

STEAM Education

Intersections and Thresholds

Edited by

Yichien Cooper and Alice Lai

Chapter 13

Justice, S., & Assaf, L. C. (2024). Expressive STEM storymaking: Art, literacy, and creative computing. In A. Lai & Y. Cooper (Eds.), *STEAM education: Intersections and thresholds* (pp. 210-226). Brill. https://doi.org/10.1163/9789004714748_014

BRILL

LEIDEN | BOSTON

Expressive STEM Storymaking

Art, Literacy, and Creative Computing

Sean Justice and Lori Czop Assaf

Abstract

This chapter features intersections of art, literacy, and creative computing. As a component of STEAM, creative computing augments story creation, or storymaking (Buganza et al., 2023; Compton & Thompson, 2018), prompting learners to explore expressive meaning making as collective interactions with texts. To signify a way of teaching that supports such learning activities, we propose expressive STEM as a design principle, illustrated here with examples from an elementary school and a preservice art education program in Texas, USA. Principles of expressive STEM storymaking drawn from these examples and from our teaching and research are offered in the chapter's conclusion.

Keywords

art education – computational literacies – computational thinking – creative computing – storymaking

1 Introduction

This chapter features intersections of art, literacy, and creative computing. Working with new media and computational tools for creative purposes has become increasingly important to contemporary art education practices (Mohanty, 2022; Peppler & Wohlwend, 2018). In fact, “art educators are in the unique position to ask probing and provocative questions about digital media” (Sweeny, 2022, p. 293); but those in the field at large perceive a need for more substantive engagement with creative computing in universities and schools (Knochel & Patton, 2015; Leonard, 2021; Patton et al., 2020). This misalignment represents an opportunity to expand the relevance of creative computing in STEM–STEAM learning across multiple domains, including the

arts, particularly since computational thinking (CT) has been situated as a core priority in K–12 education (Kafai & Proctor, 2022).

In the field of computer science education, CT has been framed as a way of thinking focused on representing problems as step-by-step procedures, so that those procedures can be programmed and carried out by a computer (Grover, 2022; Wing, 2017). Comprising skills derived from mathematics, engineering, and design that are “deeply symbiotic” (Grover & Pea, 2018, p. 33) with STEM disciplines, CT is a “foundational competency for being an informed citizen” (p. 34). Our focus here is not on isolated computing skills or competencies but on expanding literacy learning activities, particularly story creation, or story-making (Buganza et al., 2023; Compton & Thompson, 2018), to include creative computing—a goal that aligns broadly with the reorientation of CT in computer science education as a component of socially transformative computational literacies (Kafai & Proctor, 2022).

Teachers of young children from 5 to 7 years of age take their responsibility for teaching literacy seriously, frequently telling us they will work with any tool that increases engagement and student success, yet they view adding computing to their repertoire with reservation. For instance, teachers and preservice students often begin workshops and courses declaring their distrust of computers. “Computers hate me!” is not an uncommon refrain; nevertheless, teachers are generally enthusiastic about the potential for STEAM activities to increase student engagement (Graham, 2021).

To discuss the expressive potential of storymaking + creative computing, we will use the term “expressive” STEM. To illustrate expressive STEM as storymaking, we describe three learning activities drawn from our work as teacher educators and CT researchers. The first is from a kindergarten classroom with 5- to 6-year-olds, where students responded to a read-aloud about camouflage by making an animated hide-and-seek word game in ScratchJr. The other examples come from a preservice digital methods course, where preservice students engaged in storymaking via computer programming and artmaking.

2 STEM–STEAM + Literacies

From preservice art education courses (Justice, 2020) to computer science education research (Justice & Assaf, 2020) to community-centered education (Families Learning Together, n.d.), we have noticed that learners gravitate to activities emphasizing interpersonal relationships, for example peer–peer, parent–child, teacher–student, even if those activities involve unfamiliar tools and materials. Activities aligned with STEAM learning include light-up Mothers

Day cards with LEDs and coin cell batteries, machines that make marks or noise to express the personality of a fictional character, and interactive oral histories programmed on a computer. As explored elsewhere (Justice, 2016, 2020, 2024), learner motivation for such activities appears to be driven not simply by a desire for STEM skills, for example, to improve math or science or computer programming abilities, but also by a desire for strengthening friend and family relationships. This observation is supported by a scoping review of STEM–STEAM and makerspace learning by Johnston et al. (2022), who found a noticeable increase in recent studies arguing for STEM learning centered on literacy, play, and family.

Lately, though, we have become skeptical of identifying with either STEM or STEAM because these acronyms appear too simplistic. At root, we question integration as a turnkey principle (e.g., simply inserting art between engineering and math) because it minimizes the way learning matters for learners. This realization reprises something we noticed a long time ago but perhaps did not fully understand at the time. In 2014 during a study of K–12 digital making and learning (Justice, 2016), a director of technology complained that focusing on integration was misguided if it centered on tools rather than on teaching. He said, “If [the teaching] is strong with the FabLab, that’s great; but if it’s strong without the FabLab, that’s great too” (as cited in Justice, 2016, p. 89).

This shift toward *how* learning with tools matters, without fixating on the tools themselves, challenges teaching methods. When we introduce creative coding as a way for students to respond to stories (e.g., Justice, 2019), teachers and preservice students sometimes protest that meaningful engagement cannot occur without deep scaffolding, that is, without teaching the basics of computer programming with step-by-step tutorials. After implementing such activities in classrooms, without becoming experts themselves, however, those same teachers and preservice students are astonished when children become completely absorbed with drawing, coding, and narrating stories on a computer or tablet.

3 Computing as Expressive

Framing computing as expressive follows the positioning of CT in computer science (cs) education as transdisciplinary, a domain without its own content (Grover & Pea, 2018). Grover (2022) argued that CT skills-learning is stronger when embedded in diverse content domains, both in cs and non-cs classrooms, and when teaching is multimodal, that is, taught in a variety of ways with a variety of tools and materials. For Grover, multimodality positions CT

“so that skills developed are conceptual and creative” (p. 20, emphasis in the original); furthermore, “learning CT in different ways for different purposes, including creative expression, helps diverse learners engage meaningfully” (p. 34). Likewise, Kafai and Proctor (2022) recognized that situating CT across domains frames “computing as a vehicle for personal expression and connecting with others alongside and intersecting a plurality of other literacy practices” (p. 148).

This emphasis on computing as expressive is not unprecedented. Even though educators often associate computers with cold, depersonalized machinery, Denning and Tedre (2019) stated that computation depends on human ways of thinking that have emerged over thousands of years, anchoring CT in the bedrock of human expression. Similarly, Resnick (2006), the MIT Media Lab computer scientist who created the Scratch programming language, has argued “computers will not live up to their potential until we start to think of them less like televisions and more like paintbrushes” (p. 192); and Grover and Pea (2018) have claimed that “from music, math, social studies, history, language arts, and throughout the sciences and engineering, curricular ideas can come alive with CT” (p. 32).

4 Expression as Response

Art and literacy educators understand expressive response as a powerful learning principle relying on coordinated, multimodal partnerships. Art educator Hafeli (2015) proposed that artists begin by noticing the way various tools and materials express mood and concept differently and then learn to work with those differences to elicit ideas and emotions. For example, marks made with hard graphite can feel sketchy or tentative, unsure of themselves, while marks made with soft charcoal might evoke authority, boldness, or anger. Noticing these potentials, or affordances, casts artists as responding *with* tools and materials—in partnership—rather than coldly *using* them. With a similar emphasis on diverse material affordances, Pacini-Ketchabaw et al. (2017) described expressive response as an *encounter* of the world, implying serendipity, or a sense of not entirely preplanned, an experience of being in the world that counters the predictable intentionality implied by conventional notions of artistic control. Instead, Hafeli (2015) and Pacini-Ketchabaw et al. (2017) emphasized artistic meaning making as a coordination of diverse voices, where the artist’s task is more about feeling the pulse of experience and calling forth an expressive response *with* those voices rather than telling them what to do or say.

Similarly, literacy teachers Kuby and Rucker (2016) identified writing as a multimodal response comprising diverse practices, not limited to reading and writing. In fact, in the field of literacy education, writing has long been identified as plural, that is, as literacies, or multiliteracies (New London Group, 1996). For Kuby and Rucker, a multiliteracies approach to the teaching of writing positions reading as engaging with the “world through traditional means such as books, but also images, digital encounters, performance, and art” (p. 12). In their view multimodal writing with murals, videos, and puppets sparked “literacy desirings” (p. xv), enhancing student engagement and learning.

