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Abstract—Differential Privacy (DP) is a well-established frame-
work to quantify privacy loss incurred by any algorithm. Tra-
ditional DP formulations impose a uniform privacy requirement
for all users, which is often inconsistent with real-world scenarios
in which users dictate their privacy preferences individually.
This work considers the problem of mean estimation under
heterogeneous DP constraints, where each user can impose their
own distinct privacy level. The algorithm we propose is shown
to be minimax optimal when there are two groups of users with
distinct privacy levels. Our results elicit an interesting saturation
phenomenon that occurs as one group’s privacy level is relaxed,
while the other group’s privacy level remains constant. Namely,
after a certain point, further relaxing the privacy requirement
of the former group does not improve the performance of
the minimax optimal mean estimator. Thus, the central server
can offer a certain degree of privacy without any sacrifice in
performance.

I. INTRODUCTION

Privacy-preserving techniques in data mining and statistical
analysis have a long history [1]-[3], and are increasingly
mandated by laws such as the GDPR in Europe [4] and the
California Consumer Privacy Act (CCPA) [5]. The current de-
facto standard for privacy - Differential Privacy (DP) - was
proposed by [6], [7]. Recent extensions of DP include Renyi-
DP [8], Concentrated-DP [9], and Zero-Concentrated-DP [10].

Statistical problems like mean estimation under privacy
constraints are important in real-world applications, and there
is a need to understand the trade-off between accuracy and
privacy. Most existing works consider a uniform privacy
level for all users (see, e.g., [11]) and do not capture the
heterogeneity in privacy requirements encountered in the real-
world. Such heterogeneity frequently emerges as users balance
their individual privacy options against the utility they desire
from a service. Thus, a natural question arises: how should
one deal with heterogeneous privacy for statistical tasks, such
as optimal mean estimation? The effect of heterogeneity of
privacy levels on accuracy is not well-understood; here, we
make an effort to further the understanding of this trade-off
by focusing on the mean estimation problem as a step in this
direction.

We remind the readers that in the classical estimation
problem without privacy constraints, the mean squared error
decays as 1/n, where n is the sample size. While the same
decay is also observed under homogeneous DP constraints, the
cost of DP is present in the second-order term, generally of
form 1/(en)?, where ¢ is the privacy level [12].
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A. Our Contribution

We consider the problem of univariate mean estimation
of bounded random variables under the Central-DP model
with Heterogeneous Differential Privacy (HDP). While the
proposed scheme for mean estimation can handle arbitrary
heterogeneity in the privacy levels, we prove the minimax
optimality of the algorithm for the case of two groups of
users with a distinct privacy constraint for each group. This
setting is particularly relevant for social media platforms,
where studies have found two broad groups of users — one
with high privacy sensitivity and another that does not care [13,
Example 2]. This two-level setting is also a good first-order
approximation to scenarios where users have some minimum
privacy protections (e.g., ensured by legislation), but may also
opt-in to greater privacy protections (e.g., the ‘do not sell my
information’ option mandated by the CCPA). The setting also
includes when one group’s data is public, corresponding to
some already known information. For the general case of every
user having a distinct privacy level, experiments confirm the
superior performance of our proposed algorithm over other
methods. We view this work as a step in understanding the
trade-off in the heterogeneity of privacy and accuracy; some
directions for further investigation are outlined in Section V.

Out of a total of n users, a fraction f are in the first group,
and the rest are in the second group. Every user in the first
group has a privacy level of €; and the second group has
a privacy level of €2 (e2 > €1). As in homogeneous DP,
one might expect better accuracy in mean estimation as e
is increased keeping n, f,e; fixed'. However, we show that
after a certain critical value, increasing ey provides no further
improvement in the accuracy of our estimator. By matching
upper and lower bounds, we show that this phenomenon
is fundamental to the problem and not an artifact of our
algorithm. As a corollary of this saturation phenomenon,
having a public dataset (e; — 00) has no particular benefit for
mean estimation. Thus, the central-server can advertise and
offer extra privacy up to the critical value of e to the second
group while not sacrificing the estimation performance.

