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PROBABILISTIC ZERO FORCING WITH VERTEX REVERSION*

ZACHARY BRENNANT

Abstract. Probabilistic zero forcing is a graph coloring process in which blue vertices “infect” (color blue) white vertices
with a probability proportional to the number of neighboring blue vertices. This paper introduces reversion probabilistic zero
forcing (RPZF), which shares the same infection dynamics but also allows for blue vertices to revert to being white in each
round. A threshold number of blue vertices is produced such that the complete graph is entirely blue in the next round of
RPZF with high probability. Utilizing Markov chain theory, a tool is formulated which, given a graph’s RPZF Markov transition
matrix, calculates the probability of whether the graph becomes all white or all blue as well as the time at which this is expected
to occur.
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1. Introduction. Zero forcing is a graph coloring process in which blue vertices “infect” (color blue)
neighboring white vertices. It was introduced independently as a condition for the control of quantum
systems [8] and as a bound for the maximum nullity of a matrix in the study of the minimum rank problem
[20]. Zero forcing has since been used extensively in the study of the minimum rank problem (see [21] and
the references therein) and has been found to have further connections with graph search algorithms [30],
power domination [4], and the Cops and Robbers game [2, 7]. These connections have led to the study of zero
forcing in its own right, and variants of zero forcing have since emerged (see the workshop summary [16] for
examples). This paper focuses on probabilistic variations of zero forcing, the first of which was introduced
by Kang and Yi in [23]. Specifically, in this paper, we introduce reversion probabilistic zero forcing (RPZF),
a process in which blue vertices can now revert back to being white. Probabilistic zero forcing (PZF) cannot
move across graph components and is typically studied on connected graphs. Thus, unless otherwise stated,
we assume ( is a simple connected graph on n vertices.

The main results of this paper characterize the behavior of RPZF on complete and complete bipartite
graphs with different densities of infected vertices. For the complete graph on n vertices, Theorem 3.8
and Theorem 3.9 show that /nlogn is the threshold number of infected vertices for the graph to be fully
infected in one time step. Theorem 3.13 gives evidence that this asymptotic behavior is similar to RPZF on
the balanced complete bipartite graph when the infected vertices are evenly distributed. On the other hand,
Theorem 3.15 shows that the star graph is more “difficult” to fully infect when compared to the complete
and balanced complete bipartite graphs. This notion of difficulty is explored further with simulations in
Section 5.

Section 2 defines RPZF, introduces RPZF parameters, and formulates RPZF as a Markov chain. This
formulation is expanded in Section 4 to quantify the behavior of RPZF on any finite graph when provided
its Markov transition matrix, and examples of such calculations are given in Section 5. Finally, Section 6
explores how RPZF is a discrete-time analog of the susceptible-infected-susceptible (SIS) contact process,
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a basic continuous-time model for the spread of infection. In particular, RPZF is an example of a semi-
heterogeneous model, where the infection rate is different for different vertices, but the recovery rate is
uniform. The contact process is traditionally considered on the integer lattice due to its simplistic structure
and the fact that clusters of vertices do not interact globally. This paper, on the other hand, develops contact
process-like results on denser and more complex graph structures.

1.1. Basic notation. A graph is a pair G = (V, E) where the set E = E(G) of edges consists of
2-element subsets of V' = V(G), the finite set of vertices. Thus, all graphs discussed (except in Section 6)
are simple, undirected, and finite. Two vertices v,w € V are adjacent if {v,w} € E. The open neighborhood
of v is the set of all vertices adjacent to v, denoted by N(v) = {w € V : {v,w} € E}. The degree of v is
degv = |N(v)|, the number of vertices adjacent to v, and the closed neighborhood of v is N[v] = N(v) U {v}.
We say G is connected if for every v, w € V there exists a path of vertices v = vy, v1,...,vr = w such that
{vi—1,v;} € Efor alli € {1,...,k}. In this paper, we consider only connected graphs.

The identity matrix is denoted by I, and the matrix containing all zero entries is denoted by O. We will
use 1 =[11 --- 1]T to denote the column vector containing all ones and N = {0, 1,2, ...} to refer to the set
of non-negative integers. Given a Markov chain (X;) with state space (Sy,...,Ss), Pi;[4] = P[A | Xo = 5]
denotes the probability of event A given the chain starts from state S;, and E;[Y] = E;[Y | Xy = S;] denotes
the expected value of random variable Y given the chain starts from state S;.

1.2. Zero forcing and Markov chains. Suppose G is colored so that every vertex is blue or white.
The (deterministic) zero forcing color change rule describes how the vertices of G can change color: a blue
vertex u will force (change) a white vertex w to be blue if w is the only white neighbor of w. This is denoted
by v — w. Probabilistic zero forcing is a variant of the deterministic model. Let B C V(G) be a set of
blue vertices. In one round of PZF, each blue vertex u € B attempts to force each of its white neighbors
w € N(u)\ B independently with probability

Plu— w) = N[0 Bl B|.
degu

The study of PZF with Markov chains was introduced in [23] and studied further in [10, 17]. Let
S = (Sp,...,Ss) be the ordered state space of the 2" possible colorings of a graph G.! The PZF Markov
transition matrix for G is M = M(G;S) such that M;; is the probability of transitioning from coloring S;
to S; in one time step [23]. We use |S;| to denote the number of blue vertices in state S;, and we say S is
properly ordered if |S;| < |S;41| for all ¢ € {0,...,s — 1} [10]. It is often helpful to think of a state S; as
a set of blue vertices, with the remaining vertices V(G) \ S; being white. We will use these two notions as
convenient.

2. Reversion probabilistic zero forcing. This section introduces reversion probabilistic zero forcing,
a modification of the PZF process where blue vertices have the chance to revert back to being white at the
end of each round. Two variations of this process are defined. Single absorption reversion probabilistic zero
forcing (SARPZF) adds a second phase to each round of PZF.

DEFINITION 2.1. Given a graph G and set B of currently blue vertices, in phase 1 each blue vertex
u € B attempts to force each of its white neighbors w € N(u) \ B independently and simultaneously with
probability

1Tt is standard in probabilistic zero forcing to simplify the state space S by omitting unreachable states and to combine
states that behave analogously into a single state.
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N[u]Nn B
P(u—>w):7‘ [ |,
degu

as in PZF. We now have an updated set B’ of blue vertices. In phase 2, each blue vertex v € B’ reverts
(changes to being white) independently with probability p € (0,1). Phases 1 and 2, done consecutively,
define the SARPZF color change rule. A round of SARPZF is one application of the SARPZF color change
rule.

Unlike in PZF, it is possible SARPZF may never reach the state S; where all vertices in G are blue.
Moreover, it is not hard to see that SARPZF will always eventually result in all vertices being white. We
say SARPZF dies out when this occurs. However, SARPZF may lead to G being entirely blue any number
of times before dying out. It is natural to ask if V(G) will ever be entirely blue. If so, when is the first time
we expect this to happen? To answer these questions, we introduce a stopping condition to SARPZF.

DEFINITION 2.2. The dual absorption reversion probabilistic zero forcing color change rule (DARPZF
color change rule) is defined by modifying the SARPZF color change rule as follows: after phase 1, if the set
of currently blue vertices B’ is the entire vertex set, then no vertices revert in phase 2. A round of DARPZF
is one application of the DARPZF color change rule.

Collectively, SARPZF and DARPZF are referred to as reversion probabilistic zero forcing, or RPZF. We
say that DARPZF fully forces G when every vertex is blue and dies out when every vertex is white. We say
DARPZF is absorbed whenever it dies out or fully forces G. In SARPZF, absorbed refers only to SARPZF
dying out, hence the terminology single and dual absorption.

REMARK 2.3. We adopt the convention that 0 < p < 1 in RPZF. When p = 1, SARPZF trivially dies
out in one step. When p = 0, many of the results presented can be adapted to recover PZF results. However,
most of these results are already known and so we refer the reader to the PZF literature. Moreover, some
results, such as those involving the matrix Qg introduced in (4.9), are not suitable for adaptation to PZF.