To explain how multimodality increased their 7- to 8-year-old students’ interest in writing, Kuby and Rucker (2016) pointed to the availability or scarcity of tools and materials in the classroom. For example, Rucker worried she might have discouraged literacy desiring because she “had never made [materials] freely available” (p. 62) for students’ responses. Encouraging puppet-making in a writing workshop, on the other hand, permitted a serendipitous frog puppet to catalyze students’ desire for “bridging literacies at home with literacies at school” (p. 12). Here, Kuby and Rucker explained that crossing thresholds between school and not-school created a transdisciplinary plurality that augmented individual and community literacies, a desire for sharing in-school learning with family and friends outside school, which reciprocally enhanced engagement back in the classroom.

5 Storymaking

Across domains and learning spaces, with early childhood students 5 to 8 years of age and up to adult learners in professional organizations, storymaking is defined as a playful, exploratory mode of story creation that shapes and sustains collective identity, learning, reflection, and belonging (Buganza et al., 2023; Bunda et al., 2019; Compton & Thompson, 2018; Smeed, 2012). From the perspective of adult learning in organizational development, Buganza et al. (2023) defined storymaking as a bidirectional “collective process of sensemaking” (p. 11), a “discursive tool” for creating “new meanings and shaping intrinsic identities” (p. 12, Table 2.1). By contrast, Buganza et al. described storytelling as a monodirectional, top-down approach, useful for getting information across.

For Bunda et al. (2019), a research and artmaking collective of Australian women from diverse backgrounds, storymaking fosters collaborative responses to absent or incomplete individual and community histories. In their art-making the collective brought together diverse materials to reclaim a sense of belonging: “Black and White Australian women provoked resonant and

entangled understandings of belonging and displacement through performative making" (p. 158), producing multimodal archives comprising photographs, sculptures, baskets, poems, and stories.

For early childhood learning specialists Compton and Thompson (2018), storymaking comprises expressive responses to "multimodal texts (language, art, acting, connecting, drawing, collage)" (p. 13). When they are storymaking, children work as artists, writers, engineers, and performers to express ideas that matter to them. By sharing storymaking, children expand their own and their community's literacies as interactive, intersecting histories connected to friends, peers, classrooms, and families. Thus, Compton and Thompson have argued, "storymaking creates an inclusive community [where] students come to know themselves and one another" (p. 16). With a nod to Reggio Emilia's child-centered inquiry methodology, Compton and Thompson positioned storymaking as interactions between text and materials that "can include any of the Hundred Languages referred to by Loris Malaguzzi, such as drawing, sewing, painting, sculpting, weaving, dramatic play, music, and dance" (p. 15).

From a historical perspective, Compton and Thompson's (2018) emphasis on the interactional multimodality of storymaking reprises Louise Rosenblatt's (1933/1995) reader response theory, positing meaning making as an interaction between reader and text, not as an isolated property of either component. This notion of interactivity—where meaning making is relational and responsive to the interdependency of reader and text—is consistent with John Dewey's (1934/1980) theory of art as experience, published at roughly the same time. In fact, relational theories of meaning making rooted in experience and response from the early 20th century—like Rosenblatt's and Dewey's—continue to inform approaches to art and literacy in schools (e.g., Hafeli, 2015; Kuby & Rucker, 2016).

6 Storymaking as Expressive STEM

In our university courses and professional learning workshops with teachers, expressive STEM storymaking invites participants to explore story creation with computational tools and materials, sometimes including traditional craft tools and art materials. Learners respond to stories of their choice by focusing on one or two major story elements, such as character, setting, or plot, often centering on early elementary storybooks. The goal is to stage a story or part of a story by inventing an original narrative, by transforming an existing narrative, or by responding to domain prompts from language arts, science, math, or social studies. Elementary and preservice teachers without much

experience with creative computing work with computer programming platforms designed for novices, such as Scratch¹ or Scratch Jr.² In art education settings the emphasis is on how design choices convey mood and concept with new media principles (e.g., visual, aural, and time-based components) combined with conventional elements and principles of art (e.g., color, shape, balance).

The examples below describe expressive STEM in practice. Example 1 is from a kindergarten teacher who participated in a CT research project (Justice & Assaf, 2020); Examples 2 and 3 are from preservice art education students who participated in digital learning courses.

6.1 *Example 1: Storymaking in Kindergarten*

As part of a computer science research project, looking at classroom teachers' implementation of CT (Justice & Assaf, 2020), we observed a kindergarten teacher invite her 5- to 6-year-old students to code a computational hide-and-seek animation with words that are difficult for young readers to decode, commonly known as sight words, for example, "we," "the," "good" (Figure 13.1). After reading *Ruth Heller's How to Hide a Butterfly & Other Insects* (Heller, 1992), Bridget (a pseudonym) asked the children to respond with ScratchJr, a block-based computer programming platform designed for early readers. The book emphasized the camouflage strategies insects use in their habitats, so Bridget's guided practice focused on the word "camouflage" by asking the children to name things in their lives—that is, in their own habitats—that were difficult to see. The goal was for children to connect "habitat" and "camouflage" with

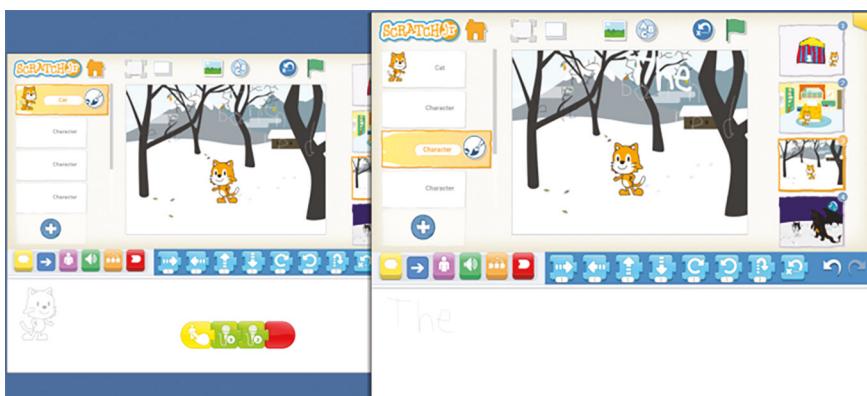


FIGURE 13.1 Camouflaged sight words in ScratchJr. The right screen shows a sight word hiding in the trees. The left screen shows the student's code: when the cat is touched, ScratchJr. will play audio made by the student of herself speaking the sight words she has hidden

things in their world and then to expand their notion of things to include sight words.

To motivate the children, Bridget talked about hiding sight words in ScratchJr. by adjusting color or scale until the words blended into the backgrounds. She also encouraged students to explore other camouflage strategies. Afterward, sitting cross-legged on the carpet, shoulder to shoulder with their partners, the children shared their strategies and identified the sight words they had chosen to camouflage.

On prior visits to her classroom, we had noticed Bridget prompting students to respond to texts with various tools and materials by drawing pictures or making collages with paper, markers, glue, tape, and miscellaneous craft materials. Here, Bridget had innovated her approach by including ScratchJr; that is, despite feeling like a novice with CT—having only recently encountered computer programming as part of our research project—Bridget felt confident enough in what she already knew about teaching and learning to trust the children to find their way with this unfamiliar tool.

And from what we could see, her innovation paid off. Every child appeared engaged and on task, playing with sight words, hiding and then revealing them against multicolored backgrounds. As we listened to their conversations, we noticed children programming animations to represent their thinking about sight words by adapting what they already knew about color, shape, texture, and scale; by comparing their knowledge of sight words with their classmates' knowledge; and by troubleshooting their projects collaboratively with their partners.

A few weeks later Bridget reflected on the lesson during a Zoom interview. When asked what she thought about how the lesson had gone, she said it had been “a home run out of the park, [because] the kindergartners [now] use the word ‘camouflage’ every day.” (all quotations in this paragraph and the next are from Bridget, personal communication, April 7, 2022). When asked how she felt about her teaching overall, she said she had struggled to step back from instructional methods that rely on telling students what to do, that is, rather than inviting them to explore and play. She said, “It’s very difficult. I’ve been taught to be a teacher in a certain way, and that’s direct teach. That’s what’s expected.” The challenge, she explained, was that telling students what to do might “ruin their learning moment.” And she said, “I’ve been trying so hard to not just swoop in and be like, ‘Look, let me show you how to do it—you click this, you go there, and you do this. Now, show me what you can do.’ I don’t want to do that. I want them to learn this on their own.”

