness, and convey an understanding of how they will behave in the future”.'® Here we
provide a brief overview of XAI, for a more in-depth review of XAI, readers are encouraged to read the survey
paper by authors on XAI'! Explainability has been described as a vital component for achieving accountable



and responsible AI where explainable systems can aid in identifying and mitigating bias from real-world data.’

Madalina Busuioc listed explainability as one of the criteria for accountable AI: 16

Multiple studies/tools/methodologies have been published to aid in achieving explainability for AT/ML models
via transparency or post-hoc explanations. Algorithmic transparency makes the models inherently explainable,
however for models that are not inherently transparent, post-hoc explanations can be utilized via tools such as
LIME, DeepLIFT, SHAP, and DeepSHAP can be used.!7-20

SHapley Additive exPlanations (SHAP) presented by Lundberg, et al., is one of the most commonly used
post-hoc XAI framework for interpreting predictions. It generates feature importance scores for the model
predictions based on the Shapley values by calculating a relevance score of the input features. These scores
can be compared for individual features to investigate the impact each feature makes on the model predictions.
Additionally, it also generates additive feature importance values to provide further insights into the relevance
of the features.!” DeepSHAP, presented by Chen et al., can be utilized for explaining complex deep learning
models by layer wise propagation of the shapley values.?!

Local Interpretable Mode-Agnostic Explanations (LIME) presented by Riberio et al., is another commonly
used tool/library for generating robust explanations for classification models. It is a novel explanation method
for generating explanations of classifiers by learning a local interpretable model around the classification.!® 19

4. PROOF OF CONCEPT EXAMPLE
4.1 Data Source

The dataset for this study, the animals with attributes dataset was derived from The Institute of Science & Tech-
nology Austria’s open-source data repository Works open-source data repository (https://cvml.ista.ac.at/AwA/).
It consists of 37322 images of 50 different classes of animals with pre-extracted feature representations for each
class. All the animal classes are characterized into 85 different attributes. Attributes that are shared across the
different classes allow for transferring information between the classes. For the current study the dataset was di-
vided into only two classes of Tiger and Zebra with 500 images for each class. The number of features/attributes
was narrowed down from 85 to 17 as shown in (Fig 2).

4.1.1 Methods

As stated previously there is still a lack of existing tools and methodologies for extracting causal relations directly
from images to perform causal discovery. To address this challenge we propose a workflow/framework of existing
methodologies to generate causal relations via causal graphs from observational image datasets and comparing
them to XAI based interpretations to compare if the attributes/features in both causal-based and model-based
are the same (Fig 1). Mainly we propose to use existing tools/techniques in a workflow to generate causal graphs
from observational image datasets. This consists of the following components:

Attribute extraction from images.

e Conversion of extracted features to tabular data.

Causal discovery on the tabular data.

e Comparison of causal features to the features from XAIL
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Figure 1: Proposed workflow for investigating causal relations in image datasets
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Figure 2: Extracted attributes for the images.

The first step of the proposed framework is attribute/annotation extraction from images. Attributes or
annotations for images were extracted and exported in tabular format for investigating causal relations within
the dataset. Attributes for each image/class are used to generate the causal images via existing causal discovery



tools. A skeleton graph from the raw data was generated to perform pairwise independence test. Directed causal
graphs with causal relations between the different variables are generated using the Peter-Clark (PC) algorithm.
Once the causal graphs have been generated, they can be compared to the features highlighted via XAI for the
machine learning explanations.

Once the causal graphs are created, the image dataset is applied to a deep learning image classifier. For this
study we utilized two TensorFlow-Keras sequential models for binary classification with different parameters and
number of layers to choose the optimal model to apply explainability. The first model had 3 layers; keras, dropout
and dense. with 2260546 parameters. The second model had 10 layers; rescaling, conv2d_1, max pooling_1,
conv2d_2, max pooling 2, conv2d_3, max pooling 3, flatten, dense_1, and dense 2 with 6446498 parameters.
Both models were trained for 50 epochs. The finalized dataset was then randomly split for training and testing
at a 80%-20% split with 80% of the dataset used for training the model and 20% used for validation. The top
performing Keras model was then used to apply XAI for further evaluation via LIME. Other libraries such as
Lime, Matplotlib, sklearn, and PIL, were installed directly in the notebook using pip. Once the training and
validation were completed the models were evaluated using performance metrics of accuracy, precision, recall
and Fl-score.

e Accuracy - Accuracy describes the number of correct predictions over all predictions.

TruePositive + TrueNegative

Accuracy =
4 TruePositive + TrueNegative + FalsePositive + FalseNegative

e Precision — Precision measures how many of the positive predictions made are correct.

. TruePositive
Precision =

TruePositive + FalsePositive
e Recall - Recall measures how many of the positive cases the classifier correctly predicted, over all the

positive cases in the data.

Recall — TruePositive

TruePositive + FalseNegative

e F'1 Score - F1-Score combines both precision and recall and is the harmonic mean of the two. It is between
0 and 1, where 0 is the worst score and 1 indicates that the model predicts each observation correctly.

