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PROBABILISTIC ZERO FORCING WITH VERTEX REVERSION∗

ZACHARY BRENNAN†

Abstract. Probabilistic zero forcing is a graph coloring process in which blue vertices “infect” (color blue) white vertices

with a probability proportional to the number of neighboring blue vertices. This paper introduces reversion probabilistic zero

forcing (RPZF), which shares the same infection dynamics but also allows for blue vertices to revert to being white in each

round. A threshold number of blue vertices is produced such that the complete graph is entirely blue in the next round of

RPZF with high probability. Utilizing Markov chain theory, a tool is formulated which, given a graph’s RPZF Markov transition

matrix, calculates the probability of whether the graph becomes all white or all blue as well as the time at which this is expected

to occur.
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1. Introduction. Zero forcing is a graph coloring process in which blue vertices “infect” (color blue)

neighboring white vertices. It was introduced independently as a condition for the control of quantum

systems [8] and as a bound for the maximum nullity of a matrix in the study of the minimum rank problem

[20]. Zero forcing has since been used extensively in the study of the minimum rank problem (see [21] and

the references therein) and has been found to have further connections with graph search algorithms [30],

power domination [4], and the Cops and Robbers game [2, 7]. These connections have led to the study of zero

forcing in its own right, and variants of zero forcing have since emerged (see the workshop summary [16] for

examples). This paper focuses on probabilistic variations of zero forcing, the first of which was introduced

by Kang and Yi in [23]. Specifically, in this paper, we introduce reversion probabilistic zero forcing (RPZF),

a process in which blue vertices can now revert back to being white. Probabilistic zero forcing (PZF) cannot

move across graph components and is typically studied on connected graphs. Thus, unless otherwise stated,

we assume G is a simple connected graph on n vertices.

The main results of this paper characterize the behavior of RPZF on complete and complete bipartite

graphs with different densities of infected vertices. For the complete graph on n vertices, Theorem 3.8

and Theorem 3.9 show that
√
n log n is the threshold number of infected vertices for the graph to be fully

infected in one time step. Theorem 3.13 gives evidence that this asymptotic behavior is similar to RPZF on

the balanced complete bipartite graph when the infected vertices are evenly distributed. On the other hand,

Theorem 3.15 shows that the star graph is more “difficult” to fully infect when compared to the complete

and balanced complete bipartite graphs. This notion of difficulty is explored further with simulations in

Section 5.

Section 2 defines RPZF, introduces RPZF parameters, and formulates RPZF as a Markov chain. This

formulation is expanded in Section 4 to quantify the behavior of RPZF on any finite graph when provided

its Markov transition matrix, and examples of such calculations are given in Section 5. Finally, Section 6

explores how RPZF is a discrete-time analog of the susceptible-infected-susceptible (SIS) contact process,
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a basic continuous-time model for the spread of infection. In particular, RPZF is an example of a semi-

heterogeneous model, where the infection rate is different for different vertices, but the recovery rate is

uniform. The contact process is traditionally considered on the integer lattice due to its simplistic structure

and the fact that clusters of vertices do not interact globally. This paper, on the other hand, develops contact

process-like results on denser and more complex graph structures.

1.1. Basic notation. A graph is a pair G = (V,E) where the set E = E(G) of edges consists of

2-element subsets of V = V (G), the finite set of vertices. Thus, all graphs discussed (except in Section 6)

are simple, undirected, and finite. Two vertices v, w ∈ V are adjacent if {v, w} ∈ E. The open neighborhood

of v is the set of all vertices adjacent to v, denoted by N(v) = {w ∈ V : {v, w} ∈ E}. The degree of v is

deg v = |N(v)|, the number of vertices adjacent to v, and the closed neighborhood of v is N [v] = N(v)∪{v}.
We say G is connected if for every v, w ∈ V there exists a path of vertices v = v0, v1, . . . , vk = w such that

{vi−1, vi} ∈ E for all i ∈ {1, . . . , k}. In this paper, we consider only connected graphs.

The identity matrix is denoted by I, and the matrix containing all zero entries is denoted by O. We will

use 1 = [1 1 · · · 1]T to denote the column vector containing all ones and N = {0, 1, 2, . . .} to refer to the set

of non-negative integers. Given a Markov chain (Xt) with state space (S0, . . . , Ss), Pi[A] = P[A | X0 = Si]

denotes the probability of event A given the chain starts from state Si, and Ei[Y ] = Ei[Y | X0 = Si] denotes

the expected value of random variable Y given the chain starts from state Si.

1.2. Zero forcing and Markov chains. Suppose G is colored so that every vertex is blue or white.

The (deterministic) zero forcing color change rule describes how the vertices of G can change color: a blue

vertex u will force (change) a white vertex w to be blue if w is the only white neighbor of u. This is denoted

by u → w. Probabilistic zero forcing is a variant of the deterministic model. Let B ⊆ V (G) be a set of

blue vertices. In one round of PZF, each blue vertex u ∈ B attempts to force each of its white neighbors

w ∈ N(u) \B independently with probability

P(u→ w) =
|N [u] ∩B|

deg u
.

The study of PZF with Markov chains was introduced in [23] and studied further in [10, 17]. Let

S = (S0, . . . , Ss) be the ordered state space of the 2n possible colorings of a graph G.1 The PZF Markov

transition matrix for G is M = M(G;S) such that Mij is the probability of transitioning from coloring Si
to Sj in one time step [23]. We use |Si| to denote the number of blue vertices in state Si, and we say S is

properly ordered if |Si| ≤ |Si+1| for all i ∈ {0, . . . , s − 1} [10]. It is often helpful to think of a state Si as

a set of blue vertices, with the remaining vertices V (G) \ Si being white. We will use these two notions as

convenient.

2. Reversion probabilistic zero forcing. This section introduces reversion probabilistic zero forcing,

a modification of the PZF process where blue vertices have the chance to revert back to being white at the

end of each round. Two variations of this process are defined. Single absorption reversion probabilistic zero

forcing (SARPZF) adds a second phase to each round of PZF.

Definition 2.1. Given a graph G and set B of currently blue vertices, in phase 1 each blue vertex

u ∈ B attempts to force each of its white neighbors w ∈ N(u) \ B independently and simultaneously with

probability

1It is standard in probabilistic zero forcing to simplify the state space S by omitting unreachable states and to combine

states that behave analogously into a single state.
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P(u→ w) =
|N [u] ∩B|

deg u
,

as in PZF. We now have an updated set B′ of blue vertices. In phase 2, each blue vertex u ∈ B′ reverts

(changes to being white) independently with probability p ∈ (0, 1). Phases 1 and 2, done consecutively,

define the SARPZF color change rule. A round of SARPZF is one application of the SARPZF color change

rule.

Unlike in PZF, it is possible SARPZF may never reach the state Ss where all vertices in G are blue.

Moreover, it is not hard to see that SARPZF will always eventually result in all vertices being white. We

say SARPZF dies out when this occurs. However, SARPZF may lead to G being entirely blue any number

of times before dying out. It is natural to ask if V (G) will ever be entirely blue. If so, when is the first time

we expect this to happen? To answer these questions, we introduce a stopping condition to SARPZF.

Definition 2.2. The dual absorption reversion probabilistic zero forcing color change rule (DARPZF

color change rule) is defined by modifying the SARPZF color change rule as follows: after phase 1, if the set

of currently blue vertices B′ is the entire vertex set, then no vertices revert in phase 2. A round of DARPZF

is one application of the DARPZF color change rule.

Collectively, SARPZF and DARPZF are referred to as reversion probabilistic zero forcing, or RPZF. We

say that DARPZF fully forces G when every vertex is blue and dies out when every vertex is white. We say

DARPZF is absorbed whenever it dies out or fully forces G. In SARPZF, absorbed refers only to SARPZF

dying out, hence the terminology single and dual absorption.

Remark 2.3. We adopt the convention that 0 < p < 1 in RPZF. When p = 1, SARPZF trivially dies

out in one step. When p = 0, many of the results presented can be adapted to recover PZF results. However,

most of these results are already known and so we refer the reader to the PZF literature. Moreover, some

results, such as those involving the matrix QS introduced in (4.9), are not suitable for adaptation to PZF.

Let G be a graph with n vertices and let S = (S0, . . . , Ss) be a properly ordered state space with all

2n colorings of V (G). Then G, S, and p ∈ (0, 1) determine the SARPZF and DARPZF Markov transition

matrices MS(G;S, p) and MD(G;S, p), respectively. We suppress the dependencies on G, S, and p when they

are clear from context. The RPZF Markov transition matrices can be derived from the previously established

PZF Markov transition matrices. Let F = M(G;S) describe phase 1 of RPZF on G using the PZF color

change rule. Now define RS and RD to be the matrices which describe vertex reversion in SARPZF and

DARPZF, respectively. Explicitly, if we regard Si as a set of blue vertices then

(2.1) (RS)ij =

{
p|Si|−|Sj |(1− p)|Sj |, Sj ⊆ Si
0, otherwise

,

and

(2.2) (RD)ij =


p|Si|−|Sj |(1− p)|Sj |, Sj ⊆ Si 6= Ss

1, Si = Sj = Ss

0, otherwise

.

