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Abstract

In Kenig and Toro’s two-phase free boundary problem, one studies how the regularity of the
Radon-Nikodym derivative # = dw™ /dw™ of harmonic measures on complementary NTA
domains controls the geometry of their common boundary. It is now known that logh €
C%(3£2) implies that pointwise the boundary has a unique blow-up, which is the zero set
of a homogeneous harmonic polynomial. In this note, we give examples of domains with
logh € C(052) whose boundaries have points with non-unique blow-ups. Philosophically
the examples arise from oscillating or rotating a blow-up limit by an infinite amount, but very
slowly.

Keywords Two-phase free boundary problems - Harmonic measure - Uniqueness of
blow-ups
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1 Introduction

In this note, we answer a question about uniqueness of blow-ups in non-variational two-
phase free boundary problems for harmonic measure in the negative. Throughout, we let
R =2 c R"and 27 = R"\ 2 denote complementary unbounded domains with a
common boundary 32 = 921 = 92 ~. Furthermore, we require that £2¥ belong to the
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class of NTA domains in the sense of Jerison and Kenig [14]. Let w® denote harmonic
measures on £2% with finite poles X* or with poles at infinity (see Kenig and Toro [18]).
Finally, we assume ot <« @~ <« o™ and let

B dw™
T dot

denote the Radon—Nikodym derivative of harmonic measure on one side of the boundary
with respect to harmonic measure on the other side. We are interested in understanding how
different regularity assumptions on /4 controls the geometry of 0£2.

Following Kenig and Toro [20] and Badger [4], we know if logh € VMO(dw™) (van-
ishing mean oscillation) or logh € C(3$2) (continuous), then the boundary admits a finite
decomposition into pairwise disjoint sets,

02 =IuU.--Uly, (1.1

where geometric blow-ups (tangent sets) of d§2 centered at any Q € Iy (1 < d < dp)
are zero sets X, of homogeneous harmonic polynomials (hhp) p : R* — R of degree d.
That is to say, given any boundary point Q € I, and any sequence of scales r; > 0 with
lim;_, o r; = 0, there exists a subsequence r;; and a hhp p of degree d such that

. 02 —Q 02 —Q
lim max Jexcess| —— N B, X, ), excess | X, N B, ———— =0 (1.2

j—00o rij r, ij
for every ball B in R". Here excess(S, T) = supcginfer |s — ] when S, 7 C R" are
nonempty and excess(¥, T) = 0; see [10] for more information about this mode of conver-
gence of closed sets (the Attouch—Wets topology). Following [6] and [8], we further know
that the regular set I7 is relatively open, Reifenberg flat with vanishing constant, and has
Hausdorff and Minkowski dimensions n — 1, whereas the singular set 2 \ I} is closed and
has Hausdorff and Minkowski dimension at most n — 3.

We remark that the maximum degree dy witnessed in the decomposition (1.1) can be
bounded in terms of the ambient dimension and the NTA constants of 2%. When n = 2,
it is always the case that 92 = I'1. Whenn = 3, we have 92 = I U T3 U --- U g, 41
(odd degrees only) and for every odd d > 1, there exist two-sided domains with Iz # @. In
dimensions n > 4, for every integer d > 1, even or odd, there exist two-sided domains with
Iy # 0. See [8] for details and [3, 23, 26] for additional results on the regularity of I'.

One may ask: Are the blow-ups at each point in 92 unique? In other words, is the zero
set X'}, in (1.2) independent of choice of the sequence of scales r;? Under a stronger free
boundary regularity hypothesis, the answer is affirmative. Following Engelstein [11] and [9],
we know that if logh € CY(32) for some o > 0 (Holder continuous), then blow-ups are
unique. Moreover, when logh € C%%(9£2), the regular set I is actually a C'** embedded
submanifold and the singular set 0§2 \ I7 is (n — 3)-rectifiable in the sense of geometric
measure theory (see e.g. [21]). Below, we supply examples demonstrating that under the
weaker regularity hypothesis logh € C(952), there may exist points in the boundary that
have non-unique blow-ups.