We stress that our results do not assume the fraction f
to be constant. For example, for a fixed n, one could take
f=0o0r f =1 to recover results known for the homogeneous
DP setting. One could also consider f to depend on n; e.g.,
consider 1—f = ¢/n and €3 — oo to denote a constant number

'In DP framework, higher € corresponds to lower privacy.
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c of public data samples as we increase the number of private
samples. The authors are unaware of any previous result that
considers this problem in such a level of generality over
n, f, €1, €. Further, many of the techniques in the literature
for DP mean estimation obtain the 1/n? and the 1/n terms
separately in the lower bound [14], [15], which cannot give
tight results in f that we show.

In Section II, we define the problem setting, state the main
theorems, the proposed algorithm, along with an interpretation
of the results. Experiments and other baseline methods are
presented in Section IV to support the theoretical claims made
in this work. Conclusions and possible future directions are
outlined in Section V.

B. Related Work

Estimation error in the homogeneous DP case has been
studied in great detail in recent years (see [12], [14], [16],
[17]) under both the Central-DP model and the Local-DP
(LDP) model. In the LDP model, users do not trust the central
server and send their data through a noisy channel to the
server to preserve privacy [18], [19]. Tasks like query release,
estimation, learning, and optimization have been considered
in the setting of a private dataset assisted by some public data
[20]-[27]. Using a few public samples to estimate Gaussian
distributions with unknown mean and covariance matrix is
considered in [28]. The public samples eliminate the need
for prior knowledge of the range of mean, but the effect on
accuracy with more public samples is not considered. HDP
for federated learning is considered in [29]. They remark
that naively taking a linear combination of gradients in the
proportion of the privacy levels is suboptimal and propose an
SVD-based projected gradient algorithm. A general recipe for
dealing with HDP is given by [30], but their idea of scaling the
data using a shrinkage matrix induces a bias in the estimator.
Further, their approach can not deal with public datasets.

Personalized Differential Privacy (PDP) is another term for
HDP in literature. Reference [31] studied PDP and proposed a
computationally expensive way to partition users into groups
with similar privacy levels. For each partition, standard DP
algorithms can be used with respect to the minimum € in
each group. It is not immediately clear how to use these
partitions for tasks like mean estimation - if we consider
taking a linear combination of the outputs of each partition,
then what is the optimal linear combination? Further, for the
special case of the two groups we consider, the partitions
are already clearly the two groups themselves. An alternate
method by [32] proposes a mechanism that samples users
with high privacy requirements with less probability. While
this is a general approach for dealing with heterogeneity,
it is not optimal for mean estimation. Indeed, sub-sampling
when e; — oo corresponds to deleting the e;-private data.
Reference [33] also consider HDP mean estimation under the
assumption that the variance of the unknown distribution is
known. However, as they mention, they add more noise than
necessary for privacy since they are essentially performing
LDP instead of the more powerful Central-DP technique. As
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a result, no saturation phenomenon can be deduced in their
method due to the excessive noise added. Further, they do
not provide a lower bound. The PDP setting for finite sets
is consdiered in [32], [34] and they give algorithms inspired
by the Exponential Mechanism [35]. References [36], [37]
consider a heterogeneous privacy problem for recommendation
systems. PDP in the LDP setting has been studied by [38] for
learning the locations of users from a finite set of possible
locations. A recent work by [39] considered a Bayesian setting
with uniform privacy and heterogeneity in the number of
samples and distribution of each user’s data. Another line of
work by [40], [41] consider a more general notion of DP which
encompasses HDP. References [42]-[44] consider a hybrid
model where some users are satisfied with the Central-DP
model while other users prefer the LDP model.

Most closely related to the present work is [45], which
considers the general HDP setting for mean estimation in
the context of efficient auction mechanism design from a
Bayesian perspective. While they encounter a saturation-type
phenomenon in their algorithm, it cannot tightly characterize
the saturation condition even in the case of two datasets with
distinct privacy levels (see Section IV). They also assume
that all the privacy levels are less than 1. This assumption
is central to their upper and lower bounds; hence, one cannot
draw conclusions when there is a public dataset. Section IV
contains more comparisons of our proposed method with that
of [45].

