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Abstract
In Kenig and Toro’s two-phase free boundary problem, one studies how the regularity of the
Radon–Nikodym derivative h = dω−/dω+ of harmonic measures on complementary NTA
domains controls the geometry of their common boundary. It is now known that log h ∈
C0,α(∂Ω) implies that pointwise the boundary has a unique blow-up, which is the zero set
of a homogeneous harmonic polynomial. In this note, we give examples of domains with
log h ∈ C(∂Ω) whose boundaries have points with non-unique blow-ups. Philosophically
the examples arise from oscillating or rotating a blow-up limit by an infinite amount, but very
slowly.

Keywords Two-phase free boundary problems · Harmonic measure · Uniqueness of
blow-ups

Mathematics Subject Classification (2010) Primary 31B15 · 35R35

1 Introduction

In this note, we answer a question about uniqueness of blow-ups in non-variational two-
phase free boundary problems for harmonic measure in the negative. Throughout, we let
Ω+ = Ω ⊂ R

n and Ω− = R
n \ Ω denote complementary unbounded domains with a

common boundary ∂Ω = ∂Ω+ = ∂Ω−. Furthermore, we require that Ω± belong to the
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616 M. Badger et al.

class of NTA domains in the sense of Jerison and Kenig [14]. Let ω± denote harmonic
measures on Ω± with finite poles X± or with poles at infinity (see Kenig and Toro [18]).
Finally, we assume ω+ � ω− � ω+ and let

h = dω−

dω+

denote the Radon–Nikodym derivative of harmonic measure on one side of the boundary
with respect to harmonic measure on the other side. We are interested in understanding how
different regularity assumptions on h controls the geometry of ∂Ω .

Following Kenig and Toro [20] and Badger [4], we know if log h ∈ VMO(dω+) (van-
ishing mean oscillation) or log h ∈ C(∂Ω) (continuous), then the boundary admits a finite
decomposition into pairwise disjoint sets,

∂Ω = Γ1 ∪ · · · ∪ Γd0 , (1.1)

where geometric blow-ups (tangent sets) of ∂Ω centered at any Q ∈ Γd (1 ≤ d ≤ d0)
are zero sets Σp of homogeneous harmonic polynomials (hhp) p : Rn → R of degree d .
That is to say, given any boundary point Q ∈ Γd and any sequence of scales ri > 0 with
limi→∞ ri = 0, there exists a subsequence ri j and a hhp p of degree d such that

lim
j→∞max

{
excess

(
∂Ω − Q

ri j
∩ B,Σp

)
, excess

(
Σp ∩ B,

∂Ω − Q

ri j

)}
= 0 (1.2)

for every ball B in R
n . Here excess(S, T ) = sups∈S inf t∈T |s − t | when S, T ⊂ R

n are
nonempty and excess(∅, T ) = 0; see [10] for more information about this mode of conver-
gence of closed sets (the Attouch–Wets topology). Following [6] and [8], we further know
that the regular set Γ1 is relatively open, Reifenberg flat with vanishing constant, and has
Hausdorff and Minkowski dimensions n − 1, whereas the singular set ∂Ω \ Γ1 is closed and
has Hausdorff and Minkowski dimension at most n − 3.

We remark that the maximum degree d0 witnessed in the decomposition (1.1) can be
bounded in terms of the ambient dimension and the NTA constants of Ω±. When n = 2,
it is always the case that ∂Ω = Γ1. When n = 3, we have ∂Ω = Γ1 ∪ Γ3 ∪ · · · ∪ Γ2d1+1

(odd degrees only) and for every odd d ≥ 1, there exist two-sided domains with Γd �= ∅. In
dimensions n ≥ 4, for every integer d ≥ 1, even or odd, there exist two-sided domains with
Γd �= ∅. See [8] for details and [3, 23, 26] for additional results on the regularity of Γ1.