Let G be a graph with n vertices and let S = (Sp,...,Ss) be a properly ordered state space with all
2" colorings of V(G). Then G, S, and p € (0,1) determine the SARPZF and DARPZF Markov transition
matrices Mg(G; S, p) and Mp(G; S, p), respectively. We suppress the dependencies on G, S, and p when they
are clear from context. The RPZF Markov transition matrices can be derived from the previously established
PZF Markov transition matrices. Let F' = M(G;S) describe phase 1 of RPZF on G using the PZF color
change rule. Now define Rg and Rp to be the matrices which describe vertex reversion in SARPZF and
DARPZF, respectively. Explicitly, if we regard .S; as a set of blue vertices then

1S:1=1S51(1 — p)!9] , ,
p ’ (1 p) ’ ) S] g S?,
2.1 Re)is = ’
> (Rs)s {0, otherwise
and

plSil=I8il(1 — p)lSil, 85 C 55 # S,
(2.2) (Rp)ij = {1, S;i=8;=25,.

0, otherwise

Namely, the (4, j)th entries of Rg and Rp give the probability of moving from state S; to state S; via vertex
reversion. The RPZF transition matrices are now given as

(2.3) Mg =FRs and Mp = FRp.
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The idea behind combining states of S to create a new state space S’ is follows. For analogously behaving
states Sj,,Sj,,... € S and any state S; € S, the events {S; to S}, } are all mutually exclusive. Hence, if
Sj1,8Sjys .- €S are combined into a single state S} € S', the probability of moving from S; € S to S} € &'
is the sum of the probabilities to move from S; to Sj,. The probability distribution for leaving S} € S is
the same as that of any one of the states S;,,S5;,,... € S as a direct consequence of the component states

behaving analogously.

EXAMPLE 2.4 (The Complete Graph). Let K, denote the complete graph on n vertices, let & =
{So,...,Sn} be the properly ordered state space where S; is the state of K, having ¢ blue vertices, and
let p € (0,1). From [10, Theorem 2.4], F = M (K,;S) is the (n + 1) x (n + 1) matrix given by

, AN AN )
W1, i=j=0

0, otherwise.

The RPZF reversion matrices for K,, are given by
()p7(1—p)Y, 0<j<i<n
J

(Rs)ij = . and  (Rp)i; =41, i=j=n
0, otherwise
0, otherwise.

(Npi(1—p), 0<j<i<n

Then Mg(K,;S,p) = FRs and Mp(K,;S,p) = FRp.

The SARPZF and DARPZF Markov Chains are the Markov chains (X;°) and (X}) with transition
matrices Mg and Mp, respectively. That is, for any ¢t € N and any 4, j € {0, ..., s},

P X7, =8;| X’ =8]=(Mg);; and P[XE,=8;|XP=S8i]=(Mp).

Just as probabilistic propagation time and expected propagation time were introduced for PZF in [17],
we introduce new parameters of interest for RPZF.

DEFINITION 2.5. Let G be a graph with properly ordered state space (So, ..., Ss), B a set of blue vertices
in G, and (X;) and (X}) the SARPZF and DARPZF Markov chains on G with reversion probability
p € (0,1). The probabilistic time of absorption for B under SARPZF (respectively DARPZF) is the first
time at which every vertex turns the same color, denoted

ptag(G; B,p) = min{t >0: X = Sy} and ptay(G;B,p) = min{t >0: XP € {So, Ss}},
where we define min & = oo. The expected time of absorption for B under SARPZF (DARPZF) is then
etas(G; B,p) = Elptag(G; B,p)] and etap(G; B,p) = E[ptap(G; B, p)].

Finally, the expected time of absorption under SARPZF (DARPZF) of a connected graph G is the minimum
of the expected time of absorption for B under SARPZF (DARPZF) over all one-vertex sets B of V(G)
and is denoted by etag(G;p) (etap(G;p)). The S and D subscripts and superscripts are omitted for general
RPZF chains.

Definition 2.5 is concerned with when RPZF is absorbed. But given a starting state (coloring) S;, for
what probability p does G have an equal chance of dying out or being fully forced in DARPZEF?
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DEFINITION 2.6. The critical reversion probability, denoted pp (G, S;), is the reversion probability such
that the DARPZF Markov chain starting from state S; has equal probability of dying out or fully forcing.

We show how to calculate pp (G, S;) in Section 4 and prove that it exists for all connected graphs G and all
nonabsorbing states S;.

3. Threshold results for RPZF. In this section, we consider the behavior of RPZF as the number of
vertices tends to infinity. To start, we establish fundamental results regarding the expected number of blue
vertices after one step of the SARPZF Markov chain, following the methods of Theorem 3.1 in [10]. Recall
that a state .5;, and thus a random variable X; of an RPZF chain, can be viewed as a set of blue vertices.

PROPOSITION 3.1. Let (X;) be a SARPZF Markov chain on a connected graph G with reversion prob-
ability p € (0,1) and properly ordered state space (Sp,S1,...,Ss). Let F; be the number of vertices forced
during phase 1 of time t (before reversion). Then for alli € {0,...,s}, E;[|X1]] = (1 — p)(|Si| + E;[F1]).

Proof. Suppose Xo = S;. Let vi,...,v|s,|+r be the vertices that are blue after phase 1 of the SARPZF
color change rule at time ¢t = 1. Notice that 1[v; ¢ X;] are i.i.d. indicator random variables for the event of
vj reverting, j =1,...,|S;| + F1. Thus,

|Si|+F1
E X)) = [Si]| +EF—Bi | Y vy & Xa]| = [Si| + EiFy — B[|S;] + Filp = (1= p)(|Si] + EiFY),
j=1
by independence, linearity of expectation, and the fact that vy reverts with probability p. ]

PROPOSITION 3.2. Let G be a connected graph with b blue vertices and let p € (0,1) be the reversion
probability. The expected number of blue vertices in G after one step of the SARPZF color change rule is
bounded above by (1 — p)(b+ b?).

Proof. Let (X:) be the SARPZF chain on G with starting state Xy = S; corresponding to the vertices
B = {v1,...,v} colored blue and let V(G) \ B = {w1,...,we}. Let F; be the number of vertices forced
during phase 1 of time ¢ (before reversion). We start by bounding E;Fy. For each j = 1,...,b, let B; be
the set of vertices forced by v; in phase 1. Note that multiple blue vertices may force the same white vertex
and so the Bj;’s may intersect. Then

b b
E;Fy =E[|BiU---UB <E; | Y |Bj|| =Y EilB,l.
j=1

J=1

Let Y;(k) = 1 if v; forces wy and 0 otherwise. Then |B;| = Z£=1 Y;(k) and so

14 14
M < |N(’Uj) ﬂB|.

|
Ei|Bj| =Y E:Yj(k) =Y Pifv; » wi] = [N(v;) \ B N o,
k=1 k=1 [N (v;)]
It follows that E; F} < Z?:l |N[v;] N B| < b|B| = b?, and we conclude that E;[|X;[] < (1 —p)(b+ b?) from
Proposition 3.1 since |S;| = b. 0

Observe that for any connected graph with SARPZF and DARPZF Markov processes (X;7) and (X)),
E;[|XP|] > E;[|X7|] for all states S;. Indeed, in phase 1, SARPZF and DARPZF share the same distribution
by (2.3), and in phase 2, all vertices revert with probability p unless DARPZF steps into absorbing state Ss.
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3.1. The complete graph. When utilizing the RPZF Markov chain (X;) on the complete graph, it
will be convenient to consider the random variables X; as taking integer values representing the number of
blue vertices at the end of time ¢. For notational convenience, we denote the probability that a particular
vertex in K, is forced by one of its b blue neighbors by

(3.4) q(n,b):l—(l— b )b.

n—1

It will be useful to have an explicit description of the one-step Markov transition probability Py[X; = &].
For SARPZF, this can be done in terms of known probability distributions. Indeed, let B be the set of
currently blue vertices with |B| = b, let X be a random variable equal to the number of vertices from B
which do not revert, and let Y be a random variable equal to the number of vertices from V' \ B which
are forced blue and do not revert. Then X and Y are independent with X ~ Binomial(b,1 — p) and
Y ~ Binomial(n — b, (1 — p)gq(n,b)). Moreover, if X5 = b, then Xy = X + Y follows a Poisson binomial
distribution with py = +-- =p, =1 —p and pps1 = -+ = pp, = (1 — p)g(n,b). This is used in the following
result.

