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Abstract 51 
 52 
Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as 53 
an assessment of the eutrophication state of a waterbody and are the primary biogeochemical 54 
rates causing oxygen depletion in coastal waters. However, given the additional labor involved in 55 
measuring biogeochemical rate processes, few monitoring programs regularly measure these 56 
properties and thus few long-term monitoring records of plankton respiration exist. An eight-57 
year, biweekly plankton community respiration rate time series was analyzed as part of a 58 
monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. 59 
We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated 60 
co-variates with respiration rate. Additionally, statistical and kinetic models including variables 61 
both water temperature and particulate nitrogen were able to explain 74% of the variability in 62 
respiration. Over the long-term record, both particulate nutrients and respiration rate were 63 
elevated when measured at higher tides. Separate measurements of respiration rate during ten 64 
consecutive days and during high and low tide on three separate days also support the 65 
enhancement of respiration with high tide. The enhancement was likely due to the import of 66 
particulate nutrients from the highly productive mid-bay region. This analysis of the longest 67 
consistently measured community respiration rate dataset in Chesapeake Bay has implications 68 
for how to interpret long-term records of measurements made at fixed locations in estuaries. 69 
 70 
Introduction 71 
 72 
Worldwide, the depletion of dissolved oxygen concentrations in estuaries and marine ecosystems 73 
is a growing ecological problem. Low dissolved oxygen conditions, often referred to as hypoxia 74 
(low oxygen) or anoxia (no oxygen) degrades habitat conditions and can cause mortality or 75 
physiological stress for many organisms (e.g., Diaz and Rosenberg 2008; Breitburg et al. 2018). 76 
Oxygen depletion can also trigger a cascade of biogeochemical reactions that lead to elevated 77 
recycling of nitrogen and phosphorus (e.g., Conley et al. 2009; Testa and Kemp 2012), 78 
potentially sustaining hypoxic conditions. Given that future changes in water temperature, 79 
freshwater input, nutrient loading, and sea level will likely alter oxygen dynamics through both 80 
physical (e.g., solubility, stratification) and biogeochemical (respiration rates) processes, there is 81 
a need to better constrain the growing number of projections of oxygen depletion in estuaries 82 
worldwide (Irby et al. 2018; Laurent et al. 2018; Ni et al. 2019; Meier et al. 2019).  83 
 84 
Respiration is the primary biogeochemical driver of oxygen depletion, and the organic matter 85 
fueling water-column respiration is typically derived from surface water productivity (Kemp et 86 
al. 2005; Rabalais et al. 2014). Consequently, elevated eutrophication associated with increases 87 
in primary production (Boynton et al. 1982) and/or phytoplankton biomass (e.g., Harding and 88 
Perry 1997) often leads to coastal hypoxia and anoxia. Although eutrophication is defined as the 89 
rate of input of organic matter into aquatic ecosystems, it is typically assessed using more easily 90 
available concentration or “state” measures (e.g., chlorophyll-a, dissolved oxygen, or nutrient 91 
concentrations) because they are less expensive and more readily available than rates of 92 
biogeochemical processes (Testa et al. 2022). Thus, a more accurate assessment of 93 
eutrophication would involve using measures of biogeochemical rate processes (e.g., respiration) 94 
that provide more direct estimates of the relevant processes that consume oxygen. Moreover, 95 
microbial respiration has been identified as a critical, yet unconstrained rate process in the ocean 96 
despite its relevance for deoxygenation (Robinson 2019). 97 



3 
 

Despite the value of biogeochemical rate processes for understanding eutrophication and 98 
associated oxygen depletion, few long-term, consistently measured rates of these processes have 99 
been collected in the coastal zone. For example, in the few systems where measurements of 100 
sediment-water fluxes of oxygen and nitrogen (proxies for sediment respiration) have been 101 
collected over multiple decades, clear metabolic signals of reduced eutrophication have been 102 
identified as nutrient loads have been reduced (Taylor et al. 2020; Testa et al. 2022). Perhaps 103 
more numerous are long-term records of plankton primary productivity, given the widespread 104 
application of the 14C method since the mid-20th century (e.g., Boynton et al. 1982; Cloern and 105 
Jassby 2010) and the growing accuracy of remote-sensing or biogeochemically-derived  106 
estimates (Benway et al. 2019). In contrast, few long-term records of water-column community 107 