But then she added that she was committed to inquiry learning despite her misgivings because she and her students were learning together. She explained, “We already know that whenever you find something on your own and you learn how to do it, it’s intrinsically woven into the fabric of your being.”

6.2 Example 2: Storymaking on the Screen

In a digital learning course for preservice teachers, Jill Picou, a former art education student who teaches 11- to 13-year-old students in middle school, responded to a storymaking prompt with an adventure story about knights in training (Figure 13.2).

Knights of the Woods (Picou, 2021) presents an original story about a sister and her brother playing in the forest near their home. The story opens with them walking across a forest meadow. As Oliver skips along, he suggests playing knights. Emma takes charge—“Follow me!”—and imagines a training program for knighthood. “Knights are brave,” she says, balancing atop a large rock. Later, she and her brother fight a dragon to protect the castle. The story is interrupted when the Queen (Emma and Oliver’s mother) calls them home for lunch, at which point the castle turns back into a pile of rocks in the forest and the dragon transforms into Blaze, their golden retriever. The story ends with Emma, Oliver, and Blaze traipsing back across the meadow.

Knights of the Woods combines hand-drawn characters and original dialog with computer code that animates characters and backdrops. To amplify audience participation, Picou also programmed interactive elements into the story—for example, tapping keys on the keyboard propels the narrative. On the project homepage, Picou wrote instructions for manipulating the interactive elements as well as a list of credits. Inside the project, she explained her

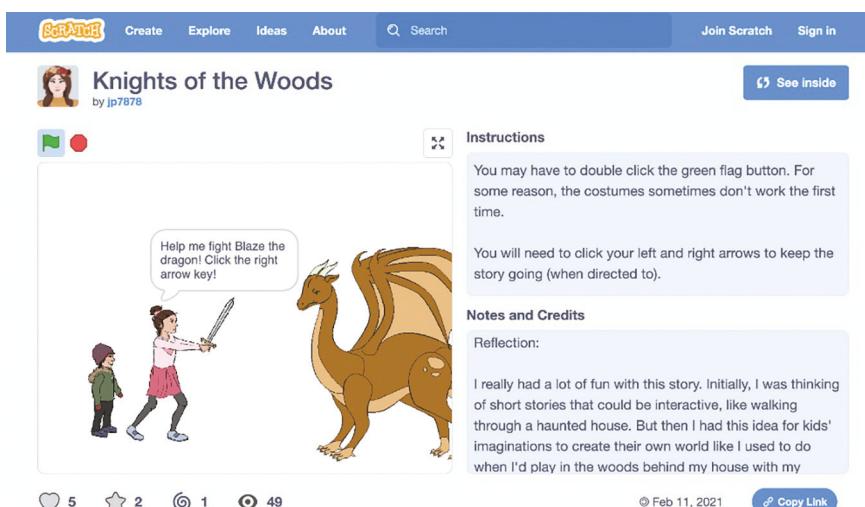


FIGURE 13.2 Interactive, screen-based storymaking. *Knights of the Woods* (Picou, 2021) combined hand-drawn characters with Scratch’s stock characters and dialog, music, and creative coding to advance the narrative. To amplify reader interaction, Picou programmed keystrokes that animate the characters when tapped by a reader

computational design decisions, so readers can follow her work or borrow her code.

As evident here, Picou deployed multiple storymaking strategies, including drawing, collaging, coding, sound recording, and written reflection. This robust multimodality deepens reader interaction beyond the narrative itself. For example, on the project homepage Picou explained she had considered creating a story based on a fantasy setting like a haunted house but changed her mind after reflecting on the power of children's "imaginings to create their own world, like I used to do when I'd play in the woods behind my house with my friends" (Picou, 2021, para. 1). Inside the project Picou discussed her learning trajectory: "I learned a lot in the process of creating this story including how to create a loop of movement (changing costumes) until the sprite reached a certain x point or the backdrop changed" (para. 5). She also reflected on art, learning, and computation: "We can draw all we want, but if you can't figure out a way to create movement, then it's not animation. You have to flex both of those brain muscles and not give up on it" (para. 6).

In 2023, while writing this chapter, we asked Picou whether making *Knights of the Woods* still resonated for her now that she was an art teacher. She said it had been one of her first creative computing experiences, and that before the digital learning course, she had never worked with computer code. Perhaps because of that, she said, the storymaking prompt was valuable because "instead of just learning the specific sequence of codes, I had a goal. I was intrinsically invested in learning how to code in Scratch so I could create the story I had in mind" (Picou, personal communication, January 9, 2023).

Regarding her evolving teaching practice, Picou said story creation was woven into her art lesson plans because it enabled students to express their experiences. She added that art and literacy connections were especially important for emergent bilingual students because they strengthened written reflection, language use, and vocabulary. Beyond that, she said, positive responses to challenges like expressive storymaking helped improve students' self-efficacy. This was particularly important because, she said, her "current students seem to give up on their goals very easily when they run into the first roadblock, ... [so] the whole process of troubleshooting (in coding or in any other project) is hugely applicable to [them]" (Picou, personal email communication, January 9, 2023).

6.3 *Example 3: Storymaking as Transdigital*

If You Are Given a Cookie ... by Lyla Guidry (2022), a preservice art education student, is an interactive digital + physical, or transdigital (Fuglestadt, 2022), response to *If You Give a Mouse a Cookie*, written by Laura Numeroff (2015) and

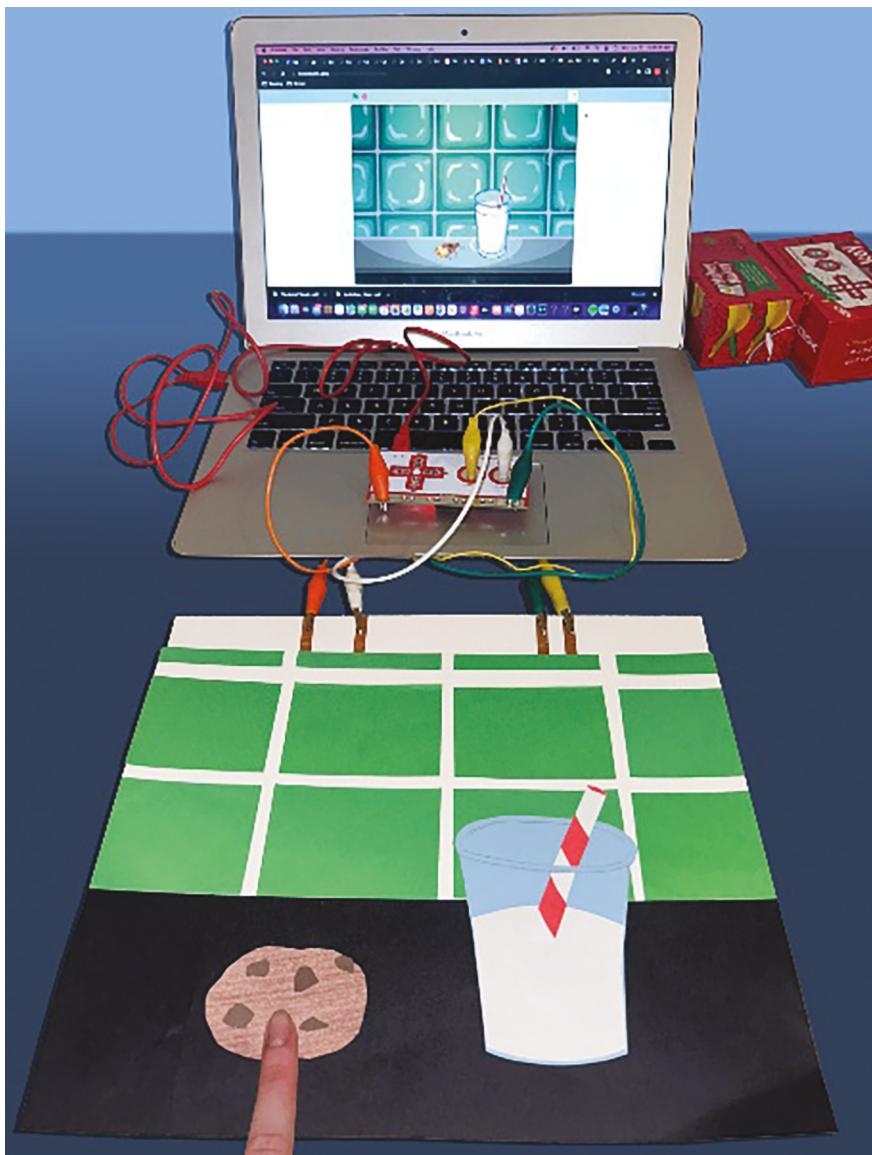


FIGURE 13.3 Transdigital storymaking. *If You Are Given a Cookie ...* by Lyla Guidry (2022) is constructed from a paper collage connected to a Scratch animation with Makey Makey[®]. Each touch of the paper cookie takes another bite from the screen cookie, producing a munching sound

illustrated by Felicia Bond. Guidry's project included a screen-based animation programmed on Scratch connected to a construction paper collage with embedded electronic switches made with copper tape and a separate circuit board, known as a Makey Makey[®] (<https://makeymakey.com/>; Figure 13.3).

