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Higher Deformation Quantization for
Kapustin—Witten Theories

Chris Elliott®, Owen Gwilliam and Brian R. Williams

Abstract. We pursue a uniform quantization of all twists of 4-dimensional
N = 4 supersymmetric Yang—Mills theory, using the BV formalism, and
we explore consequences for factorization algebras of observables. Our
central result is the construction of a one-loop exact quantization on R*
for all such twists and for every point in a moduli of vacua. When an
action of the group SO(4) can be defined—for instance, for Kapustin and
Witten’s family of twists—the associated framing anomaly vanishes. It
follows that the local observables in such theories can be canonically de-
scribed by a family of framed E,4 algebras; this structure allows one to take
the factorization homology of observables on any oriented 4-manifold. In
this way, each Kapustin—Witten theory yields a fully extended, oriented
4-dimensional topological field theory a la Lurie and Scheimbauer.
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1. Introduction

In [41], Kapustin and Witten offered a view from quantum field theory on the
geometric Langlands correspondence, relating S-duality for 4-dimensional N =
4 supersymmetric gauge theories to Langlands duality. Subsequently, there has
been an enormous amount of work at this crossroads between quantum field
theory, representation theory, topology, and higher category theory. To give
just a few examples, we refer to the research program of Ben-Zvi, Gunningham,
Nadler and collaborators [10-12], the work of Ben-Zvi, Brochier and Jordan
[5,6] and the results on skein algebras that have followed them [18,33], and the
work of Frenkel and Gaiotto [29,32]. Much of the mathematical work has used
methods involving higher categories and derived geometry, in much the same
spirit as homological mirror symmetry reworks the physicists’ view on duality
for N = (2, 2) supersymmetric sigma models. In this paper, we explore another
path, using Lagrangian field theory and Feynman diagrammatics as physicists
conventionally would, but then exploiting recent mathematical progress [15,
16,19] to extract higher algebraic structures in a new way from the proposal
of Kapustin and Witten.
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More precisely, the aim of this paper is to give an explicit construction of
an important family of 4-dimensional quantum gauge theories and to explore
some of the higher algebraic structures that arise from the construction. Each
quantum gauge theory we study arises from a classical field theory, by which we
mean a Lagrangian field theory; all our theories will be associated with twists
of 4-dimensional V' = 4 supersymmetric Yang-Mills theory on R*. Our family
lives over the space C? x [g* /G|, where G is a reductive complex algebraic group
and [g*/G] is the coadjoint quotient stack of G. The points of C? parametrize
twists. Over generic points in C3, the theories we construct will be topological;
the theories emphasized by Kapustin and Witten appear among these twists.
The points of [g*/G] can be understood as classical vacua that make sense for
all twists simultaneously. We construct quantizations via Feynman diagrams
and the BV formalism, and we analyze the observables of these perturbative
quantizations. We show here, among other results, that the observables are E4-
algebras, or algebras over the little 4-disks operad, a higher algebraic structure
introduced and developed by topologists. Such algebras have intrinsic interest
in topology: one can obtain interesting geometric invariants by computing the
factorization homology of an E, algebra on an appropriate 4-manifold. It is an
interesting question to ask how this kind of higher algebraic structure relates
to prior work on Kapustin—Witten theories that uses higher algebra.

Remark 1.1. There are several distinct notions for what it means to “con-
struct” a topological quantum field theory. Loosely speaking, one can attempt
to model either the states of the theory, or the observables of the theory. In
the language of (extended) functorial field theories (as developed by Atiyah
[3], Baez—Dolan [7], Lurie [45] and many others), this choice manifests itself
in the choice of target (oo, n)-category for the functor. For example, for two-
dimensional field theories, one might choose to construct a theory valued in
an (00, 2)-category of dg-categories—this would be an example of a “theory
of states”—or one might choose to construct a theory valued in a suitable
version of a higher Morita category of Es-algebras—this would be an example
of a “theory of observables.” In this paper, we will take the latter view. The
relevant higher Morita categories and their relationship with factorization al-
gebras have been developed in detail by Scheimbauer [50], precisely to give a
home to such theories of observables.

We would like to emphasize an appealing aspect of our work here: the
theory of observables can be constructed in full starting from a Lagrangian
description of a field theory and applying a suitable version of deformation
quantization (here, using the Batalin—Vilkovisky formalism). In contrast, for
theories of states there does not yet exist a systematic procedure for their
construction starting from a Lagrangian field theory; instead, various informal
constructions and ansétze must be used along the way. These theories of states,
of course, play a crucial role in the geometric Langlands correspondence. <

Let us contextualize the theories we will be constructing. There is a rich
family of four-dimensional gauge theories that can be obtained by the proce-
dure known as twisting. One starts with a Yang—Mills gauge theory coupled
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to scalar and spinorial matter, with the special property that the action of
the Poincaré symmetry group can be extended to an action of a Z/2Z-graded
extension known as a super Poincaré group; such theories are known as super
Yang—Mills theories. If one chooses an odd element @ of the Lie algebra of the
super Poincaré group with the property that [Q, Q] = 0, the twist by @ is a
new gauge theory obtained, roughly, by deforming the action functional using
the infinitesimal action of Q.