respiration have been collected in estuaries, despite the central roles these rates play in our 108 
understanding of oxygen depletion and in constraining models used to predict oxygen depletion 109 
into the future. This gap exists despite the fact that many monitoring programs have been 110 
collecting estuarine biogeochemical and ‘water quality’ data for over four decades. 111 
 112 
Here we report on an analysis of a 8-year, monitoring effort to measure surface water community 113 
respiration rates in a single location at the mouth of the Patuxent River estuary where it 114 
exchanges with Chesapeake Bay, in eastern North America. The Patuxent River is a coastal plain 115 
tributary of the Chesapeake Bay that experiences depleted oxygen conditions during the summer 116 
(Jordan et al. 2003). The goals of this analysis were (1) to develop a suite of statistical and 117 
numerical models to determine which factors influenced respiration rate variability, toward a 118 
greater understanding of how these rates will be influenced by future change, and (2) make these 119 
measurements available to the numerical modeling community better constrain projections of 120 
climate effects and management actions. We hypothesized that variability in respiration rate 121 
would be elevated by temperature and freshwater inputs through physiological stimulation and 122 
the import or production of organic substrate, but we also hypothesized that respiration would 123 
also be enhanced through the influence of labile organic matter import from adjacent Chesapeake 124 
Bay. This study highlights how long-term hydrographic and biogeochemical measurements can 125 
be used to assess controls on the eutrophication state of a tidal estuary and how they would 126 
benefit long-term water monitoring programs. 127 
 128 
Methods 129 
 130 
Study Site and Biogeochemical Data  131 
The Chesapeake Biological Laboratory (CBL) has maintained daily monitoring of temperature 132 
and salinity at its research pier since 1938 (Beaven 1960) and has recently (2015) installed a 133 
comprehensive environmental monitoring system (https://cblmonitoring.umces.edu/). The CBL 134 
pier is situated in the lower Patuxent River estuary where the Patuxent meets the mainstem of 135 
Chesapeake Bay (Fig. 1). The water depth at the site is 2.5 m and surface and bottom salinity 136 
measurements verify that the water-column is consistently well mixed. We made biweekly 137 
measurements of dissolved inorganic nitrogen (ammonium, nitrate + nitrite), orthophosphate,  138 
total dissolved phosphorus and nitrogen, total suspended solids, particulate phosphorus, carbon, 139 
and nitrogen, and active chlorophyll-a,  (Fig. 2 B, C) using standard methods at the Chesapeake 140 
Biological Laboratory Nutrient and Analytical Services Laboratory (NASL; 141 
https://www.umces.edu/nutrient-analytical-services-laboratory). At each sampling, a YSI Pro 30 142 
was used to measure surface and bottom water temperature and salinity (Fig. 2D). Water-column 143 
community respiration rate was also measured biweekly by incubating triplicate 300 mL 144 

https://cblmonitoring.umces.edu/
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borosilicate bottles in-situ, suspended ~1 m below the water surface, and measuring the change 145 
in oxygen concentration over the course of the incubation (Fig. 2A). Oxygen was measured 146 
within 5 minutes of collection via a YSI ProDO optical oxygen meter (sensor accuracy is 147 
reported to be ±0.1 mg/L) and incubations were either 6 hours long (May to October) or 24 hours 148 
long (November to April). Bottles were painted black and wrapped in opaque bags before being 149 
incubated in-situ from a floating pier in the same location where sample water was collected. 150 
Rates were considered to be non-detectable if oxygen did not decrease during the experiment, 151 
and we assigned a zero value to these rates. We ran models where these zero values were omitted 152 
from the dataset, and the model results were not different. This analysis uses the entire time-153 
series made from March 2015 to December 2022, using the mean of the triplicate respiration 154 
rates as the daily value. We also measured respiration rates at higher frequencies during targeted 155 
experiments on two occasions, using the same methods as previously described. First, we 156 
sampled on 10 consecutive days between June 27th and July 11th, 2016 (Bonilla-Pagan 2016), 157 
where community respiration was measured at the same time (~9:30 AM) each day, along with 158 
the associated biogeochemical measurements of the pier monitoring program. In this way the tide 159 
height and stage changed for each day, but the sampling time stayed constant. Secondly, we 160 
measured community respiration and particulate nitrogen (PN) on 3 consecutive days between 161 