PROPOSITION 3.3. Let (X)) and (XP) be the SARPZF and DARPZF Markov chains on K, n > 2,
with reversion probability p € (0,1), and let g(n,b) be defined as in (3.4). Then for any 1 < b < n and
0 < k <n, Py[X7 = k| is equal to both of the following:

W i (7—_5) (11) (1 ="' Fq(n,b) (1 — gq(n, b))~

i=max{b,k}
min{b,k}

n—>b\ /b . ) ) ‘
2 ()@ =)0 = paln, B - (1= p)a(n, b)) 0 ¢,
> (108 (- m

Additionally,

n

35) PP = 4] = Pufx =1 ]

)= a0 a1
where §;; =1 ifi=j and 0;; =0 if i # j.

Proof. Let Mg = FRg and Mp = FRp denote the Markov transition matrices for the SARPZF and
DARPZF chains (X;) and (X?) on K,,. Observe that Fy; = 0 when i < b and (Rg)ix = 0 when i < k.
Formula (1) now follows from Py[X7 = k] = (Ms)p, and matrix multiplication. If X5 = b, then X7 is
distributed as a Poisson binomial random variable with p; = --- = p, = 1 —p and ppp1 = -+ = p, =
(1 —p)q(n,b), the probability mass function of which is formula (2). Considering P,[X = k], observe that
(Rs)ir = (Rp)ix for k < i < n —1 and so Py[XP = k] = Py[X{ = k] — Fyn(Rs)nk + Fyn(RD)nk- This
simplifies to (3.5). |

We now calculate how the number of blue vertices in K, is expected to change after one step of an
RPZF process.

THEOREM 3.4. Let (X) and (XP) be the SARPZF and DARPZF Markov chains on K,, n > 2, with
reversion probability p € (0,1), and let q(n,b) be defined as in (3.4). Then

Ey[X7] = (1= p)(b+ (n = b)q(n,b)) and  Ep[X{] = Ey[X7] +npq(n, b)" ",
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Proof. The value of Ey[X7] is the known mean of a Poisson binomial random variable. To calculate
E,[XP], let F1 be the number of vertices forced blue at time ¢t = 1. Observe that by Proposition 3.1 and
linearity, Ey[X7] = (1 — p)Ey[F1 + b]. Hence, by the definition of expected value

n—1
Ey[X{] = (1—p) Y kPy[Fy +b= k] + nPy[F +b=n]
k=b
= Ey[X7] — (1 — p)nPy[Fy + b= n] 4+ nPy[F, + b =n].

Substituting Py[Fy = n — b] = q(n,b)"~? and simplifying finishes the proof. d

The remainder of this section is dedicated to threshold-like results for RPZF on K,,. These results
concern the necessary number of blue vertices b,, for a particular event to occur in one step of the RPZF
chain with high probability, where b, is a function of n, the total number of vertices in the graph, and
n — 0o.

LEMMA 3.5. Let (XP) be the DARPZF Markov chain on K, with reversion probability p € (0,1). If

by, > v/nlogn2ty with v > 0, then

lim |n — By, [XP]| =

n—oo

Proof. Observe E,,_1[XP] = E,[XP] = n, so we may assume b, < n — 2. Let b, > /nlogn2t7 with
~ > 0. Throughout this proof, let

g(nbn) = 1 — g(n, by) = (1 _ on )b

n—1

Using Theorem 3.4, observe that
b

Ey, [XP] = (1=p)(bn + (n—bn) (1 = g(n,bs))) +np(1 = g(n,bn))" ",
which, after distributing (n — b,,) and canceling the b,, terms, is equal to
Now distribute the (1 — p) and simplify to get

n—by
Ey, [X{] = (1 =p)n— (L= p)(n —by)g(n,b,) +np(L — g(n,by))
—bn
=n—(1-p)(n—>bn)g(n,b,) — np<1 — (1= g(n,b))" )

Additionally, By, [X{] < n because X{ < n and so |n — Ey, [XP]| = n — Ep, [XP], which in turn simplifies
to

—b,

(1 _p)(n — bn)g(n, bn) +np |:1 _ (1 _ g(n7 bn))n—bn:| .

We show that each of these two terms converges to 0 as n — oco.

For the first term, it suffices to show that ng(n,b,) — 0 as n — oo since n — b, and g(n,b,) are
nonnegative. Recalling the Taylor expansion log(1 — z) = — Y32, 2*/k for |z| < 1, we have

g(n,bn)_exp{bnlog<1nbj1>}—exp{bn<ikn_l )}
(3.6) ZGXP{—nb2 }eXp{ kskjll }
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for all b, < n — 1. Then g(n,b,) < e~/ (=1 hecause by, > 0. Using the inequality b, > y/nlogn?t7,

b2 log n2+7 1 2+y
(3.7) g(n,b,) <expq——"= ¢ < exp U L exp e U -,
n—1 n—1 n

Hence,
2

b
0< (1—p) (n—b) g(n, by) < exp {—"1} n <00 S0,
n—
as n — 0o.
It is left to show
lim np(l —(1-g(n, bn))nfb") = 0.

n— oo

Define H(n) = (n — b,)log (1 — g(n, b,)) so that 1 — (1 — g(n, bn))nib" =1— e Tt thus suffices to show
that n(1 —e”(™) — 0 as n — oo. Observe

H(n) = (n — by) log(1 — g(n,b,)) <0,
since 0 < g(n,b,) < 1. Hence, to prove n(1 — ef1(™) — 0, it is enough to show
H(n) > log (1 - n_(1+"’)) ,
for sufficiently large n, since then
0<n(l—ef™)y<ni—1—-n"0)=pn"7,

To this end, notice that because H(n) = (n — b,)log(1 — g(n,b,)) <0 and b, < n,

o~ 9(n,00)"
H(n) > —g(n,by)) = —n Y L)

(n) = nlog(l —g(n,b,)) = —n A

k=1
We already showed in (3.7) that g(n,b,) < n~ (7). Hence,
00 L k(247)+1 0 k(1+47)
n n
H >—§ 7>_§ r  —og(l —p @M

k=1 k=1

and so n(1 — ef(™) < n=7. It follows that

bn by n—by,
T R

as n — oo. We have shown that each term of |n — E; [XP]| converges to 0 and so |n — E, [XP]| - 0. O

Considering the SARPZF chain (X), notice that

b\
(== BxP) = (-0 (1- L)
Notice also that Ey[X{] < E,[X7] = (1 — p)n by Theorem 3.4. Following the proof of Lemma 3.5 through
(3.7), one gets the following corollary that gives a threshold for the expected number of blue vertices in
SARPZF to be close to (1 — p)n.
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COROLLARY 3.6. Let (X;') be the SARPZF Markov chain on K, with reversion probability p € (0,1).

If b, > \/nlogn'*tY with v > 0, then

lim |(1- p)n — By, [XF]] = 0.

n—roo

In other words, if K, has b, = Q(y/nlogn) blue vertices, then with constant C; > /2 we expect n blue
vertices after one application of the DARPZF color change rule, and with constant Cy > 1 we expect (1 —p)n
blue vertices after one application of the SARPZF color change rule. We refer the reader to Appendix A for
a review of asymptotic notation and their common properties.

It turns out v/nlogn is the threshold for this behavior. Indeed, if b,, = O(y/nlogn) with constant C' < 1,
then the SARPZF and DARPZF Markov chains on K,, converge to each other while getting arbitrarily far
from n. This is made precise in the next result.