Theorem 1.1 For each d € {1, 3}, there exist complementary NTA domains 2% C R? such

that logh € C(052), but there exists a point in Iy at which geometric blow-ups of 952 are
not unique.
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Remark 1.2 In fact, the domains that we construct below have locally finite perimeter and
Ahlfors regular boundaries: that is, there exists C > 0 (depending on £2) such that

c <102 N B(Q,r) < Cr"! forallQ € 92 andr > 0,

where £2 C R”" and H"~! denotes the (n — 1)-dimensional Hausdorff measure. Even more,
the boundaries of the domains are smooth surfaces outside of a single point.

The basic strategy is to start with a blow-up domain .Q;t ={X e R": £p(X) > 0}
associated to a hhp p of degree d, which has logh = 0 and 0 € I';. We then deform the
domain near the origin by introducing rotations/oscillations at each scale 0 < r < 1/100
so that the magnitude of the oscillation at scale r vanishes as » — 0. The tension in the
proof becomes choosing the correct speed of vanishing. On the one hand, by choosing the
speed to be sufficiently quick, we can guarantee by making estimates on elliptic measure
that the deformed domain has logh € C(3£2). On the other hand, by choosing the speed
to be sufficiently slow, we can guarantee that the deformed domain has uncountably many
blow-ups at the origin, each of which are rotations of the original domain.

Remark 1.3 By a suitable modification, the technique introduced in the case d = 3 can be
used to show existence of domains with logh € C(9$2) and non-unique blow-ups at an
isolated point Q € I for any value of d > 2. When d > 3 is odd, the examples can be
produced in R3. When d > 2 is even, the examples can be produced in R*.

In a related context, Allen and Kriventsov [1] use conformal maps to construct domains
2F = {ut > 0} ¢ R" (n > 2) associated to non-negative subharmonic functions u® for
which the Alt—Caffarelli-Friedman functional

.o 1 |Vut|? [Vu~|?
(P(r, u,u ) = 4 n—2 n—2
r* Je.o) 1X| B,©0) 1X]

has a positive limit as » — 0, but whose interface 32 = 92" = 92~ does not have
a unique tangent plane at the origin. It would be interesting to know whether a suitable
modification of their examples satisfy logh € C(9£2). For more on the connection between
the ACF functional and two-phase free boundary problems for harmonic measure (originally
observed by Kenig, Preiss, and Toro [16]), see [2, §2.2] and the references within.

We handle the case d = 3 of Theorem 1.1 in Section 2 and the case d = 1 in Section 3.

2 The First Example: Non-Unique Singular Tangents
2.1 Description and Geometric Properties

We begin with Szulkin’s example [24] of a degree 3 hhp,
s(x,y,2) = X - 3)cy2 T3 1.5()62 + yz)z,

with the interesting feature that its zero set X is homeomorphic to R?. See Fig. 1. Because
X is a cone (s is homogeneous) and X5 N $2 is a smooth curve!, it follows that .Qf =
{(x,y,2) € R3 : +s(x, v, z) > 0} are complementary NTA domains. Note that the positive
z-axis belongs to Qj and the negative z-axis belongs to £27, since s(0, 0, £1) = £1.

1 One can check that Vs(x,y,2) =04 (x,y,z2) = (0,0,0).
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618 M. Badger et al.

Fizg. 1 Left: Szulkin X, viewed from the z-axis. Center: the curve formed by intersection of Szulkin X and
S¢, viewed from a different angle. Right: Szulkin X inside of the annulus 1/2 < r < 1, viewed from the
Z-axis

To build 2%, we deform 2 by rotating spherical shells X N 3B, (0) in the xy-plane.
More precisely, we put 2% = {Eswist > 0}, where suyist = 5 0 P_g and Pg : R3 — R3
are homeomorphisms given by

Dig(x,y,7) = (xcos(£f) — ysin(6), x sin(£0) + y cos(+6), 2), 2.1)

0 =0(r) := log(—log(r)) forall0 < r:=./x2+ y2+z2<1/100

and we smoothly interpolate to 8(r) := 0 for all » > 1. See Fig. 2.
If sewist (x, y, 2) = 0,then @_¢4(x, v, z) € X;. Hence, the interface X = IRE = Py(Xy).
Similarly, 2F = &g (£27).