The screen-based component can be found on Scratch by searching for its title on the Scratch homepage, but the transdigital components (the collage, the embedded switch, and the Makey Makey[®]) will not be visible there.

To explore storymaking, Guidry responded to the plot circularity of *If You Give a Mouse a Cookie*: Cookie leads to milk, mirror, broom, nap, story, picture, milk, and back to cookie. With the circuit-collage assembled and attached to the computer, a reader touches the paper cookie (on the collage) to take a bite out of the cookie (on the screen), producing a munching sound. Each touch of the paper cookie takes another bite from the screen cookie, and we hear another munch. After several munches nothing remains of the screen cookie except crumbs, but when the paper cookie is touched once more, the screen cookie reappears, and the touch-munch cycle can begin again. A similar touch-slurp cycle is activated when the glass of milk is touched.

In this transdigital activity storymakers coordinate diverse tools and materials (i.e., screen-based animation, paper collage, electric circuitry) to amplify reader-text interaction. In fact, the story itself invites reader interaction because physical touch advances the narrative. In addition, making the story insists on *writer* interaction because aligning these diverse components requires multiple rounds of designing, building, and troubleshooting.

As with Picou we contacted Guidry while writing this chapter to ask what she remembered about the storymaking project. She said that getting started had made her feel confused and a little disheartened. But then, while watching a classmate fold construction paper to interact with a book about butterflies, transforming paper into butterfly wings, Guidry had a breakthrough. She said that sharing that tiny bit of her classmate's experience produced a spark that lit up her own storymaking desire, and recognizing her classmate's deeper understanding prompted her to dig deeper for herself. Nearly a year after Guidry had taken the digital learning course, the power of that moment still resonated for her.

Specifically, regarding her own storymaking experience, Guidry remembered deciding to respond to a single element from the book and let the rest flow from there. That element turned out to be narrative circularity as expressed by the plot of *If You Give a Mouse a Cookie*. Guidry then created her story response centered on loops, a powerful idea from computer programming (Bers, 2021) that the class had explored in prior computing activities. Subsequently, she said, creating loops in Scratch and connecting the code to the collage via copper tape and the Makey Makey[®] felt childlike—like a playful exploration of eating and drinking again and again.

We also asked Guidry whether expressive STEM storymaking felt relevant to becoming an art teacher. She said storymaking connected domains that appeared independent by aligning diverse toolsets. For Guidry the activity

helped her understand how a teacher might introduce unfamiliar materials to students while focusing on expressive learning and meaning making. With a reference to traditional art making tools, Guidry said, “Most materials I work with are normal to me, [so the storymaking project] humbled me a little bit since I hadn’t been in that position in years” (L. Guidry, personal communication, January 9, 2023).

7 Principles of Expressive STEM Storymaking

After reflecting on expressive STEM storymaking with young children in schools, families at public libraries, preservice art education students at the university, and teachers in professional learning workshops, we have noticed that balancing the contrasting and sometimes conflicting affordances of new and traditional tools and materials can be challenging. For example, in a transdigital activity, preservice art students might be comfortable expressing themselves with picture-making materials but frustrated by copper tape, circuit switches, Makey Makey®s, and Scratch. We see the same thing but in reverse with computer science students who hesitate to engage with drawing or collaging. The situation is similar with most other learners, too, the first time they encounter Scratch or ScratchJr. or any number of other expressive STEM materials. Nevertheless, as illustrated in the examples above, learners dig in, become deeply engaged, play, and explore purposefully, iterate and troubleshoot, adapt themselves to failure, and above all, share the storymaking process with their community of learners.

The following principles of expressive STEM storymaking have been gleaned from more than 10 years designing and implementing creative computing learning activities. Some are evident in the examples described above, but others have not been explicitly discussed; for example, we did not describe the classroom setup and only briefly mentioned the importance of *noticing* rather than *assessing* as a way to spark storymaking desires. Thus, the list is not a catalog of best practices; instead, along with resources listed in the Appendix, the list might help as a framework for starting with expressive STEM storymaking even for teachers with little experience with creative computing.

8 Ten Guiding Principles for Expressive STEM

1. Invite responses to multimodal text(s) as an experience of meaning making rather than as an exercise of tool use.

2. Encourage exploration of the way tools and materials express differently, for example, hard graphite vs. soft charcoal; fast, skittery motion vs. slow, smooth motion; looped percussion vs. continuous melody; interactive touch via the keyboard vs. a transdigital collage, also known as an *interface* (Justice 2019, 2020).
3. Facilitate collaborative interactions between learners and story elements or domain prompts by focusing on interpersonal relationships; for example, rather than focusing on simple appearances, ask, “How would it feel to be in this setting or with this character?”
4. Minimize instructional talk to allow time for exploration, iteration, and purposeful play with examples, tools, and materials.
5. Maximize multimodality of learning resources, for example, demonstrations plus videos plus handouts plus websites plus instructional manuals plus safety data sheets and more.
6. Design participant-led show-and-shares that emphasize noticing instead of assessment; for example, after sharing their work, learners ask each other, “What do you notice about my project?”—not, “What do you like?”
7. Arrange the classroom or studio with large tables instead of individual workstations to enhance learners’ interactions with one another.
8. Share models and examples instead of step-by-step instructions.
9. Make sure tools and materials are visible, plentiful, and multimodal, for example, digital, computational, and traditional craft or fine art.
10. Intersperse reflective turn-and-share moments with uninterrupted making and building.

9 Acknowledgments

Thank you, Jill Picou and Lyla Guidry, former art education students at Texas State University, for allowing us to share your work here. The work reported in this chapter has been partially funded by the National Science Foundation, Grant # 2006595. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Notes

1 <https://scratch.mit.edu>

2 <https://www.scratchjr.org/>

References

Bers, M. U. (2021). *Coding as a playground: Programming and computational thinking in the early childhood classroom* (2nd ed.). Routledge.

Buganza, T., Bellis, P., Magnanini, S., Press, J., Shani, A. B., Trabucchi, D., Verganti, R., & Zasa, F. P. (2023). *Storymaking and organizational transformation: How the co-creation of narratives engages people for innovation and transformation*. Routledge.

Bunda, T., Heckenberg, R., Snepvangers, K., Phillips, L. G., Lasczik, A., & Black, A. L. (2019). Storymaking belonging. *Art/Research International*, 4(1), 153–179. <https://doi.org/10.18432/ari29429>

Compton, M. K., & Thompson, R. C. (2018). *StoryMaking: The maker movement approach to literacy for early learners*. Redleaf Press.

Denning, P. J., & Tedre, M. (2019). *Computational thinking*. The MIT Press.

Dewey, J. (1980). *Art as experience*. Perigee Books. (Original work published 1934).

Families Learning Together (n.d.). <https://fltsmtx.wp.txstate.edu/>

Fuglestad, T. (2022). Make it, move it, flip it. *SchoolArts*, 121(7), 36–37.

Graham, M. A. (2021). The disciplinary borderlands of education: Art and STEAM education. *Journal for the Study of Education and Development*, 44(4), 769–800. <https://doi.org/10.1080/02103702.2021.1926163>

Grover, S. (2022). Computational thinking today. In A. Yadav & U. D. Berthelsen (Eds.), *Computational thinking in education: A pedagogical perspective* (pp. 18–40). Routledge. <https://doi.org/10.4324/9781003102991>

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), *Computer science education: Perspectives on teaching and learning in school* (pp. 19–38). Bloomsbury Academic. <https://doi.org/10.5040/9781350057142.ch-003>

Guidry, L. (2022, March 27). *If you are given a cookie Scratch*. <https://scratch.mit.edu/projects/664121832/>

Hafeli, M. (2015). *Exploring studio materials: Teaching creative art making to children*. Oxford University Press.

Heller, R. (1992). *Ruth Heller's how to hide a butterfly & other insects*. Grosset & Dunlap.