One may ask: Are the blow-ups at each point in ∂Ω unique? In other words, is the zero
set Σp in (1.2) independent of choice of the sequence of scales ri? Under a stronger free
boundary regularity hypothesis, the answer is affirmative. Following Engelstein [11] and [9],
we know that if log h ∈ C0,α(∂Ω) for some α > 0 (Hölder continuous), then blow-ups are
unique. Moreover, when log h ∈ C0,α(∂Ω), the regular set Γ1 is actually a C1,α embedded
submanifold and the singular set ∂Ω \ Γ1 is (n − 3)-rectifiable in the sense of geometric
measure theory (see e.g. [21]). Below, we supply examples demonstrating that under the
weaker regularity hypothesis log h ∈ C(∂Ω), there may exist points in the boundary that
have non-unique blow-ups.

Theorem 1.1 For each d ∈ {1, 3}, there exist complementary NTA domains Ω± ⊂ R
3 such

that log h ∈ C(∂Ω), but there exists a point in Γd at which geometric blow-ups of ∂Ω are
not unique.
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Slowly Vanishing Mean Oscillations... 617

Remark 1.2 In fact, the domains that we construct below have locally finite perimeter and
Ahlfors regular boundaries: that is, there exists C > 0 (depending on Ω) such that

C−1rn−1 ≤ Hn−1(∂Ω ∩ B(Q, r)) ≤ Crn−1 for all Q ∈ ∂Ω and r > 0,

where Ω ⊂ R
n and Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Even more,

the boundaries of the domains are smooth surfaces outside of a single point.

The basic strategy is to start with a blow-up domain Ω±
p = {X ∈ R

n : ±p(X) > 0}
associated to a hhp p of degree d , which has log h ≡ 0 and 0 ∈ Γd . We then deform the
domain near the origin by introducing rotations/oscillations at each scale 0 < r ≤ 1/100
so that the magnitude of the oscillation at scale r vanishes as r → 0. The tension in the
proof becomes choosing the correct speed of vanishing. On the one hand, by choosing the
speed to be sufficiently quick, we can guarantee by making estimates on elliptic measure
that the deformed domain has log h ∈ C(∂Ω). On the other hand, by choosing the speed
to be sufficiently slow, we can guarantee that the deformed domain has uncountably many
blow-ups at the origin, each of which are rotations of the original domain.

Remark 1.3 By a suitable modification, the technique introduced in the case d = 3 can be
used to show existence of domains with log h ∈ C(∂Ω) and non-unique blow-ups at an
isolated point Q ∈ Γd for any value of d ≥ 2. When d ≥ 3 is odd, the examples can be
produced in R

3. When d ≥ 2 is even, the examples can be produced in R4.

In a related context, Allen and Kriventsov [1] use conformal maps to construct domains
Ω± = {u± > 0} ⊂ R

n (n ≥ 2) associated to non-negative subharmonic functions u± for
which the Alt–Caffarelli–Friedman functional

Φ(r , u+, u−) = 1

r4

∫
Br (0)

|∇u+|2
|X |n−2

∫
Br (0)

|∇u−|2
|X |n−2

has a positive limit as r → 0, but whose interface ∂Ω = ∂Ω+ = ∂Ω− does not have
a unique tangent plane at the origin. It would be interesting to know whether a suitable
modification of their examples satisfy log h ∈ C(∂Ω). For more on the connection between
the ACF functional and two-phase free boundary problems for harmonic measure (originally
observed by Kenig, Preiss, and Toro [16]), see [2, §2.2] and the references within.

We handle the case d = 3 of Theorem 1.1 in Section 2 and the case d = 1 in Section 3.

2 The First Example: Non-Unique Singular Tangents

2.1 Description and Geometric Properties

We begin with Szulkin’s example [24] of a degree 3 hhp,

s(x, y, z) = x3 − 3xy2 + z3 − 1.5(x2 + y2)z,

with the interesting feature that its zero set Σs is homeomorphic to R
2. See Fig. 1. Because

Σs is a cone (s is homogeneous) and Σs ∩ S2 is a smooth curve1, it follows that Ω±
s =

{(x, y, z) ∈ R
3 : ±s(x, y, z) > 0} are complementary NTA domains. Note that the positive

z-axis belongs to Ω+
s and the negative z-axis belongs to Ω−

s , since s(0, 0,±1) = ±1.