PROPOSITION 3.7. Let (X)) and (XP) denote the SARPZF and DARPZF Markov chains on K,,. If
by, < v/nlogn'= withy > 0, then |Ey, [X7]—Es, [X{P]| = 0 as n — oo. Moreover, |(1—p)n—Ey, [X7]| — o
and |n — By, [XP]| — o0 as n — .
bn
Proof. Let b, < y/nlogn!= with v > 0 and let g(n,b,) = (1 — %) . By Theorem 3.4, to prove
|Ep, [X7] — Ep, [XP]| — 0, it suffices to show that np(1 — g(n,b,))" b= converges to 0 as n — co. Observe

g(n,b,) = e’ log(1-727) — eb"(_%Jro(%)) = (7%7"52”*0(%)) = e*éeo(%)

3

since — 22— = O(b2 /n?). Using the expansion e” = Y7 2*/i! this is equal to
,ﬁ p3 I 7@ »3
H rro($) ro(#) ] -+ Fro(3)]

Now apply the assumption b, < y/nlogn'=7 to get g(n,b) > nll,v [1 +0 (%)} .

Turning to (1 — g(n, b, ))" %, this can be written as

b, )k
exXp 7(71 — bn) Z % S e*(’ﬂ*bn)g(n,b”)’
k>1

and substituting —g(n,b) < —— {1 +0 (2—3’5)} gives
(1= g(n, )" < exp{~(n—b)n~ 0" [140 (%)] }.
Finally, apply b, < v/nlogn!=7 and simplify to find

0.< (1 - gn,b))" " < exp {n (1 - @) 1+0(%)] } |

Since +/lognI=7/n — 0 and O(b3 /n?) — 0 as n — oo, we conclude that (1 — g(n,b,))" % = O(e™") from
which it follows that np(1 — g(n, b,))" % — 0 as n — oo.
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Additionally,
= B, [XP]] > (1= p)(n = ba)g(n,0,) = |(1 = p)n — By, [X7]],

and from g(n,b) > —= [1 +0 (Z—%)} it follows that

gt = (7 Y [0 (5)] 2 ( : VT) 11 0(%)]
o <1_\/W> ro(%)].
n
which tends to infinity as n — oc. ]

This result, combined with Lemma 3.5, shows that y/nlogn is the threshold number of blue vertices for
DARPZF on the complete graph to fully force in one step.

THEOREM 3.8. Let (XP) be the DARPZF Markov chain on K,, with reversion probability p € (0,1),
and let v > 0.

o Ifb, < +/nlognl=7 then |n — By, [XP]| = oo as n — oo, and
e if b, > \/nlogn2t7 then |n — By, [XP]| = 0 as n — co.

That is, \/nlogn is the threshold function for expecting DARPZF to fully force in one step.

In fact, if b, > y/nlogn2*7, then since n > XP > 0 we have |n —E, [XP]| = Ep, [[n— XP|] = 0 as n — oo.
Formally, one says that if b, > y/nlogn2t7, then X converges in mean to n.

The next result, as a consequence of previous, states that if K,, has asymptotically greater than v/nlogn
blue vertices, then with high probability K,, will be entirely blue after one step of the DARPZF Markov chain.
If the number of blue vertices is asymptotically below y/nlogn, then with high probability the DARPZF
chain will not have n blue vertices.

THEOREM 3.9. Let (XP) be the DARPZF Markov chain on K,, with reversion probability p € (0,1),
and let v > 0.

o Ifb, < +/nlognl=7, then P, [XP =n] = 0 as n — oo, and
e ifb, > \/nlogn!t7, then Py [XP =n] — 1 as n — .
Proof. Let b, be such that 0 < b,, < n for all n. We may assume b,, < n — 2 since Pn_l[XlD =n]=1
Notice Py, [XP = n] = q(n,b,)" "% = (1 — g(n,b,))" . If b, < y/nlognl=7, then in Proposition 3.7, we
showed (1 — g(n,b,))" " = O(e™"). Thus, Py, [XP =n] — 0 as n — oc.

Suppose now b, > /nlogn!t7. Define H(n) = (n — b,)log (1 — g(n,by,)) so that
1-— (1 — g(n,bn))nfb" =1 ¢Hm),

It suffices to show that 1 — e(®) — 0 as n — oco. Equivalently, we show H(n) > log(l — n~7) for
sufficiently large n. The proof of this is almost identical to that in Lemma 3.5. Indeed, notice that because
H(n) = (n—by)log(l —g(n,b,)) <0,

H(n) > nlog(l—g(n,b,)) = —nz w
k=1
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We showed in (3.7) that if b, > y/nlogn!™7, then g(n,b,) < n~ (7). Hence,

(o] 1+7)+ o —
) > — Zn an =log(l —n77),
=1 k=1
and so 1 — (1 — g(n,b,))" "% — 0, which implies Py [XP = n] = (1 — g(n,b,))" % — 1 as n — oo. d

Since n > XP this is equivalent to saying that X converges in probability to n when b,, > /nlogni*+7.
Formally, P, [|n— XP| > ¢] — 0 for all £ > 0 which is equivalent to P}, [[n — XP|=0] — 1, and so X =n
with high probability. As a complimentary result, we can directly calculate the limit of P,[X; = 0] for RPZF
on K,, asn — oco.

THEOREM 3.10. Suppose K,, has 1 < b < n—2 vertices colored blue and RPZF chain (X;) with revgrsion
probability p € (0,1). Then the probability K,, dies out in one step of the RPZF chain converges to pbebz(pfl)
as n — oo.

Proof. By formula (2) of Proposition 3.3,

n—b
Py[X{ = 0] = p°[1 — (1 — p)g(n,b)]" > = p’ [P + (1= p)(l - 7131)&] '
Similarly, b b
Py[XP =0] =p’ [p+ (1- )(1 - El)b]n - <1 B (1 B nil)b)n '
To calculate the limits of these values, notice first that 0 < ( (1 - ﬁ)b)nib <lforall0<b<n-2
and hence

b b n—>b
0<p"(1—(1— )) <p"—=0,
n—1

n—b
as n — oo since p € (0,1). We are left to consider p® (p—|— (1 —p)(l — %)b) . Taking n — oo, this is

pbexp{ﬂlgrgom_lb)_llog [p+(1—p)(1— nil)b}}’

and applying L’Hopital’s rule this simplifies to pbebg(pfl). 0

equal to

Finally, we establish when the upper bound presented in Proposition 3.2 is asymptotically tight.

PROPOSITION 3.11. Let (X;) be an RPZF Markov chain on K,, with reversion probability p. If b,, < %,
then for any € > 0,
(1= p)(bn + (1 = £)bn*) < By, [X1] < (1= p)(bn + bn?)

for n sufficiently large. In particular if b € N is fized, then Ey[X1] — (1 — p)(b+ b%) as n — co.

Proof. Since b, < logn < v/nlogn, by Proposition 3.7, we need consider only the SARPZF chain. By
Proposition 3.2, E; [X1] < (1 — p)(b, + b2). Let Fy denote the number of vertices forced at time t = 1
during phase 1. Then by Proposition 3.1, Ey [X1] = (1 — p)(b, + Ep, [F1]). The authors of [10] showed in
the proof of Theorem 3.1 that Ey, [F1] = b2 — o(b?) when b,, < %. Consequently, since b2 = o(n), for any
e >0, Ey [F1] > (1 — ¢)b? for sufficiently large n. Thus, E, [X1] > (1 — p)(b, + (1 — €)b2) and for fixed
b € N, taking e — 0 gives that E;[X;] — (1 — p)(b + b?) as n — oo. 0
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3.2. The balanced complete bipartite graph. The complete bipartite graph K, , is the graph of
order m + n whose vertices can be partitioned into two parts U = {uq,...,umn} and V = {vq,...,v,} such
that the edges of the graph are w;v; forall 1 <i <mand all 1 <j <n. If m = n, then K, , is the balanced
complete bipartite graph. We will see here and in Section 5 that K, ,, behaves very similarly to Ka, in
DARPZF.

LEMMA 3.12. Let Ky, , have vertex partitions U and V. Suppose by vertices in U are blue and by
vertices in V are blue. The probability that U forces V' entirely blue in one step is

by + 1\ )T
P[U%V](l(l V|V| > ) .