Remark 2.1 Let us collect some simple, but useful observations about 6 and ®y.

(i) For any 6y € [0, 27), there exists a sequence r; | O such that 6(r;) = 6y (mod 2x),
i.e. such that mingcz |0 (r;) — 6p — 2k| = 0 forall i > 1.
(ii) For any sequence r; | O, there exists 6y € [0, 27) and a r; i J 0 such that Q(r,-].) — by
(mod 27), i.e. lim_, oo Mingez |&(ri;) — 6o — 2wk| = 0.
(iii) For all 0 < r < 1/100, we have |VO| = 1/(—rlog(r)) and [9;;0] < C/(—r2 log(r))
forall1 <i,j <3.

-0010 -0.005 0.000 0005 0010 -0010 -0.005. 0000 0005 0010

Fig.2 Examples of twisted Szulkin domains 2% defined using various rotation functions 6 (r). Left: 6(r) =
log(—log(r)); the domains 0% are NTA and logh € C(952). Center: 6(r) = —log(r); the domains Q% are
NTA, but logh ¢ VMO(dw™). Right: 6(r) = (— log(r))z; the domains 2T are not NTA
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(iv) Forall (x, y, z) with0 < r < 1/100, we can write D®y = Ry + Ep, where

cos(f) —sin(f) 0
Ry = | sin(@) cos(@) O
0 0 1

is a rotation matrix and the “error matrix” Ejy is such that ||Egllcc < C/(—log(r)),
where the norm is the sup norm on the entries of Ey.

(v) The map @ : R3 — R3 is a quasiconformal homeomorphism, with D, L= o,
Moreover, @y is asymptotically conformal at the origin.

Proof The first property holds since 6(r) is continuous in r and 6(r) — oo as r | O.
The second property is true by compactness of the torus R/2z. The third property is a
straightforward computation. By another straightforward (if tedious) computation, D®y =
Ro + Ey, where Ry is as above and Ej is the rank 1 matrix given by

—x sin(f) — y cos(0)
Eg = | xcos(®) — ysin(®) | (6x 6, 6:).
0

Let’s examine the (1,1) entry of Ey. Since 6y = 0’ (r)ry, = 0'(r)x/r and |x| < r, we have
|x6y sin(—0) + v, cos(—0)| < 2r|0'(r)| < 2/(—logr).

The other non-zero entries of Eg obey the same estimate. This gives the fourth 1property. To
prove that @y is quasiconformal (see e.g. [13]), it suffices to check that @y € Wlo’c" and there
exists 1 < L < oo such that the a.e. defined singular values A; < Xy < A3 of D®y satisfy
A3 < LA a.e. These facts follow from property (iv) and the variational characterization of
the minimum and maximum singular values. Furthermore, as » | 0, the maximum ratio of
A3/A1 in B, goes to 1. Therefore, @y is asymptotically conformal at the origin. O

The Hausdorff distance HD(A, B) = max{excess(A, B), excess(B, A)} for all nonempty
sets A, B C R”". Note that HD(LA, AB) = AHD(A, B) for any dilation factor A > 0.

Lemma 2.2 (Twisted Szulkin vs. rotations of Szulkin) Ifr,e, R > 0and 0 < Rr < 1/100,
then HD(X N Bg,, Ro() X5 N Brr) < C max(er, sup{q|0(q) —O0(r)| : er < g < Rr}).

Proof Forany p € B.,, we have dist(p, Ro-) Xs N Bg,) < 2er and dist(p, ¥ N Br,) < 2er,
since 0 € Ry(-) Xy and 0 € X. Thus, the main issue is to estimate distances inside Bg, \ Be,.