By applying this procedure, one obtains theories that are more math-
ematically tractable but still deeply interesting: holomorphic and topological
field theories. Twists of supersymmetric Yang—Mills theories in dimension 4
include the famous Donaldson-Witten theory [56], which was the main moti-
vating example for Witten’s introduction of the twisting procedure and which
lead to a physical origin for the Donaldson invariants of 4-manifolds. More
recently, Kapustin and Witten [41] studied a family of twists to give a gauge-
theoretic origin story for the categorical geometric Langlands conjecture of
Beilinson and Drinfeld.

In this paper, we will study the twists of maximally supersymmetric
Yang-Mills theories in dimension 4, known as N’ = 4 super Yang-Mills theo-
ries. These twists include the Kapustin—Witten family, as well as other exam-
ples, such as the mixed holomorphic-topological twist first studied by Kapustin
[39]. A description of all twists of Yang-Mills theory at the classical level was
given in [25] using the Batalin—Vilkovisky (BV) formalism (see in particular
Section 10.3 of loc. cit. for twists of 4d A = 4 theories). In this paper, we will
analyze these twisted theories at the quantum level.

Remark 1.2. As we mentioned in Remark 1.1, we will construct quantum field
theories modeling the observables for the Kapustin—Witten twisted gauge the-
ories. One could also attempt to construct theories of states. Upon compact-
ification on a Riemann surface X, one obtains a two-dimensional field theory;
the literature often refers to geometric Langlands topological quantum field
theories to mean two-dimensional functorial theories valued in dg-categories,
assigning the categories of interest in the geometric Langlands theory to the
point (see, for instance, [10,12,28]). <&

Remark 1.3. Our results do not rely on any aspect of S-duality, nor do we
attempt in this paper to understand how S-duality interacts with our results.
Our construction models a family of perturbative quantum field theories vary-
ing over a version of the classical moduli of vacua; it would be very interesting
to investigate what additional data is required in order to realize an S-duality
relationship between constructions of this type. &

For the rest of this section, let us fix a complex reductive group G, viewed
as the gauge group of super Yang—Mills theory. We will suppress G in the
statements below.

Our first main result is as follows.

Theorem 1.4 (See Theorems 3.8, 4.23). All twists of N = 4 Yang—Mills theory
on R* admit an exact one-loop quantization. These quantizations extend to
families of quantum field theories living over the quotient stack [g* /G].



Vol. 25 (2024) Higher Deformation Quantization for Kapustin-Witten Theories 5049

When we say a family of quantum field theories, we mean in the sense of
[19, Chapter 2, Section 13]. Here we work over the Lie groupoid G x g* = g*
presenting the coadjoint quotient stack.

Remark 1.5. More precisely, we construct a family of quantum theories over
the linear space g*, where the dependence on parameters in the base is complex
analytic. We then observe that this family is equivariant for the coadjoint
action of G and hence descends to the coadjoint quotient stack. <&

In Sect. 4, we interpret this quotient stack [g*/G] as a moduli of vacua
that works for all twists simultaneously. There are some subtleties here, how-
ever, as the view from derived geometry indicates that the moduli of vacua
looks like [g*[2]/G], where the dual of the Lie algebra is shifted down in co-
homological degree by 2. As we are working with the theories as Z/2-graded
objects, this difference in the shift of g* is not visible in our construction, and
it is fruitful to work with the ordinary (underived) stack as we do.

Remark 1.6. It is possible to eliminate this even grading shift by careful in-
corporation of the action of R-symmetries (as discussed in [27, Section 3.4]),
but in this paper we take a simpler approach and forget the Z-grading on our
algebras down to a Z/2Z-grading. <&

This result can be thought of as consisting of two steps. First, we verify
the existence of a prequantization of the classical twisted Yang—Mills theories:
a collection of effective theories depending on a scale parameter, satisfying the
renormalization group flow condition. Twisted field theories in general permit
particularly nice renormalizations, using general results about holomorphic
field theories (for example, no counter-terms occur).

Next, we compute the anomaly associated with the prequantization: the
obstruction to solving the quantum master equation. It is obtained as the
weight of Feynman diagrams. We show that this anomaly vanishes because
the weight is zero for one-loop Feynman diagrams and no Feynman diagrams
with more than one-loop can occur.

Remark 1.7. In the appendix of [20], Costello showed that, if it exists, there
is a unique quantization of the holomorphic twist (up to equivalence of BV
theories) that preserves various natural symmetries of the classical theory, like
translation invariance and R-symmetry (see Remark 3.9 for further discussion
of Costello’s result). Here we produce such a quantization, and quantizations
of the other twists, and analyze some of its features. Costello was certainly
aware that results of this flavor existed, as he originally suggested the Landau
gauge fixing we use and encouraged efforts in this direction! &

Given our family of quantum field theories, we can then study the struc-
ture of their local observables. These observables can be modeled using the
machinery of factorization algebras, as in [15,16]. For those twists which are
topological, these factorization algebras admit an alternative model, familiar to
homotopy theorists, as E4-algebras: algebras over the operad of little 4-disks.
In conjunction with results from [24], we prove the following.
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Theorem 1.8. Let (C*\(CU,C)) x[g*/G] denote the subspace of pairs (Q, [z]),
where [x] is a choice of vacuum and where Q is a nilpotent supertranslation that
determines a topological twist. There is a sheaf of E4-algebras over this space,
whose fiber over (Q, [x]) is given by the factorization algebra of local observables
in the Q-twisted N' = 4 super Yang-Mills theory around the vacuum [z].