Namely, the (i, j)th entries of RS and RD give the probability of moving from state Si to state Sj via vertex

reversion. The RPZF transition matrices are now given as

(2.3) MS = FRS and MD = FRD.
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The idea behind combining states of S to create a new state space S ′ is follows. For analogously behaving

states Sj1 , Sj2 , . . . ∈ S and any state Si ∈ S, the events {Si to Sjk} are all mutually exclusive. Hence, if

Sj1 , Sj2 , . . . ∈ S are combined into a single state S′j ∈ S ′, the probability of moving from Si ∈ S to S′j ∈ S ′
is the sum of the probabilities to move from Si to Sjk . The probability distribution for leaving S′j ∈ S ′ is

the same as that of any one of the states Sj1 , Sj2 , . . . ∈ S as a direct consequence of the component states

behaving analogously.

Example 2.4 (The Complete Graph). Let Kn denote the complete graph on n vertices, let S =

{S0, . . . , Sn} be the properly ordered state space where Si is the state of Kn having i blue vertices, and

let p ∈ (0, 1). From [10, Theorem 2.4], F = M(Kn;S) is the (n+ 1)× (n+ 1) matrix given by

Fij =


(
n−i
j−i
)(

1−
(

1− i
n−1

)i)j−i((
1− i

n−1

)i)n−j
, 1 ≤ i ≤ j ≤ n

1, i = j = 0

0, otherwise.

The RPZF reversion matrices for Kn are given by

(RS)ij =

{(
i
j

)
pi−j(1− p)j , 0 ≤ j ≤ i ≤ n

0, otherwise
and (RD)ij =


(
i
j

)
pi−j(1− p)j , 0 ≤ j ≤ i < n

1, i = j = n

0, otherwise.

Then MS(Kn;S, p) = FRS and MD(Kn;S, p) = FRD.

The SARPZF and DARPZF Markov Chains are the Markov chains (XS
t ) and (XD

t ) with transition

matrices MS and MD, respectively. That is, for any t ∈ N and any i, j ∈ {0, . . . , s},

P[XS
t+1 = Sj | XS

t = Si] = (MS)ij and P[XD
t+1 = Sj | XD

t = Si] = (MD)ij .

Just as probabilistic propagation time and expected propagation time were introduced for PZF in [17],

we introduce new parameters of interest for RPZF.

Definition 2.5. Let G be a graph with properly ordered state space (S0, . . . , Ss), B a set of blue vertices

in G, and (XS
t ) and (XD

t ) the SARPZF and DARPZF Markov chains on G with reversion probability

p ∈ (0, 1). The probabilistic time of absorption for B under SARPZF (respectively DARPZF ) is the first

time at which every vertex turns the same color, denoted

ptaS(G;B, p) = min{t ≥ 0 : XS
t = S0} and ptaD(G;B, p) = min{t ≥ 0 : XD

t ∈ {S0, Ss}},

where we define min∅ =∞. The expected time of absorption for B under SARPZF (DARPZF ) is then

etaS(G;B, p) = E[ptaS(G;B, p)] and etaD(G;B, p) = E[ptaD(G;B, p)].

Finally, the expected time of absorption under SARPZF (DARPZF ) of a connected graph G is the minimum

of the expected time of absorption for B under SARPZF (DARPZF) over all one-vertex sets B of V (G)

and is denoted by etaS(G; p) (etaD(G; p)). The S and D subscripts and superscripts are omitted for general

RPZF chains.

Definition 2.5 is concerned with when RPZF is absorbed. But given a starting state (coloring) Si, for

what probability p does G have an equal chance of dying out or being fully forced in DARPZF?
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Definition 2.6. The critical reversion probability, denoted pD(G,Si), is the reversion probability such

that the DARPZF Markov chain starting from state Si has equal probability of dying out or fully forcing.

We show how to calculate pD(G,Si) in Section 4 and prove that it exists for all connected graphs G and all

nonabsorbing states Si.

3. Threshold results for RPZF. In this section, we consider the behavior of RPZF as the number of

vertices tends to infinity. To start, we establish fundamental results regarding the expected number of blue

vertices after one step of the SARPZF Markov chain, following the methods of Theorem 3.1 in [10]. Recall

that a state Si, and thus a random variable Xt of an RPZF chain, can be viewed as a set of blue vertices.

Proposition 3.1. Let (Xt) be a SARPZF Markov chain on a connected graph G with reversion prob-

ability p ∈ (0, 1) and properly ordered state space (S0, S1, . . . , Ss). Let Ft be the number of vertices forced

during phase 1 of time t (before reversion). Then for all i ∈ {0, . . . , s}, Ei[|X1|] = (1− p)(|Si|+ Ei[F1]).

Proof. Suppose X0 = Si. Let v1, . . . , v|Si|+F1
be the vertices that are blue after phase 1 of the SARPZF

color change rule at time t = 1. Notice that 1[vj 6∈ X1] are i.i.d. indicator random variables for the event of

vj reverting, j = 1, . . . , |Si|+ F1. Thus,

Ei[|X1|] = |Si|+ EiF1 −Ei

|Si|+F1∑
j=1

1[vj 6∈ X1]

 = |Si|+ EiF1 −Ei[|Si|+ F1]p = (1− p)(|Si|+ EiF1),

by independence, linearity of expectation, and the fact that v1 reverts with probability p.

Proposition 3.2. Let G be a connected graph with b blue vertices and let p ∈ (0, 1) be the reversion

probability. The expected number of blue vertices in G after one step of the SARPZF color change rule is

bounded above by (1− p)(b+ b2).

Proof. Let (Xt) be the SARPZF chain on G with starting state X0 = Si corresponding to the vertices

B = {v1, . . . , vb} colored blue and let V (G) \ B = {w1, . . . , w`}. Let Ft be the number of vertices forced

during phase 1 of time t (before reversion). We start by bounding EiF1. For each j = 1, . . . , b, let Bj be

the set of vertices forced by vj in phase 1. Note that multiple blue vertices may force the same white vertex

and so the Bj ’s may intersect. Then

EiF1 = Ei[|B1 ∪ · · · ∪Bb|] ≤ Ei

 b∑
j=1

|Bj |

 =

b∑
j=1

Ei|Bj |.

Let Yj(k) = 1 if vj forces wk and 0 otherwise. Then |Bj | =
∑`
k=1 Yj(k) and so

Ei|Bj | =
∑̀
k=1

EiYj(k) =
∑̀
k=1

Pi[vj → wk] = |N(vj) \B|
|N(vj) ∩B|
|N(vj)|

≤ |N(vj) ∩B|.

It follows that EiF1 ≤
∑b
j=1 |N [vj ] ∩ B| ≤ b|B| = b2, and we conclude that Ei[|X1|] ≤ (1− p)(b+ b2) from

Proposition 3.1 since |Si| = b.

Observe that for any connected graph with SARPZF and DARPZF Markov processes (XS
t ) and (XD

t ),

Ei[|XD
1 |] ≥ Ei[|XS

1 |] for all states Si. Indeed, in phase 1, SARPZF and DARPZF share the same distribution

by (2.3), and in phase 2, all vertices revert with probability p unless DARPZF steps into absorbing state Ss.
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3.1. The complete graph. When utilizing the RPZF Markov chain (Xt) on the complete graph, it

will be convenient to consider the random variables Xt as taking integer values representing the number of

blue vertices at the end of time t. For notational convenience, we denote the probability that a particular

vertex in Kn is forced by one of its b blue neighbors by

(3.4) q(n, b) = 1−
(

1− b

n− 1

)b
.

It will be useful to have an explicit description of the one-step Markov transition probability Pb[X1 = k].

For SARPZF, this can be done in terms of known probability distributions. Indeed, let B be the set of

currently blue vertices with |B| = b, let X be a random variable equal to the number of vertices from B

which do not revert, and let Y be a random variable equal to the number of vertices from V \ B which

are forced blue and do not revert. Then X and Y are independent with X ∼ Binomial(b, 1 − p) and

Y ∼ Binomial(n − b, (1 − p)q(n, b)). Moreover, if XS
0 = b, then XS

1 = X + Y follows a Poisson binomial

distribution with p1 = · · · = pb = 1 − p and pb+1 = · · · = pn = (1 − p)q(n, b). This is used in the following

result.

Proposition 3.3. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on Kn, n ≥ 2,

with reversion probability p ∈ (0, 1), and let q(n, b) be defined as in (3.4). Then for any 1 ≤ b ≤ n and

0 ≤ k ≤ n, Pb[X
S
1 = k] is equal to both of the following:

(1)
n∑

i=max{b,k}

(
n− b
i− b

)(
i

k

)
(1− p)kpi−kq(n, b)i−b(1− q(n, b))n−i

(2)

min{b,k}∑
i=0

(
n− b
k − i

)(
b

i

)
(1− p)ipb−i[(1− p)q(n, b)]k−i[1− (1− p)q(n, b)]n−b−(k−i).