Let p € ¥ N Bgy \ By, say p € ¥ N 3B, with er < g < Rr. Then we may write p =
Ry (g)x for some x € Y. Let’s estimate dist(p, Rg(-) Xs N Bg,) from above by the distance
of p to the point y = Rg(r)x S Rg(r) X N 3Bq. Note that y = R@(,)x = Rg(r)ng(q)p =
Ro()—0(g)p and |y| = |p| = q. Hence

Ip =yl < ql(1,0,0) — (cos(8(q) — 0(r)), sin(6(q) — O(r)), 0)]
= q(2 —2cos(8(q) — O(r))"/?
< Cqlo(gq) — 6(r)l,

where the first inequality holds by geometric considerations and the last inequality used the
Taylor series expansion for cosine.
A similar inequality holds starting from any p € Rg()Xs N Bg; \ Be. O
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620 M. Badger et al.

Lemma 2.3 With 0(r) = log(—log(r)), the twisted Szulkin domains 2% as defined above
are chord-arc domains (i.e. NTA domains with Ahlfors regular boundaries). The interface
X = 3% has a continuum of blow-ups at the origin, each of which is a rotation of X in
the xy-plane.

Proof The domains 2% = @4 (22F) are NTA, because global quasiconformal maps send
NTA domains to NTA domains. Every boundary of an NTA domain is lower Ahlfors regular
(seee.g.[5,Lemma2.3]). Thus, X' is lower Ahlfors regular. To check upper Ahlfors regularity,
first note that X is upper Ahlfors regular, since X can be covered by a finite number of
Lipschitz graphs. Since || det(D®p) |l < 00, it follows that X' = @y (Xy) is upper Ahlfors
regular, as well.

Let’s address the blow-ups of 9§2 at the origin. Let r; | 0 and suppose initially that
O(ri) = 6p (mod 2m) for all i. Let €(r) be a function of r to be specified below. Let R > 1
be a large radius. By Lemma 2.2, the homogeneity of the Hausdorff distance, and the mean
value theorem, we have

HD(r; ' ¥ N Bg, Ry X5 N Bg)
< Cr; " max (e(ri)ri, sup{q|0(q) — 0| : €(ridri < q < Rri})
< Cmax (e(r;), sup{t|0(tr;) —0(ri)| : €(ri) <t < R})
< C max (e(ri), R(R — Vyr;sup{|@’(tr;)| 1 €(ri) <t < R}).

Our task is to choose €(r;) so that

lim €(r;) =0 and lim sup{r; |0’ (tr;)| 1 €(r;) <t < R} = 0. 2.2)
1—> 00 1—> 00

Since |0'(r)] = 1/(—rlogr), we have sup{r;|0'(tr;)|] : €(r;) < t < R} <

1/(—e(r;) log(Rr;)) for all sufficiently large i (i.e. for all sufficiently small r;). Thus, (2.2)

is satisfied (e.g.) by choosing €(r) = |log(r)|~"/2. 1t follows that lim;_oc HD(+;' ¥ N

Br, RgyXs N Br) = 0 forall R > 0. This implies that X' /r; converge to Rg, X in the sense

of (1.2).

In the general case, starting from any sequence r; | 0, pass to a subsequence such that
0(r;) — 6p (mod 27). One can readily check that Ry,)Xs converges to Rg, X in the
Attouch—Wets topology. Therefore, X' /r; converges to Ry, X in the sense of (1.2) by the
special case and the triangle inequality for excess. O

Remark 2.4 For all exponents 0 < p < 1, the twisted Szulkin domains defined using the
rotation function 6(r) = (—log(r))? also satisfy the conclusions of Lemma 2.3. However,
there is phase transition at p = 1. When 6(r) = —log(r), one can show that the blow-ups
of X are no longer zero sets of hhp. The essential difference is that the “speed of rotation”
vanishes as one zooms-in at the origin when p < 1, but the “speed of rotation” is constant
when p = 1. When p > 1, the “speed of rotation” goes to infinity as one zooms-in at the
origin and the associated twisted Szulkin domains £2+ are not even NTA. See Fig. 2.