There is a useful interpretation of this sheaf, exposing an analogy with de-
formation quantization. The moduli of vacua [g*/G] considered here
parametrizes a space of translation-invariant solutions to the equations of
motion. Consider how these translation-invariant solutions sit inside all so-
lutions, and in particular take the formal neighborhood of the vacua inside
all solutions. (Loosely speaking, think about the tubular neighborhood.) This
neighborhood can be viewed as a family of formal moduli spaces over [g*/G],
where each formal moduli space encodes a classical perturbative theory on R*.
(Loosely speaking, identify the tubular neighborhood with the normal bun-
dle.) There is a natural shifted symplectic structure on each theory, so that
when we quantize, we are deforming the dg commutative algebra of classical
observables to an Ey-algebra of quantum observables. In short, we produce a
family of E4-stacks over [g*/G]. Note the analogy to deformation quantization,
where one deforms the structure sheaf from a commutative to an associative
(or E;-)algebra.

Having proven the existence of the quantization, we show that it can be
equipped with rich additional structure. There are two main types of structure
that we consider.

(1) First, a framing structure. The method of factorization homology (as
introduced in [46, Section 5.5] [31]) allows one to take an E,, algebra A
and “integrate” it over an n-manifold M with trivialized tangent bundle
(aka a framed manifold). From the point of view of field theory, we can
think of this as defining a theory whose algebra of local observables is A
and whose global observables on M are the factorization homology. To
extend this method to oriented n-manifolds, one needs additional data:
an action of the group SO(n) on A compatible with the E,-structure,
with a trivialization up to homotopy. An algebra with this structure is
known as a framed E,, algebra.

In the world of twisted supersymmetric field theories on R™, one
can obtain framings in this sense in a natural way. One must start with
the action of the group ISO(n) of isometries of R™ on the theory, and
find a homotopical trivialization. Roughly speaking, one must show that
the conserved currents for the ISO(n)-action are exact, with a family of
potentials compatible with the Lie bracket on the Lie algebra of ISO(n).

For a subclass of the theories at hand—the two-dimensional family
of twists studied by Kapustin and Witten—we construct such a homotopy
trivialization for the action of ISO(4) on the classical twisted super Yang—
Mills theories and then go on to show that the quantum anomaly for this
action (an example of a “framing anomaly”) vanishes to all orders. In
particular, we obtain the following result.
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Theorem 1.9 (See Corollary 6.5). There is a sheaf of framed Ey-algebras over
the space (C?\ {0}) x [g*/G] corresponding to the local observables for the
Kapustin—Witten family of twisted 4d N = 4 theories.

(2) We additionally consider a natural filtration on the local observables.
Our E4-algebras, when considered in the absence of this filtration, are
not very interesting: they are merely commutative. However, when we
incorporate the data of the filtration, we obtain genuine non-trivial fil-
tered E4-algebras.

This natural filtration on the local observables in any quantum field
theory is called the free-to-interacting filtration (see Sect.6.2.1). The as-
sociated graded of this filtration can be identified with the quantum ob-
servables of the underlying free theory, and at higher terms in the cor-
responding spectral sequence, we see both the higher-order terms in the
classical interaction, as well as quantum correction terms, occurring at
prescribed levels. We exploit this filtration when we study our twisted
theories.

Proposition 1.10. The family of factorization algebras of quantum observables
over the space C* x [g*/G] can be equipped with a natural filtration. In par-
ticular, the subfamilies with the structure of E4- or framed E4-algebras can be
promoted to families of filtered E4- or filtered framed E4-algebras.

With these families of (framed, filtered) E4 algebras in hand, we can turn
to computing the factorization homology on interesting curved 4-manifolds M.
Here factorization homology will mean the value of factorization algebra on
the whole manifold, and hence is a cochain complex; we will also use the term
“global sections.” In more physical terms, the E4 algebras can be understood as
the local quantum observables while the factorization homology on M can be
understood as the global quantum observables on M. Extensive discussion of
how to interpret these structures, and how to translate physical constructions
into this setting, can be found in [15,16].

In this paper, we prove some results about the factorization homology
where M is compact, and where M = N x R for N a compact oriented 3-
manifold. We foresee even more interesting applications related to the geomet-
ric Langlands program for the factorization homology on M = S x R? where
S is a compact oriented 2-manifold, which we will describe further below.

Proposition 1.11 (See Proposition 7.5 and 7.13 ).. If M is a compact complez
surface that can be realized as a discrete quotient of an open subset U of C?,
then the global quantum observables of the holomorphic twist on M has one-
dimensional cohomology given by det(H%"(M) ® g)[dm], where dy; coincides
with the Euler characteristic of M modulo 2.

For any compact oriented 4-manifold M, the global quantum observables
of the B-twist on M has one-dimensional cohomology given by det(H3g (M) ®
g)[dwm].