1 One can check that ∇s(x, y, z) = 0 ⇔ (x, y, z) = (0, 0, 0).
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618 M. Badger et al.

Fig. 1 Left: Szulkin Σs , viewed from the z-axis. Center: the curve formed by intersection of Szulkin Σs and
S
2, viewed from a different angle. Right: Szulkin Σs inside of the annulus 1/2 < r < 1, viewed from the

z-axis

To build Ω±, we deform Ω±
s by rotating spherical shells Σs ∩ ∂Br (0) in the xy-plane.

More precisely, we put Ω± = {±stwist > 0}, where stwist ≡ s ◦ Φ−θ and Φ±θ : R3 → R
3

are homeomorphisms given by

Φ±θ (x, y, z) = (x cos(±θ) − y sin(±θ), x sin(±θ) + y cos(±θ), z), (2.1)

θ ≡ θ(r) := log(− log(r)) for all 0 < r :=
√
x2 + y2 + z2 ≤ 1/100

and we smoothly interpolate to θ(r) := 0 for all r ≥ 1. See Fig. 2.
If stwist(x, y, z) = 0, thenΦ−θ (x, y, z) ∈ Σs . Hence, the interfaceΣ = ∂Ω± = Φθ(Σs).

Similarly, Ω± = Φθ(Ω
±
s ).

Remark 2.1 Let us collect some simple, but useful observations about θ and Φθ .

(i) For any θ0 ∈ [0, 2π), there exists a sequence ri ↓ 0 such that θ(ri ) = θ0 (mod 2π),
i.e. such that mink∈Z |θ(ri ) − θ0 − 2πk| = 0 for all i ≥ 1.

(ii) For any sequence ri ↓ 0, there exists θ0 ∈ [0, 2π) and a ri j ↓ 0 such that θ(ri j ) → θ0
(mod 2π), i.e. lim j→∞ mink∈Z |θ(ri j ) − θ0 − 2πk| = 0.

(iii) For all 0 < r ≤ 1/100, we have |∇θ | = 1/(−r log(r)) and |∂i jθ | ≤ C/(−r2 log(r))
for all 1 ≤ i, j ≤ 3.

Fig. 2 Examples of twisted Szulkin domains Ω± defined using various rotation functions θ(r). Left: θ(r) =
log(− log(r)); the domains Ω± are NTA and log h ∈ C(∂Ω). Center: θ(r) = − log(r); the domains Ω± are
NTA, but log h /∈ VMO(dω+). Right: θ(r) = (− log(r))2; the domains Ω± are not NTA
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Slowly Vanishing Mean Oscillations... 619

(iv) For all (x, y, z) with 0 < r ≤ 1/100, we can write DΦθ = Rθ + Eθ , where

Rθ =
⎛
⎝cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎞
⎠

is a rotation matrix and the “error matrix” Eθ is such that ‖Eθ‖∞ ≤ C/(− log(r)),
where the norm is the sup norm on the entries of Eθ .

(v) The map Φθ : R
3 → R

3 is a quasiconformal homeomorphism, with Φ−1
θ = Φ−θ .

Moreover, Φθ is asymptotically conformal at the origin.

Proof The first property holds since θ(r) is continuous in r and θ(r) → ∞ as r ↓ 0.
The second property is true by compactness of the torus R/2π . The third property is a
straightforward computation. By another straightforward (if tedious) computation, DΦθ =
Rθ + Eθ , where Rθ is as above and Eθ is the rank 1 matrix given by

Eθ =
⎛
⎝−x sin(θ) − y cos(θ)

x cos(θ) − y sin(θ)

0

⎞
⎠(

θx θy θz
)
.

Let’s examine the (1,1) entry of Eθ . Since θx = θ ′(r)rx = θ ′(r)x/r and |x | ≤ r , we have

|xθx sin(−θ) + yθx cos(−θ)| ≤ 2r |θ ′(r)| ≤ 2/(− log r).