2.2 Potential Theory for the First Example

Let r; | 0 be an arbitrary sequence of radii going to zero and let K > 1. Recall that
2n (BKri\Br,-/K) - ¢0(2S n (BKr,-\Br,-/K))' Set
uto d5:91 (rix)r;

~t N
=B,

) (2.3)
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Slowly Vanishing Mean Oscillations... 621

where u® are the Green’s functions with poles at infinity for 2. Then in 2F N Bg \By k.,

we have that u u satisfies
—div(B(rix)Viit) =0, B = (detD®p) " (DPg)(DPy)”

and @y is as in (2.1).

To see that B(r;x) is Lipschitz regular, we note that Remark 2.1(iii) implies that || DB|| <
%. Therefore, using the fundamental theorem of calculus along curves which stay in the
annulus Bg \Bj/k

|B(rix)—B@riy)| < Crilx—y| sup |[[DB|| < ———|x—yl, Vx,y € Bg\Bik,
Bxy;\Br /k [1o ( i)l

24
where C > 0 is independent of i, K. This uniform Lipschitz continuity immediately implies
the next result:

Lemma25 Let @ € (0,1), K > 1. The sequence ﬁli is pre-compact in C*(2F N Bg \
By/k). Furthermore, there exists a subsequence along which ﬁli — ks, uniformly on com-
pacta, where s is the Szulkin polynomial, for some k > 0.

Proof We see that Etli solves an elliptic PDE with coefficients that are Lipschitz continuous
and elliptic with coefficients independent of i. Furthermore,

o' (B,
sup || <C & sup uT| < CM.
By Bakr; Ti
The latter inequality holds (with a C > 0 that depends on K) by the Caffarelli-Fabes—
Mortola—Salsa and doubling estimates on harmonic measure in NTA domains, see e.g. [14].

Then Schauder theory tells us that i are uniformly in C'*(22{" N Bx\Bj k) for any
a € (0, 1); see [12, Theorem 8.3]. The precompactness follows.

Passing to a subsequence we get that the sequences converges to functions %, which
solves —d1V(BooVuoo) =0in Q N Bx\Bi,k . From (2.4) we see that By, = Id and S0,
invoking a diagonal argument, u — uoio uniformly on compacta in R3. Furthermore, ui
are positive harmonic functions i in Q% that vanish on (£2).

Since (225) are (global) NTA domains, the boundary Harnack inequality implies that
there are scalars k+ > O such that ftfo = k45 (see [18, Lemma 3.7 and Corollary 3.2]).

To wrap up, let us again note that the points (0, 0, £1) € .QYjE are invariant under @g. Fur-
thermore, by symmetry u*(0,0,1) = u~(0,0, —1) and " (B,) = 0~ (B,) for all r. Thus,
u;(O, 0,1) = uz (0,0, —1) and this number determines the constant of proportionality
with s. O

Finally, the proof of the continuity of log # follows immediately:

Proof of log heC (352) We note that away from the origin, 32 is smooth so continuity of the
Radon—-Nikodym derivative follows from classical potential theory. Furthermore, arguing by
symmetry (that is, —27 = £27) we have that @™ (B(0, r)) = o~ (B(0,r)) for all r > 0.
Thus, recalling that u™ are the Green’s function for £2% respectively, we are done if we can

show that
im IVuti(Q)
3250—0 [Vu—[(Q)

(Recall that where 352 is smooth, C1:¢ is sufficient, the Radon-Nikodym derivative is given
by the ratio of the derivatives of the Green functions [15]).
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622 M. Badger et al.

Let Q; € 082 with Q; — Oandlet |Q;| =r; | 0. Let zlli be given by (2.3). Then

w*(By,)
r2

i

D®y(rix) Vit (x) = Vu* (07 (rix)).