Additionally,

Pb[X
D
1 = k] = Pb[X

S
1 = k]−

(
n

k

)
pn−k(1− p)kq(n, b)n−b + δnk (q(n, b))

n−b
,(3.5)

where δij = 1 if i = j and δij = 0 if i 6= j.

Proof. Let MS = FRS and MD = FRD denote the Markov transition matrices for the SARPZF and

DARPZF chains (XS
t ) and (XD

t ) on Kn. Observe that Fbi = 0 when i < b and (RS)ik = 0 when i < k.

Formula (1) now follows from Pb[X
S
1 = k] = (MS)bk and matrix multiplication. If XS

0 = b, then XS
1 is

distributed as a Poisson binomial random variable with p1 = · · · = pb = 1 − p and pb+1 = · · · = pn =

(1− p)q(n, b), the probability mass function of which is formula (2). Considering Pb[X
D
1 = k], observe that

(RS)ik = (RD)ik for k ≤ i ≤ n − 1 and so Pb[X
D
1 = k] = Pb[X

S
1 = k] − Fbn(RS)nk + Fbn(RD)nk. This

simplifies to (3.5).

We now calculate how the number of blue vertices in Kn is expected to change after one step of an

RPZF process.

Theorem 3.4. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on Kn, n ≥ 2, with

reversion probability p ∈ (0, 1), and let q(n, b) be defined as in (3.4). Then

Eb[X
S
1 ] = (1− p)(b+ (n− b)q(n, b)) and Eb[X

D
1 ] = Eb[X

S
1 ] + np q(n, b)n−b.
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Proof. The value of Eb[X
S
1 ] is the known mean of a Poisson binomial random variable. To calculate

Eb[X
D
1 ], let F1 be the number of vertices forced blue at time t = 1. Observe that by Proposition 3.1 and

linearity, Eb[X
S
1 ] = (1− p)Eb[F1 + b]. Hence, by the definition of expected value

Eb[X
D
1 ] = (1− p)

n−1∑
k=b

kPb[F1 + b = k] + nPb[F1 + b = n]

= Eb[X
S
1 ]− (1− p)nPb[F1 + b = n] + nPb[F1 + b = n].

Substituting Pb[F1 = n− b] = q(n, b)n−b and simplifying finishes the proof.

The remainder of this section is dedicated to threshold-like results for RPZF on Kn. These results

concern the necessary number of blue vertices bn for a particular event to occur in one step of the RPZF

chain with high probability, where bn is a function of n, the total number of vertices in the graph, and

n→∞.

Lemma 3.5. Let (XD
t ) be the DARPZF Markov chain on Kn with reversion probability p ∈ (0, 1). If

bn ≥
√
n log n2+γ with γ > 0, then

lim
n→∞

|n−Ebn [XD
1 ]| = 0.

Proof. Observe En−1[XD
1 ] = En[XD

1 ] = n, so we may assume bn ≤ n − 2. Let bn ≥
√
n log n2+γ with

γ > 0. Throughout this proof, let

g(n, bn) = 1− q(n, bn) =

(
1− bn

n− 1

)bn
.

Using Theorem 3.4, observe that

Ebn [XD
1 ] = (1− p)

(
bn + (n− bn) (1− g(n, bn))

)
+ np

(
1− g(n, bn)

)n−bn
,

which, after distributing (n− bn) and canceling the bn terms, is equal to

(1− p)
(
n− (n− bn)g(n, bn)

)
+ np

(
1− g(n, bn)

)n−bn
.

Now distribute the (1− p) and simplify to get

Ebn [XD
1 ] = (1− p)n− (1− p)(n− bn)g(n, bn) + np

(
1− g(n, bn)

)n−bn
= n− (1− p)(n− bn)g(n, bn)− np

(
1−

(
1− g(n, bn)

)n−bn)
.

Additionally, Ebn [XD
1 ] ≤ n because XD

1 ≤ n and so |n−Ebn [XD
1 ]| = n−Ebn [XD

1 ], which in turn simplifies

to

(1− p)(n− bn)g(n, bn) + np
[
1−

(
1− g(n, bn)

)n−bn]
.

We show that each of these two terms converges to 0 as n→∞.

For the first term, it suffices to show that ng(n, bn) → 0 as n → ∞ since n − bn and g(n, bn) are

nonnegative. Recalling the Taylor expansion log(1 − x) = −
∑∞
k=1 x

k/k for |x| < 1, we have

g(n, bn) = exp

{
bn log

(
1− bn

n− 1

)}
= exp

{
bn

(
− bn
n− 1

−
∞∑
k=2

bkn
k(n− 1)k

)}

= exp

{
− b2n
n− 1

}
exp

{
−
∞∑
k=2

bk+1
n

k(n− 1)k

}
,(3.6)
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for all bn < n− 1. Then g(n, bn) ≤ e−b2n/(n−1) because bn > 0. Using the inequality bn ≥
√
n log n2+γ ,

(3.7) g(n, bn) ≤ exp

{
− b2n
n− 1

}
≤ exp

{
−n log n2+γ

n− 1

}
< exp

{
−n log n2+γ

n

}
= n−(2+γ).

Hence,

0 ≤ (1− p) (n− bn) g(n, bn) ≤ exp

{
− b2n
n− 1

}
n < n−(1+γ) → 0,

as n→∞.

It is left to show

lim
n→∞

np
(

1−
(
1− g(n, bn)

)n−bn)
= 0.

Define H(n) = (n− bn) log (1− g(n, bn)) so that 1−
(
1− g(n, bn)

)n−bn
= 1− eH(n). It thus suffices to show

that n(1− eH(n))→ 0 as n→∞. Observe

H(n) = (n− bn) log(1− g(n, bn)) ≤ 0,

since 0 ≤ g(n, bn) < 1. Hence, to prove n(1− eH(n))→ 0, it is enough to show

H(n) ≥ log
(

1− n−(1+γ)
)
,

for sufficiently large n, since then

0 ≤ n(1− eH(n)) ≤ n(1− (1− n−(1+γ))) = n−γ .

To this end, notice that because H(n) = (n− bn) log(1− g(n, bn)) ≤ 0 and bn ≤ n,

H(n) ≥ n log(1− g(n, bn)) = −n
∞∑
k=1

g(n, bn)k

k
.

We already showed in (3.7) that g(n, bn) ≤ n−(2+γ). Hence,

H(n) ≥ −
∞∑
k=1

n−k(2+γ)+1

k
≥ −

∞∑
k=1

n−k(1+γ)

k
= log(1− n−(1+γ)),

and so n(1− eH(n)) ≤ n−γ . It follows that

np

[
1−

(
1−

(
1− bn

n− 1

)bn)n−bn]
= np(1− eH(n))→ 0,

as n→∞. We have shown that each term of |n−Ebn [XD
1 ]| converges to 0 and so |n−Ebn [XD

1 ]| → 0.

Considering the SARPZF chain (XS
t ), notice that

(1− p)n−Eb[X
S
1 ] = (1− p)(n− b)

(
1− b

n− 1

)b
.

Notice also that Eb[X
S
1 ] ≤ En[XS

1 ] = (1 − p)n by Theorem 3.4. Following the proof of Lemma 3.5 through

(3.7), one gets the following corollary that gives a threshold for the expected number of blue vertices in

SARPZF to be close to (1− p)n.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 41, pp. 49-73, January 2025.

57 Probabilistic zero forcing with vertex reversion

Corollary 3.6. Let (XS
t ) be the SARPZF Markov chain on Kn with reversion probability p ∈ (0, 1).

If bn ≥
√
n log n1+γ with γ > 0, then

lim
n→∞

|(1− p)n−Ebn [XS
1 ]| = 0.

In other words, if Kn has bn = Ω(
√
n log n) blue vertices, then with constant C1 >

√
2 we expect n blue

vertices after one application of the DARPZF color change rule, and with constant C2 > 1 we expect (1−p)n
blue vertices after one application of the SARPZF color change rule. We refer the reader to Appendix A for

a review of asymptotic notation and their common properties.

It turns out
√
n log n is the threshold for this behavior. Indeed, if bn = O(

√
n log n) with constant C < 1,

then the SARPZF and DARPZF Markov chains on Kn converge to each other while getting arbitrarily far

from n. This is made precise in the next result.

Proposition 3.7. Let (XS
t ) and (XD

t ) denote the SARPZF and DARPZF Markov chains on Kn. If

bn ≤
√
n log n1−γ with γ > 0, then |Ebn [XS

1 ]−Ebn [XD
1 ]| → 0 as n→∞. Moreover, |(1−p)n−Ebn [XS

1 ]| → ∞
and |n−Ebn [XD

1 ]| → ∞ as n→∞.