Things become even more interesting when we consider the global sec-
tions on the product N x R, where N is a compact oriented 3-manifold. When



5052 C. Elliott et al. Ann. Henri Poincaré

we compute this factorization homology, we obtain an E; algebra (essentially
a dg associative algebra). We can study these E; algebras using the data of a
filtration: the first page of the spectral sequence is easily computed, and so we
can then investigate later spectral sequence pages to examine how more inter-
esting features of the theory appear. In particular, for the B-twist we obtain
the following description. For a Lie algebra g, let |g| denote the underlying
vector space.

Theorem 1.12 (See Corollary 7.17). The global quantum observables of the B-
twist on N x R form a dg algebra of differential operator type (see Defini-
tion 6.19). The filtration yields a spectral sequence of dg algebras abutting to
the cohomology of this dg algebra. Its first page is the dg algebra of differen-
tial operators on the tangent complex of the trivial flat bundle in the moduli
space of flat G-connections on N. (Concretely, this tangent complex is modeled

by (2*(N) @ |g],dar)-)

As we mentioned above, such constructions have the potential for many
further interesting applications when we consider the global quantum observ-
ables after compactifying along a Riemann surface (i.e., after taking factoriza-
tion homology along that surface). Especially interesting to us is the possibility
of giving a direct, mathematical passage from the Kapustin—-Witten theories to
the quantum geometric Langlands correspondence. Let us sketch how such an
application might be developed, although we do not study this idea in detail
in this paper.

Choose a closed, oriented 2-manifold S and consider the compactification
of a Kapustin—Witten theory 7 along S, which produces a 2-dimensional topo-
logical field theory 7g. Our work immediately implies that the factorization
algebra of observables ObquS of this theory is given by the framed Es-algebra
[ ObsZ, namely the factorization homology of our framed E4-algebra over S.

This construction is rather abstract but there are two concrete things to
try:

e It is possible, using the machinery of [15,42], to extract a dg vertex al-
gebra from this construction, and so the results of this paper lead to a
plethora of potentially novel vertex algebras to study, each labeled by a
twisting parameter @), a complex reductive group G, a coadjoint orbit
x € [g*/G], and a surface S.

e Such E; algebras appear throughout 2-dimensional field theory, often un-
der more familiar names like Gerstenhaber algebras or Batalin—Vilkovisky
algebras. In the setting of homological mirror symmetry and the extended
topological field theories of Baez—Dolan—Lurie, such algebras often appear
as the Hochschild cohomology of categories of branes. Optimistically, and
following the ideas of [27], we might hope that ObquS has a natural re-
lationship with the Es algebras already known in geometric Langlands
theory, such as those studied in [2].

Remark 1.13. Let us elaborate on the last point a little more. Given an E,,_1-
monoidal category C, one can compute its Hochschild cochains, or the algebra
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of derived endomorphisms of the unit object. This process will yield an E,
algebra, which one views as parameterizing [E,,_;-monoidal deformations of C.
Most relevant for us here is the monoidal category Sphg, the spherical Hecke
category of the geometric Langlands program (expected to arise as the category
of line operators in an A- or B-twist of A/ = 4 gauge theory). Its algebra
of Hochschild cochains can be identified with Sym®(g[—2])¢ as a filtered Eq
algebra (see [2, Section 12.4]).

Beraldo [8] pushes this further and views Sphg as an Ez-monoidal cat-
egory, using the 3-dimensional pair of pants, so the Hochschild cochains will
have the structure of an [E4-algebra. Beraldo then computes the factorization
homology of Sphy on a d-manifold M, obtaining an Es_4-monoidal category
that he identifies with the category H(LSE™ (M)) defined in [9]. It would
be very interesting to compare our results with Beraldo’s, as his [E4-algebra
appears to coincide with the E4-algebra that we construct in this paper as
quantum local observables of the B-twisted theory. <&

We plan to pursue these questions in the future, and we welcome conver-
sations on these topics.

In other directions, our techniques apply to other gauge theories, notably
the construction of families of factorization algebras (e.g., |, algebras) over
moduli of vacua. It would be interesting to explore how these analogs of de-
formation quantization relate to prior work by physicists in related contexts,
such as Seiberg—Witten theory.

2. Review of the BV Formalism

2.1. Classical BV Formalism

In this article we will study classical and quantum field theory using the
Batalin—Vilkovisky (BV) formalism [13]. This is a model for perturbative field
theory using homological algebra or, more accurately, formal derived geometry.
For a more detailed account of these techniques we refer the reader to [16].

We think of a classical field theory as being encoded by the derived critical
locus of its equations of motion. Formally locally near a given solution, this
derived critical locus can be described by a formal moduli space together with a
(—1)-shifted symplectic structure. There is a convenient way to model a formal
moduli space using purely algebraic objects: by the fundamental theorem of
deformation theory [38,47], a formal moduli space can be modeled by a dg Lie
algebra or L., algebra. Concretely, this claim means that for a formal space X,
there is an L, algebra g such that each map f : Spec(R) — X corresponds
to a solution of the Maurer—Cartan equation in mg ® gy, where R is a local
artinian connective dg algebra with maximal ideal mg. Hence, we offer the
following definition of a classical field theory.