Let Q; = @4(Q;)/ri € X5 N dB;. We have shown that

IVut|(Qi) _ [Py (i Q) Vit (i)
IVu=1(Qi)  |D®g(r; 01)Vii; (01|

Continuity of log/ follows from Lemma 2.5 (the lemma implies that At — ks in
cle(2,n B>\ B1,2)) and the fact that along some subsequence D®y(rix) — Ry, for
some 0y (depending on the subsequence). O

3 The Second Example: Non-Unique Flat Tangents
3.1 Description and Geometric Properties

To show non-uniqueness at “flat points” we adapt an example from [25]. We set 2F =
{(x,y,2) € R3: +(z — v(x, y)) > 0}, where v : R? — R is defined by setting v(0, 0) = 0,

v(x,y) = xlog|log(r)|sin(log | log(r)|) whenO < r = (x2 + yz)l/2 < 1/100,
and smoothly (e.g. C%) interpolating to v(x, y) = 1 when r > 1.

Lemma 3.1 (see [25, Example 2]) The graph domains 2% are chord-arc domains. The inter-
face ¥ = 92F has a continuum of blow-ups at the origin, each of which is a plane z = mx
with “slope” —oo < m < oo (Fig. 3).

Remark 3.2 Moreover, 2T are vanishing chord-arc domains in the sense of [19]. This can be
seen as follows. First, every pseudo blow-up (an Attouch—Wets limit I” of (¥ — Q;)/r; with
Qi — Qandr; | 0)is a plane. Indeed, on the one hand, if lim sup;_, ., |Q; — Q|/ri = o0,
then I" is a plane, because X \ {0} is smooth. On the other hand, if |Q;|/r; < C for all i,
then I" is a translate of a blow-up at Q (see [10, Lemma 3.7]), and thus, I" is a plane by
Lemma 3.1. Because every pseudo blow-up is a plane, X' is locally Reifenberg vanishing.
Now, v € W22(RR?) (see [25]). Hence, by Sobolev embedding, the normal vector of the
interface 7 € BMO(9£2) with small BMO norm. Therefore, 2% are vanishing chord-arc
domains; see e.g. [7, 17].

Fig.3 Bllozw—ups X /r of the interface ¥ = 3927 of the graph domains. Left: r = 1. Center: r = 1079, Right:
r=10"
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Slowly Vanishing Mean Oscillations... 623

3.2 Potential Theory for the Second Example

Following the approach of Section 2.2, we now prove that logh € C(352).> As before,
because 952 is smooth outside of any neighborhood of the origin, logh € C* on 952 \ B, (0)
for any r > 0. Thus, the key point is to show that log / is continuous at the origin.

Let H* = {+z > 0} denote the open upper and lower half-spaces. Let r; | 0 be arbitrary,
K > 1 and write

{z=v0e, YN (B \Byyx) = @7 ({2 = 0} N (B \ By, x)) -
where @ : R? — R3 is the homeomorphism given by
P(x,y,2) = (x,y,z—v(x,y)).
Set i (p) = uodlirip )i where u* are the Green’s functions with poles at infinity for

= (B,; (0)
2%, and the w™ are the corresponding harmonic measures. In H* N Bk \ B /K> ﬁli satisfies

~div(B(rip)ViE(p)) =0, B = (detD®)~' (D) (DP)".

Lemma3.3 Let « € (0,1), K > 1. The sequence ﬁli is pre-compact in Cl*(H* n
Bg\By/k). Furthermore, there exists a subsequence along which ﬁli — K4 for some
k > 0 uniformly on compact subsets of R.

Proof We claim that zlli solves an elliptic PDE with Lipschitz continuous coefficients in
BK\BI/K NH*. Indeed,

|B(rip) — B(rig)| = Crilp —qllIDB|| LBk, \B,,/x)
231 log|log(ri)|

CKr; lp —ql < CK|p—ql, 3.1
rillog(r;)|

by the fundamental theorem of calculus.