July 25-27, 2023, but sampled at the time of both high and low tide each day. Tide stage was 162 
determined using water level data collected by the National Oceanographic and Atmospheric 163 
Administration tide gauging station location on the CBL Pier (NOAA Tides and Currents station 164 
8577330, Solomons Island, Maryland). 165 
 166 
Statistical Analysis  167 
The relationship between community respiration rate (hereafter ‘respiration rate’) and all 168 
variables measured in the pier monitoring program was first examined by performing linear 169 
regression. We then sought to predict the respiration rate with two types of existing models 170 
designed for water quality assessment. First, we applied generalized additive models (GAM) that 171 
incorporated terms for season, year (i.e., a long-term trend), and variability in water-column 172 
conditions. We used a GAM approach that is comparable to those used for evaluation of 173 
ecosystem response to nutrient reduction efforts (Murphy et al. 2019), but here we performed 174 
hypothesis testing using different environmental predictors of respiration rate. The GAMs 175 
estimate respiration rate from the sum of smooth functions of independent variables. The first 176 
model, called the “base” GAM model, only included terms for season and year (Eq. 1):  177 
 178 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐶𝐶 + 𝑓𝑓1(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) + 𝑓𝑓2(𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) 179 
(1) 180 

where the Day of Year function was sinusoidal and approximated the annual water temperature 181 
cycle. The secondary models included additional terms relative to the base GAM, including 182 
functions for temperature, river discharge, chlorophyll-a, dissolved nutrients, and particulate 183 
nitrogen (PN) concentration. Model assessment revealed that the base model with a term for PN 184 
explained the highest amount of variability in the respiration rate (Eq. 2).  185 
 186 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶 + 𝑓𝑓1(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) + 𝑓𝑓2(𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) +  𝑓𝑓3([𝑃𝑃𝑃𝑃]2) 187 
(2) 188 
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The GAM models were generated using the gam() function in the mcgv package in R (Wood 189 
2018). We also modeled respiration rate with a kinetic model comparable to formulations 190 
commonly used to estimate phytoplankton respiration in water quality models (Testa et al. 2014; 191 
Cerco et al. 2000). This kinetic model estimates respiration rate as a function of temperature and 192 
PN concentration (Eq. 3). 193 
  194 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑘𝑘 ∗ 𝜃𝜃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−20) ∗  [𝑃𝑃𝑃𝑃]2 195 
(3) 196 

where k is the respiration rate at 20 oC, 𝜃𝜃 is the temperature sensitivity coefficient (1.08), and 197 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is water temperature at the time of the rate measurement. We solved for the value of k in 198 
the kinetic model by finding the value that generated the smallest sum of squares in the model-199 
observation comparison. To assess the goodness of fit of each model in reproducing the observed 200 
respiration rate, three different statistics were computed: sum of squares error (SSE), the 201 
correlation coefficient squared (𝑟𝑟2), and the root mean squared error (RMSE). The SSE is the 202 
sum of the squared differences between the estimated and observed values where values close to 203 
zero indicate less variation measured in the units of the observed values squared. The 𝑟𝑟2 statistic 204 
measures the tendency of the estimated values and the observed values to vary together, where 205 
values vary from 0 to 1 with ideal values close to one (Stow 2009). RMSE is a measure of the 206 
size of the differences between estimated and observed values, measured in units of the observed 207 
values where values near zero indicate a close match (Stow 2009). 208 
 209 
Tidal controls on particulate matter 210 
We then sought to understand what forcing variables at this location influenced PN and thus the 211 
respiration rate. GAMs that included Susquehanna River and Patuxent River discharge did not 212 
reproduce the observed variability in respiration rate. Prior analysis of a 10-day time-series of 213 
respiration at this location suggested a tide-stage effect on respiration (Bonilla-Pagan 2016), and 214 
given that this location is at the interface of the Chesapeake Bay and the lower Patuxent estuary, 215 
we suspected that high-productivity Chesapeake Bay water could influence this site. Thus, the 216 
relationship of the tidal stage versus the respiration rate was examined in more detail. First, we 217 