Definition 2.1. A perturbative classical field theory on a manifold M consists
of the following.

(1) A sheaf & of Z-graded C53-modules on M.
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(2) A L, algebra structure {[-]z} on the shift £[—1] where every higher
bracket [] is a polydifferential operator. We will often denote the one-
fold bracket [-]; by de.

(3) A (—1)-shifted symplectic structure w. That is, a skew-symmetric non-
degenerate pairing

w: E®E — Densy[—1]

of graded Cfg-modules.
The pairing must be invariant (i.e., cyclic) for the L., brackets.

We call such a sheaf of a Lo, algebras, where each bracket is built from
differential operators, a local L, algebra. We will sometimes refer to (£,dg) as
the classical BV complex of the classical field theory. Note that we will later
weaken the Z-grading in the definition to a mere Z/2-grading.

Remark 2.2. A feature (at times, irritating) of our definition is that the fields
& do not form a local L., algebra, but instead form a shifted local Lo, algebra.
It is often convenient simply to describe the local L., algebra directly and
leave it to the reader to recover the fields by applying a cohomological shift
down by 1. &

To connect with more standard ways of describing field theories, it is
helpful to bear in mind the following construction. The local L., structure on
& defines an action functional S for the theory by

S(e) = wle.dep) + 0 7 [l el

k>2

The first term is quadratic, while the rest

1
k' Jur
k>2
we call the classical interaction. The action functional satisfies the classical
master equation

1
del + 3{1.1} =0.

Here the shifted Poisson bracket {—, —} on local functionals is defined using
the shifted symplectic structure on fields. In fact, every such solution to the
classical master equation is equivalent to a perturbative classical field theory
as in the above definition. Hence it is straightforward to translate between
traditional presentations of classical BV theories (by action functionals) and
the presentation by local L., algebras with shifted pairings. (See [19, Chapter
5.3] and [25, Section 1.2] for details.)

Remark 2.3. Together with the differential dg + {I,—} the bracket {—,—}
equips the (shifted) space of local functionals Ojoc(£)[—1] with the structure
of a dg Lie algebra. The classical master equation is, in fact, equivalent to
the Maurer—Cartan equation in this dg Lie algebra. Hence, this dg Lie algebra
Oloc(€)[—1] encodes the formal deformations of the classical field theory. <
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The theories we will study in this paper, arising as twists of supersym-
metric gauge theories, are of a particularly nice class: they are holomorphic in
the following sense.

Definition 2.4. A classical field theory on a complex manifold X of complex
dimension n is called holomorphic if it arises by the following construction.

(1) € =0%(X,V) where V is a graded holomorphic vector bundle on X of
overall finite rank.
(2) The L brackets [J; are given by
(a) Oy + QP! for k = 1, where Q"°! is a holomorphic differential oper-
ator, and
(b) holomorphic polydifferential operators for k > 1.
(3) The (—1)-shifted symplectic structure w is induced from a holomorphic
pairing on the graded holomorphic vector bundle V' valued in the shifted
canonical bundle Kx[n — 1].

For an extensive definition and motivation of this definition, we refer to
[65]. As we will discuss in the next section, and as is detailed in loc. cit.,
perturbative quantization becomes cleaner and simpler when we restrict to
holomorphic theories.

We will build classical field theories using a few key constructions, which
we Now sumiarize.

Ezxample 2.5. Let g be an L., algebra equipped with a non-degenerate invari-
ant pairing.

(1) Let X be a Calabi—Yau manifold of dimension m. Consider the space of
fields

&= (%" ®ag[1],0),

with Lo structure on £[—1] inherited from the Lo-structure on g and
the wedge pairing of Dolbealt forms. The Calabi—Yau structure on X
and the invariant pairing on g equips £ with a (2 — m)-shifted symplectic
pairing.

(2) Let Y be a complex manifold of dimension n. Consider the space of fields

€= (9" @4(1],0),
with Lo, structure on £[—1] inherited from the Loo-structure on g and
the wedge pairing of (p,q) forms. The invariant pairing on g equips &
with a (2 — 2n)-shifted symplectic pairing.
(3) Let M be a smooth manifold of dimension d. Consider the space of fields

&= ( ;\4 ®g[1}addR)v

with Lo structure on £[—1] inherited from the Lo,-structure on g and
the wedge pairing of differential forms. The invariant pairing on g equips
& with a (2 — d)-shifted symplectic pairing.
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(4) We can combine these constructions, and consider the theory on X xY x
M whose fields are

E= (0% @0y @ 0% @g[1],dx + dy +dur).
It is equipped with a (2 — d — m — 2n)-shifted symplectic structure.

So far, these constructions only define classical field theories under an
assumption on the dimension, ensuring that the shifted symplectic structure
has degree —1 (such theories are called generalized Chern—Simons theories).
We can define, however, a classical field theory in any dimension using the
following construction.

Definition 2.6. Let L be a local L. algebra on M given by smooth sections of a
finite-dimensional graded vector bundle on M. The cotangent theory associated
to L is the theory whose fields are

E=LeL'[-2,

where L' = L* ® Densy;. The L, structure on £[—1] is defined using the L.
structure on L and the coadjoint action of L on L*, and the shifted symplectic
pairing is defined by pairing together the two summands.