Precision x Recall

F1— =2 .
seore ¥ Precision + Recall

The top performing Keras model was chosen for further explainablity analysis using LIME. This allowed for
the investigation of the features relevant to identify the image as either a Tiger or a Zebra. As mentioned in the
earlier section LIME is an open-source post-hoc explanation method used for explaining ML and DL models,
where explanations can be provided by perturbing the input images and highlighting the parts of the image
that contribute most towards a specific classification. For causal discovery, the causal graphs were generated
from tabular with the finalized features using the Causal Discovery Toolbox (CDT). The directed causal graphs
with causal relations between the different variables can be compared to the correlation-based ML classifiers via
LIME.



5. RESULTS & DISCUSSION

The performance metrics for both the classification models are - highlighted in Table 1. Even though neither of

the classifiers were able to achieve a perfect score of 1 for the performance metrics, the Seq-10 Layer model with
a 0.97 Fl-score was deemed good for this proof-of-concept study.

Model Accuracy | Precision | Recall | F1-Score
Seq - 3 Layers 0.56 0.52 0.52 0.52
Seq - 10 Layers 0.99 0.98 0.97 0.97

Table 1: Performance metrics for both Keras models

Upon completion of the model training, testing and evaluation, the best performing model (Seq-10 layers)
was chosen for further analysis using XAI. Perturbation heat-maps were generated using LIME for the deep
learning model. Causal graphs were generated via causal discovery to highlight the causally relevant features in
the images that had a causal relation with the classification. Figure 3 shows the causal graph with the features
that have a direct causal relation with the classification.
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Figure 3: Causal graph for the animal classification.

The generated causal graph yielded eleven features with a direct causal relation to the animal classification;
a) pattern, b) color, ¢) fur, d) movement, e) size, f) strength, g) teeth, h) diet, i) habitat, j) pedals k) physical.
These eleven features can be ascribed to having a direct impact on the classification of an animal. While the
other features still play a role in the classification, these features play a direct role. The graph highlighted the
indirect causal relation to the classification for food gather and activity as food gather impacts the diet, which
impacts the classification. Similarly activity impacts the size which impacts the classification. Activity had a
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Figure 4: Explanation heat map for an example image of Tiger & Zebra using LIME.

bi-directional relation with agility and group living. From the graph we can deduce that eleven features have a
direct impact on the classification while agility, activity, behavior, speed, food gather, and group living had a
lower impact. The perturbation-based feature highlights from LIME for the Seq-10 layer model highlighted the
head, pattern, color, and fur as the most impactful features for the classification of both the Tiger and Zebra
example as shown in Figure 4. The perturbation based heatmap explanations from LIME also highlight some
of the limitations of the correlation based AI/ML models for image classifications these models do not provide
information on any non-physical attributes for images. For example, while the LIME explanation for the zebra
image highlights the color, pattern, fur and head of the zebra in the heatmap other attributes such as the diet,
speed, strength, and size cannot be highlighted since they are not physically presented in the images. For the
Tiger image, even though the tiger’s paws were in the picture along with the teeth, these were not highlighted
in the heatmap to be as impactful as the head of the tiger. A potential solution towards this challenge is
the presence of a human-in-the-loop when interpreting and analyzing the explanations from XAI based tools.
With a human-in-the-loop, a more robust and comprehensive analysis can be achieved for image datasets by
comparing/contrasting the causal and correlation based features.

Even though the current study is intended to serve as a simple-proof-of concept, it highlights the functionality
and effectiveness of existing tools to highlight causal relations in image datasets for artificial reasoning systems to
achieve “human-like” intelligence. The utilization of causal learning can provide an additional layer of robustness
for the explanations generated for the image classifiers via XAl tools such as LIME and SHAP. This can aid in
ensuring the trustworthiness and fairness of the AI/ML systems by helping them go beyond simple correlation
and achieve causal reasoning.

In this paper we have provided a framework to extract causal relations from observational image datasets. The
addition of causal learning for artificial reasoning provides a more robust AI/ML model where trustworthiness
is achieved. While traditional AI/ML models are progressing towards achieving robustness and trustworthiness,
sometimes correlation based explanations are insufficient. Therefore, the extra layer of robustness from the
causally relevant features can be a simple yet effective method to ensure trustworthiness. We presented a simple
and efficient yet novel method to ensure the use of observational data for trustworthy AI/ML systems. Due to
the lack of large observational datasets with available ground-truth, causal graphs generated via causal discover
can play a vital role in generating robust and trustworthy explanations.



6. CONCLUSION

There has been a recent rise in interest in fair, trustworthy and responsible AI/ML systems due to new laws/poli-
cies such as the Executive Order 13960 for Safe and Trustworthy AI. This in-turn has caused for calls to have
AI/ML models be explainable and interpretable. While XAT has been crucial in making AI/ML systems be
more interpretable, explainable and transparent, there are still challenges that need to be addressed. These in-
clude the lack of XAl systems to generate explanations based on causal-relations, which are crucial for achieving
human-like reasoning. To address this issue, causality can be utilized to provide an added layer of robustness
to ensure AT/ML models make predictions based on causal reasoning. The addition of causal learning for image
datasets can aid in achieving fairness, bias detection, and mitigation to provide a robust and trustworthy system.
This paper provides a proof-of-concept study to highlight the use of causal learning in addition to XAI for image
classification models. We highlight the limitation of XAI tools such as LIME in making predictions based on
physical features from images, whereas causal discovery can go beyond the simple pixel based perturbations to
identify causal relations from image attributes.
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