compared respiration rate during ebbing tide to the respiration rate measured during flooding 218 
tide. A Student’s t test was used to determine if the respiration rates differed by tide stage. The 219 
respiration rate and PN concentration data were then separated by tide height into groups of 220 
0.125 m. Kruskal-Wallis rank sum tests was used to determine if the mean respiration rate or 221 
mean PN concentration of the tide height groups were different, with a Dunne’s post-hoc used 222 
for pairwise comparisons. 223 
 224 
Results 225 
 226 
This analysis of an eight year time series of respiration rate and key associated environmental 227 
variables suggests several time scales of variability (Fig. 2). Respiration rate had a regular 228 
seasonal cycle, with higher rates during the summer period with higher temperatures, and 229 
respiration rate was positively related to water temperature (linear regression, r2 = 0.4, p < 230 
0.001). PN, chlorophyll-a, and salinity also had somewhat regular seasonal patterns that were 231 
sometimes interrupted by more episodic variability (Fig. 2). For example, PN, salinity, and 232 
chlorophyll-a had a consistent seasonal cycle in the first three years of the record (2015-2017) 233 
that was interrupted by a large increase in chlorophyll-a and PN in 2018 (and an associated 234 
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reduction in salinity and increase in respiration rate), followed by a three year period with less 235 
substantial seasonal cycles (Fig. 2). After the 2018 low-salinity event, which was associated with 236 
a record precipitation period (see Discussion), chlorophyll-a and PN were somewhat elevated 237 
with lower variability and respiration rates reached higher seasonal maxima (Fig. 2). 238 
 239 
The particulate nutrient concentrations (nitrogen, phosphorus, and carbon) were the only 240 
variables tested aside from temperature that explained substantial variability in respiration rate 241 
(r2 > 0.25). Linear regression results indicated that particulate carbon had an r2 of 0.285, while 242 
particulate phosphorus and nitrogen had an r2 of 0.542 and 0.514 respectively (Fig. 3). 243 
Consequently, particulate nutrient concentrations were the only variables whose inclusion in 244 
GAMs led to high predictability for respiration rate, where the PN-based GAMs resulted in the 245 
best goodness of fit measures (Table 1) relative to other models (note the same model with PP 246 
yielded similar results; r2 = 0.72 and RMSE = 0.29). The base GAM model only captured the 247 
overall trend and seasonality in the respiration rate, and GAMs with freshwater discharge, water 248 
temperature, and chlorophyll-a as predictive terms did not reduce SSE, RMSE, or r2 (Table 1). 249 
Only the PN-based GAM and the kinetic model were able to capture the larger periods of 250 
variability in the respiration rate time-series (Fig. 4). Because PN and PP explained more 251 
variability in respiration rate than PC, we also built GAMs with the PC:PN and PC:PP ratio with 252 
the assumption that these variables, like PN and PP, reflect organic material lability. These 253 
models did not perform better than the PN-only models. We also ran the models after removing 254 
the zero values from the dataset, and the resulting models only improved the model fits slightly 255 
(RMSE = 0.37, 0.35, 0.27 for the Kinetic, Base GAM, and PN-GAM, respectively). 256 
 257 
The respiration rates measured at the same time of day during a 10 day period in 2016 were 258 
positively, but weakly related with tidal height (Fig. 5; r2 = 0.29; Bonilla-Pagan 2016). The 2023 259 
experiment, which sampled twice a day (at high tide and low tide) during a 3 day period, found 260 
that the respiration rate was higher at high tide compared to low tide on two of the three days 261 
sampled (Fig. 6). In the two days where respiration rates were higher at high tide, surface water 262 
PN concentrations were also higher at high tide (Fig. 6). Given the apparent relationship between 263 
tidal height and respiration rate, we examined the relationship of these variables over the long-264 
term respiration rate data set. The difference in the respiration rate during the ebbing tide was not 265 
different than the respiration rate during the flooding tide at a significance level of 0.05 (p = 266 
0.766). However, there was a difference in the respiration rate at different tide heights at a 267 
significance level of 0.05 (p = 0.00123). Specifically, the respiration rates at tide heights of 0.25-268 
0.375 m were larger than 0-0.125 m (Fig. 7). As the tide height increased, the upper limit of the 269 
respiration rate increased (Fig. 7). The patterns of PN over different ranges of tide height also 270 
had a similar relationship as respiration rate (higher PN at higher tide; Fig. 4). However, there 271 