II. PROBLEM DEFINITION

We begin with some notation: non-negative real numbers
will be denoted by R>(. As we consider one-dimensional data-
points in our datasets, we use boldfaces, such as x to denote
a dataset or, equivalently, a vector. Capital boldfaces, such as
X, denote a random dataset, i.e., a random vector. Vectors
with subscript i, e.g. x;, refer to the ¢-th entry of the vector,
while we use the notion ! for a vector differing from x at
the i-th position.

A natural definition of heterogeneous Differential Privacy
can be given as follows. Similar definitions were also consid-
ered in [30], [45].

Definition 1 (Heterogeneous Differential Privacy). A random-
ized algorithm M : X™ — Y is said to be €-DP for € € RVZLO
if

P{M(z) € S} < e“P{M(x)) € S} Vieln], (1)

for all measurable sets S C Y, where w,m; € X" are any
two ‘neighboring’ datasets that differ arbitrarily in only the
i-th component. Note that the probability is taken over the
randomized algorithm conditioned on the given datasets x, x,
i.e., it is a conditional probability.

For concreteness, we consider the case X = [—0.5,0.5]
and let P denote the set of all distributions with support on X.
The extension to intervals of general length is straightforward.
Under this privacy setting, we investigate the problem of
estimating the sample mean from the user’s data, where each
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user’s data is sampled L.I.D. from a distribution P € P over
X with mean denoted by pup € [—0.5,0.5] from here on.
Each ‘datapoint’ corresponds to a user’s data in X, i.e., user
i has a datapoint x; and the user has a privacy requirement
of ¢;. Each user sends their data and their privacy level to
the central server and the server needs to respect the users’
privacy level (Central-DP model). Let the set of all e-DP
estimators from X™ to ) = [—0.5,0.5] be denoted by M..
We consider the error metric as Mean-Squared Error (MSE)
and are interested in characterizing the minimax estimation
error. For an algorithm M (-) € M., let E(M) denote the
worst-case error attained by it,

E(M) = sup Ex~pr () [(M(X) = pp)?].

Let L(e) denote the minimax estimation error given by

L(e) : (M).

inf F 2)
MEM.
Henceforth, we restrict our attention to the case where, out of
a population of n users, a fraction f has a known and equal
privacy requirement of €;, and the rest of the population has a
known and equal privacy requirement of e (e; < €2 without
loss of generality). Thus, for the described case of two groups
of users, we write L(e1, €3, n, f) for L(e) defined in (2).

The notation 2 or < denotes inequalities that hold up to a
multiplicative universal constant (independent of n, f, €1, €2).

A. Main Results

We characterize L(eq, €2, n, f) by giving an upper and lower
bound, tight up to constant factors. For convenience, we define
two problem-dependent quantities,

8

. 62
emnf’

R:=1+ T

61-

We also define the averages, € := fe; + (1 — f)ez, and €2
fe2 + (1 — f)e3 (note €2 # €2, in general). We assume n > 1
throughout this work.

Theorem 1 (Upper Bound). There exists an e-DP algorithm
M which attains:
(A)if1<r<R:

2
E(M) < mm{;ﬁ2 (7126)21} 3)
:min{ fR+(1—f)r2 1} .
dn[f+ (1= fr)2 af”’
(B) if R < r:
. R 1
EQM) < mm{ TRk 4}
. nfe +8 1
:mln{4n[nfe%+8(1—f)]’4} @

The algorithm which achieves the upper bound in Theo-
rem 1 is outlined in Algorithm 1 and we refer to this algorithm
as Affine Differentially-Private Mean (ADPM) in the rest
of this work. A proof sketch of Theorem 1 is presented in
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Section III-A. The weight w used by ADPM for the case of
two groups of users is given in Table I. ADPM is inspired
by the technique used by [45]. Note that while we prove the
optimality of ADPM for the case of two groups of users, the
algorithm also works for a general e-DP requirement. Even in
the general e-DP case, ADPM empirically outperforms other
existing algorithms (see Section IV).