Proof. Let B be the set of blue vertices in Ky, ,,. Let w € U N B be blue and v € V' \ (BN V) be white.
Then

_‘N[u]ﬂB|_bv+1
 degu V|’

and so the probability that v is forced by some vertex in U is

Plu — v]

bv+1>bU

PU v =1-PlU A =1- ]] P[uﬂv}:l—(l— 7]

ueUNB

Thus,

o\ VI=bv
PU-VI= ] P[U%v}(l(lbvl‘;rllyj) .0

veEV\(BNV)

We now give an upper bound for the threshold number of blue vertices to fully force the balanced
complete bipartite in one step with high probability, starting from one of two cases. The first case is when
the vertex parts U and V of K, , have the same number of blue vertices, and the second is when, without
loss of generality, U is entirely blue and V is minimally blue.

THEOREM 3.13. Let K, ,, have vertex parts U and V with at least b,[{ and b,‘f blue vertices in U and V,
respectively.

o IfbY > \/nlognit and bY > \/nlogn'*t72 for any v1,72 > 0, then with high probability K, ,, is
blue after one application of the DARPZF color change rule as n — oo.

o IfbY = n and bY > log(n'*?) for any v > 0, then with high probability K, , is blue after one
application of the DARPZF color change rule as n — oco.

Proof. Suppose first b¥ > \/nlogn!*t7 and bY > \/nlogn!+7z for some v;,7v2 > 0. Let v = min{y, 72 }.
We may assume U and V each have b, > /nlogn!t7 blue vertices because the probability of fully forcing

in one step monotonically increases in both bY and bY. Since the events {U — V} and {V — U} are
independent at time ¢, the probability that K, , is blue after one step of DARPZF is

b\ M—bn \ 2 b\ 2n—2by
P[U—>V]P[V—>U]_((1—(1—1)":1) ) > _<1—<1—b"n+1> ) ,

by Lemma 3.12. Call this probability P(b,). We wish to show P(b,) — 1 as n — oco. Note that P(b,) =1
if b, = n so assume b,, < n — 1. Define f(n,b,) = (1 — b“T'H)b” and let H(n) = (2n — 2b,,) log(1 — f(n,by)).
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Then P(b,) = ¢?(™) and so P(b,) — 1 if H(n) — 0. Observe that H(n) < 0 and hence
> k
H(n) > 2nlog(L = f(n,b,)) = —20 3 L0
i

Now in the style of Theorem 3.9, if f(n,b,) < n~(*7) then

0 —k(147)+1 o
H(n)>—22%2—22 =2log(1 —n~") =0,
k=1 k=1

as n — 0o. To see that f(n,b,) < n~1+7) observe

o0 k
f(n,by) = exp{bnlog (1 — bn;_ 1>} = exp{—anW}

which is bounded above by e~bn/™ since b, > 0. Then because b, > \/W )
F(n,by) < e~h/m < =),

Hence, H(n) < 0 implies H(n) — 0 and thus P(b,) = 7™ — 1 as n — cc.

Now assume bY = n and bY > log(n'*?) for some v > 0. Then the probability that K, » is entirely blue
after one step of DARPZF is
v
BV 41\
P[U—>V]:<1—<1—"+ >) .
n

Let f(n,bY) = (1 - bVTH)n and H(n) = (n—bY)log(1 — f(n,bY)). Notice that f differs from before in the

exponential. Like before, it suffices to show that f(n,bY) < n~(1*7) because then

Vyy ZOO fn,by) ZOO nk _
H(n)>nlog(1—f(n,bn))——n TZ_ k —log(l—n ’y)
k=1 k=1
Now,
by, +1 — (by + 1)
VN n _ n
f(n,b, ) =exp {nlog (1 - >} = exp {n;_l e
by +1 o (bY + 1)F
= exp {—’I’L n } exp {_n kgzz W s

which is bounded above by et since bY > 0. Then because bY > logn'*7 it follows that f(n,bY) < n=(+7),
Thus, 0 > H(n) > log(l —n"7) = 0 and so P[U — V] = (™ - 1 as n — . 0
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3.3. The star graph. The star graph on n vertices is K; ,—1, and the singleton vertex is called the
universal verter because it is adjacent to all other vertices. In this section, we show that the star graph
exhibits a large threshold value for one-step forcing. Let K ,_; have universal vertex v and set of currently
blue vertices B. Notice that if |[B| = b < n—2, then v must be blue for K ,,_1 to be fully forced in one step.
Hence, when calculating the one-step threshold for K ,_1, we need consider only when v € B. In that case,
K 51 is fully forced in one step with probability

Plv — V(K1 n_1)\ B] = (n ﬁ 1)n_b.

LEMMA 3.14. Let (X7) and (XP) be the SARPZF and DARPZF Markov chains on K1 ,_1 with n > 2
and universal vertex v. If v blue at time t = 0, then

BT = (=) (04 00 0) (-2 ).

n—1
and

b n—b
BxP) =B ()
n—1
Proof. Let wy,...,w,_p denote the white vertices. Then by Proposition 3.1,

B = (1= )0+ (0= Pl > wl) = (1= ) (04 00 0) (27) )

n—1

Using the same approach as that in Theorem 3.4, one also calculates
b n—b
Ey[X[] = Ey[X{] +np (n—l) : D

Observe that if K ,_1 has b, =n — 1 — C vertices blue, then

Plv = V(K1 1)\ B] = (1 - nf 1>1+C 1,

as n grows to infinity. This turns out to be the threshold for fully forcing in DARPZF: if the distance
between n and b,, is unbounded, then with high probability K ,_; is not fully forced in the next step.
THEOREM 3.15. Let (XtD) be the DARPZF Markov chain on K1 ,—1 with universal vertex v and rever-
sion probability p € (0,1). When v is blue, we have the following:
e ifb, =n—1—C for some constant C € N, then |n — E, [XP]| = pC(C + 1) as n — oo, and
o ifb, =n—1—w(l), then |n — By, [XP]| = o0 as n — .
Proof. Let (XP) be the DARPZF Markov chain on Kj ,_1 with reversion probability p € (0,1), let

0 <b, <n-—1, and let v denote the universal vertex. Assume v is blue. If we replace g(n, b,) = (1 - %)bn
with 1 — % in the proof of Lemma 3.5, then we may simplify n — E; [X{] as

n—by,
()
n—1

(3.8) n—Ebn[Xﬂ =(1—p)(n—>by) (1 _ nbn1> + np
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Suppose b, =n — 1 — C for some constant C' > 0. Then

n—Ey, [XPl=1-p)(n—(n-—1-0C)) <1 — ”n1_1C> +np (1 B (M)n(nlc)>

n—1
C+1
_(1—p)(1+C)n€1+p<n—n<1—n€1> )

It is immediate that (1 — p)(1 + C’)% — 0 as n — co. To see that p (n —n(l- %)CH) — pC(C + 1),

observe
c \H C+1 L(C+1 c \F
n—n(l—n_1> —n—nZ(—l) ( k )(n—l)

k=0
C+1 k
B C s (C+1 C
_n_n+n(0+l)n—l_nk§_2(_1)( f )(n—l)
_ n -1
7C(C+1)n_1+0(n ).

Taking n — oo gives n — Ey, [XP] — pC(C + 1).

On the other hand, suppose b, =n — 1 — f,, with f,, = w(1). We want to show
bn n—by
1-— < ) ] — 00.
n—1

f fn+ £2
n—lz(l_p) n—1

n= B XP) = =g (1= -2 ) 4

bn
n—1

(1= p)(n — by) (1— )Z(l—p)(1+fn) S oo,

so assume f,, = O(y/n). Notice

by \" fo \'
1<n—1> ]”pll(lnq) ]

and so define h,,(x) = x1*/». Now h/,(x) = (1+ f,)x/» and then applying Taylor’s theorem to hy,(z) around

np

o = 1,

for some ¢ € (x,1). Thus,

fn _ o fn fn
B (1—n_1> =1-(1+ f)gl —,

for some &, € (1 — f"1 , 1) and it follows that

n—

n—by
mp [1— = 1 1= (1= ) <0 gk P ]
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which simplifies to 22-&0n(f,, + f2). By definition, f, + f2 — oo when f, = w(1). However, &[» must be
accounted for; if we can show &I» > M for some constant M > 0 not dependent on n, then 22-&In (f, + f2) >

M (fp + f2) — o0 as desired. Recall &, € (1 — L2, 1) and so &f» > (1 — %)f". Observe

n—17
fa fn B o
(1 p—] =expy fnlog (1 p—] ,
and using the Taylor expansion log(1 —z) = — Y 77 2% /x for |z| < 1,
/ L fa ' fa
log (1 -3 S N
o (1-387) =035 (725) -~ T
k>1 E>1

It follows from f,, = O(y/n) that
fn

n—1

f log (1 - ) = 0(),

folog (1—%)‘ < M.