Arguing as in Lemma 2.5 above, ﬁli are uniformly in C*(H+ N Bk \Bj k) for any
a € (0, 1) and thus have the desired pre-compactness. Passing to a subsequence and invoking
a diagonal argument ﬂli — fté‘o uniformly on compacta. Furthermore, ﬁé‘o > 0 and solves
—div(Boo Vi) = 0in H* and has i% (x, y, 0) = 0. We see in (3.1) that By, is constant (as
log | log(r;)|/log(r;) | 0) and so —div(B Vz) = 0. Again, up to scalar multiplication there
is a unique signed solution of —div(B,,V—) = 0 in H? which vanishes on {z = 0} and that
has subexponential growth at infinity. Continuing to follow the argument for Lemma 2.5, we
conclude thatﬁi) = k+z+,withk; = k_.(Rememberthat —{z > v(x, y)} = {z < v(x, y)},
because v is odd.) ]

Finally, the proof of the continuity of log / in this context follows exactly as in Section 2.2
except that we must be more careful estimating | D® (r; Q,-)Vﬂi(é,- )|. (We do not know that
D® (r; p) converges to a rotation as r; | 0.) However, observe that it =0on{z =0}, s0
we know that Vﬁi(Qi) is parallel to e3. Thus, an elementary computation shows that

DD (i Q) Vit (00| _ |Vt (O)IIDP (ri Qides| _ [Vt (0))]

[DP(ri Q)Vu= (Ol IVu=(@)IIDP(ri Qi)es|  [Vi—(Qi)l
The quantity on the right hand side converges to 1 by Lemma 3.3. As in Section 2.2, it follows
that logh € C(052).

2 One could prove the weaker result that logh € VMO(dw™) using Remark 3.2 and standard properties of
Ao weights.
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624 M. Badger et al.

4 Open Questions and Further Directions

We end by presenting some natural open questions. Our first question concerns the size of
the set of non-uniqueness:

Question4.1 Let 2% C R” be complementary NTA domains with logh € C(3£2). Is it
possible for

NU(£2) := {Q € 952 : there is no unique (geometric) blow-up at Q}
to have Hausdorff dimension n — 1?

We note that a local version of [26, Theorem 1.1] implies that the set I of flat points
in 052 is uniformly rectifiable. Thus ot (NU) = 0 = H""Y(NU N I). Furthermore, by
the main result of [8], dim 02\ "] < n — 3. Thus, H""Y(NU) = 0. On the other hand, the
example of [1] suggests that H'"E(NUNTY) >0 may be possible.

The example in Section 2 (twisted Szulkin) shows that it is possible for all singular points
to have non-unique blowups and for the set of singular points with non-unique blowups to
have positive H"~3-measure. (When n > 4, simply take 2% x R”~3.) This is sharp by [8].
Thus, the natural analogue of Question 4.1 is answered in the affirmative.

Our second question asks what are the possible tangent cones at points of non-unique
blow-up:

Question 4.2 Let C C G(n,n — 1) be a compact, connected subset of the Grassmannian.
Does there exist a pair of complementary NTA domains 2% with logh € C(9£2) and a point
Q € 052 at which Tan(9$2, Q) = C?

In Section 3, we showed that the set Tan(d£2, 0) of blow-ups of the interface of the graph
domains at the origin consists of all planes z = mx with “slope” —oco < m < +o0. For any
closed interval I C R, it is not hard to adapt the example so that the blowups at the origin
are exactly the planes z = mx with m € [. It is known that for any closed set ¥ C R”
and Q € X, the set Tan(X, Q) of all tangent sets of X' at Q is closed and connected in the
Attouch—Wets topology [10]; the statement and proof of this fact was originally motivated
by similar statement for tangent measures [16, 22].

We may also ask a version of Question 4.2 at points where the blow-ups are homogeneous
of higher degree:

Question 4.3 Let 77, 4 be the set of degree d homogeneous harmonic polynomials p in R”
such that .Q;,t = {£p > 0} are NTA domains. For eachn > 3 andd > 2 and C C 4, 4,
which is compact and connected, does there exist complementary NTA domains £2% with
logh € C(052) and a point Q € 352 at which Tan(9$2, Q) = {X), : p € C}?

The condition that R"\ X}, is a union of two NTA domains is necessary for X, to arise
as a blow-up of the interface of complementary NTA domains. The first step to answering
Question 4.3 may be to study the “moduli space” of /¢, 4 when d > 2. For example:

Question 4.4 If p and ¢ lie in the same connected component of 7, 4, is it true that X is
bi-Lipschitz equivalent to X',?
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