Theorem 2 (Lower Bound). The minimax estimation error

defined in (2) satisfies:
(A)if1<r<R:

. €2 2 1
L(ey,ea,n, f) 2 mln{ e 4 (ne)274} :
(B)if R<r:
. R 1
L(ey, ea,m, f) Zmln{4n[f+(1—f)R]’4} .

A proof sketch of Theorem 2 is given in Section III-B.
Theorem 1 and Theorem 2 together characterize the minimax
estimation error L(eq, €,n, f) up to constant factors, demon-
strating optimality of ADPM (modulo universal constant fac-
tors).

Theorems 1 and 2 together demonstrate a fundamental
saturation phenomenon of practical importance that occurs
when ey is large. In particular, for e > Rep, the accuracy
of any optimal algorithm does not further improve (modulo
constant factors) if e is increased. In other words, the cen-
tral server gains no improvement in the accuracy of mean
estimation if the group with the lower privacy level keeps
lowering their privacy level after a certain point. Thus, the
central server might as well offer a privacy level of Re;
to this group of users at no cost to the server. This starkly
contrasts the homogeneous-DP case, where the central server
gains accuracy as the privacy level for everyone is lowered.

Algorithm 1 Affine Differentially Private Mean (ADPM)

procedure ADPM(e, x)

Solve: w* = {
> w/e is element-wise division
* 12
if 1202 4 9)w* /e||2, > 1 then
return 0
else
N ~ Laplace(||w*/€l|0)
return (w*, ) + N
end if
end procedure

arom 903 o1p /ell2
gmin 7o+ 2w/ell5
subject to: w =0, Yo w; =1

Remark 1. From Table I, it is interesting to note that if we
keep other parameters constant and increase €s from €1 to
oo, then initially, the optimal affine estimator assigns more
weight to the ey-dataset. This can be intuitively understood
by considering that this dataset needs less privacy so we
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TABLE I
OPTIMAL WEIGHTS OBTAINED BY ADPM: w; REFERS TO THE WEIGHTS
ASSIGNED TO USERS OF GROUP ¢.

Condition Optimal w1 Optimal w2
e2 < Rey €1/nE €2/NE
2> Re1  1/n[f+ (1 - f)R] R/n[f+ (1 - f)R]

give a higher weight to it in the estimator. However, arbi-
trarily increasing €s should not increase the weight for its
corresponding dataset since this comes at the cost of higher
variance due to effectively ignoring the e, dataset. Indeed,
when €y crosses the threshold of Rei, there is no further
change in the weights. It can be understood as ‘saturating’
the weight after this point. Even if e — 0o, one would clip
the weights and offer Re,-DP privacy for this non-private
dataset. In other words, this privacy comes for free!

B. Interpreting the Bounds on L(eq, €2, n, f):

Only e-private dataset: This case can be realized in three
different ways: f = 0, or €, = €9, or € = 0%. The first
case implies z—f < R — o0 so (3) gives an error of order
O(% + W), the minimax bound known for a homogeneous
€2-DP mean estimation with n datapoints. For the second case,
the same result applies as 1 = :—’;‘ < R. In the third case,
€9 § e R sq the error.15' of order O("(ll_f) + (n(1—1f)62)2) -
again matching the minimax bound for homogeneous es-DP
mean estimation with n(1— f) datapoints. There are n(1— f)
datapoints since the algorithm needs to be independent of the
e1-private data for ¢; = 0.

An ¢ -private dataset and a public dataset: Letting
€2 — oo implies a completely public dataset. Keeping ¢

n f5f+8
dn[nfei+8(1-f)]
At first glance, it behaves roughly like ﬁ, corresponding to
having n public samples. However, this is misleading since
we care about the sharp dependence on f, €, and the factor of
% accounts for this, as we demonstrate next.