I . fn
Equivalently, (1 - %) >e M, Thus, &, € (1 — o 1) implies &/» > (1 - %) >e M >0 and so

n—by,
np[1< b ) ]Wéfl"(fn+fﬁ)%oo7

n—1 n—1

and so there exists an M > 0 independent of n such that for sufficiently large n,

since f, = w(1).

It is left to consider when f,, # O(y/n) and f, # w(y/n). In this case, define g, = sup,,~,, fm- Then
gn > fnoand thus n — 1 — f, > n—1— g,. Since E; [XP] monotonically increases in b, (keeping v blue),
it suffices to show that n — E,_1_,, [X{] = co. We claim that g, = w(y/n). Indeed, let M >0 and N € N
be arbitrary. Because f, # O(y/n), there exists an ny > N such that f,, > M,/ng. Then

gN = sup fm > fn, > M/ng > M+/N,
m>N
and so g, = w(y/n). It follows from before that n — E,_1_, [XP] - oo and son —E,_1_f, [XP] = co. O

Observe that [n—Ey, [X{]| = Ep, [[n— XP|] since n > E;, [XP] and so Theorem 3.15 says X{ converges
in mean to n exactly when b, = n — 1 for sufficiently large n. As a consequence, X converges to n in
probability and hence X{? = n with high probability.

4. Calculating RPZF parameters. This section presents standard Markov chain results for RPZF
chains and parameters on any graph. These results are utilized in Section 5 to calculate the RPZF parameters
of specific graph families. We provide brief explanations to support readers less familiar with probability.
For an introduction to and proofs of the standard Markov chain results discussed here, the reader is directed
to [19, Ch. 11]. More advanced results and details may be found in, e.g., [12].

Let (X;) be an RPZF Markov chain on a graph G with reversion probability p € (0, 1), properly ordered
state space (So,...,Ss), and Markov transition matrix M. Let T'(j) = min{t > 1: X; = S;} be the time of
first arrival to S; (sometimes called the first return time). Notice that the starting state Xy is not explicit
in the notation. Define

pij = Pi[T(j) < ool =P[X; = S; for some t > 1| Xy =5;],
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to be the probability that the RPZF chain enters state S; after starting from state S;. Then the critical
reversion probability pp (G, S;) is the DARPZF reversion probability such that p;o = p;s = 1/2. We can also
classify states of the Markov chain. If p;; = 1, then state .S; is said to be recurrent, if p; < 1, then state .S;
is said to be transient, and if P;[X; = S;] = 1, then state S; is said to be absorbing.

PROPOSITION 4.1. Let G be a connected graph and (Sy, . ..,Ss) be a properly ordered state space of G for
an RPZF chain with reversion probability p € (0,1). Then the state Sy is absorbing, the state S; is transient
for allie{1,...,s— 1}, and the state Ss is absorbing in DARPZF and transient in SARPZF.

Proof. Let (X;) be an RPZF chain on a graph G with n vertices. It is immediate from the Markov
matrices (see (4.9)) that Sp is an absorbing state for SARPZF and DARPZF. Next, consider the state S
where all vertices are blue. In the DARPZF chain it is immediate from (4.9) that S is absorbing. On
the other hand, in the SARPZF chain P,[T(s) = oo] > P4[X; = Sp] = p™ > 0 and so S, is transient in
SARPZF. Finally, let i € {1,...,s — 1} and consider p;; = P;[T'(i) < oo] = 1 — P;[T(i) = oc]. To prove S;
is transient, it suffices to show P;[T(i) = oo] > 0. This follows from observing that an absorbing state is
always reachable in one step of the chain. ]

Given that every state in RPZF is either transient or absorbing, it is immediate that for any B C V(G),
P[pta(G, B) < oo] = 1. The division of states into absorbing and transient also gives a natural partition of
the RPZF Markov transition matrices. In particular,

110---0 110---0] 0
(4.9) Mg = l 0 ] and Mp=|a | Qp |a |,
s 0001

where the i*" row and column correspond to the state S;. The column vectors r and a; correspond to the
absorbing state Sy where all vertices are white and hence no vertex can be forced blue. Symmetrically,
a, corresponds to the absorbing state S; in DARPZF where every vertex is blue and so by definition of
DARPZF no reversions can occur. Additionally, for any t € N,

1{0---01]0
(4.10) (Mg)" = l i ?Qs)(t) ] and (Mp)'=| | (Qp)"
0]0---0 |1

REMARK 4.2. The RPZF transition matrices are indexed from 0, and submatrices preserve the indexing
of their parent matrix. So, for example, Qs and Qp are indexed from 1.

Notice that, as a consequence of Proposition 4.1, every state is either transient or absorbing and the only
recurrent states are the absorbing states. Additionally, because p > 0, the submatrices Qg and Qp from
(4.9) correspond exactly to transient states. From this it follows that Q' — O as t — oo for Q € {Qs,Qp}-

We are next interested in how long an RPZF chain is expected to stay in transient states. For a connected
graph G with properly ordered state space (Sp,...,Ss), let Ng and Np be matrices such that

(4.11) (Ns)ij = Ei[l{t > 0: X7 = S;}|] and (Np)y = Ei[[{t > 0: X{ = Sj}|l.

It is a standard Markov chain result [19, Theorem 11.4] that N € {Ng, Np} exists and that moreover
N=37,QF = —Q)" where Q € {Qs,Qp} corresponds to the choice of N. Observe that summing
across the ith row of N gives the expected number of rounds the chain spends in transient states, having
started from state S;. Formally, let t = N1 where 1 is the vector containing all ones. Then eta(G; S;, p) = t;.
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In the case of DARPZF, there are two potential absorbing states for the chain to enter. Which is more
likely? Consider the DARPZF Markov chain on a connected graph G with properly ordered state space
(So,-..,98s) and transition matrix Mp. Let C' = [c¢;;] be the (s — 1) x 2 matrix such that, starting the chain
from transient state S;, ¢;1 is the probability that the graph dies out and ¢;s is the probability that the graph
is fully forced. Then

(4.12) C= ND[a1 ag] = (I - QD>_1[31 ag],
where the vectors aj, ag come from (4.9). Again, see [19, Theorem 11.6] for details.

PROPOSITION 4.3. For any connected graph G with properly ordered state space (So,...,Ss) and for
any transient state S;, the critical reversion probability pp(G,S;) exists. That is, there exists a Teversion
probability such that P;[T(0) < oo] = P;[T'(s) < o] = 1/2, where T(j) = inf{t > 1: XP = S;}.

Proof. Let C' = [¢;;] be asin (4.12). The entries of @ p are continuous functions in p and I—(@) is invertible
for p € (0,1). Hence, the entries of C' are continuous functions in p € (0,1). By taking p sufficiently small,
ci1 = ¢1(p) < 1/2. Similarly, by taking p sufficiently large, ¢;1 = ¢;1(p) > 1/2. Thus, pp(G, S;) exists so
that ¢;1 = ¢;1(pp (G, S;)) = 1/2. Since ¢;1 = P;[T(0) < 0], ¢;2 = P;[T(s) < oo], and ¢;2 = 1 — ¢;1, the result
follows. 0

5. DARPZF simulations and approximations. Consider the DARPZF chain on K,, with reversion
probability p € (0,1). Using (4.12) we calculate pp (K, S1), the reversion probability such that K,, has equal
probability to either die out or fully force when starting from a single blue vertex, for small n.

