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1. Introduction

We aim to give a short stochastic proof of the following sharp symmetrized Talagrand inequality:

Theorem 1 ([8, Theorem 1.11). For Borel probability measures yu,v on R" with finite second
moments and p centered,

Wa (1, v)? < 2D(ully) +2D(v|ly), 1)

where W, is 2-Wasserstein distance, D is relative entropy, andy is the standard Gaussian measure
onR".

By duality, (1) is formally equivalent to the functional Blaschke-Santal6 inequality [13, Theo-
rem 1.2], which states that if Borel functions f, g : R"” — R satisfy

f xe 7™ dx=0and f)+gW) =(x,y), Vx,yeR",
Rn

( f e S dx) ( f e 8W dx) <emn". )

Equality holds for quadratic f, and g = f*, its convex conjugate. Despite the equivalence, (1) may
be regarded as a formal strengthening of (2) in the sense that (2) is recovered from Theorem 1 by
weak duality: briefly, for f, g satisfying the hypotheses demanded by (2), take du(x) x e~/ dx
and dv(x) o« e~8® dx in (1) and simplify to obtain (2). The reverse implication corresponds to
strong duality, and is more difficult. See [10, Theorem 11] and [8] for details.

Inequality (2) is a functional generalization of the earlier Blaschke-Santal6 inequality for
the volume product of convex sets, earlier proofs of which were accomplished by calculus of
variations [20] and symmetrization arguments [16, 19]. The functional form was proved in [2]
(and earlier in K. Ball’s Ph.D. thesis [3] in a restricted setting of even functions). The original
proof relied on the usual Blaschke-Santal6 inequality applied to level sets. Lehec later gave
two alternative proofs; one using induction on the dimension [13], and the other [14] using the
Prekopa-Leindler inequality and the Yao-Yao partition theorem. This last proof actually yields
a more general statement, originally due to [9], but the present work shall be restricted to the
classical setting. More recently, a new semigroup proof of the inequality for even functions
was established in [18] using improved hypercontractive estimates for the heat flow, and then
simplified in [6]. Let us also mention a recent generalization to several functions under a
symmetry assumption, due to Kolesnikov and Werner [12].

Equivalence between integral inequalities of the form (2) and transport inequalities of the
form (1) via duality goes back to [4], where they studied Talagrand quadratic transport-entropy
inequality [21] (which is (1) in the particular case u = y). Duality for transport inequalities
involving three measures, such as (1), has been considered in [10] and [11, Proposition 8.2].

Stochastic proofs of functional inequalities, in particular using Brownian motion and Gir-
sanov’s theorem, go back to Borell’s stochastic proof of the Preképa-Leindler inequality [5]. Our
present work is motivated by Lehec’s short stochastic proofs of various functional inequalities
[15], including in particular Talagrand’s transport-entropy inequality.

then

2. A Stochastic Proof

We'll work on the Wiener space (Q2, 8,P), where Q is the set of continuous paths w : [0,1] — R”
starting at 0, 98 is the usual Borel o-algebra, and P is the Wiener measure. Let B;(w) := w(t) be
the coordinate process, so that B = (B;)o<<1 is a standard Brownian motion, and so is the time-
reversed process B,:=B;—Bi_;. Let F = (F)o<s<; and F+ = (Z)o<t<1 denote the filtrations
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generated by B and B, respectively. For each ¢ € [0,1], %, and Z, are complementary, in the
sense that they are independent and % = o (%; U gf_t). Henceforth, || - || denotes the £? norm,
and I denotes the identity matrix.

Apart from standard facts in stochastic calculus, we'll need two lemmas. The first is a
variational representation of entropy, obtained as a consequence of Girsanov’s theorem; it has
been applied to study rigidity and stability of various functional inequalities (see, e.g., [1, 7, 17]).

Lemma 2 ([7]). For a centered probability measure u on R"™ with finite second moments, we have
LE[|F; - 1|2
HEF —T117] dr

——dr, 3)

1
D =inf—
(ully) =inf fo
where the infimum is over & -adapted R™ " -valued processes F = (F;)o<t<1 Such that fol F;dB; ~ p.
Remark 3. The same representation holds if we consider & *-adapted F with fol F;dB; ~ pu.

Stochastic proofs of several other functional inequalities use representation formulas for the
entropy and linear couplings of Brownian motions (cf. [7, 15]). Our proof will similarly rely on the
representation formula (3) for the entropy!, but makes use of a new coupling induced by time-
reversed martingale representations. The next lemma is the crucial new ingredient; it relates
martingale representations in terms of (B;)o<<1 and its time-reversal (Bo<s<1-

Lemmad4. IfX e L*(Q,%,P) is aR"-valued random vector with martingale representations

1 1
X:f FldBf:f G[dgt,
0 0
then
1 1-t
f [E[||F§—I||2]ds2f E[|Gs—1]%]ds, VO<r<1. 4)
t 0
.
1-t’
E(IX11%] - ENELXI 12 = ENN X — ELXI 1% = ENELX - ELXIZ 1% 112 = ENELX 112

Proof. By the Pythagorean theorem, convexity, and independence of %; and &, we have

Since E[X|Z;] = fot FydBg and E[X|F]" ] = fol_t G, dBj, three applications of Itd’s isometry give
1-¢

1
f E[IE5l12] ds = E[ X 2] — ELELX|Z %) = ELELX| ;1112 =f0 E[IGs |2 ds, VO < <1,
t