The other non-zero entries of Eθ obey the same estimate. This gives the fourth property. To
prove that Φθ is quasiconformal (see e.g. [13]), it suffices to check that Φθ ∈ W 1,n

loc and there
exists 1 ≤ L < ∞ such that the a.e. defined singular values λ1 ≤ λ2 ≤ λ3 of DΦθ satisfy
λ3 ≤ Lλ1 a.e. These facts follow from property (iv) and the variational characterization of
the minimum and maximum singular values. Furthermore, as r ↓ 0, the maximum ratio of
λ3/λ1 in Br goes to 1. Therefore, Φθ is asymptotically conformal at the origin. ��

TheHausdorff distanceHD(A, B) = max{excess(A, B), excess(B, A)} for all nonempty
sets A, B ⊂ R

n . Note that HD(λA, λB) = λHD(A, B) for any dilation factor λ > 0.

Lemma 2.2 (Twisted Szulkin vs. rotations of Szulkin) If r , ε, R > 0 and 0 < Rr ≤ 1/100,
then HD(Σ ∩ BRr , Rθ(r)Σs ∩ BRr ) ≤ C max(εr , sup{q|θ(q) − θ(r)| : εr ≤ q ≤ Rr}).

Proof For any p ∈ Bεr , we have dist(p, Rθ(r)Σs ∩ BRr ) ≤ 2εr and dist(p,Σ ∩ BRr ) ≤ 2εr ,
since 0 ∈ Rθ(r)Σs and 0 ∈ Σ . Thus, the main issue is to estimate distances inside BRr \ Bεr .

Let p ∈ Σ ∩ BRr \ Bεr , say p ∈ Σ ∩ ∂Bq with εr ≤ q ≤ Rr . Then we may write p =
Rθ(q)x for some x ∈ Σs . Let’s estimate dist(p, Rθ(r)Σs ∩ BRr ) from above by the distance
of p to the point y = Rθ(r)x ∈ Rθ(r)Σs ∩ ∂Bq . Note that y = Rθ(r)x = Rθ(r)R−θ(q) p =
Rθ(r)−θ(q) p and |y| = |p| = q . Hence

|p − y| ≤ q|(1, 0, 0) − (cos(θ(q) − θ(r)), sin(θ(q) − θ(r)), 0)|
= q(2 − 2 cos(θ(q) − θ(r)))1/2

≤ Cq|θ(q) − θ(r)|,
where the first inequality holds by geometric considerations and the last inequality used the
Taylor series expansion for cosine.

A similar inequality holds starting from any p ∈ Rθ(r)Σs ∩ BRr \ Bεr . ��
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620 M. Badger et al.

Lemma 2.3 With θ(r) = log(− log(r)), the twisted Szulkin domains Ω± as defined above
are chord-arc domains (i.e. NTA domains with Ahlfors regular boundaries). The interface
Σ = ∂Ω± has a continuum of blow-ups at the origin, each of which is a rotation of Σs in
the xy-plane.

Proof The domains Ω± = Φθ(Ω
±
s ) are NTA, because global quasiconformal maps send

NTA domains to NTA domains. Every boundary of an NTA domain is lower Ahlfors regular
(see e.g. [5, Lemma2.3]). Thus,Σ is lowerAhlfors regular. To check upperAhlfors regularity,
first note that Σs is upper Ahlfors regular, since Σs can be covered by a finite number of
Lipschitz graphs. Since ‖ det(DΦθ)‖∞ < ∞, it follows that Σ = Φθ(Σs) is upper Ahlfors
regular, as well.

Let’s address the blow-ups of ∂Ω at the origin. Let ri ↓ 0 and suppose initially that
θ(ri ) = θ0 (mod 2π) for all i . Let ε(r) be a function of r to be specified below. Let R � 1
be a large radius. By Lemma 2.2, the homogeneity of the Hausdorff distance, and the mean
value theorem, we have

HD(r−1
i Σ ∩ BR, Rθ0Σs ∩ BR)

≤ Cr−1
i max (ε(ri )ri , sup{q|θ(q) − θ(ri )| : ε(ri )ri ≤ q ≤ Rri })

≤ C max (ε(ri ), sup{t |θ(tri ) − θ(ri )| : ε(ri ) ≤ t ≤ R})
≤ C max

(
ε(ri ), R(R − 1)ri sup{|θ ′(tri )| : ε(ri ) ≤ t ≤ R}) .