TABLE 1
Ezact calculations of the critical reversion probability for the complete graph

Pp(Kn, S1) || n | po(Kn,S1) || n | pp(Kn, S1) | 7 | pp(Kn, S1)
.6 8 0.427761 13 0.433535 18 0.435628
0.466548 9 0.429115 14 0.434157 19 0.43585
0.437779 10 0.43052 15 0.434648 20 0.43604
0.428853 11 0.431747 16 0.435042 21 0.436203
0.427101 12 0.432745 17 0.435363 22 0.436346

N OO W3

These critical reversion probabilities, given in Table 1, have been converted from fractional to decimal
form. We can further estimate pp (K, S1) for larger n to arbitrary levels of precision, as provided in Table 2.

TABLE 2
Numerically approximated critical reversion probability for the complete graph.
n pp (K, S1) n pp(Kn, S1)

12 | 0.43274 +0.00001 || 96 | 0.43805 £ 0.00005
16 | 0.43505 £ 0.00005 || 128 | 0.43815 =+ 0.00005
32 | 0.43715+0.00005 || 156 | 0.43818 4= 0.00005
64 | 0.4379 £0.00005 || 192 | 0.4382 =+ 0.00005

Next, Figs. 1 and 2 approximate the expected time of absorption for various graphs using Monte Carlo
simulations, starting from a single blue vertex. Let V' = {v1,...,v,} be a set of vertices. The path graph P,
is the graph with edges v;v;y1 for 1 <i <n —1. The endpoints are v; and v,, and the midpoint is v, /27
The cycle graph is a path with the additional edge v,v;. When simulating DARPZF on the path, starting
from an endpoint and starting from a midpoint has a noticeable effect on the expected time to absorption.
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Expected time of absorption for DARPZF on complete and complete bipartite graphs
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FIGURE 1. Monte Carlo simulation of DARPZF on K32 and Ki6,16 compared to the exact calculation for K3z, starting
from a single vertex.

Expected time of absorption for DARPZF on various graph families
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FIGURE 2. Monte Carlo simulations of DARPZF' on the cycle, path, and star on 32 vertices, starting from a single vertex.

Finally, Fig. 3 presents Monte Carlo simulations of DARPZF on different 32 vertex graphs starting from
one blue vertex. Notice that when the reversion probability p > 0.4, the cycle, path, and star die out with
probability nearly one. On the other hand, the highly connected complete graph and balanced complete
bipartite graph do not reach the same level die out until p > 0.75 and p > 0.7, respectively.
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Probability DARPZF dies out on 32-vertex graphs with one initial blue vertex
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FIGURE 3. Monte Carlo simulations of DARPZF on the cycle, path, star, and balanced complete bipartite graphs on 32
vertices, starting from a single blue vertex.

The critical reversion probability starting from a single blue vertex can also be estimated from Fig. 3.
Observe that for the cycle, path, and star graphs, the p which maximizes etap(G;p) in Fig. 2 closely aligns
with the approximate pp(G,{v}) from Fig. 3. On the other hand, the maximums of etap(K32;p) and
etap(K16,16; p) occur at a p noticeably smaller than their respective critical reversion probabilities. In the
case of the complete graph, we know from Theorem 3.8 that only a small percentage of vertices are needed
to have a high chance of forcing the entire graph blue. Compare this with the cycle or path graph, where
the threshold for one-step fully forcing is of order n. Indeed, at least one-third of the vertices must be blue
to even have a nonzero probability to fully force the cycle or path in one step.

Contrasting RPZF behavior with traditional PZF, the cycle and path are expected to take ©(n) steps
to force in PZF [17], and the complete graph has an expected propagation time of ©(loglogn) steps [10].
The cycle and path thus have more time to be stymied by the reversion of blue vertices in RPZF, which
may result in longer-lasting oscillations of white and blue vertices. The complete graph, on the other hand,
forces significantly more quickly and so does not as easily fall into these oscillation.

In RPZF, both the one-step threshold and expected propagation time quantify how “hard” a graph is
to fully force, unline expected propagation time in traditional PZF. Consider the path or cycle on n vertices
when starting from a single blue vertex. These graphs require only a single force to become deterministic in
nature, but will always take at least n/2 rounds to fully force.

When starting from a single vertex, Figs. 1 and 3 indicate that the balanced complete bipartite graph
behaves much more like the complete graph than the star graph (a severely “unbalanced” complete bipartite
graph). This observation is supported by Theorem 3.13, which gives the one-step forcing threshold for
K /2,n/2 as order O( nlog(n/Q))7 which is comparable to the K,, threshold of @(\/W) and significantly
smaller than the K ,,—; threshold of n — 1 — o(1) from Theorem 3.15.
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6. The contact process. RPZF can be viewed as a discrete-time analog of what is known in the
probability literature as the contact process, a basic model for population growth and the spread of infection.
Analogous to discrete-time Markov chains, we say that (1), ¢ > 0, is a continuous-time Markov process on
the state space S if for any 0 < up < u; < --- < uy and any states S5, 5;, 5, _,,...,5i, €S,

P[nuk+t = Sj | Ny, = Sivnuk_1 = Sik_lv' s Ny = SZ ] = P[nt = Sj | o = SZ]

The susceptible-infected-susceptible contact process (SIS contact process) on a (possibly infinite) graph
G = (V, E) with infection parameter A\ > 0 is a continuous-time Markov process (1) with state space {0,1}",
where a state € {0,1}" is a configuration of zeros and ones on the graph. At any time ¢ > 0, each vertex
has status either 0 (“healthy”) or 1 (“infected”). The state of the entire system at time ¢ is then described
by n: : V. — {0,1} where n;(v) is the status of vertex v at time ¢. Finally, for a vertex v and configuration
7, we say that the contact process (1) evolves according to the local transition rates

0—1 atrate X Z n(w),
weN (v)

1—0 atrate 1.

Specifically, these are the rates for exponential random variables whose value corresponds to the waiting time
until vertex v changes status. Thus, infected vertices recover after some (exponential distribution) time with
mean 1 independent of its neighbors, and healthy vertices become infected at a rate linearly proportional
to its number of infected neighbors. G is often taken to be the d-dimensional infinite lattice, where vertex
interactions are local in nature; that is, a vertex is adjacent only to those 2d vertices at Euclidean distance
1. This, combined with being vertex transitive, means that the contact process can be studied at the local
level, from which global behaviors are deduced (with varying levels of simplifying assumptions) [6, 24]. That
being said, recent work has also been done on other large graph structures such as scale-free and power-law
graphs [18, 22].

A common topic in study of contact processes is the infection parameter A and its relation to the process
surviving or dying out. The contact process is said to die out if

Pl Z0Vt >0/ =0,

where 7y Z 0 means there exists a v € V such that n;(v) # 0. Otherwise, the process is said to survive. It
is well known that on finite graphs, no matter the initial configuration or infection parameter, the process
dies out [26]. The same is true for SARPZF. For a thorough introduction to the contact process and its
fundamental results, the reader is directed to [25].

Let G now refer to the d-dimensional infinite lattice. An additive process is a generalization of the
contact process where the infection rate A and death rate 0 (previously § = 1) at v are now a function of
the finite subsets of V(G) [13, Ch. 3]. The contact process is recovered when A(A) = A for A = {z} with
x € N(v), 0(&) = 1, and are 0 otherwise. SARPZF is formulated in the continuous-time regime as an
additive process where, at a vertex v, the infection rate A(A) is a function of A C {w : d(v,w) < 2} where
d(v,w) is equal to the length of the shortest path from v to w. A process is said to be irreducible if for
all t > 0 and all v € V(G), P[p:(v) = 1] > 0 when starting from one blue vertex. Observe that both the
contact process and continuous-time SARPZF are irreducible on connected graphs. It can be shown that if
an irreducible additive process does not die out, then at large times it looks like the process starting from
all vertices infected [5, 13].
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6.1. The discrete SIS contact process. The discretized SIS contact process can be formally de-
scribed as follows. Let G be a (possibly infinite) graph. At each time ¢t € N, every infected vertex v € V(G)
infects each of its neighbors independently with probability 5. Simultaneously, every infected vertex v at
time ¢ recovers with probability p. The exact meaning of “simultaneously” differs depending on the partic-
ular discretization being considered. For instance, some models allow a vertex that recovers to be reinfected
during the same time step, whereas others assert that a recovered vertex must remain recovered. SARPZF
takes a hybrid approach wherein infected vertices can immediately recover, but recovered vertices remain
recovered for that time step.