Definition 2.7. Let X and Y be complex manifolds, and let M be a smooth
manifold. We define a generalized BF theory on X XY x M to be the cotangent
theory to the local L, algebra

Q%" @0} ® QY ©g,0x + 0y +dur).
See [25, Section 1.6.1] for more details.

We will conclude this section with one more piece of notation: a formal
version of Simpson’s Hodge stack Xpoq of a smooth scheme X [52]. Simpson
defined a derived stack Xpoq over Al that interpolates between the de Rham
stack of X at the point 1 € A!, and the Dolbeault stack of X (the 1-shifted
tangent space T[1]X) at ¢ = 0.

Definition 2.8. The Hodge algebra Li poq of an Lo, algebra L is defined to be
the C[t]-linear Lo, algebra (L[1] & L) ® C[t] with L, structure inherited from
the Lo structure on L along with the adjoint action of L on L[1], where we
add the operator ¢ -id: L @ C[t][1] — L ® CJt] to the differential.

We write Lpe for the Lo, algebra obtained by evaluating the parameter
at t = 0. We write Lqgr for the contractible L., algebra obtained by evaluating
the parameter at ¢t = 1.

To motivate this terminology, we unpack some consequences of this defi-
nition. Let L be an L, algebra that we view as encoding a formal moduli space
X. Under the dictionary of derived deformation theory, the algebra O(X) of
functions on X is encoded by C7;,(L), the Chevalley-Eilenberg cochains of L.
Observe that

Clie(Lpol) = Clie(L, Sym(L*[-2])) = O(T[1]X),
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the de Rham forms on X (i.e., the complex without the differential!). Similarly,
Clic(Lar) = Q(X),

the de Rham complex. Indeed, Simpson’s deformation turns on the de Rham
differential.

2.2. Quantum BV Formalism

Let us now discuss quantization in the BV formalism, as articulated in [19].
The theories we will study in this paper will all be particularly amenable to
quantization. The general procedure has two steps.

(1) First, we construct an effective collection of perturbative field theories,
ie., a collection {I[A]}ser., of effective interaction functionals in O (€)
[A], which are compatible with renormalization group flow. That is, for
Ay < As we can determine I[A;] as the sum of weights associated to
Feynman diagrams using the scale A; interaction I[A;]. We refer to such
a set as an effective collection of interactions.

There is a standard method for the construction of such a collection
of effective interactions by constructing counterterms associated with the
singular parts of certain Feynman integrals.

(2) Next, we must verify that the effective collection we have constructed
satisfies the scale A quantum master equation for every value of A. At
a fixed scale A, one can define a shifted Poisson bracket {—, }4 on local
functionals and BV operator A, inverse to the symplectic form. The
quantum master equation encodes the following compatibility between
the effective action and the BV operator:

QeT[A] + S{T1A] TIA}n + AAATIA] = 0. ()

In practice, there may be an obstruction to the existence of a quantization
of a given classical field theory solving the quantum master equation up
to a given order in A. This obstruction, sometimes called an anomaly, is
given by a class in H!(Oj0c(€)) that can be computed explicitly in terms
of Feynman diagrams for the given theory.

We gain a lot, however, by restricting attention to holomorphic theories
of cotangent type. First, let us use the cotangent type assumption.

The following simple combinatorial fact will be extremely useful for un-
derstanding the Feynman diagrams that can occur in cotangent-type theories.

Lemma 2.9. Fvery connected directed multigraph where each vertex includes at
most one incoming edge takes the form of a directed loop, with a number of
outgoing directed trees attached.

Corollary 2.10. The only non-zero Feynman diagrams that can occur in a the-
ory of cotangent type have at most one loop.

Proof. Consider a cotangent theory with BV complex & = T*[—3]L and denote
fields in the base factor £ by «, and fields in the fiber factor £'[—3] by 3. The
shifted Poisson structure pairs a and 3 fields, so we can direct the edges of
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Feynman diagrams for such a theory by labeling one input of the propagator
by «a, and the other by 3. The L, structure on &£ is inherited from the L.,
structure on £ and the action of £ on its dual, which means that all vertices
in the Feynman diagram include either zero or one 3 factors. The claim then
follows from Lemma 2.9. 0

Ezxample 2.11. For an example of a wheel, consider the “tadpole” diagram,
corresponding to a wheel with one external leg. Suppose that our classical BV
complex takes the form

E=¢®g,

where £’ is a (—3)-shifted symplectic complex, and where g is a finite-dimensional
Lie algebra equipped with a non-degenerate invariant pairing (such theories
need not necessarily be of cotangent type). The weight of the diagram when
evaluated on a field ¢ ® X € &' ® g is proportional to the trace try(X) of X,
taken in the adjoint representation. If g is unimodular—in particular, if g is
reductive—this trace automatically vanishes and therefore the weight of the
diagram does too.

Let us now take advantage of the holomorphic assumption on a classical
field theory. We can use this assumption in two ways. Firstly, the construction
of a prequantization is straightforward: there are no counter-terms.