Next, by applying Itd’s isometry to each martingale representation of X, we find

1 1-¢
f E[Tr(Fy)lds = E[(X,B; — B)] = E[(X, B]_,)] =f E[Tr(Gs)lds, VOt =<1.
t 0

Combining the previous two observations gives (4). d

Proof of Theorem 1. The inequality is invariant with respect to translations of v, so we may also
assume v is centered. Let F = (F;)o<s<1 be any & -adapted process such that fol F;dB; ~ i, and
let H = (H;)o<:<1 be any & *-adapted process such that fol H,;dB; ~v. Let G = (G;)o<<1 be the
martingale representation of fol F;dB; in terms of the time-reversed Brownian motion B ;ie, Gis
& *-adapted, satisfying fol G,dB, = fol F;dB; ~ p. By the Tonelli theorem and Lemma 4, we have

1 —_112 1 1 1-t
fwdszf [E[IIGS—IIIZ]ds+f : 2([ [E[IIGS—IIIZ]ds)dt
0 s 0 o =1%o

1 L | ! VELIFs =117
—1|? _— —1|? - 2
Sf() E[l| Fy I||]ds+f0 (l—t)z(f,; E[l| Fy Ill]ds)dt fo T ds

IThe representation (3) is not the same as that used in [15]. However, it is derived from [15, Theorem 4] by
combination with the martingale representation theorem.
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By definition of W5, It6’s isometry, convexity of || - 12, and the previous estimate,
2

! =~ L VE[G, 12 VE(| H, — 112
Wa (i, v)? <E f (G;— Hy)dB; =f [E[IIGI—HtIIZ]dtsf 6: =1 ]dt+f A =17 5,
0 0 0 t 0 1-1¢
VE[IF, -T2 VE[NH, -T2
s[ I F -1l ]d“_f I H; -1l ]dt.
0 1-1 0 1-t¢
With the help of Lemma 2, optimizing over F and H completes the proof. g

3. Remarks on the Approach
3.1. Equality cases

The equality cases for (1) are also evident from the given proof. Indeed, if D(ully) < oo, then
the infimum in (3) is a.s.-uniquely achieved by an % -adapted process F = (Fy)g<s<1. Defining
X := fol F;dB; ~ u for this particular F, equality in (1) implies equality in (4) for a.e. ¢ € [0,1],
which requires that X — E[X| %] is %] ,-measurable for a.e. ¢ € [0,1]. By Proposition 5 below,
this ensures X ~ p is Gaussian. By symmetry, any extremal v is also Gaussian, and explicit
computation shows that y,v are extremizers in (1) if and only if u = N(0,C) and v = N@,C™1)
for some 0 € R" and positive definite C € R"*",

Proposition 5. Let X € L2(Q, %,P) admit martingale representation X = fol F;dB;. If X —E[X|%;]
is ﬂf_t—measumhle fora.e. t€[0,1], then X is Gaussian.

Proof. Define M, := fot FydB;. The hypothesis is equivalent to requiring that (M; — M;) is &' ,-
measurable for each ¢t € 2, where & is dense in [0, 1]. Fixany s, t € &, with s < t. Since (M} — M) is
Z " ,-measurable by hypothesis, and (M; - Mj) is %;-measurable by definition, complementarity
ensures (M; — M;) and (M;— M) are independent. Iterating this procedure on the (M; — M;) term
allows us to conclude that (M;)p<;<1 has independent increments, provided the endpoints of the
increments are in 2. Since X € L?(Q, %,P), a version of (M;)o<;<1 admits continuous sample
paths, and we conclude by density of &2 that (M;)o<;<1 has (square-integrable) independent
increments generally, and is thus a Gaussian process. g

3.2. Importance of the coupling induced by time-reversal

With the proof of Theorem 1 in hand and the equality cases characterized, we highlight the impor-
tance of the coupling based on time-reversal. Following previous stochastic proofs of functional
inequalities, one could appeal to martingale representations fol F, dB} ~ 1 and fol G dB% ~V
with linearly coupled Brownian motions B! and B? (equivalently, Brownian motions B! and B>
adapted to a common filtration) to couple ¢ and v. This approach cannot work, as we now ex-
plain.

Working in dimension n = 1 for simplicity, recall that when p = N(0,a) with ¢ > 0, the
minimizer F in (3) has an explicit expression (e.g., [7, Sec. 2]). In particular,

1 [YE[F,-1)?
[F,dB}~,LLandD(,u||y)=Ef Mdt—» a
0

Fp=—— .
1-1¢ l1-t+at
Likewise, for v = N(0,a™ 1), the “optimal” representation of v with respect to B2 satisfies
! 1 (LENG-112] 1
G,dB? ~vand D(v =—f ——dt — Gy= ———.
fo L viv=5 o 1-t e+t

Since B! and B? are linearly coupled standard Brownian motions, we can write

1/2
B}] [1 0]
= B;,0<t<1, 5)
[B% ol
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for some |o| < 1, where (Bf)p<¢<1 is a 2-dimensional standard Brownian motion. This construc-
tion induces a coupling 77, of X := fol F;dB} ~pand Y := fol G;dB? ~ v satisfying

! a+i)-
[Ena"X—Yll2=f (724G —20r,G)dr={ " W) D)
0 2(1-0) ifa=1,

where we made use of Itd’s isometry and (5). A simple calculation reveals that

4ologa

ifa#l

. 1
min E, [X-Y)? = a+——2=Wa(u,v)?=2Duly) +2Dv|y),
o:lol<1 a

with equality if and onlyif & = 1. So, with the exception of the trivial case 1 = v = y, the established
stochastic approach to proving functional inequalities using linearly coupled Brownian motions
fails to produce the requisite optimal coupling between p and v in all extremal cases (at least,
in this implementation). This suggests that coupling through time-reversal lends a useful new
degree of freedom to the stochastic program for proving functional inequalities.
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