Johnston, K., Kervin, L., & Wyeth, P. (2022). STEM, STEAM and makerspaces in early childhood: A scoping review. *Sustainability*, 14(20), Article 13533. <https://doi.org/10.3390/su142013533>

Justice, S. (2016). *Learning to teach in the digital age: New materialities and maker paradigms in schools*. Peter Lang.

Justice, S. (2019). Interface: The transformative potential of computational making. *NAEA News*, 61(5), 20. <https://doi.org/10.1080/01606395.2019.1657759>

Justice, S. (2020). Designing the social interface: More than social, more than material. In A. D. Knochel, C. Liao, & R. M. Patton (Eds.), *Critical digital making in art education* (pp. 61–74). Peter Lang.

Justice, S. (2024). Engineering joy: Toying with process in expanded media arts. In T. Hunter-Doniger & N. Walkup (Eds.), *STEAM education: Transdisciplinarity of art in the curriculum* (pp. 118–129). Routledge.

Justice, S., & Assaf, L. (2020). *Exploring early childhood teachers' abilities to identify computational thinking precursors to strengthen computer science in classrooms* [Abstract]. National Science Foundation. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2006595

Kafai, Y. B., & Proctor, C. (2022). A revaluation of computational thinking in K–12 education: Moving toward computational literacies. *Educational Researcher*, 51(2), 146–151. <https://doi.org/10.3102/0013189X211057904>

Knochel, A. D., & Patton, R. M. (2015). *If art education then critical digital making: Computational thinking and creative code*. *Studies in Art Education*, 57(1), 21–38. <https://doi.org/10.1080/00393541.2015.11666280>

Kuby, C. R., & Rucker, T. G. (2016). *Go be a writer!: Expanding the curricular boundaries of literacy learning with children*. Teachers College Press.

Leonard, N. (2021). Emerging artificial intelligence, art and pedagogy: Exploring discussions of creative algorithms and machines for art education. *Digital Culture & Education*, 13(1), 20–41.

Mohanty, K. (2022). Media arts [Co-editor's letter]. *SchoolArts*, 121(7), 8. <https://lsc-pagepro.mydigitalpublication.com/publication/?m=60985&i=736878&p=10&ver=html5>

New London Group. (1996). A pedagogy of multiliteracies: Designing social futures. *Harvard Educational Review*, 66(1), 60–92. <http://dx.doi.org/10.17763/haer.66.1.17370n67v22j16ou>

Numeroff, L., & Bond, F. (2015). *If you give a mouse a cookie*. Harper Collins.

Pacini-Ketchabaw, V., Kind, S., & Kocher, L. L. M. (2017). *Encounters with materials in early childhood education*. Routledge.

Patton, R., Sweeny, R. W., Shin, R., & Lu, L. (2020). Teaching digital game design with preservice art educators. *Studies in Art Education*, 61(2), 155–170. <https://doi.org/10.1080/00393541.2020.1738165>

Peppler, K., & Wohlwend, K. (2018). Theorizing the nexus of STEAM practice. *Arts Education Policy Review*, 119(2), 88–99. <https://doi.org/10.1080/10632913.2017.1316331>

Picou, J. (2021, February 11). *Knights of the woods*. Scratch. <https://scratch.mit.edu/projects/485857870/>

Resnick, M. (2006). Computer as paintbrush: Technology, play, and the creative society. In D. Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.), *Play = learning: How play motivates and enhances children's cognitive and social-emotional growth* (pp. 192–206). Oxford University Press.

Rosenblatt, L. M. (1995). *Literature as exploration*. Modern Language Association. (Original work published 1933)

Smeed, J. (2012). The grumpy dragon and the angry dragon: From storytelling to storymaking. *Storytelling, Self, Society*, 8(1), 1–16. <https://doi.org/10.1080/15505340.2012.635092>

Sweeny, R. (2022). Review of the book *Critical digital making in art education*, by A. D. Knochel, C. Liao, & R. M. Patton, Eds. *International Journal of Education Through Art*, 18(2), 289–294. https://doi.org/10.1386/eta_00101_5

Wing, J. M. (2017). Computational thinking's influence on research and education for all. *Italian Journal of Educational Technology*, 25(2), 7–14. <https://doi.org/10.17471/2499-4324/922>

Appendix

Resources for getting started with expressive STEM storymaking activities.

Creative Computing

- Scratch. <https://scratch.mit.edu/>
Create stories, games, and animations. Share with others around the world.
- ScratchJr. <https://www.scratchjr.org/>
Coding for young children.
- Creative Computing Curriculum. <http://scratched.gse.harvard.edu/guide/>
Ideas, strategies, and activities for an introductory creative computing experience using Scratch.
- Scratch Foundation. <https://www.scratchfoundation.org/>
Supporting creative coding for everyone.

Transdigital Making

- Makey Makey®. <https://makeymakey.com/>
Invention kit for the 21st century. Connect the world to your computer!
- micro:bit. <https://microbit.org/>
Get creative, get connected, get coding! The pocket-sized computer transforming the world.
- the Interface. <http://seanjustice.com/interface/>
This website contains instructions for a transdigital computational making activity.

Cover illustration: Design by Emilie Cooper

All chapters in this book have undergone peer review.

The Library of Congress Cataloging-in-Publication Data is available online at <https://catalog.loc.gov>

Typeface for the Latin, Greek, and Cyrillic scripts: "Brill". See and download: brill.com/brill-typeface.

ISBN 978-90-04-71472-4 (paperback)

ISBN 978-90-04-71473-1 (hardback)

ISBN 978-90-04-71474-8 (e-book)

DOI 10.1163/9789004714748

Copyright 2025 by Yichien Cooper and Alice Lai. Published by Koninklijke Brill bv, Plantijnstraat 2, 2321 JC Leiden, The Netherlands.

Koninklijke Brill bv incorporates the imprints Brill, Brill Nijhoff, Brill Schöningh, Brill Fink, Brill mentis, Brill Wageningen Academic, Vandenhoeck & Ruprecht, Böhlau and V&R unipress.

Koninklijke Brill bv reserves the right to protect this publication against unauthorized use. Requests for re-use and/or translations must be addressed to Koninklijke Brill bv via brill.com or copyright.com.

For more information: info@brill.com.

This book is printed on acid-free paper and produced in a sustainable manner.

Contents

Acknowledgments ix
List of Figures and Tables x
Notes on Contributors xiv

Introduction: Celebrating Diverse Perspectives on STEAM
Education 1
Yichien Cooper and Alice Lai

PART 1 *Rethinking STEAM Frameworks*

- 1 You Don't Need a List of the Best STEAM Lesson Ideas: Focusing on the Transdisciplinary Competencies 21
Christine Liao
- 2 Cultivating Authentic Approaches to STEAM Teaching and Learning through the Arts and Design 38
Debrah C. Sickler-Voigt
- 3 Challenges and Prospects for STEAM Education in Japan: Considerations from the Perspective of Art Education 51
Isao Ohashi
- 4 Effect of STEAM Education on Schools and Universities in Türkiye 69
Vedat Özsoy

PART 2 *Redirecting STEAM Foci in the Communities*

- 5 Reflections on the Practice of STEAM Education in Penang, Malaysia 85
Paul Boey
- 6 Natural Aesthetics: Interdisciplinary Learning of the Arts and Natural Science 97
Chia-Hung Kao

7 Reflections on the Design of a STEAM Curriculum for 12- to 14-Year-Old Girls 107
Eliza Pitri, Maria Evagorou and Agni Stylianou-Georgiou

8 Application of Data Visualization in Hakka Cultural Education in Taiwan 126
Shyh-Shiun Shyu and Yui-Chih Wu

9 Promoting DEI with STEAM Technology for People with Visual Impairment and Blindness in Taiwan 145
Hsin-Yi Chao

PART 3***Reimagining STEM as STEAM***

10 “Uncharted Territory”: Interactive Augmented Reality for Exploring Concepts in Chemistry with Science-Averse College Students 161
Jonah B. Firestone and Don McMahon

11 Incorporating Art in Mathematics Teacher Education: Examples with Primes and Pendulums 181
David Glassmeyer and Kevin Hsieh

12 STEAM in Higher Education Art Programs 193
Snow Yunxue Fu and Luke Hampton

13 Expressive STEM Storymaking: Art, Literacy, and Creative Computing 210
Sean Justice and Lori Czop Assaf

14 Considering STEAM Aesthetics through an Arts-Driven STEAM Pedagogy 227
Alice Lai

PART 4***Remapping Teacher Education through STEAM Practices***

15 STEAM-Oriented Instructional Design in Visual Arts Teacher Education in Türkiye 249
Suzan Duygu Bedir Erişti and Yeliz Erdoğan