Our task is to choose ε(ri ) so that

lim
i→∞ ε(ri ) = 0 and lim

i→∞ sup{ri |θ ′(tri )| : ε(ri ) ≤ t ≤ R} = 0. (2.2)

Since |θ ′(r)| = 1/(−r log r), we have sup{ri |θ ′(tri )| : ε(ri ) ≤ t ≤ R} ≤
1/(−ε(ri ) log(Rri )) for all sufficiently large i (i.e. for all sufficiently small ri ). Thus, (2.2)
is satisfied (e.g.) by choosing ε(r) = | log(r)|−1/2. It follows that limi→∞ HD(r−1

i Σ ∩
BR, Rθ0Σs ∩ BR) = 0 for all R > 0. This implies that Σ/ri converge to Rθ0Σs in the sense
of (1.2).

In the general case, starting from any sequence ri ↓ 0, pass to a subsequence such that
θ(ri ) → θ0 (mod 2π). One can readily check that Rθ(ri )Σs converges to Rθ0Σs in the
Attouch–Wets topology. Therefore, Σ/ri converges to Rθ0Σs in the sense of (1.2) by the
special case and the triangle inequality for excess. ��
Remark 2.4 For all exponents 0 < p < 1, the twisted Szulkin domains defined using the
rotation function θ(r) = (− log(r))p also satisfy the conclusions of Lemma 2.3. However,
there is phase transition at p = 1. When θ(r) = − log(r), one can show that the blow-ups
of Σ are no longer zero sets of hhp. The essential difference is that the “speed of rotation”
vanishes as one zooms-in at the origin when p < 1, but the “speed of rotation” is constant
when p = 1. When p > 1, the “speed of rotation” goes to infinity as one zooms-in at the
origin and the associated twisted Szulkin domains Ω± are not even NTA. See Fig. 2.

2.2 Potential Theory for the First Example

Let ri ↓ 0 be an arbitrary sequence of radii going to zero and let K � 1. Recall that
Σ ∩ (BKri \Bri /K ) = Φθ(Σs ∩ (BKri \Bri /K )). Set

ũ±
i (x) = u± ◦ Φ−1

−θ (ri x)ri
ω±(Bri )

, (2.3)
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Slowly Vanishing Mean Oscillations... 621

where u± are the Green’s functions with poles at infinity for Ω±. Then in Ω±
s ∩ BK \B1/K ,

we have that ũ±
i satisfies

−div(B(ri x)∇ũ±
i ) = 0, B = (detDΦθ)

−1(DΦθ)(DΦθ)
T

and Φθ is as in (2.1).
To see that B(ri x) is Lipschitz regular, we note that Remark 2.1(iii) implies that ‖DB‖ ≤
C

r log(r) . Therefore, using the fundamental theorem of calculus along curves which stay in the
annulus BK \B1/K

‖B(ri x)− B(ri y)‖ ≤ Cri |x− y| sup
BKri \Bri /K

‖DB‖ ≤ CK

| log(ri )| |x − y|, ∀x, y ∈ BK \B1/K ,

(2.4)
where C > 0 is independent of i , K . This uniform Lipschitz continuity immediately implies
the next result:

Lemma 2.5 Let α ∈ (0, 1), K > 1. The sequence ũ±
i is pre-compact in C1,α(Ω±

s ∩ BK \
B1/K ). Furthermore, there exists a subsequence along which ũ±

i → κs, uniformly on com-
pacta, where s is the Szulkin polynomial, for some κ > 0.

Proof We see that ũ±
i solves an elliptic PDE with coefficients that are Lipschitz continuous

and elliptic with coefficients independent of i . Furthermore,

sup
B4K

|ũ±
i | ≤ C ⇔ sup

B4Kri

|u+| ≤ C
ω+(Bri )

ri
.

The latter inequality holds (with a C > 0 that depends on K ) by the Caffarelli–Fabes–
Mortola–Salsa and doubling estimates on harmonic measure in NTA domains, see e.g. [14].