Over time, various formulations have been proposed to model the discrete-time SIS contact process. We
describe a few of them and then contrast them to SARPZF. We consider only SARPZF because contact
processes do not have the additional stopping condition that DARPZF has. For any vertex v € V(G) and
time ¢ € N, define p, (t) to be the probability that v is infected (blue) at time ¢ and define

qv(t+1): H (1*sz(t))a

€N (v)

to be the probability that v does not receive infection (is not forced) at time ¢. Finally, let p be the probability
that a vertex recovers (reverts to white). Then, Wang et al. proposed the model [29]

(6.13) L pult+1) = (L= po0)au(t + 1)+ pbu(H)ault + 1) + 5ppu(t)(L — ault + 1),

The first term is the probability of vertex v entering time ¢ + 1 healthy and then not being infected, the
second term is the probability of v entering time ¢+ 1 infected, recovering, then not being reinfected, and the
final term assumes that half of the time a vertex will undergo a “curing event” after being reinfected. Notice
that this interpretation of “simultaneous” has recovery occurring before infection. This model is explored
in more detail in [9]. Later models do away with the 1/2 probability “curing event” assumption, as well as
stating the dynamics in terms of the probability of being infected, p,, instead of the probability of being
healthy, 1 — p,. For instance, Gémez et al. introduced the model [18]

(6.14) Po(t+1) = (1 =ppo(t) + (1 = qu(t + 1)) (1 = pu(t)) +p(1 — qu(t + 1))pu(?),

accounting for the cases of an infected vertex failing to recover, a susceptible vertex being infected, and an
infected vertex recovering then becoming reinfected. This formulation also makes the assumption that a
vertex which recovers at time ¢ can immediately be reinfected at time ¢. Contrast (6.14) with the model
presented by Ahn and Hassibi in [1] where

(615) pv(t + 1) = (1 - p)pv(t) + (1 - pv(t))(l - qv(t + 1))a

doing away with the p(1 — q,(¢t + 1))p,(¢) term and so asserting that a vertex that recovers cannot be
reinfected in the same time step. This formulation seems most true to the notion of “simultaneous” vertex
infection and recovery since vertices can only undergo one status change each time step. Equation (6.15) can
be further simplified by truncating the terms of qu(t + 1) = [[,en(,) (1 — Bpz(t)) with powers of 3 greater
than 1, giving

(616) pv(t + 1) = (1 - p)pv(t> + (1 - pv(t))ﬁ Z pz(t)

z€N (v)

Note that this approximation is better for smaller values of 8. Paré et al. demonstrate in [27] how (6.16)
directly matches the model derived from applying Euler’s method to the continuous-time mean field approx-
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imation for the SIS contact process, as well as providing analysis on the accuracy of (6.15) and (6.16). For a
graph G on n vertices, these models can all be used to solve for p, numerically from which tests of accuracy
are typically derived. A commonly considered parameter is the graph’s expected infection density p; at time
t. Given an infection rate 8 and recovery rate p, this is computed as

va

v€V (@)

So far, the models described have all been homogeneous, meaning that the infection rate S and recovery
rate p are constant for all vertices. SARPZF, on the other hand, is more akin to a heterogenous model,
wherein the infection rate and recovery rate depend on the vertex. In fact, SARPZF is somewhere in the
middle, with a constant recovery rate but variable infection rate. Looking to model SARPZF in the same
way as the above models, we find

(6.17) po(t+1) = (1 =p)po(t) + (1 = p)(1 = pu (1)) (1 = qu(t + 1)).

The first term is the case of v being infected after time ¢ and not reverting during time ¢ + 1, and the second
term is the case of vertex v being health after time ¢, infected at time ¢ + 1, and not then reverting at time
t + 1. Notice that (6.17) is most similar to (6.15) but differs in two ways. First, the function g, is different.
Second, the (1 — p,(¢))(1 — q,(¢t + 1)) is multiplied by 1 — p due to the fact that in SARPZF, a vertex has
the chance to revert in the same time step it is infected. This interpretation of “simultaneous” has recovery
occurring after infection. One of the key differences between the models in the literature and SARPZF is
the infection rate g and, subsequently, the probability that vertex v is not infected by a neighbor q,. Let
G be a graph on n vertices and let (X;) be the SARPZF Markov chain on the properly ordered state space
S = (So,...,Ss) with reversion probability p. Notice that in SARPZF, if B is our set of infected vertices,
then vertex v is “infected” (forced) with probability

BN

PB—uv=1-PBAv=1- ][] Plasv=1- ][] (1_ gz
)

x€BNN(v) z€BNN (v

Thus, if X; is the set of blue vertices at time ¢ and Xy = S;, then q,(t + 1) = P[X; 4 v]. Applying the law
of total probability over the state space S,

Go(t+1) ZP (X; £ v | X, = S;]P[X; = 5]

:Z 11 (1 |Sdr;gj\; )Hpm [T @—patt).

j=0z€S;NN (v) TE€S; eV (G)\S;

Notice that in this case, the rate of infection is exponentially proportional to the number of infected
neighbors and, moreover, is also dependent on the number of infected vertices at distance 2 from v. Intuitively,
this means that an infected vertex is more infectious when it has more infected neighbors.

7. Conclusion and future directions. The focus of this paper was to develop tools and results in
the analysis of RPZF on both general and densely connected graph structures. This included asymptotic
thresholds for infection on the complete and complete bipartite graphs as well as calculations of the critical
reversion probability for various graph families. The probabilistic literature, on the other hand, is often
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concerned with behavior on simpler graph structures like the integer lattice which, unlike the complete
graph, does not exhibit global vertex interaction. These results are typically realized either in the deduction
of stationary distributions or mean field analyses, sometimes with conflicting results due to the nature of
their simplifying assumptions (see, for instance, [3]). Both these types of results would be interesting to
derive for RPZF. For instance, basic contact process results from, e.g., [13, Ch. 3] should be translatable
to the RPZF domain. Another direction is to consider the behavior of RPZF on the Erds-Rényi random
graph model. Traditional PZF has already been considered on the random graph [15], and in the contact
process literature the random graph model is used to capture the dynamic evolution of certain networks of
interaction [28]. See [14] for a more thorough introduction to the contact process on random graphs.

Appendix A. Asymptotic notation. Let f(n) and g(n) be functions from the nonnegative integers
to the real numbers, where g is strictly positive for sufficiently large input. Write f = O(g) if there exists
constants C; N > 0 such that for alln > N, |f(n)| < Cg(n) and write f = o(g) if for all C' > 0 there exists an
N > 0 such that for all n > N, | f(n)| < Cg(n). Symmetrically, f = Q(g) if there exists constants C, N such
that for alln > N, f(n) > Cg(n) and f = w(g) if for all C' > 0 there exists an N > 0 such that for alln > N,
f(n) > Cg(n). That is, f = O(g) if and only if g = Q(f) and f = o(g) if and only if g = w(f). One can

also define this notions in terms of limit behavior. Namely, f = o(g) when lim,, % =0and f =w(g)
if lim,, oo % = oo. We refer the reader to , e.g., [11] for a more thorough introduction to asymptotic
notation.

We make use of the following standard facts of asymptotic notation. Let f and g be real-valued functions.

Fact A.1. If f = o(g) then f = O(g), and if f = w(g) then f = Q(g). Moreover, f = O(f) and
f=9(f).

Fact A.2. O(f)O(g) = O(fg) and Q(f)Qg) = QU fg). Moreover, o(f)O(g) = o(fg) and w(f)g) =
w(fg).

Fact A.3. If f = O(g), then O(f) + O(g) = O(g).
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