16 Teaching STEAM Education in Hong Kong 264
So Lan Wong

17 Developing Visual Art Workshops for STEM Teachers 281
Kevin Hsieh and Michael White

Index 295

Acknowledgments

We (Yichien and Alice) deeply appreciate our publisher and editorial team, particularly John Bennet and Christine Heddam at Brill, who have provided us with clear guidance throughout the process of producing this collection. Its completion would have been impossible without the trust and support of Dr. Patricia Leavy, who invited Yichien to apply her expertise in arts integration to contribute to the Art Plus series at Brill. Thanks to her for her generosity in providing vital suggestions during the book proposal process. We are profoundly grateful for our amazing copyeditor Dr. Linda Meixner for her invaluable, meticulous, and plentiful comments, ensuring the stylistic features of this book. We are indebted to Dr. Debrah Sickler-Voigt for inviting us to present early content at the 2023 National Art Education Association convention and to the NAEA Higher Education Forum for the opportunity to share a snippet of the introductory chapter at the 2024 NAEA convention. We acknowledge the timely feedback of Dr. Enid Zimmerman, pointing out the main attractions of this book. Thanks to all our contributors from around the world for their patience and cooperation in making this anthology possible and most importantly for graciously working with us to share their insights on STEAM education despite linguistic and time-zone constraints.

Yichien is thankful for the opportunity to expand the meaning and practices of integrating the arts with support from Dr. Judith Morrison, academic director of the College of Education at Washington State University, Tri-Cities. In addition, she appreciates insightful conversations she had with her preservice teachers at wsUTC, workshop attendees around the world, and young students in local communities. She is grateful to her husband Matt and her children Emilie, Katherine, and Benjamin for their unflagging encouragement and dedicates this book to her parents.

Alice acknowledges the professional development funds provided by Empire State University, State University of New York, and the earnest support of Dr. Nicola Allain, dean of the School of Arts and Humanities. She also extends her gratitude to her family, especially Dr. Eric Ball, for engaging in insightful and critical dialogue about ever-changing educational contexts in a global society.

Figures and Tables

Figures

1.1 STEAM concept expanding IPOP theory (Perkarik et al., 2014) and curricula as bridges (Cooper, 2013). 5

1.2 Pinhole photography, 2021. Exposure from January 10 to June 10, 2021. 6

1.3 Example of tensegrity sculpture by Emilie Cooper, 2020. 7

1.1 The relationship between STEAM teaching approaches, STEAM competencies, and SEL skills. 28

2.1 This STEAM logo includes visual icons representing the content of *STEAM Teaching and Learning Through the Arts and Design: A Practical Guide for PK–12 Educators* (Sickler-Voigt, 2023). Its design symbolically unifies the STEAM disciplines and represents the value of interdisciplinary and transdisciplinary studies. © Debrah Sickler-Voigt. 46

2.2 This photo of the tunnel book shown with white LED lighting showcases its removable hand-assembled rabbit ears. © Debrah Sickler-Voigt, Paige Brenner, and Richard Sickler. 47

2.3 This photo collage shows the tunnel book with its range of LED hues. Its associated video illustrates its dynamic multimedia qualities (see Sickler & Sickler-Voigt, 2023). © Debrah Sickler-Voigt, Paige Brenner, and Richard Sickler. 48

3.1 Learning structure as a process of self-actualization based on Ohashi (2021) and updated for this chapter. 58

3.2 Rabbits with a sword and a fishing rod. 60

3.3 Out! The crocodiles are coming! (If you fail in a game programmed with the Micro:bit, you will be attacked by an alligator.). 61

3.4 The children used the PC as fluently as they used scissors and glue to give shape to their ideas. 62

3.5 Paper Cup Tower Activity, conceived by Dr. Tetsuo Kiyota and practiced by Ms. Hiroko Hanazato at Nakano 5th Junior High School, Tokyo. 66

4.1 STEAM training examples: weather. 71

4.2 STEAM education applications of a Grade 7 student, 2022. 76

5.1 I used scrap tires to create an installation art, depicting an endangered dusky leaf monkey in Myanmar, Malaysia. 91

5.2 For the *Heart of the Ocean* community art education exhibition, I collaborated with teachers and students to create an installation piece on campus depicting a stranded whale. The purpose of this collaborative effort

was to inspire others and raise awareness about important topics related to environmental protection. 92

6.1 Emblem of the National Museum of Natural Science. 98

6.2 A conceptual map of the pedagogical content for the natural aesthetics curriculum that aligns with the three core aspects of aesthetics education in Taiwan. 99

6.3 The spotted, strap-shaped, and thematic learning approaches. 100

6.4 A learner sew plant specimens. 103

6.5 Learner made a piece of paper in the shape of Taiwan by using plant fibers and stencils. 104

6.6 Student's example of an island feast. 106

7.1 Photo from Day 4: final product created by the groups (uniforms for four people working in STEM). 114

7.2 Photo from Day 1: exploring a lab in a virtual environment. 117

7.3 Photo from Day 2: observing organisms collected from the soil at the park. 117

7.4 Photo from Day 5: working on the prototype of the product, a pillow that can change color. 118

8.1 Teaching method for online summer camp curriculum. 132

8.2 Left to right: participant L's and K's Data Visualization Project from Unit 1. 135

8.3 Left to right: projects of participant C and D from Unit 2. 137

8.4 Left to right: participant J's and D's data visualization project from Unit 3. 141

9.1 Six capabilities of visual art education for students with visual impairments and blindness. 150

9.2 Functional flow chart of National Taiwan Museum of Fine Arts Accessible Application for the visual and hearing-impaired audience features three guide models: nearby, map, and list with extended usage. Created by Hsin-Yi Chao. 152

9.3 Universal color wheel with visual and tangible textures was invented by Chao in 2022. 156

10.1 The reality–virtuality continuum (Milgram et al., 1994, p. 283). 162

11.1 The Desmos graph of class data (green) with previous class data (blue), comparing the length of the string on the horizontal x -axis (measured in meters) to the period (measured in seconds). 187

11.2 The Desmos graph of a function modeling the relationship between the pendulum string length and period. 188

12.1 Screenshot of an avatar running through an abstracted city scape. Fu, Y. (n.d.). *Run – Valley City Arts Game Recording Building Level (Take2)*, 2021 (from <https://snowyunxuefu.com/section/505997-Run%20-%20Valley%20City.html>). 199

12.2 Virtual aerial view of VR WSPark. Fu, Y. (n.d.). *VR WSPark metaverse project* (from <https://snowyunxuefu.com/artwork/5087411ArtLabb%20Opening%20on%20VR%20WSPark.html>). 204

12.3 YouTube thumbnail advertising the online Metaverse Artlab Show Opening. Fu, Y. (n.d.). *VR WSPark metaverse project* (from <https://snowyunxuefu.com/artwork/5087411ArtLabb%20Opening%20on%20VR%20WSPark.html>). 204

13.1 Camouflaged sight words in ScratchJr. The right screen shows a sight word hiding in the trees. The left screen shows the student's code: when the cat is touched, ScratchJr. will play audio made by the student of herself speaking the sight words she has hidden. 216

13.2 Interactive, screen-based storymaking. *Knights of the Woods* (Picou, 2021) combined hand-drawn characters with Scratch's stock characters and dialog, music, and creative coding to advance the narrative. To amplify reader interaction, Picou programmed keystrokes that animate the characters when tapped by a reader. 218

13.3 Transdigital storymaking. *If You Are Given a Cookie ...* by Lyla Guidry (2022) is constructed from a paper collage connected to a Scratch animation with a Makey Makey®. Each touch of the paper cookie takes another bite from the screen cookie, producing a munching sound. 220

14.1 Student A's golden rectangles and spirals (left). The predominant geometric shapes placed over the golden rectangles (right), 2022. 237

14.2 Student A's poster design in progress (left). Student A's final poster design (right), 2022. 238

14.3 Student B's sketch of a Fibonacci spiral. 239

14.4 Student B. *Fibonacci Koi Pond*. 8" x 13." Gouache on Stonehenge Print Paper. 2023. 240

14.5 Student C. *Transformation Zone*. Watercolor, 2023. 240

15.1 Kaleidocycle designs of the lecturers and teacher candidates (left to right): Top row: Yeliz Erdoğan, Yeliz Erdoğan, Zehra Dede. Middle row: Esra Kuş, Gamze Gezer, Sena Sevinç. Bottom row: Sümeyye Güneş, Ela Kantarcı, Birsen Çelik, 2020, Eskişehir, Türkiye. 255