Proof. Let bn ≤
√
n log n1−γ with γ > 0 and let g(n, bn) =

(
1− bn

n−1

)bn
. By Theorem 3.4, to prove

|Ebn [XS
1 ]−Ebn [XD

1 ]| → 0, it suffices to show that np(1− g(n, bn))n−bn converges to 0 as n→∞. Observe

g(n, bn) = ebn log(1− bn
n−1 ) = ebn

(
− bn
n−1+O

(
b2n
n2

))
= e

bn

(
− bnn −

bn
n2−n

+O
(
b2n
n2

))
= e−

b2n
n eO

(
b3n
n2

)
,

since − bn
n2−n = O(b2n/n

2). Using the expansion ex =
∑∞
i=0 x

i/i! this is equal to

e−
b2n
n

[
1 +O

(
b3n
n2

)
+O

(
b6n
n4

)
+ · · ·

]
= e−

b2n
n

[
1 +O

(
b3n
n2

)]
.

Now apply the assumption bn ≤
√
n log n1−γ to get g(n, b) ≥ 1

n1−γ

[
1 +O

(
b3n
n2

)]
.

Turning to (1− g(n, bn))n−bn , this can be written as

exp

−(n− bn)
∑
k≥1

g(n, bn)k

k

 ≤ e−(n−bn)g(n,bn),
and substituting −g(n, b) ≤ − 1

n1−γ

[
1 +O

(
b3n
n2

)]
gives

(1− g(n, bn))n−bn ≤ exp
{
−(n− bn)n−(1−γ)

[
1 +O

(
b3n
n2

)]}
.

Finally, apply bn ≤
√
n log n1−γ and simplify to find

0 ≤ (1− g(n, bn))n−bn ≤ exp

{
−nγ

(
1−

√
log n1−γ√

n

)[
1 +O

(
b3n
n2

)]}
.

Since
√

log n1−γ/n→ 0 and O(b3n/n
2)→ 0 as n→∞, we conclude that (1− g(n, bn))n−bn = O(e−n

γ

) from

which it follows that np(1− g(n, bn))n−bn → 0 as n→∞.
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Additionally,

|n−Ebn [XD
1 ]| ≥ (1− p)(n− bn)g(n, bn) = |(1− p)n−Ebn [XS

1 ]|,

and from g(n, b) ≥ 1
n1−γ

[
1 +O

(
b3n
n2

)]
it follows that

(n− bn)g(n, bn) ≥
(
nγ − bn

n1−γ

)[
1 +O

(
b3n
n2

)]
≥

(
nγ −

√
n log n1−γ

n1−γ

)[
1 +O

(
b3n
n2

)]
= nγ

(
1−

√
n log n1−γ

n

)[
1 +O

(
b3n
n2

)]
,

which tends to infinity as n→∞.

This result, combined with Lemma 3.5, shows that
√
n log n is the threshold number of blue vertices for

DARPZF on the complete graph to fully force in one step.

Theorem 3.8. Let (XD
t ) be the DARPZF Markov chain on Kn with reversion probability p ∈ (0, 1),

and let γ > 0.

• If bn ≤
√
n log n1−γ then |n−Ebn [XD

1 ]| → ∞ as n→∞, and

• if bn ≥
√
n log n2+γ then |n−Ebn [XD

1 ]| → 0 as n→∞.

That is,
√
n log n is the threshold function for expecting DARPZF to fully force in one step.

In fact, if bn ≥
√
n log n2+γ , then since n ≥ XD

1 ≥ 0 we have |n−Ebn [XD
1 ]| = Ebn [|n−XD

1 |]→ 0 as n→∞.

Formally, one says that if bn ≥
√
n log n2+γ , then XD

1 converges in mean to n.

The next result, as a consequence of previous, states that if Kn has asymptotically greater than
√
n log n

blue vertices, then with high probability Kn will be entirely blue after one step of the DARPZF Markov chain.

If the number of blue vertices is asymptotically below
√
n log n, then with high probability the DARPZF

chain will not have n blue vertices.

Theorem 3.9. Let (XD
t ) be the DARPZF Markov chain on Kn with reversion probability p ∈ (0, 1),

and let γ > 0.

• If bn ≤
√
n log n1−γ , then Pbn [XD

1 = n]→ 0 as n→∞, and

• if bn ≥
√
n log n1+γ , then Pbn [XD

1 = n]→ 1 as n→∞.

Proof. Let bn be such that 0 ≤ bn ≤ n for all n. We may assume bn ≤ n− 2 since Pn−1[XD
1 = n] = 1.

Notice Pbn [XD
1 = n] = q(n, bn)n−bn = (1 − g(n, bn))n−bn . If bn ≤

√
n log n1−γ , then in Proposition 3.7, we

showed (1− g(n, bn))n−bn = O(e−n
γ

). Thus, Pbn [XD
1 = n]→ 0 as n→∞.

Suppose now bn ≥
√
n log n1+γ . Define H(n) = (n− bn) log (1− g(n, bn)) so that

1−
(
1− g(n, bn)

)n−bn
= 1− eH(n).

It suffices to show that 1 − eH(n) → 0 as n → ∞. Equivalently, we show H(n) ≥ log(1 − n−γ) for

sufficiently large n. The proof of this is almost identical to that in Lemma 3.5. Indeed, notice that because

H(n) = (n− bn) log(1− g(n, bn)) < 0,

H(n) > n log(1− g(n, bn)) = −n
∞∑
k=1

g(n, bn)k

k
.
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We showed in (3.7) that if bn ≥
√
n log n1+γ , then g(n, bn) ≤ n−(1+γ). Hence,

H(n) > −
∞∑
k=1

n−k(1+γ)+1

k
≥ −

∞∑
k=1

n−kγ

k
= log(1− n−γ),

and so 1− (1− g(n, bn))n−bn → 0, which implies Pbn [XD
1 = n] = (1− g(n, bn))n−bn → 1 as n→∞.

Since n ≥ XD
1 , this is equivalent to saying that XD

1 converges in probability to n when bn ≥
√
n log n1+γ .

Formally, Pbn [|n−XD
1 | > ε]→ 0 for all ε > 0 which is equivalent to Pbn [|n−XD

1 | = 0]→ 1, and so XD
1 = n

with high probability. As a complimentary result, we can directly calculate the limit of Pb[X1 = 0] for RPZF

on Kn as n→∞.

Theorem 3.10. Suppose Kn has 1 ≤ b ≤ n−2 vertices colored blue and RPZF chain (Xt) with reversion

probability p ∈ (0, 1). Then the probability Kn dies out in one step of the RPZF chain converges to pbeb
2(p−1)

as n→∞.

Proof. By formula (2) of Proposition 3.3,

Pb[X
S
1 = 0] = pb[1− (1− p)q(n, b)]n−b = pb

[
p+ (1− p)

(
1− b

n− 1

)b]n−b
.

Similarly,

Pb[X
D
1 = 0] = pb

[
p+ (1− p)

(
1− b

n− 1

)b]n−b
− pn

(
1−

(
1− b

n− 1

)b)n−b
.

To calculate the limits of these values, notice first that 0 ≤
(

1−
(
1− b

n−1
)b)n−b ≤ 1 for all 0 ≤ b ≤ n − 2

and hence

0 ≤ pn
(

1−
(

1− b

n− 1

)b)n−b
≤ pn → 0,

as n → ∞ since p ∈ (0, 1). We are left to consider pb
(
p+ (1− p)

(
1− b

n−1
)b)n−b

. Taking n → ∞, this is

equal to

pb exp

{
lim
n→∞

1

(n− b)−1
log

[
p+ (1− p)

(
1− b

n− 1

)b]}
,

and applying L’Hôpital’s rule this simplifies to pbeb
2(p−1).

Finally, we establish when the upper bound presented in Proposition 3.2 is asymptotically tight.

Proposition 3.11. Let (Xt) be an RPZF Markov chain on Kn with reversion probability p. If bn ≤
√
n

logn ,

then for any ε > 0,

(1− p)(bn + (1− ε)bn2) ≤ Ebn [X1] ≤ (1− p)(bn + bn
2)

for n sufficiently large. In particular, if b ∈ N is fixed, then Eb[X1]→ (1− p)(b+ b2) as n→∞.

Proof. Since bn ≤
√
n

logn ≤
√
n log n, by Proposition 3.7, we need consider only the SARPZF chain. By

Proposition 3.2, Ebn [X1] ≤ (1 − p)(bn + b2n). Let F1 denote the number of vertices forced at time t = 1

during phase 1. Then by Proposition 3.1, Ebn [X1] = (1 − p)(bn + Ebn [F1]). The authors of [10] showed in

the proof of Theorem 3.1 that Ebn [F1] = b2n − o(b2n) when bn ≤
√
n

logn . Consequently, since b2n = o(n), for any

ε > 0, Ebn [F1] > (1 − ε)b2n for sufficiently large n. Thus, Ebn [X1] > (1 − p)(bn + (1 − ε)b2n) and for fixed

b ∈ N, taking ε→ 0 gives that Eb[X1]→ (1− p)(b+ b2) as n→∞.
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3.2. The balanced complete bipartite graph. The complete bipartite graph Km,n is the graph of

order m + n whose vertices can be partitioned into two parts U = {u1, . . . , um} and V = {v1, . . . , vn} such

that the edges of the graph are uivj for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. If m = n, then Kn,n is the balanced

complete bipartite graph. We will see here and in Section 5 that Kn,n behaves very similarly to K2n in

DARPZF.