Tight in f: consider ¢; — 0, and we get an error bound of
m, which corresponds to the known bound for having
n(1—f) public samples (and thus, the bound is sharp in f). As
a side note, depending on how we take the limits for (€1, €2) —
(0,00), we may end up in case (A) in Theorem 1 as well but
the upper bound is identical for both cases for this limit.

Tight in €;: Taking f = 1 yields an error of O(% + ﬁ),
the minimax rate for n users under homogeneous ¢;-DP.

fixed, since :—f > R, (4) yields an error of

ITII. PROOF SKTECHES
Detailed proofs can be found in [46].

A. Upper Bound

The randomized affine estimator (x, w)+ L(n), where L(n)
is zero-mean Laplace noise with parameter 7, can be shown to
be (w/n)-DP (see [46, Lemma 1]). Choosing w; = €;/||€||1
and 17 = 1/||e||; is a possible way to satisfy the constraints -

2For €7 — 0, the saturation condition should be interpreted as e2 < €1 +

8/nfe1
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this suboptimal estimator proportionally weighs the datapoints
based on (lack of) privacy requirement. If we have one
datapoint with huge e, and all the other (n — 1) datapoints
have small €7, then proportional weighting will essentially use
only one sample to estimate the mean and this leads to higher
variance. Instead, we find the optimal weights w by optimizing
the worst-case MSE.

B. Lower Bound

We use Le Cam’s method specialized to differential privacy
for proving the lower bound, based on ideas from [15], [19],
[47]. Our method is similar to [45] but it is more robust since
it can handle arbitrarily large ¢ values, as is required for the
case when we have a public dataset. Intuitively, DP restricts
the variation in output probability with varying inputs which
helps bound the total-variation norm term in Le Cam’s method.

IV. EXPERIMENTS
A. Baseline Schemes

We consider some baseline techniques for comparison and
comment on why they are not optimal in HDP.

Uniformly enforce ¢;-DP (UNI): This approach offers €;
privacy to all the datapoints and uses the minimax estimator,
i.e., the sample mean added with Laplace noise, to get an error
of O(1/n+1/(ne1)?). UNI can be arbitrarily worse than the
ADPM (consider a single low ¢; datapoint).

Sampling Mechanism (SM): Based on the work of [32],
let t = ||€]|oo, and sample i-th datapoint independently with
probability (e — 1)/(e! — 1). Apply homogeneous t-DP
minimax estimator on the sub-sampled dataset. [32] proved
this mechanism is e-DP. However, when one dataset is public,
the SM algorithm disregards the €;-private dataset.

Local Differential Private Estimator (LDPE): Consider
the algorithm that combines the €;-DP and e3-DP mean
estimates from the two datasets in a linear fashion. That is,
it adds Laplace noise L(ﬁ) to the sample mean of the
first dataset and independent Laplace noise L(m) to the
sample mean of the second dataset, followed by optimal linear
combinations of these two aggregates to minimize the mean
squared error if the variance of the unknown distribution is
known (see [33] for details). We take the worst-case variance
as a proxy in our problem setting. When €; and e are nearly
the same, LDPE is worse since it adds more noise than
necessary - this is a known shortcoming of the Local-DP
model. ADPM scales better to the general case of e-DP but
LDPE is a decent baseline to compare it with. Note that LDPE
is optimal as well when e; — oo (see [46, Remark 2]).

FME [45]: For brevity, we direct the readers to [45, Theo-
rem 1] for details on the algorithm. We refer to this algorithm
as FME in the rest of this work. One of the shortcomings
of this method is it assumes ||€|loc < 1 for its theoretical
guarantees. For our experiments, we still use this algorithm as
it is stated for ||€||oc > 1. Even when ||€||o < 1, FME may
assign much smaller weights than what ADPM does to the
less private dataset [46, Example 1]. This might be one of the
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Fig. 1. We compare ADPM (our method) to other baseline methods in the above two graphs. FME is not plotted since its performance is an order worse

than others in the above graphs; a comparison against FME is presented in [46]. Subfigure (A) plots (E(M) —

ﬁ)n2 vs n for each algorithm, keeping

€1 = 0.1, e2 = 0.15, f = 0.5. Subfigure (B) plots E(M) x 10 vs ez while keeping €1 = 0.1, f = 0.7, n = 103. The vertical dashed line marks the
saturation point of ADPM at e = Rej. PropDPM shows the degradation in performance of the proportional weighting scheme for larger €.

reasons why this method does not show much improvement
when €5 is increased [46, Figure 3].