Then Schauder theory tells us that ũ±
i are uniformly in C1,α(Ω+

s ∩ BK \B1/K ) for any
α ∈ (0, 1); see [12, Theorem 8.3]. The precompactness follows.

Passing to a subsequence, we get that the sequences converges to functions ũ±∞, which
solves −div(B∞∇ũ±∞) = 0 in Ω±

s ∩ BK \B1/K . From (2.4) we see that B∞ = Id and so,
invoking a diagonal argument, ũ±

i → ũ±∞, uniformly on compacta in R
3. Furthermore, ũ±∞

are positive harmonic functions in Ω±
s that vanish on (Ω±

s )c.
Since (Ω±

s )c are (global) NTA domains, the boundary Harnack inequality implies that
there are scalars κ± > 0 such that ũ±∞ = κ±s (see [18, Lemma 3.7 and Corollary 3.2]).

To wrap up, let us again note that the points (0, 0,±1) ∈ Ω±
s are invariant under Φθ . Fur-

thermore, by symmetry u+(0, 0, 1) = u−(0, 0,−1) and ω+(Br ) = ω−(Br ) for all r . Thus,
u+∞(0, 0, 1) = u−∞(0, 0,−1) and this number determines the constant of proportionality
with s. ��

Finally, the proof of the continuity of log h follows immediately:

Proof of log h∈C(∂Ω)We note that away from the origin, ∂Ω is smooth so continuity of the
Radon–Nikodym derivative follows from classical potential theory. Furthermore, arguing by
symmetry (that is, −Ω+ = Ω−) we have that ω+(B(0, r)) = ω−(B(0, r)) for all r > 0.
Thus, recalling that u± are the Green’s function for Ω± respectively, we are done if we can
show that

lim
∂Ω�Q→0

|∇u+|(Q)

|∇u−|(Q)
= 1.

(Recall that where ∂Ω is smooth, C1,α is sufficient, the Radon–Nikodym derivative is given
by the ratio of the derivatives of the Green functions [15]).
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622 M. Badger et al.

Let Qi ∈ ∂Ω with Qi → 0 and let |Qi | = ri ↓ 0. Let ũ±
i be given by (2.3). Then

ω±(Bri )

r2i
DΦθ(ri x)∇ũ±

i (x) = ∇u±(Φ−1
−θ (ri x)).

Let Q̃i = Φθ(Qi )/ri ∈ Σs ∩ ∂B1. We have shown that

|∇u+|(Qi )

|∇u−|(Qi )
= |DΦθ(ri Q̃i )∇ũ+

i (Q̃i )|
|DΦθ(ri Q̃i )∇ũ−

i (Q̃i )|
.

Continuity of log h follows from Lemma 2.5 (the lemma implies that ũ± → κs in
C1,α(Ωs ∩ B2\B1/2)) and the fact that along some subsequence DΦθ(ri x) → Rθ0 for
some θ0 (depending on the subsequence). ��

3 The Second Example: Non-Unique Flat Tangents

3.1 Description and Geometric Properties

To show non-uniqueness at “flat points” we adapt an example from [25]. We set Ω± =
{(x, y, z) ∈ R

3 : ±(z − v(x, y)) > 0}, where v : R2 → R is defined by setting v(0, 0) = 0,

v(x, y) = x log | log(r)| sin(log | log(r)|) when 0 < r = (x2 + y2)1/2 ≤ 1/100,

and smoothly (e.g. C1,α) interpolating to v(x, y) = 1 when r ≥ 1.

Lemma 3.1 (see [25, Example 2]) The graph domainsΩ± are chord-arc domains. The inter-
face Σ = ∂Ω± has a continuum of blow-ups at the origin, each of which is a plane z = mx
with “slope” −∞ ≤ m ≤ ∞ (Fig. 3).