Lemma 3.12. Let Km,n have vertex partitions U and V . Suppose bU vertices in U are blue and bV
vertices in V are blue. The probability that U forces V entirely blue in one step is

P[U → V ] =

(
1−

(
1− bV + 1

|V |

)bU)|V |−bV
.

Proof. Let B be the set of blue vertices in Km,n. Let u ∈ U ∩B be blue and v ∈ V \ (B ∩ V ) be white.

Then

P[u→ v] =
|N [u] ∩B|

deg u
=
bV + 1

|V |
,

and so the probability that v is forced by some vertex in U is

P[U → v] = 1−P[U 6→ v] = 1−
∏

u∈U∩B
P[u 6→ v] = 1−

(
1− bV + 1

|V |

)bU
.

Thus,

P[U → V ] =
∏

v∈V \(B∩V )

P[U → v] =

(
1−

(
1− bV + 1

|V |

)bU)|V |−bV
.

We now give an upper bound for the threshold number of blue vertices to fully force the balanced

complete bipartite in one step with high probability, starting from one of two cases. The first case is when

the vertex parts U and V of Kn,n have the same number of blue vertices, and the second is when, without

loss of generality, U is entirely blue and V is minimally blue.

Theorem 3.13. Let Kn,n have vertex parts U and V with at least bUn and bVn blue vertices in U and V ,

respectively.

• If bUn ≥
√
n log n1+γ1 and bVn ≥

√
n log n1+γ2 for any γ1, γ2 > 0, then with high probability Kn,n is

blue after one application of the DARPZF color change rule as n→∞.

• If bUn = n and bVn ≥ log(n1+γ) for any γ > 0, then with high probability Kn,n is blue after one

application of the DARPZF color change rule as n→∞.

Proof. Suppose first bUn ≥
√
n log n1+γ1 and bVn ≥

√
n log n1+γ2 for some γ1, γ2 > 0. Let γ = min{γ1, γ2}.

We may assume U and V each have bn ≥
√
n log n1+γ blue vertices because the probability of fully forcing

in one step monotonically increases in both bVn and bUn . Since the events {U → V } and {V → U} are

independent at time t, the probability that Kn,n is blue after one step of DARPZF is

P[U → V ]P[V → U ] =

((
1−

(
1− bn + 1

n

)bn)n−bn )2

=

(
1−

(
1− bn + 1

n

)bn)2n−2bn

,

by Lemma 3.12. Call this probability P (bn). We wish to show P (bn)→ 1 as n→∞. Note that P (bn) = 1

if bn = n so assume bn ≤ n− 1. Define f(n, bn) =
(
1− bn+1

n

)bn
and let H(n) = (2n− 2bn) log(1− f(n, bn)).
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Then P (bn) = eH(n) and so P (bn)→ 1 if H(n)→ 0. Observe that H(n) < 0 and hence

H(n) > 2n log(1− f(n, bn)) = −2n
∞∑
k=1

f(n, bn)k

k
.

Now in the style of Theorem 3.9, if f(n, bn) ≤ n−(1+γ) then

H(n) > −2
∞∑
k=1

n−k(1+γ)+1

k
≥ −2

∞∑
k=1

n−kγ

k
= 2 log(1− n−γ)→ 0,

as n→∞. To see that f(n, bn) ≤ n−(1+γ), observe

f(n, bn) = exp

{
bn log

(
1− bn + 1

n

)}
= exp

{
−bn

∞∑
k=1

(bn + 1)k

knk

}

= exp

{
−bn

bn + 1

n

}
exp

{
−bn

∞∑
k=2

(bn + 1)k

knk

}
,

which is bounded above by e−b
2
n/n since bn > 0. Then because bn ≥

√
n log n1+γ ,

f(n, bn) ≤ e−b
2
n/n ≤ n−(1+γ).

Hence, H(n) < 0 implies H(n)→ 0 and thus P (bn) = eH(n) → 1 as n→∞.

Now assume bUn = n and bVn ≥ log(n1+γ) for some γ > 0. Then the probability that Kn,n is entirely blue

after one step of DARPZF is

P[U → V ] =

(
1−

(
1− bVn + 1

n

)n)n−bVn
.

Let f(n, bVn ) =
(

1− bVn+1
n

)n
and H(n) = (n− bVn ) log(1− f(n, bVn )). Notice that f differs from before in the

exponential. Like before, it suffices to show that f(n, bVn ) ≤ n−(1+γ) because then

H(n) > n log(1− f(n, bVn )) = −n
∞∑
k=1

f(n, bVn )

k
≥ −

∞∑
k=1

n−kγ

k
= log(1− n−γ).

Now,

f(n, bVn ) = exp

{
n log

(
1− bVn + 1

n

)}
= exp

{
−n

∞∑
k=1

(bVn + 1)k

knk

}

= exp

{
−nb

V
n + 1

n

}
exp

{
−n

∞∑
k=2

(bVn + 1)k

knk

}
,

which is bounded above by e−b
V
n since bVn > 0. Then because bVn ≥ log n1+γ it follows that f(n, bVn ) ≤ n−(1+γ).

Thus, 0 > H(n) > log(1− n−γ)→ 0 and so P[U → V ] = eH(n) → 1 as n→∞.
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3.3. The star graph. The star graph on n vertices is K1,n−1, and the singleton vertex is called the

universal vertex because it is adjacent to all other vertices. In this section, we show that the star graph

exhibits a large threshold value for one-step forcing. Let K1,n−1 have universal vertex v and set of currently

blue vertices B. Notice that if |B| = b ≤ n−2, then v must be blue for K1,n−1 to be fully forced in one step.

Hence, when calculating the one-step threshold for K1,n−1, we need consider only when v ∈ B. In that case,

K1,n−1 is fully forced in one step with probability

P[v → V (K1,n−1) \B] =

(
b

n− 1

)n−b
.

Lemma 3.14. Let (XS
t ) and (XD

t ) be the SARPZF and DARPZF Markov chains on K1,n−1 with n ≥ 2

and universal vertex v. If v blue at time t = 0, then

Eb[X
S
1 ] = (1− p)

(
b+ (n− b)

(
b

n− 1

))
,

and

Eb[X
D
1 ] = Eb[X

S
1 ] + np

(
b

n− 1

)n−b
.

Proof. Let w1, . . . , wn−b denote the white vertices. Then by Proposition 3.1,

Eb[X
S
1 ] = (1− p)

(
b+ (n− b)Pb[v → wi]

)
= (1− p)

(
b+ (n− b)

(
b

n− 1

))
.

Using the same approach as that in Theorem 3.4, one also calculates

Eb[X
D
1 ] = Eb[X

S
1 ] + np

(
b

n− 1

)n−b
.

Observe that if K1,n−1 has bn = n− 1− C vertices blue, then

P[v → V (K1,n−1) \B] =

(
1− C

n− 1

)1+C

→ 1,

as n grows to infinity. This turns out to be the threshold for fully forcing in DARPZF: if the distance

between n and bn is unbounded, then with high probability K1,n−1 is not fully forced in the next step.

Theorem 3.15. Let (XD
t ) be the DARPZF Markov chain on K1,n−1 with universal vertex v and rever-

sion probability p ∈ (0, 1). When v is blue, we have the following:

• if bn = n− 1− C for some constant C ∈ N, then |n−Ebn [XD
1 ]| → pC(C + 1) as n→∞, and

• if bn = n− 1− ω(1), then |n−Ebn [XD
1 ]| → ∞ as n→∞.

Proof. Let (XD
t ) be the DARPZF Markov chain on K1,n−1 with reversion probability p ∈ (0, 1), let

0 ≤ bn ≤ n−1, and let v denote the universal vertex. Assume v is blue. If we replace g(n, bn) =
(
1− bn

n−1
)bn

with 1− bn
n−1 in the proof of Lemma 3.5, then we may simplify n−Ebn [XD

1 ] as

n−Ebn [XD
1 ] = (1− p)(n− bn)

(
1− bn

n− 1

)
+ np

[
1−

(
bn

n− 1

)n−bn]
.(3.8)
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Suppose bn = n− 1− C for some constant C ≥ 0. Then

n−Ebn [XD
1 ] = (1− p)(n− (n− 1− C))

(
1− n− 1− C

n− 1

)
+ np

(
1−

(
n− 1− C
n− 1

)n−(n−1−c))

= (1− p)(1 + C)
C

n− 1
+ p

(
n− n

(
1− C

n− 1

)C+1
)
.

It is immediate that (1 − p)(1 + C) C
n−1 → 0 as n→∞. To see that p

(
n− n

(
1− C

n−1
)C+1

)
→ pC(C + 1),

observe

n− n
(

1− C

n− 1

)C+1

= n− n
C+1∑
k=0

(−1)k
(
C + 1

k

)(
C

n− 1

)k

= n− n+ n(C + 1)
C

n− 1
− n

C+1∑
k=2

(−1)k
(
C + 1

k

)(
C

n− 1

)k
= C(C + 1)

n

n− 1
+O(n−1).