15.2 Model designs by Buse Buket Turan, Ela Kantarcı, Sena Sevinç, Esra Kuş (left to right), 2020, Eskişehir, Türkiye. 257

15.3 Kitchen lithography: printmaking with drawing on aluminum foil, emulsion by Buse Buket Turan and Sena Sevinç, 2020, Eskişehir, Türkiye. 258

- 16.1 Learning activities based on KLA topics. 266
- 16.2 Learning activities based on projects. 266
- 16.3 Front (L) and inner (R) pages of a light-up greeting card. 271
- 16.4 Students' drawings and exploration of various methods to use the Makey Makey® Kit and closed circuits 272
- 16.5 Using the Makey Makey® Kit and drawings to play a song. 273
- 16.6 Using reassembled hexagons to create a new tessellation pattern. 275
- 17.1 In the Making Sketchbooks Workshop, 2020, the instructor gave a step-by-step demonstration on how to use recycled cereal boxes and copy paper to make sketchbooks. 284
- 17.2 Drawing and painting lecturer showed the processes of 2D design and making patterns. 285
- 17.3 In the Sculptural Hats Workshop (2021) taught by an art education professor, the participants showed their three-dimensional paper hats. 287

Tables

- I.1 Key initiatives advocating for STEAM education nationwide and in the field of art education. 8
- I.2 Preliminary data on STEAM-centered articles appearing in selected journals in the field of art education. 9
- I.3 Various approaches applied in STEAM education. 10
- 7.1 STEAM curriculum, Version 1. 112
- 7.2 STEAM curriculum, Version 2. 115
- 9.1 The methods of visual art exhibition designed for the blind. 153
- 10.1 Overall change per question and question type from pretest to posttest. 172

Notes on Contributors

Lori Czop Assaf

is a professor in reading education in the Department of Curriculum and Instruction at Texas State University. She is past director of the Central Texas Writing Project and teaches the study abroad program to South Africa. Her research focuses on teacher learning, teacher identity, and supporting K-12 English Language Learners as readers and writers. Dr. Assaf is committed to international collaboration specifically on culturally mediated writing instruction across the disciplines and professional development for preservice and in-service teachers.

Paul Boey

is a postdoctoral fellow in art from Southeast University in China. His research specialty and interests include Chinese and foreign art history, art education, and the development of culture and art through One Belt One Road in China and Southeast Asia. He served as the director and master's degree supervisor of the Oriental Culture and Art Research Centre of the University of the Thai Chamber of Commerce in 2018 and was appointed visiting professor at Chongqing Technology and Business University in China in 2019. Currently, he is a supervisor of master's and doctoral students at New Era University College in Malaysia and a committee member of the World Chinese Arts Education Association. Boey has presented research-based papers at national and international academic conferences and has authored art-related publications, including two volumes of *A History of Malaysian Art* (2016).

Hsin-Yi Chao

is an assistant professor in the Cultural and Creative Industry program at the National Chung Hsing University in Taiwan. After earning a Master of Fine Arts at the National Taipei University of Education and a Ph.D. in architecture at the National Taiwan University of Science and Technology, she continued postdoctoral research in the psychology graduate program at the University of Toronto in Canada. She spent 10 years as a visual art teacher at a primary school and the last six as a curator working on accessible technology and multisensory exhibitions at the National Taiwan Museum of Fine Arts. The founder of the national nonprofit Taiwan Art Beyond Vision Association, Dr. Chao focuses her research on nonvisual art educational theory and practice, accessible technology applications, universal display design, audio description of art, and tactile-spatial cognition research focusing on special education,

psychology, museums, and art to promote equal rights to art education for those with visual impairment.

Yichien Cooper

is an artist, educator, author, and arts advocate, serving as a career-track assistant professor and field supervisor at Washington State University, Tri-Cities. In her research she explores STEAM education, arts-based pedagogy, data visualization, socially responsible teaching, mixed identity, and Asian aesthetics. Dr. Cooper has not only delivered keynote addresses and conducted workshops in Australia, China, Malaysia, South Korea, Taiwan, Thailand, Türkiye, and the United States, but she has also published extensively on integrating arts curriculum for Chinese educators. As the current Director of the Higher Education Division for the National Art Education Association, she has received numerous honors, including the 2019 City of Richland Proclamation of Appreciation, the 2023 Ziegfeld Service Award from the United States Society of Education through Art, the 2024 Kathy Connors Teaching Award from the NAEA Coalition for Feminisms in Art Education, and the 2024 Washington State University, Tri-Cities Campus Distinguished Teaching Award.

Yeliz Erdoğan

is a native Trabzon, Türkiye, graduated in 2014 from the Ondokuz Mayıs University (OMU) Faculty of Education, specializing in fine art education. Having earned her master's degree in Fine Art Education from OMU in 2018 and her doctorate from Anadolu University Institute of Educational Sciences in 2023 with a concentration on STEAM education, she currently serves as a lecturer at Van Yüzüncü Yıl University, specializing in fine arts education with a focus on STEAM integration. She continues to advance her work in this field while teaching courses on STEAM applications in the visual arts.

Suzan Duygu Bedir Erişti

is an esteemed professor at Anadolu University's Faculty of Education, specializing in fine arts education. Dr. Erişti's academic journey includes master's and doctoral degrees in art, visual design, art history, and education. She is dedicated to innovative pedagogical methods, using art-based and visual research techniques, and pioneering a/r/tography methodologies. Her research interests encompass digital visual culture, AI in art education, technology-driven pedagogy, multicultural art education, graphic design, interactive instructional design, gamification, digital storytelling, and STEAM applications. She explores the intersection of digital visual culture and artificial intelligence in her work. Dr. Erişti is a fervent advocate for international collaboration, participating in

national and international exhibitions, research initiatives, and projects. Recognized as Visual Arts Educator of the Year in 2016, she continues to make significant contributions to academia, demonstrating unwavering dedication to excellence and profound impact in her field.

Maria Evagorou

is an associate professor of science education at the University of Nicosia, Cyprus. Her research focuses on STEM education with an emphasis on integrated STEM and teacher professional development. Dr. Evagorou participates in funded projects on argumentation, socioscientific issues, the role of language and culture in the teaching of STEM [IncluSME], and support for girls who wish to pursue STEM careers. Maria currently leads a policy initiative as part of a European project, placing emphasis on the development of STEM training for in-service and preservice teachers.

Jonah B. Firestone

is currently an associate professor in science education in the College of Education at Washington State University, Tri-Cities. Dr. Firestone has also worked as a science and mathematics teacher for diverse groups of students in Arizona. With over 20 years' experience working with large-scale and high-stakes test preparation, creation, teacher-training, and evaluation in the U.S. and Hong Kong, he is the principal investigator for the Simulation and Integrated Media for Instruction, Assessment, and Neurocognition (SIMIAN) Laboratory on the Washington State University Tri-Cities campus. His research concerns the use of emerging technologies in virtual reality, augmented reality, and neurocognition in decision-making, attitude formation, and problem-solving in students as well as simulations to foster learning. He also leads the development of a computer science education certificate program for K-12 teachers in Washington.

Snow Yunxue Fu

is an assistant arts professor at the Tisch School of the Arts in the Department of Photography and Imaging at New York University. She sees new media art making within a postphotographic framework as one of the most exciting interdisciplinary and relevant art fields of the 21st century. An internationally exhibited new media artist practicing for over a decade, Fu is active as a curator and collaborator with international artists and arts organizations focused on emerging simulation technologies, such as 3D, VR, AR, Web 3.0, and the metaverse, where her projects are hosted on social VR platforms like Sansar, Mozilla Hubs, and Decentraland.

David Glassmeyer

is a professor of mathematics education at Kennesaw State University, GA, USA, who teaches graduate mathematics and mathematics education courses in the online M.Ed., Ed.S., and Ed.D. programs in middle and secondary grades education. Dr. Glassmeyer aims to help teachers increase STEAM integration and consequently K-12 student learning. As a mathematics education researcher, he focuses on examining and developing teachers' STEM content knowledge, specifically secondary teachers' reasoning of mathematics concepts.

Luke Hampton

is an art educator and alumnus of the Visual Arts Administration program at New York University. He has over 15 years of experience in international art education and urban nonprofits, developing curricula for visual arts, writing, and technology in the United States and China and is active in the contemporary art world as a writer and collaborator with Snow Yunxue Fu. As an educator he currently trains international students to succeed as artists and professionals. As a researcher Hampton engages in the culture, histories, and current events that shape the experiences of artists and art students from China.