was not a difference in the PN at different tide heights at a significance level of 0.05 (p = 0.3). 272 
 273 
Discussion 274 
 275 
This analysis aimed to determine which factors were most important in affecting variability in 276 
the respiration rate using a rare long-term record. Global syntheses have found that water column 277 
respiration is the dominant sink for oxygen in waters deeper than 10 meters, and even in 278 
shallower systems like the one described here, water-column respiration can be 50% of total 279 
oxygen consumption (Boynton et al. 2018). Thus, any advance in understanding controls on 280 
water column respiration will help improve our understanding of oxygen depletion and thus our 281 
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ability to effectively represent this process in models. We found that water temperature and 282 
particulate nutrients (carbon, phosphorus, and nitrogen) were most strongly related  to respiration 283 
compared to all other variables measured, and that models that included both water temperature 284 
and particulate nutrients (PN and PP) best reproduced the temporal variability in respiration. 285 
Both respiration rates and PN tended to be elevated at high tide, suggesting that the local 286 
metabolic rates are sensitive to transport of organic-enriched waters from adjacent habitats.  287 
 288 
Water temperature has been well-described as a strong seasonal driver of respiration in 289 
Chesapeake Bay (e.g., Smith and Kemp 1995), and this variable was an important factor in 290 
predictive models (GAM, kinetic model) of respiration rate developed in this study. This is 291 
consistent with a wealth of literature describing the positive relationship between temperature 292 
and respiration rate across various ecosystems and methods (Yvon-Durocher et al. 2012; Caffrey 293 
et al. 2014; Bordin et al. 2023; Wikner et al. 2023). Although the record of respiration 294 
measurements in this study was not long enough to address climate-scale warming trends that 295 
have been detected at this location (Orth et al. 2017), the strong temperature effect suggests that 296 
future increases in temperature could contribute to higher respiration rates at this location. Water 297 
temperature only explained 40% of the variability in the respiration rate in this dataset, however, 298 
suggesting that other variables control variability in these rates.    299 
 300 
The inclusion of PN or PP in both the GAM and kinetic model increased the power of the models 301 
to reproduce variability in the respiration rate. This is consistent with the fact that respiration rate 302 
can be amplified with nutrient enrichment (Del Giorgio 2005), whereby elevated nutrient loads 303 
lead to elevated uptake of inorganic nutrients and thus incorporation into particulate matter. 304 
Estuarine particulate matter is composed of both living and dead organic material, and thus 305 
represents both actively respiring phytoplankton and microbially-driven oxidation of detritus. 306 
This is consistent with recent global syntheses that found organic material to be as strong a 307 
predictor of respiration as temperature (Wikner et al. 2023). The fact that PN was more 308 
correlated with respiration than dissolved organic nitrogen (DON) suggests that either the DON 309 
pool as measured was not reflective of labile dissolved organic material, or that algal respiration 310 
(whereby higher PN = higher algal biomass) is a dominant component of the measured rates. The 311 
fact that a squared term for PN provided a better fit in both the GAM and kinetic models reflects 312 
the possibility that PN may represent both non-living PON and actively growing algal cells. PN 313 
and PP had a much higher correlation with respiration compared to PC, suggesting that labile, 314 
newly-produced organic matter is supporting respiration and consistent with the fact that the 315 
middle and lower reaches of Chesapeake Bay are less influenced by the bulk carbon pool (Smith 316 
and Kemp 1995).  317 
 318 
The influence of episodic events and other physical factors on respiration rates were also evident 319 
in the variations in respiration rate. Although freshwater discharge and salinity were not 320 
substantial contributors to predictive models (Table 1), the effect on respiration of a large 321 
precipitation and discharge event is evident in the record (e.g., Fig. 2). In 2018, parts of 322 
Maryland, including the Patuxent River watershed, experienced record precipitation levels 323 
(NOAA 2019) and during this event the respiration rate was 1.5 to 2 times above the typical 324 
summer peaks (Fig. 2A). Both PN and chlorophyll-a peaked during this period, suggesting that 325 
elevated riverine flows supported additional algal growth and respiration (Boynton and Kemp 326 
2000; Chen et al. 2009). This sensitivity to large river flow events is consistent with prior 327 