Taking n→∞ gives n−Ebn [XD
1 ]→ pC(C + 1).

On the other hand, suppose bn = n− 1− fn with fn = ω(1). We want to show

n−Ebn [XD
1 ] = (1− p)(n− bn)

(
1− bn

n− 1

)
+ np

[
1−

(
bn

n− 1

)n−bn]
→∞.

If fn = ω(
√
n), then

(1− p)(n− bn)

(
1− bn

n− 1

)
= (1− p)(1 + fn)

fn
n− 1

= (1− p)fn + f2n
n− 1

→∞,

so assume fn = O(
√
n). Notice

np

[
1−

(
bn

n− 1

)n−bn]
= np

[
1−

(
1− fn

n− 1

)1+fn
]
,

and so define hn(x) = x1+fn . Now h′n(x) = (1+fn)xfn and then applying Taylor’s theorem to hn(x) around

x0 = 1,

hn(x) = hn(1) + h′n(ξ)(x− 1),

for some ξ ∈ (x, 1). Thus,

hn

(
1− fn

n− 1

)
= 1− (1 + fn)ξfnn

fn
n− 1

,

for some ξn ∈
(

1− fn
n−1 , 1

)
and it follows that

np

[
1−

(
bn

n− 1

)n−bn]
= np

[
1− hn

(
1− fn

n− 1

)]
= np

[
(1 + fn)ξfnn

fn
n− 1

]
,
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which simplifies to np
n−1ξ

fn
n (fn + f2n). By definition, fn + f2n → ∞ when fn = ω(1). However, ξfnn must be

accounted for; if we can show ξfnn ≥M for some constant M > 0 not dependent on n, then np
n−1ξ

fn
n (fn+f2n) ≥

np
n−1M(fn + f2n)→∞ as desired. Recall ξn ∈

(
1− fn

n−1 , 1
)

and so ξfnn >
(
1− fn

n−1
)fn

. Observe(
1− fn

n− 1

)fn
= exp

{
fn log

(
1− fn

n− 1

)}
,

and using the Taylor expansion log(1 − x) = −
∑∞
k=1 x

k/x for |x| < 1,

fn log

(
1− fn

n− 1

)
= −fn

∑
k≥1

1

k

(
fn
n− 1

)k
= −

∑
k≥1

fk+1
n

k(n− 1)k
.

It follows from fn = O(
√
n) that

fn log

(
1− fn

n− 1

)
= O(1),

and so there exists an M > 0 independent of n such that for sufficiently large n,
∣∣∣fn log

(
1− fn

n−1

)∣∣∣ < M.

Equivalently,
(

1− fn
n−1

)fn
> e−M . Thus, ξn ∈

(
1− fn

n−1 , 1
)

implies ξfnn >
(

1− fn
n−1

)fn
> e−M > 0 and so

np

[
1−

(
bn

n− 1

)n−bn]
=

2np

n− 1
ξfnn (fn + f2n)→∞,

since fn = ω(1).

It is left to consider when fn 6= O(
√
n) and fn 6= ω(

√
n). In this case, define gn = supm≥n fm. Then

gn ≥ fn and thus n − 1 − fn ≥ n − 1 − gn. Since Ebn [XD
1 ] monotonically increases in bn (keeping v blue),

it suffices to show that n−En−1−gn [XD
1 ]→∞. We claim that gn = ω(

√
n). Indeed, let M > 0 and N ∈ N

be arbitrary. Because fn 6= O(
√
n), there exists an n0 > N such that fn0

> M
√
n0. Then

gN = sup
m≥N

fm ≥ fn0
> M

√
n0 > M

√
N,

and so gn = ω(
√
n). It follows from before that n−En−1−gn [XD

1 ]→∞ and so n−En−1−fn [XD
1 ]→∞.

Observe that |n−Ebn [XD
1 ]| = Ebn [|n−XD

1 |] since n ≥ Ebn [XD
1 ] and so Theorem 3.15 says XD

1 converges

in mean to n exactly when bn = n − 1 for sufficiently large n. As a consequence, XD
1 converges to n in

probability and hence XD
1 = n with high probability.

4. Calculating RPZF parameters. This section presents standard Markov chain results for RPZF

chains and parameters on any graph. These results are utilized in Section 5 to calculate the RPZF parameters

of specific graph families. We provide brief explanations to support readers less familiar with probability.

For an introduction to and proofs of the standard Markov chain results discussed here, the reader is directed

to [19, Ch. 11]. More advanced results and details may be found in, e.g., [12].

Let (Xt) be an RPZF Markov chain on a graph G with reversion probability p ∈ (0, 1), properly ordered

state space (S0, . . . , Ss), and Markov transition matrix M . Let T (j) = min{t ≥ 1 : Xt = Sj} be the time of

first arrival to Sj (sometimes called the first return time). Notice that the starting state X0 is not explicit

in the notation. Define

ρij = Pi[T (j) <∞] = P[Xt = Sj for some t ≥ 1 | X0 = Si],
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to be the probability that the RPZF chain enters state Sj after starting from state Si. Then the critical

reversion probability pD(G,Si) is the DARPZF reversion probability such that ρi0 = ρis = 1/2. We can also

classify states of the Markov chain. If ρii = 1, then state Si is said to be recurrent, if ρii < 1, then state Si
is said to be transient, and if Pi[X1 = Si] = 1, then state Si is said to be absorbing.

Proposition 4.1. Let G be a connected graph and (S0, . . . , Ss) be a properly ordered state space of G for

an RPZF chain with reversion probability p ∈ (0, 1). Then the state S0 is absorbing, the state Si is transient

for all i ∈ {1, . . . , s− 1}, and the state Ss is absorbing in DARPZF and transient in SARPZF.

Proof. Let (Xt) be an RPZF chain on a graph G with n vertices. It is immediate from the Markov

matrices (see (4.9)) that S0 is an absorbing state for SARPZF and DARPZF. Next, consider the state Ss
where all vertices are blue. In the DARPZF chain it is immediate from (4.9) that Ss is absorbing. On

the other hand, in the SARPZF chain Ps[T (s) = ∞] ≥ Ps[X1 = S0] = pn > 0 and so Ss is transient in

SARPZF. Finally, let i ∈ {1, . . . , s − 1} and consider ρii = Pi[T (i) < ∞] = 1 − Pi[T (i) = ∞]. To prove Si
is transient, it suffices to show Pi[T (i) = ∞] > 0. This follows from observing that an absorbing state is

always reachable in one step of the chain.

Given that every state in RPZF is either transient or absorbing, it is immediate that for any B ⊆ V (G),

P[pta(G,B) <∞] = 1. The division of states into absorbing and transient also gives a natural partition of

the RPZF Markov transition matrices. In particular,

(4.9) MS =

[
1 0 · · · 0
r QS

]
and MD =

 1 0 · · · 0 0

a1 QD a2
0 0 · · · 0 1

 ,
where the ith row and column correspond to the state Si. The column vectors r and a1 correspond to the

absorbing state S0 where all vertices are white and hence no vertex can be forced blue. Symmetrically,

a2 corresponds to the absorbing state Ss in DARPZF where every vertex is blue and so by definition of

DARPZF no reversions can occur. Additionally, for any t ∈ N,

(4.10) (MS)t =

[
1 0 · · · 0
∗ (QS)t

]
and (MD)t =

 1 0 · · · 0 0

∗ (QD)t ∗
0 0 · · · 0 1

 .
Remark 4.2. The RPZF transition matrices are indexed from 0, and submatrices preserve the indexing

of their parent matrix. So, for example, QS and QD are indexed from 1.

Notice that, as a consequence of Proposition 4.1, every state is either transient or absorbing and the only

recurrent states are the absorbing states. Additionally, because p > 0, the submatrices QS and QD from

(4.9) correspond exactly to transient states. From this it follows that Qt → O as t→∞ for Q ∈ {QS , QD}.

We are next interested in how long an RPZF chain is expected to stay in transient states. For a connected

graph G with properly ordered state space (S0, . . . , Ss), let NS and ND be matrices such that

(4.11) (NS)ij = Ei[|{t ≥ 0 : XS
t = Sj}|] and (ND)ij = Ei[|{t ≥ 0 : XD

t = Sj}|].

It is a standard Markov chain result [19, Theorem 11.4] that N ∈ {NS , ND} exists and that moreover

N =
∑∞
k=0Q

k = (I − Q)−1 where Q ∈ {QS , QD} corresponds to the choice of N . Observe that summing

across the ith row of N gives the expected number of rounds the chain spends in transient states, having

started from state Si. Formally, let t = N1 where 1 is the vector containing all ones. Then eta(G;Si, p) = ti.
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In the case of DARPZF, there are two potential absorbing states for the chain to enter. Which is more

likely? Consider the DARPZF Markov chain on a connected graph G with properly ordered state space

(S0, . . . , Ss) and transition matrix MD. Let C = [cij ] be the (s− 1)× 2 matrix such that, starting the chain

from transient state Si, ci1 is the probability that the graph dies out and ci2 is the probability that the graph

is fully forced. Then

(4.12) C = ND[a1 a2] = (I −QD)−1[a1 a2],

where the vectors a1, a2 come from (4.9). Again, see [19, Theorem 11.6] for details.