Proportional DP (PropDPM): We refer to the affine
estimator with weights proportional to the e vector and ap-
propriate Laplace noise as PropDPM, the shortcomings of this
estimator is described in Section III-A.

B. Empirical Results

We compare ADPM (our method) to PropDPM, LDPE,
FME, SM, and UNI. To prevent cluttering the graphs, we do
not perform experiments for the stretching mechanism pro-
posed by [30]. We can construct a case to demonstrate its sub-
optimality since it is a biased estimator (see [46, Example 2]).
Comparisons with FME are not presented here since FME
is an order of magnitude worse than other algorithms; such
experiments can be found in [46]. All simulations are averaged
over 200K runs of the algorithms.

In Figure 1(A), we plot (MSE — -)n? vs n keeping
€1, €2, f constant for ADPM, LDPE, SM, and UNI. We plot
(MSE — 13-)n? to show the second-order behavior of the
considered algorithms. The simulations are run with the true
underlying distribution being the uniform distribution on X'.

When n is small, R is large, and weights proportional to
€ are optimal. SM algorithm does something similar so it is
close to ADPM in performance. However, since it sub-samples
the data, its MSE decays slightly slower in the first order and
we can see this by the upward trend in the graph. The fact
that LDPE algorithm performs worse than ADPM or UNI is
not surprising since for the case considered, €; and ey are
quite close so the additional noise it adds contributes to its
sub-optimality.

Another insightful experiment, presented in Figure 1(B), is
to vary e» while keeping other parameters fixed and comparing
the MSE. The true underlying distribution for this experiment
is the Bernoulli distribution on {—0.5,0.5}. The curve for
ADPM reinforces Theorem 1 as there is no improvement in
the MSE upon increasing ez above Re;. Further, PropDPM
performs worse after this critical point as we expected from the
discussion in Section III-A. As €5 — oo, LDPE would achieve
the optimal error but it does not appear to have any saturation
phenomenon. This can be attributed to the suboptimal way of
adding noise inherent to Local-DP.

TABLE I
COMPARISON OF MSE FOR HIGH AND LOW VARIANCE IN €.

log MSE log MSE

Method High Var(e) Low Var(e)
ADPM 93 -8.1
PropDPM -9.0 -8.1
LDPE -7.2 -1.3
SM -6.5 <19
FME -6.2 -6.2
UNI -5.1 -7.1

Now consider the HDP setting in its full generality of
arbitrary e. The minimization in ADPM can be solved effi-
ciently by modern solvers. We consider two cases for € of
size 10 - high variance and low variance in e. The low
variance case was obtained by uniformly sampling loge in
[—3, —2]. Independently, the high variance case corresponds
to sampling log € in [—4, 2]. Keeping the sampled € fixed, the
average of the squared errors was taken over 20K simulations
under Beta(2, 3) distribution on X. The results are presented
in Table II. Unsurprisingly, UNI, PropDPM and ADPM enjoy
similar performance in the low variance regime, while diverg-
ing in the higher variance regime.

V. CONCLUSION

We study the problem of mean estimation of bounded
random variables under Heterogeneous Differential Privacy
and propose the ADPM algorithm. Under HDP, when there
are two groups of users with distinct privacy levels, we prove
the minimax optimality of the algorithm. Experimentally our
algorithm outperforms other methods even in the general HDP
setting with many distinct privacy levels.

A line of future work that we are currently working on
is to prove the optimality of our algorithm in the general
setting of arbitrary € vector. The problem of mean estimation
is also interesting in the unbounded setting under suitable
assumptions such as sub-Gaussianity. Extending HDP for the
multivariate case is another exciting avenue to consider.
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