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analyses that showed phytoplankton biomass in the Patuxent River estuary to be highly 328 
responsive to freshwater discharge (Testa et al. 2008).The fact that discharge and salinity were 329 
not good predictors of respiration rate over the entire record, however, is due to the fact that the 330 
lower Patuxent is influenced by both the Patuxent River and the Susquehanna River (through 331 
exchange with Chesapeake Bay), whose discharge volume and timing are distinct. As a result, 332 
high and incoming tides can often have lower salinity than ebb/low tide (data not shown), owing 333 
to the fact that the mainstem Bay can have low salinity when Susquehanna River discharge 334 
(whose watershed extends >300 km to the north) has been high. 335 
 336 
Perhaps the most surprising result of this analysis was the positive correlation of respiration rate 337 
with tide heights across the three types of analyses and experiments performed. Because PN was 338 
also observed to have a positive relationship with tide height, this effect of tide may simply 339 
reflect a higher productivity within adjacent waters that transit the site. Respiration rate was also 340 
higher at the lowest PC:PN ratios (Kruskal-Wallis, p = 0.2), suggesting that the most N-rich 341 
organic material enhances respiration. Given the proximity of the mainstem Chesapeake Bay to 342 
this location (Fig. 1) and an assumption that high tide waters are Chesapeake Bay-derived, we 343 
hypothesized that the study site is highly influenced by adjacent waters. The fact that high tide 344 
associated positively with respiration while there were not differences between flood and ebb 345 
rates likely results from the fact that tidal velocities are out of phase with water level at this site 346 
and because there are asymmetries in flood and ebb velocities (data not shown). The region of 347 
Chesapeake Bay that exchanges with the lower Patuxent estuary is the most productive region of 348 
the Bay (Smith and Kemp 1995; Feng et al. 2015), is rich with labile organic matter, and has 349 
been previously found to influence productivity in the lower Patuxent estuary (Testa et al. 2008). 350 
This result is consistent with other studies that have found an influence of organic material from 351 
Chesapeake Bay on metabolic properties in the lower reaches of other Chesapeake Bay 352 
tributaries (e.g., Lake and Brush 2008), while import of organic matter from adjacent seaward 353 
waters has been implicated in supporting local respiration rates (Smith and Hollibaugh 1997).  354 
Despite the evidence presented here to suggest the influence of tide height at the study location, 355 
there still remains substantial unexplained variability in the respiration rates, reflecting the varied 356 
factors that drive metabolism in estuaries. For example, the suggestive, but inconsistent 357 
relationship between tide height and respiration over the consecutive day experiments could 358 
result if conditions stimulated organic matter production during prior days and in adjacent water, 359 
leading to elevated respiration measured at the site. Future work could address this hypothesis. 360 
 361 
The estimates of respiration rate presented here are comparable to in magnitude to similar 362 
measurements made in Chesapeake Bay, but differ from a range of other types of estuarine 363 
environments. In Chesapeake Bay, Smith and Kemp (1995) measured respiration rates in 364 
mainstem surface waters, with rates ranging from 0.2 to 2.0 g O2 m-3 d-1 in the mid-Bay region 365 
over an annual cycle, where the annual mean (± SD) of rates measured in this study were 1.3 ± 366 
0.3 g O2 m-3 d-1. Smith and Kemp (2003) also measured respiration rates of 1.2 g O2 m-3 d-1 in 367 
August at 38oN, comparable to the long-term mean of this study’s August rates of 1.1 ± 0.2 g O2 368 
m-3 d-1, and reinforcing the potential influence of mainstem waters on the lower Patuxent estuary. 369 
These summer rates are also comparable to those measured near the study site in the Patuxent 370 
River during June-August 1967, where Flemer and Olmon (1967) reported surface water rates of 371 
0.9 to 1.5 g O2 m-3 d-1. The Patuxent rates were typically higher than many other estuaries and 372 
coastal shelves, whose rates were typically less than 1.0 g O2 m-3 d-1 and whose mean was 373 
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typically less than 0.5 g O2 m-3 d-1 (e.g. Dortch et al. 1994; Smith and Hopkinson 2005). This 374 
may reflect the fact that the Patuxent River estuary remains a eutrophic estuary, resulting from 375 
high rates of nutrient loading (Testa et al. 2008). However, the Patuxent rates were lower than 376 
those measured in historically highly eutrophic estuaries (e.g., Roskilde Fjord; Jensen et al. 377 