Theorem 2.12 ([55, Theorem 3.1]). Any holomorphic classical field theory on
C? admits a one-loop effective collection involving no counterterms. In par-
ticular, any holomorphic theory of cotangent type admits such an effective
collection that is exact at one-loop.

2.2.1. The Holomorphic Gauge. It will be useful to explicitly characterize the
form of the effective action I[A] for these types of theories. As mentioned
above, it is given as a sum of weights of Feynman graphs

I[A] =" Wr(Poen, 1)
r

where the sum is over connected directed multigraphs and Py is the scale
A > 0 propagator.

The propagator is constructed by the following method. A characterizing
feature of a holomorphic theory on C” is that the kinetic term in the action
involves the 9 operator for some holomorphic bundle. The propagator Py.a
is a regularization of the integral kernel for the distributional operator 0 .
Our choice of regularization starts by fixing the flat metric on C™ and uses
the standard heat kernel regularization of the inverse Laplacian A~!. We then

use the formal distributional equation 3 ' =3 A1 to define our propagator.
Here @ is the gauge-fixing operator. Details of this construction can be found
in [55, Section 3].

The propagator is a distribution valued in the symmetric square of the
space of fields Sym? (€). The space of fields of any holomorphic theory on C2
is of the form Q%*(C?) @ E, where Ej is some vector space, so we can view
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the propagator as a distributional section of EX E over C? x C2. As such, it
takes the following form

A d _ _ d
1 1 (7 Wi\ w2 _ _
Poca(z,w) :/ dt(?m‘t)d (G (letj) e vl MtH(dzi — dw;)
t=0 j=1 i#]
QCE, (2)

where ¢ is an element of Sym? (Eo) that is specific to the given theory.

The weight Wr(Po<a, I) associated to a graph is evaluated as follows. The
graph I' consists of two types of vertices, univalent ones and non-univalent ones.
The univalent vertices label the input fields. One associated the interaction I to
each internal (i.e., non-univalent) vertex (which necessarily has valency > 3).
One associates the propagator Py, to each internal edge. The weight of the
diagram is obtained from the expression

P®#internal edges ® I®#internal vertices
0<A

by tensor contraction according to the shape of the diagram. If the graph has
v vertices and e edges, this weight is presented as an integral over C?¥ with e
insertions of the propagator Py<a. See [19, Section 2.3.6] for a more detailed
account. See also [55, Section 3] specifically for the construction of weights in
holomorphic theories.

If you unwind these definitions in the case of a simple wheel-shaped Feyn-
man diagram (see Fig.1), with n trivalent vertices, one finds the following
expression for the weight:

I.[Al(a) = / Tr (a(zl) A Pocn(z1,22) A a(z2) A
(z17.,_,zn)6(c2)"

o ANa(zn) A Poca(zn, 21))7

where the propagator Py is computed using the expression from equation 2
above. In the limit as A goes to infinity, the propagator is a kind of inverse to
deg, so this expression can be through of a version of Tr(d;"). Altogether, the
one-loop quantum correction can be seen as encoding a determinant.

2.2.2. One-Loop Anomalies. Now it remains to compute the obstruction to
the one-loop anomaly to the quantum master equation: if this vanishes then
a holomorphic cotangent theory admits a one-loop exact quantization. We
can compute this anomaly in terms of a single Feynman diagram using the
following result.

Theorem 2.13 ([55, Lemmas 4.6 and 4.7]). The one-loop anomaly for a holo-
morphic field theory on C? is given by the weight associated with a wheel Feyn-
man diagram with (d + 1) internal edges, see Fig. 1.

As a consequence, given a holomorphic theory of cotangent type on C¢,
to check that it admits a one-loop exact quantization we only need to verify
the vanishing of a wheel Feynman diagrams with (d + 1) vertices.



5060 C. Elliott et al. Ann. Henri Poincaré

FIGURE 1. An example of a wheel Feynman diagram, i.e., a
one-loop Feynman diagram whose internal edges are arranged
in a closed loop

2.3. Equivariant BV Formalism
Fix a classical BV theory (£,I,w). Let (h,[—,—]y,ds) be a dg Lie algebra.

Recall that Ooc(€)[—1] is equipped with the structure of a dg Lie algebra
with differential dg + {I, —} and bracket {—, —}.

Definition 2.14. A classical (Hamiltonian) action of h on the classical BV the-
ory (£,1,w) is a map of dg Lie algebras

p: b= Owe(E)[-1].

When discussing actions we often drop the word Hamiltonian as we will
only consider this sort of Lie algebra action on a classical field theory in this
paper. Notice that through the BV bracket, any Hamiltonian action defines
an action on the observables

p: b — Owe(&)[=1] =L End(Obs).

Remark 2.15. As in the ordinary (non-equivariant) BV formalism, there is a
sort of master equation that governs Hamiltonian actions. Indeed, p defines an
element

I, € C*(h) ® Otoe(€)[~1] (3)

of cohomological degree 1. The condition that p be a map of dg Lie algebras
is equivalent to the following equivariant classical master equation

1
(dy @ 1)1, + (1 @de)l, +{I,1,} + 5{IP,IP} =0.