Proposition 4.3. For any connected graph G with properly ordered state space (S0, . . . , Ss) and for

any transient state Si, the critical reversion probability pD(G,Si) exists. That is, there exists a reversion

probability such that Pi[T (0) <∞] = Pi[T (s) <∞] = 1/2, where T (j) = inf{t ≥ 1 : XD
t = Sj}.

Proof. Let C = [cij ] be as in (4.12). The entries of QD are continuous functions in p and I−Q is invertible

for p ∈ (0, 1). Hence, the entries of C are continuous functions in p ∈ (0, 1). By taking p sufficiently small,

ci1 = ci1(p) < 1/2. Similarly, by taking p sufficiently large, ci1 = ci1(p) > 1/2. Thus, pD(G,Si) exists so

that ci1 = ci1(pD(G,Si)) = 1/2. Since ci1 = Pi[T (0) <∞], ci2 = Pi[T (s) <∞], and ci2 = 1− ci1, the result

follows.

5. DARPZF simulations and approximations. Consider the DARPZF chain on Kn with reversion

probability p ∈ (0, 1). Using (4.12) we calculate pD(Kn, S1), the reversion probability such that Kn has equal

probability to either die out or fully force when starting from a single blue vertex, for small n.

Table 1

Exact calculations of the critical reversion probability for the complete graph

n pD(Kn, S1) n pD(Kn, S1) n pD(Kn, S1) n pD(Kn, S1)

3 .6 8 0.427761 13 0.433535 18 0.435628

4 0.466548 9 0.429115 14 0.434157 19 0.43585

5 0.437779 10 0.43052 15 0.434648 20 0.43604

6 0.428853 11 0.431747 16 0.435042 21 0.436203

7 0.427101 12 0.432745 17 0.435363 22 0.436346

These critical reversion probabilities, given in Table 1, have been converted from fractional to decimal

form. We can further estimate pD(Kn, S1) for larger n to arbitrary levels of precision, as provided in Table 2.

Table 2

Numerically approximated critical reversion probability for the complete graph.

n pD(Kn, S1) n pD(Kn, S1)

12 0.43274± 0.00001 96 0.43805± 0.00005

16 0.43505± 0.00005 128 0.43815± 0.00005

32 0.43715± 0.00005 156 0.43818± 0.00005

64 0.4379± 0.00005 192 0.4382± 0.00005

Next, Figs. 1 and 2 approximate the expected time of absorption for various graphs using Monte Carlo

simulations, starting from a single blue vertex. Let V = {v1, . . . , vn} be a set of vertices. The path graph Pn
is the graph with edges vivi+1 for 1 ≤ i ≤ n− 1. The endpoints are v1 and vn, and the midpoint is vdn/2e.

The cycle graph is a path with the additional edge vnv1. When simulating DARPZF on the path, starting

from an endpoint and starting from a midpoint has a noticeable effect on the expected time to absorption.
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Figure 1. Monte Carlo simulation of DARPZF on K32 and K16,16 compared to the exact calculation for K32, starting

from a single vertex.
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Figure 2. Monte Carlo simulations of DARPZF on the cycle, path, and star on 32 vertices, starting from a single vertex.

Finally, Fig. 3 presents Monte Carlo simulations of DARPZF on different 32 vertex graphs starting from

one blue vertex. Notice that when the reversion probability p > 0.4, the cycle, path, and star die out with

probability nearly one. On the other hand, the highly connected complete graph and balanced complete

bipartite graph do not reach the same level die out until p > 0.75 and p > 0.7, respectively.
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Figure 3. Monte Carlo simulations of DARPZF on the cycle, path, star, and balanced complete bipartite graphs on 32

vertices, starting from a single blue vertex.

The critical reversion probability starting from a single blue vertex can also be estimated from Fig. 3.

Observe that for the cycle, path, and star graphs, the p which maximizes etaD(G; p) in Fig. 2 closely aligns

with the approximate pD(G, {v}) from Fig. 3. On the other hand, the maximums of etaD(K32; p) and

etaD(K16,16; p) occur at a p noticeably smaller than their respective critical reversion probabilities. In the

case of the complete graph, we know from Theorem 3.8 that only a small percentage of vertices are needed

to have a high chance of forcing the entire graph blue. Compare this with the cycle or path graph, where

the threshold for one-step fully forcing is of order n. Indeed, at least one-third of the vertices must be blue

to even have a nonzero probability to fully force the cycle or path in one step.

Contrasting RPZF behavior with traditional PZF, the cycle and path are expected to take Θ(n) steps

to force in PZF [17], and the complete graph has an expected propagation time of Θ(log log n) steps [10].

The cycle and path thus have more time to be stymied by the reversion of blue vertices in RPZF, which

may result in longer-lasting oscillations of white and blue vertices. The complete graph, on the other hand,

forces significantly more quickly and so does not as easily fall into these oscillation.

In RPZF, both the one-step threshold and expected propagation time quantify how “hard” a graph is

to fully force, unline expected propagation time in traditional PZF. Consider the path or cycle on n vertices

when starting from a single blue vertex. These graphs require only a single force to become deterministic in

nature, but will always take at least n/2 rounds to fully force.

When starting from a single vertex, Figs. 1 and 3 indicate that the balanced complete bipartite graph

behaves much more like the complete graph than the star graph (a severely “unbalanced” complete bipartite

graph). This observation is supported by Theorem 3.13, which gives the one-step forcing threshold for

Kn/2,n/2 as order O
(√

n log(n/2)
)
, which is comparable to the Kn threshold of Θ

(√
n log n

)
and significantly

smaller than the K1,n−1 threshold of n− 1− o(1) from Theorem 3.15.
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6. The contact process. RPZF can be viewed as a discrete-time analog of what is known in the

probability literature as the contact process, a basic model for population growth and the spread of infection.

Analogous to discrete-time Markov chains, we say that (ηt), t ≥ 0, is a continuous-time Markov process on

the state space S if for any 0 ≤ u0 < u1 < · · · < uk and any states Sj , Si, Sik−1
, . . . , Si0 ∈ S,

P[ηuk+t = Sj | ηuk = Si, ηuk−1
= Sik−1

, . . . , ηu0
= Si0 ] = P[ηt = Sj | η0 = Si].

The susceptible-infected-susceptible contact process (SIS contact process) on a (possibly infinite) graph

G = (V,E) with infection parameter λ ≥ 0 is a continuous-time Markov process (ηt) with state space {0, 1}V ,

where a state η ∈ {0, 1}V is a configuration of zeros and ones on the graph. At any time t ≥ 0, each vertex

has status either 0 (“healthy”) or 1 (“infected”). The state of the entire system at time t is then described

by ηt : V → {0, 1} where ηt(v) is the status of vertex v at time t. Finally, for a vertex v and configuration

η, we say that the contact process (ηt) evolves according to the local transition rates

0→ 1 at rate λ
∑

w∈N(v)

η(w),

1→ 0 at rate 1.

Specifically, these are the rates for exponential random variables whose value corresponds to the waiting time

until vertex v changes status. Thus, infected vertices recover after some (exponential distribution) time with

mean 1 independent of its neighbors, and healthy vertices become infected at a rate linearly proportional

to its number of infected neighbors. G is often taken to be the d-dimensional infinite lattice, where vertex

interactions are local in nature; that is, a vertex is adjacent only to those 2d vertices at Euclidean distance

1. This, combined with being vertex transitive, means that the contact process can be studied at the local

level, from which global behaviors are deduced (with varying levels of simplifying assumptions) [6, 24]. That

being said, recent work has also been done on other large graph structures such as scale-free and power-law

graphs [18, 22].

A common topic in study of contact processes is the infection parameter λ and its relation to the process

surviving or dying out. The contact process is said to die out if

P[ηt 6≡ 0 ∀t ≥ 0] = 0,

where ηt 6≡ 0 means there exists a v ∈ V such that ηt(v) 6= 0. Otherwise, the process is said to survive. It

is well known that on finite graphs, no matter the initial configuration or infection parameter, the process

dies out [26]. The same is true for SARPZF. For a thorough introduction to the contact process and its

fundamental results, the reader is directed to [25].