1990), in some lagoons (Herrera-Silveira 1998) with presumably high residence times, and in 378 
shallow nearshore environments (Caffrey et al. 2004) that are often influenced by wetlands and 379 
are highly productive. 380 
 381 
An analysis of 8 years of regularly measured respiration rates at a fixed station identified 382 
multiple controls on metabolic rates in coastal ecosystems. These rates are not typically included 383 
in eutrophication assessments because of the higher cost associated with measuring 384 
biogeochemical rates (Testa et al. 2022), but this analysis highlights the value of collecting such 385 
time-series. These findings are relevant for water quality management in Chesapeake Bay, 386 
revealing that some regions of tributary water bodies are highly influenced by adjacent water 387 
parcels at tidal time scales. These results also offer a way to test numerical model formulations 388 
for a key metabolic rate (respiration or oxygen consumption), possibly improving their ability to 389 
make accurate predictions of the effects of climate and nutrient management. We conclude that 390 
similar respiration data measured by the simple, fast approach used in this study could be more 391 
widely implemented and lead to better assessments of eutrophication.  392 
 393 
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Table 1. Goodness of fit statistics for statistical and mechanistic models used to predict 594 
respiration rate, including those included in Figure 4 and other experimental models. “with time” 595 
represents those models with Year and Day of Year as model terms. 596 
Model Type SSE 𝒓𝒓𝟐𝟐 RMSE 
GAM with time and PN  14.64 0.741 0.282 
GAM with time and C:N Ratio 14.56 0.742 0.281 
GAM with time and chlorophyll-a  18.23 0.678 0.315 
Kinetic Model 20.49 0.669 0.334 
GAM with time and temperature  20.48 0.637 0.334 
GAM with time and C:P Ratio 22.78 0.597 0.352 
Base GAM with time 22.92 0.594 0.353 
GAM with time and discharge 22.90 0.593 0.353 
GAM with time and salinity 22.89 0.595 0.352 
 597 

598 
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 599 
Figure 1: Map of the Patuxent River estuary, including the location of the CBL Research Pier 600 
where respiration rates and biogeochemical data were collected. Note location of the Patuxent 601 
River on the western shore of Chesapeake Bay in the mid-Atlantic region of the USA. 602 
 603 
 604 
 605 
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 606 
 607 
Figure 2. Biweekly measurements of community respiration rate (A), chlorophyll-a (B), 608 
particulate nitrogen (C), and salinity (black line) and water temperature (red line) (D) collected 609 
from surface water at the CBL research pier monitoring program from 2015-2022. 610 
 611 
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 613 
Figure 3. Plots of community respiration rate versus surface water particulate nitrogen (A), 614 
particulate phosphorus (B), and particulate carbon (C). Equations for linear regression of 615 
respiration rate and particulate material included with corresponding statistics.  616 
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 617 
Figure 4. Time-series (2015-2022) of the observed respiration rates (open circles) and the three 618 
candidate models, including the time-only GAM (black line), the time- and PN-based GAM 619 
(blue line), and the kinetic model (red line). 620 
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 626 
Figure 5. Relationship between respiration rate and mean tide height from the 10-day 627 
consecutive sampling carried out in June and July of 2016. Error bars represent the standard 628 
deviation of triplicate incubations on each sampling day. Equations for linear regression of 629 
respiration rate and particulate material ide height included with corresponding statistics. 630 
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 640 
Figure 6. Respiration rate measured at high and low tides from the consecutive 3-day sampling 641 
(A, bar = mean +/-SD of triplicate incubations) and particulate nitrogen measured at high and 642 
low tides (B, no replicates).  643 
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 654 
 655 

Figure 7. Box plots of surface-water particulate nitrogen (A) and respiration rate (B) aggregated 656 
versus ranges of tide height for the bi-weekly samples collected in this study. For each box, the 657 
central line is the median, the top and bottom of the box are the 75th and 25th percentiles, 658 
respectively, the vertical lines capture the remaining range of the data, and the black circles are 659 
outliers. Box widths indicate range of tide heights in group. In panel B, the hatched lines indicate 660 
groups whose differences had a p-value less than 0.05 as determined by a Kruskal-Wallis with 661 
Dunn’s post-hoc comparison. 662 