Remark 3.2 Moreover,Ω± are vanishing chord-arc domains in the sense of [19]. This can be
seen as follows. First, every pseudo blow-up (an Attouch–Wets limit Γ of (Σ − Qi )/ri with
Qi → Q and ri ↓ 0) is a plane. Indeed, on the one hand, if lim supi→∞ |Qi − Q|/ri = ∞,
then Γ is a plane, because Σ \ {0} is smooth. On the other hand, if |Qi |/ri ≤ C for all i ,
then Γ is a translate of a blow-up at Q (see [10, Lemma 3.7]), and thus, Γ is a plane by
Lemma 3.1. Because every pseudo blow-up is a plane, Σ is locally Reifenberg vanishing.
Now, v ∈ W 2,2(R2) (see [25]). Hence, by Sobolev embedding, the normal vector of the
interface n̂ ∈ BMO(∂Ω) with small BMO norm. Therefore, Ω± are vanishing chord-arc
domains; see e.g. [7, 17].

Fig. 3 Blow-upsΣ/r of the interface Σ = ∂Ω± of the graph domains. Left: r = 1. Center: r = 10−6. Right:
r = 10−12
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Slowly Vanishing Mean Oscillations... 623

3.2 Potential Theory for the Second Example

Following the approach of Section 2.2, we now prove that log h ∈ C(∂Ω).2 As before,
because ∂Ω is smooth outside of any neighborhood of the origin, log h ∈ C∞ on ∂Ω \ Br (0)
for any r > 0. Thus, the key point is to show that log h is continuous at the origin.

Let H± = {±z > 0} denote the open upper and lower half-spaces. Let ri ↓ 0 be arbitrary,
K � 1 and write

{z = v(x, y)} ∩ (
BKri \Bri /K

) = Φ−1 ({z = 0} ∩ (BKri \Bri /K )
)
,

where Φ : R3 → R
3 is the homeomorphism given by

Φ(x, y, z) ≡ (x, y, z − v(x, y)).

Set ũ±
i (p) = u±◦Φ−1(ri p)ri

ω±(Bri (0))
, where u± are the Green’s functions with poles at infinity for

Ω±, and the ω± are the corresponding harmonic measures. In H± ∩ BK \B1/K , ũ
±
i satisfies

−div
(
B(ri p)∇ũ±

i (p)
) = 0, B = (detDΦ)−1(DΦ)(DΦ)T .

Lemma 3.3 Let α ∈ (0, 1), K > 1. The sequence ũ±
i is pre-compact in C1,α(H± ∩

BK \B1/K ). Furthermore, there exists a subsequence along which ũ±
i → κz± for some

κ > 0 uniformly on compact subsets of R3.

Proof We claim that ũ±
i solves an elliptic PDE with Lipschitz continuous coefficients in

BK \B1/K ∩ H±. Indeed,

|B(ri p) − B(ri q)| ≤ Cri |p − q|‖DB‖L∞(BKri \Bri /K )

[25]≤ CKri
log | log(ri )|
ri | log(ri )| |p − q| ≤ CK |p − q|, (3.1)

by the fundamental theorem of calculus.
Arguing as in Lemma 2.5 above, ũ±

i are uniformly in C1,α(H+ ∩ BK \B1/K ) for any
α ∈ (0, 1) and thus have the desired pre-compactness. Passing to a subsequence and invoking
a diagonal argument ũ±

i → ũ±∞ uniformly on compacta. Furthermore, ũ±∞ > 0 and solves
−div(B∞∇ũ±∞) = 0 in H± and has ũ±∞(x, y, 0) = 0. We see in (3.1) that B∞ is constant (as
log | log(ri )|/ log(ri ) ↓ 0) and so−div(B∞∇z) = 0. Again, up to scalar multiplication there
is a unique signed solution of −div(B∞∇−) = 0 in H± which vanishes on {z = 0} and that
has subexponential growth at infinity. Continuing to follow the argument for Lemma 2.5, we
conclude that ũ±∞ = κ±z±, with κ+ = κ−. (Remember that−{z > v(x, y)} = {z < v(x, y)},
because v is odd.) ��

Finally, the proof of the continuity of log h in this context follows exactly as in Section 2.2
except that we must be more careful estimating |DΦ(ri Q̃i )∇ũ±(Q̃i )|. (We do not know that
DΦ(ri p) converges to a rotation as ri ↓ 0.) However, observe that ũ± ≡ 0 on {z = 0}, so
we know that ∇ũ±(Q̃i ) is parallel to e3. Thus, an elementary computation shows that

|DΦ(ri Q̃i )∇ũ+(Q̃i )|
|DΦ(ri Q̃i )∇ũ−(Q̃i )|

= |∇ũ+(Q̃i )||DΦ(ri Q̃i )e3|
|∇ũ−(Q̃i )||DΦ(ri Q̃i )e3|

= |∇ũ+(Q̃i )|
|∇ũ−(Q̃i )|

.

The quantity on the right hand side converges to 1 by Lemma 3.3. As in Section 2.2, it follows
that log h ∈ C(∂Ω).

2 One could prove the weaker result that log h ∈ VMO(dω+) using Remark 3.2 and standard properties of
A∞ weights.
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4 Open Questions and Further Directions

We end by presenting some natural open questions. Our first question concerns the size of
the set of non-uniqueness:

Question 4.1 Let Ω± ⊂ R
n be complementary NTA domains with log h ∈ C(∂Ω). Is it

possible for

NU (Ω) := {Q ∈ ∂Ω : there is no unique (geometric) blow-up at Q}
to have Hausdorff dimension n − 1?

We note that a local version of [26, Theorem 1.1] implies that the set Γ1 of flat points
in ∂Ω is uniformly rectifiable. Thus ω±(NU ) = 0 = Hn−1(NU ∩ Γ1). Furthermore, by
the main result of [8], dim ∂Ω\Γ1 ≤ n − 3. Thus, Hn−1(NU ) = 0. On the other hand, the
example of [1] suggests that Hn−2(NU ∩ Γ1) > 0 may be possible.

The example in Section 2 (twisted Szulkin) shows that it is possible for all singular points
to have non-unique blowups and for the set of singular points with non-unique blowups to
have positive Hn−3-measure. (When n ≥ 4, simply take Ω± × R

n−3.) This is sharp by [8].
Thus, the natural analogue of Question 4.1 is answered in the affirmative.

Our second question asks what are the possible tangent cones at points of non-unique
blow-up:

Question 4.2 Let C ⊂ G(n, n − 1) be a compact, connected subset of the Grassmannian.
Does there exist a pair of complementary NTA domainsΩ± with log h ∈ C(∂Ω) and a point
Q ∈ ∂Ω at which Tan(∂Ω, Q) = C?

In Section 3, we showed that the set Tan(∂Ω, 0) of blow-ups of the interface of the graph
domains at the origin consists of all planes z = mx with “slope” −∞ ≤ m ≤ +∞. For any
closed interval I ⊂ R, it is not hard to adapt the example so that the blowups at the origin
are exactly the planes z = mx with m ∈ I . It is known that for any closed set Σ ⊂ R

n

and Q ∈ Σ , the set Tan(Σ, Q) of all tangent sets of Σ at Q is closed and connected in the
Attouch–Wets topology [10]; the statement and proof of this fact was originally motivated
by similar statement for tangent measures [16, 22].

We may also ask a version of Question 4.2 at points where the blow-ups are homogeneous
of higher degree:

Question 4.3 Let Hn,d be the set of degree d homogeneous harmonic polynomials p in R
n

such that Ω±
p = {±p > 0} are NTA domains. For each n ≥ 3 and d ≥ 2 and C ⊂ Hn,d ,

which is compact and connected, does there exist complementary NTA domains Ω± with
log h ∈ C(∂Ω) and a point Q ∈ ∂Ω at which Tan(∂Ω, Q) = {Σp : p ∈ C}?

The condition that Rn\Σp is a union of two NTA domains is necessary for Σp to arise
as a blow-up of the interface of complementary NTA domains. The first step to answering
Question 4.3 may be to study the “moduli space” of Hn,d when d ≥ 2. For example:

Question 4.4 If p and q lie in the same connected component of Hn,d , is it true that Σq is
bi-Lipschitz equivalent to Σp?
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