Let G now refer to the d-dimensional infinite lattice. An additive process is a generalization of the

contact process where the infection rate λ and death rate δ (previously δ = 1) at v are now a function of

the finite subsets of V (G) [13, Ch. 3]. The contact process is recovered when λ(A) = λ for A = {x} with

x ∈ N(v), δ(∅) = 1, and are 0 otherwise. SARPZF is formulated in the continuous-time regime as an

additive process where, at a vertex v, the infection rate λ(A) is a function of A ⊆ {w : d(v, w) ≤ 2} where

d(v, w) is equal to the length of the shortest path from v to w. A process is said to be irreducible if for

all t > 0 and all v ∈ V (G), P[ηt(v) = 1] > 0 when starting from one blue vertex. Observe that both the

contact process and continuous-time SARPZF are irreducible on connected graphs. It can be shown that if

an irreducible additive process does not die out, then at large times it looks like the process starting from

all vertices infected [5, 13].
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6.1. The discrete SIS contact process. The discretized SIS contact process can be formally de-

scribed as follows. Let G be a (possibly infinite) graph. At each time t ∈ N, every infected vertex v ∈ V (G)

infects each of its neighbors independently with probability β. Simultaneously, every infected vertex v at

time t recovers with probability p. The exact meaning of “simultaneously” differs depending on the partic-

ular discretization being considered. For instance, some models allow a vertex that recovers to be reinfected

during the same time step, whereas others assert that a recovered vertex must remain recovered. SARPZF

takes a hybrid approach wherein infected vertices can immediately recover, but recovered vertices remain

recovered for that time step.

Over time, various formulations have been proposed to model the discrete-time SIS contact process. We

describe a few of them and then contrast them to SARPZF. We consider only SARPZF because contact

processes do not have the additional stopping condition that DARPZF has. For any vertex v ∈ V (G) and

time t ∈ N, define pv(t) to be the probability that v is infected (blue) at time t and define

qv(t+ 1) =
∏

x∈N(v)

(1− βpx(t)),

to be the probability that v does not receive infection (is not forced) at time t. Finally, let p be the probability

that a vertex recovers (reverts to white). Then, Wang et al. proposed the model [29]

(6.13) 1− pv(t+ 1) = (1− pv(t))qv(t+ 1) + ppv(t)qv(t+ 1) +
1

2
ppv(t)(1− qv(t+ 1).

The first term is the probability of vertex v entering time t + 1 healthy and then not being infected, the

second term is the probability of v entering time t+1 infected, recovering, then not being reinfected, and the

final term assumes that half of the time a vertex will undergo a “curing event” after being reinfected. Notice

that this interpretation of “simultaneous” has recovery occurring before infection. This model is explored

in more detail in [9]. Later models do away with the 1/2 probability “curing event” assumption, as well as

stating the dynamics in terms of the probability of being infected, pv, instead of the probability of being

healthy, 1− pv. For instance, Gómez et al. introduced the model [18]

(6.14) pv(t+ 1) = (1− p)pv(t) + (1− qv(t+ 1))(1− pv(t)) + p(1− qv(t+ 1))pv(t),

accounting for the cases of an infected vertex failing to recover, a susceptible vertex being infected, and an

infected vertex recovering then becoming reinfected. This formulation also makes the assumption that a

vertex which recovers at time t can immediately be reinfected at time t. Contrast (6.14) with the model

presented by Ahn and Hassibi in [1] where

(6.15) pv(t+ 1) = (1− p)pv(t) + (1− pv(t))(1− qv(t+ 1)),

doing away with the p(1 − qv(t + 1))pv(t) term and so asserting that a vertex that recovers cannot be

reinfected in the same time step. This formulation seems most true to the notion of “simultaneous” vertex

infection and recovery since vertices can only undergo one status change each time step. Equation (6.15) can

be further simplified by truncating the terms of qv(t + 1) =
∏
x∈N(v)(1 − βpx(t)) with powers of β greater

than 1, giving

(6.16) pv(t+ 1) = (1− p)pv(t) + (1− pv(t))β
∑

x∈N(v)

px(t).

Note that this approximation is better for smaller values of β. Paré et al. demonstrate in [27] how (6.16)

directly matches the model derived from applying Euler’s method to the continuous-time mean field approx-
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imation for the SIS contact process, as well as providing analysis on the accuracy of (6.15) and (6.16). For a

graph G on n vertices, these models can all be used to solve for pv numerically from which tests of accuracy

are typically derived. A commonly considered parameter is the graph’s expected infection density ρt at time

t. Given an infection rate β and recovery rate p, this is computed as

ρt =
1

n

∑
v∈V (G)

pv(t).

So far, the models described have all been homogeneous, meaning that the infection rate β and recovery

rate p are constant for all vertices. SARPZF, on the other hand, is more akin to a heterogenous model,

wherein the infection rate and recovery rate depend on the vertex. In fact, SARPZF is somewhere in the

middle, with a constant recovery rate but variable infection rate. Looking to model SARPZF in the same

way as the above models, we find

(6.17) pv(t+ 1) = (1− p)pv(t) + (1− p)(1− pv(t))(1− qv(t+ 1)).

The first term is the case of v being infected after time t and not reverting during time t+ 1, and the second

term is the case of vertex v being health after time t, infected at time t+ 1, and not then reverting at time

t+ 1. Notice that (6.17) is most similar to (6.15) but differs in two ways. First, the function qv is different.

Second, the (1 − pv(t))(1 − qv(t + 1)) is multiplied by 1 − p due to the fact that in SARPZF, a vertex has

the chance to revert in the same time step it is infected. This interpretation of “simultaneous” has recovery

occurring after infection. One of the key differences between the models in the literature and SARPZF is

the infection rate β and, subsequently, the probability that vertex v is not infected by a neighbor qv. Let

G be a graph on n vertices and let (Xt) be the SARPZF Markov chain on the properly ordered state space

S = (S0, . . . , Ss) with reversion probability p. Notice that in SARPZF, if B is our set of infected vertices,

then vertex v is “infected” (forced) with probability

P[B → v] = 1−P[B 6→ v] = 1−
∏

x∈B∩N(v)

P[x 6→ v] = 1−
∏

x∈B∩N(v)

(
1− |B ∩N [x]|

deg x

)
.

Thus, if Xt is the set of blue vertices at time t and X0 = Si, then qv(t+ 1) = P[Xt 6→ v]. Applying the law

of total probability over the state space S,

qv(t+ 1) =
s∑
j=0

P[Xt 6→ v | Xt = Sj ]P[Xt = Sj ]

=
s∑
j=0

∏
x∈Sj∩N(v)

(
1− |Sj ∩N [x]|

deg x

) ∏
x∈Sj

px(t)
∏

x∈V (G)\Sj

(1− px(t)).

Notice that in this case, the rate of infection is exponentially proportional to the number of infected

neighbors and, moreover, is also dependent on the number of infected vertices at distance 2 from v. Intuitively,

this means that an infected vertex is more infectious when it has more infected neighbors.

7. Conclusion and future directions. The focus of this paper was to develop tools and results in

the analysis of RPZF on both general and densely connected graph structures. This included asymptotic

thresholds for infection on the complete and complete bipartite graphs as well as calculations of the critical

reversion probability for various graph families. The probabilistic literature, on the other hand, is often
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concerned with behavior on simpler graph structures like the integer lattice which, unlike the complete

graph, does not exhibit global vertex interaction. These results are typically realized either in the deduction

of stationary distributions or mean field analyses, sometimes with conflicting results due to the nature of

their simplifying assumptions (see, for instance, [3]). Both these types of results would be interesting to

derive for RPZF. For instance, basic contact process results from, e.g., [13, Ch. 3] should be translatable

to the RPZF domain. Another direction is to consider the behavior of RPZF on the Erdős-Rényi random

graph model. Traditional PZF has already been considered on the random graph [15], and in the contact

process literature the random graph model is used to capture the dynamic evolution of certain networks of

interaction [28]. See [14] for a more thorough introduction to the contact process on random graphs.

Appendix A. Asymptotic notation. Let f(n) and g(n) be functions from the nonnegative integers

to the real numbers, where g is strictly positive for sufficiently large input. Write f = O(g) if there exists

constants C,N > 0 such that for all n > N , |f(n)| ≤ Cg(n) and write f = o(g) if for all C > 0 there exists an

N > 0 such that for all n > N , |f(n)| < Cg(n). Symmetrically, f = Ω(g) if there exists constants C,N such

that for all n > N , f(n) ≥ Cg(n) and f = ω(g) if for all C > 0 there exists an N > 0 such that for all n > N ,

f(n) > Cg(n). That is, f = O(g) if and only if g = Ω(f) and f = o(g) if and only if g = ω(f). One can

also define this notions in terms of limit behavior. Namely, f = o(g) when limn→∞
f(n)
g(n) = 0 and f = ω(g)

if limn→∞
f(n)
g(n) = ∞. We refer the reader to , e.g., [11] for a more thorough introduction to asymptotic

notation.

We make use of the following standard facts of asymptotic notation. Let f and g be real-valued functions.

Fact A.1. If f = o(g) then f = O(g), and if f = ω(g) then f = Ω(g). Moreover, f = O(f) and

f = Ω(f).

Fact A.2. O(f)O(g) = O(fg) and Ω(f)Ω(g) = Ω(fg). Moreover, o(f)O(g) = o(fg) and ω(f)Ω(g) =

ω(fg).

Fact A.3. If f = O(g), then O(f) +O(g) = O(g).
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