Kevin Hsieh

is a professor of art education at Georgia State University, GA, USA. Dr. Hsieh's research topics include instructional technology, museum education, LGBTQ+ issues, AsianCri pedagogy, and transdisciplinary art education. He has presented his research studies internationally. His articles have appeared in research journals, such as *Studies in Art Education*, *Art Education*, *Visual Arts Research*, *Museology Quarterly*, *Humanities and Social Sciences Research*, *Journal of Fine Arts*, *Journal of Liberal Arts*, *International Journal of Art and Design Education*, and *Social Sciences*.

Sean Justice

is an associate professor of art education at Texas State University in San Marcos, Texas. Dr. Justice teaches and writes about art and computer science education, creative computation, and teacher education in the digital age. As an artist, he has exhibited photographs, videos and computer animations both nationally and internationally. His book *Learning to Teach in the Digital Age: New Materialities and Maker Paradigms in Schools* was published by Peter Lang in 2016. In 2020 he received a National Science Foundation award to study teachers' computational thinking in early childhood classrooms with 4- to 8-year-old children.

Chia-Hung Kao

is an assistant professor from National Kaohsiung Normal University, specializing in art education and printmaking. Dedicated to promoting art education and practicing the spirit of A/r/tography, he was honored in 2021 with the Award for Excellence in Praxis by the International Society for Education through Art, a UNESCO affiliate. His printmaking works have garnered accolades, including the Gold Medal at the Taiwan Fine Arts Exhibition and the Kaohsiung Award. His works are collected by the Ministry of Culture and international galleries.

Alice Lai

is a professor at the School of Arts and Humanities at Empire State University, State University of New York, USA, where she formerly coordinated undergraduate online arts curriculum for 20 years. She earned a Ph.D. in art education from the Ohio State University and an M.A. in art education and a B.A. in graphic design from California State University at Los Angeles. She received the Susan H. Turben Award for Excellence in Scholarship at Empire State University and the Marantz Distinguished Alumni Lectureship Award from the Ohio State University. Her teaching topics include diversity in the arts, women's art history, art theory, and arts-based research. Her research topics include art education, STEAM education, Asian American transnational art, and critical theories and pedagogies encompassing feminism, critical multiculturalism, anticolonialism, and digital equality. She frequently publishes in the field of art education and delivers presentations at national and international conferences.

Christine Liao

(Ph.D.) is an associate professor and coordinator of the Art Education MAT program at the University of North Carolina Wilmington. Her research areas include not only theorizing virtual body and identity and exploring interactions of the virtual and the real but also media arts and digital performance, STEAM, technology integration in art education, and intercultural education. She has presented at national and international conferences, including NAEA, AERA, and InSEA, and has published in journals in the field of art education and education.

Don McMahon

is an associate professor of special education at Washington State University, who has proven experience leading research teams during the implementation of technology-based interventions for people with ID and ASD. Dr. McMahon

has conducted research on a variety of technology-based interventions for individuals with disabilities, including mobile devices, video modeling, communication tools, podcast-based read-aloud testing accommodations, augmented reality applications, and virtual reality. In summer 2011 he was selected to attend the Harvard Graduate School of Education summer institute on universal design for learning. Dr. McMahon has 12 years of experience involving inclusive postsecondary education. A cofounder of the wsu ROAR program, he has served as its director.

Isao Ohashi

is a professor emeritus of Okayama University as well as a professor of education at Wakayama Shinai University in Japan. His research focuses on the learning process in art as a progression toward self-actualization, the relationship between perception and representation, and teaching methods for education through art from infancy to adolescence. He has served as the representative director of the Art Education Society of Japan and president of the Japan Practical Art Education Society. His research has been published in his books on art education, as book chapters, and in numerous journals in the field of art education in Japan.

Vedat Özsoy

graduated from the Gazi Faculty of Education in Türkiye, completing his master's degree at Birmingham Institute of Art and Design in U.K., his Ph.D. at Gazi University, and his postdoctorate fellowship at Arizona State University in the USA. He achieved the rank of professor in 2004. Having founded the Visual Arts Education Association (GÖRSED) in 2003, he served as its president until 2010. Prof. Özsoy also served as the InSEA Secretary (2014–2017). In addition, he has published books and articles on art and design education, museum education, curriculum development, and art teacher education.

Eliza Pitrí

earned a B.A. in early childhood education from the University of Cyprus and an M.A. and Ph.D. in art education from the University of Texas–Austin and The Ohio State University, respectively. She is currently an associate professor of art education in the Department of Education at the University of Nicosia, Cyprus, teaching in both the undergraduate and the graduate program. Her research interests focus on socioconstructivist learning through the visual arts in various contexts by facilitating meaningful artmaking related to processes and skills, such as constructing a knowledge base, playfulness, flexibility, risk-taking, fluency, originality, humor, problem finding, and problem solving.

Shyh-Shiun Shyu

is the chairperson of Hakka Affairs Commission, Taipei City Government, who obtained his master's degree in molecular genetics from the State University of New York at Buffalo. Before joining Taipei City Government, he was the Taipei City Councilor, focusing on digital education and antidrug programs for children. He is also a devoted, lifelong volunteer with autistic children and is now a board member of the Republic of China (ROC) Foundation for Autistic Children and Adults in Taiwan.

Debrah C. Sickler-Voigt

(Ph.D.) is a professor of art education at Middle Tennessee State University. She authored *Teaching and Learning in Art Education: Cultivating Students' Potential from Pre-K Through High School* (2020), a widely-adopted art methods textbook, followed by *STEAM Teaching and Learning Through the Arts and Design: A Practical Guide for PK–12 Educators* (2023), her second book. Sickler-Voigt served as the senior editor for NAEA's Assessment Papers for Art Education from 2016 to 2023. She received the Ziegfeld Service Award in 2022 from the United States Society for Education Through Art and the Southeastern Region Higher Education Art Educator Award in 2023 from the National Art Education Association.

Agni Stylianou-Georgiou

is an associate professor of educational psychology in the Department of Education at the University of Nicosia. She studied elementary education at the University of Cyprus and earned a Ph.D. in educational psychology (cognition and instruction) from the University of Connecticut. Her research interests focus on metacognition, and creative teaching and learning in face-to-face and digital environments. She has been involved in EU-funded projects targeting the role of information and communication technologies in enabling a pedagogy for autonomy for teacher professional development and fostering dialogue and argumentation for cultural literacy learning in schools using wordless picture books.

Michael White

is the interim director of the Ernest G. Welch School of Art & Design and an Associate Professor of Interior Design. He is both NCARB and NCIDQ certified and is a registered architect and interior designer in the State of Georgia with degrees from Mississippi State University and the Georgia Institute of Technology. Michael joined Georgia State following an extensive national career in interior architectural practice, most notably as Studio Director of the Atlanta office of Gensler—the nation's largest interior architecture firm. His

20+ years of professional experience in commercial interiors included more than one million square feet in projects for national clients including Aetna, the McDonald's Corporation, Bank of America, BlueCross BlueShield, GTE, and Atlanta's own legal powerhouse, King & Spalding.

So Lan Wong

is currently a senior lecturer and the program leader of the Professional Development Programme (Visual Arts Teaching) in the Department of Cultural and Creative Arts at the Education University of Hong Kong. Dr. Wong's research interests include visual arts curricula and instructional design, including STEAM teaching. She is currently a member of the author team of *Hong Kong Chronicles—Visual Arts* (《香港志: 視覺藝術》; 2022–25), a consultant (Phases 1–3, 2020–2023), and the principal investigator (Phase 3) of the Special Education Needs Section of the Curriculum Development Institute of the Hong Kong Education Bureau. She is also a specialist in the Hong Kong Council for Accreditation of Academic and Vocational Qualifications (2018–2024) and the Vice Chairman of the World Chinese Art Education Association (2019–2025).

Yui-Chih Wu

is a Ph.D. student in art education at Taiwan Normal University and a licensed art teacher in Taiwan. She has worked at the Ju Ming Museum, where she established alliances between the museum and schools in New Taipei County. This experience led to her employment at Gymchina, an art education institution in China, where she sought to expand contemporary art into the realm of children. When she served as vice CEO of Taipei Hakka Cultural Foundation, she integrated contemporary art education into ethnic cultural education. Her work focuses on STEAM, arts-based research, and data visualization.