The graded vector space appearing in (3) has the natural structure of dg Lie
algebra. The master equation is the Maurer—Cartan equation for this dg Lie
algebra. &

Quantization of equivariant BV theories proceeds along similar lines as
the non-equivariant case. One starts with a (non-equivariant) quantum BV
theory prescribed by some effective collection {I[A]}. Next, one constructs an
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effective collection of functionals that depend both on the fields £ and h and
asks that an appropriate equivariant quantum master equation holds.
The notion of a renormalization group flow is defined for a subspace

O*(h[1] & E)[[A]] C O(b[1] & E)[[A]],

which consists of functionals which are at least cubic modulo /& when restricted
to £ and satisfy mild technical support and smoothness conditions. We refer
to [16, Definition 13.2.1.1] for a precise definition.

With the notion of renormalization group flow in hand it makes sense to
ask for an equivariant collection {I,[A]}a>o which satisfy the renormalization
group equations. We refer to such a set of functionals as an equivariant effective
collection.

Definition 2.16. Let {I[A]} be a quantum BV theory. A quantum action of b
on this theory is an equivariant effective collection

{I,[A]} € 07 (b[1] @ £)/O(b[1))
that satisfies:

(1) the equivariant quantum master equation, which states that
1
Ay I,[A) + dsT[A] + 3 {T,[AL T [A]}n + BANT,[A] = 0. (4)
(2) Under the natural map
Ot (b[1] & E)[[n]] — O (E)[[A]]

given by restricting to functionals just of £, the image of I,[A] is the
original action I[A] defining the non-equivariant theory.
(3) Locality and support conditions.

We refer to [16, Definition 13.2.2.1] for a discussion of the locality and
support conditions which we do not recall here. They are designed in such a
way that modulo /i the A — 0 limit of the functional I,[A] returns a classical
Hamiltonian action.

Remark 2.17. The holomorphic gauge will also apply to this equivariant situ-
ation, so long as the h-action only involves holomorphic differential operators
[34]. The naive effective collection {I,[A]} is constructed in a similar way as
in the non-equivariant theory. One starts with a classical equivariant action I,
and forms the sum over graphs

1,IA] = 3" Wi (Pon. 1),
A
Again, the univalent vertices are labeled by input fields, which can now be
elements of h or £. We assume that the set of univalent vertices labeled by
& is non-empty. The non-univalent vertices are labeled by I,. The edges are
labeled by Py<p, the same as in the non-equivariant case. This is where the
term “background field” method comes from, since we are not treating the Lie
algebra h as a propagating field. <&



5062 C. Elliott et al. Ann. Henri Poincaré

3. Twists of 4d A/ = 4 Super Yang-Mills Theory

3.1. Summary of Twists

Given a classical field theory with an action of the abelian super Lie algebra
I1C, there is a procedure called twisting that modifies the differential, by adding
a generator of the IIC action. One can generate many examples of such actions
by starting with a supersymmetric field theory, i.e., a theory equipped with
an action of a Z/2Z-graded extension of a complexified Poincaré algebra, and
choosing an odd element @ of the algebra such that [Q, Q] = 0 (often referred
to as a “nilpotent supercharge”). We refer to [24,25] for a complete description
of the twisting procedure in the BV formalism, as well as a classification of all
twists of supersymmetric Yang—Mills theories.

In this section, we will first describe the possible twists of 4d N" = 4 super
Yang Mills theory on R?* in terms of the supersymmetry algebra, and then,
we will describe those twists in the language of the classical BV formalism.

Definition 3.1. The N = k supertranslation algebra in four dimensions is the
complex super Lie algebra with underlying super vector space

T,=C'oliWe S, oW*®S_)
where W is a k-dimensional vector space, with a non-trivial Lie bracket
WesS )e (W oS )—C*

inherited from the Spin(4)-equivariant isomorphism S, ® S_ — C* and the
evaluation pairing W @ W* — C.

An odd element @ of 7; can be identified with a pair of maps
Qu:ST =W, Q_:W —5_.

Such an element satisfies Q? = 0 if and only if the composite map Q_ o
Qy: 87 — S_ is zero. We can stratify the moduli space of nilpotent super-
charges by the ranks of the two maps @4 and @ _. In other words, by specifying
a pair of integers (ny,n_) where ny are at most 2.

Remark 3.2. In most cases, there is no difference between two twists of super
Yang—Mills theories associated to supercharges of the same rank, because the
action of the group Spin(4) x SL(W) is transitive on supercharges of a given
rank. There is an exception, however, for rank (2, 2) supercharges in the N’ = 4
supertranslation algebra.

A square-zero rank (2,2) supercharge @ induces a linear isomorphism
St @S- — W. Indeed, any supercharge (Q4+,Q-) € S @ W @& S_ @ W*
induces linear maps S¥ — W and W — S_; being a rank (2,2) square-zero
supercharge is equivalent to the statement that the sequence

0—-8, -W—=S5_-0

is a split short exact sequence.
The SL(4; C)-representation W carries a canonical volume form, as does
the sum S% ® S_, and the Spin(4) x SL(WW)-orbits in the space of square-zero
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correspond to the ratio ¢ between these two volume forms (see [24, Section
4.4]).

One can show that twists of super Yang—Mills theory by supercharges
with ¢ # 1 are all equivalent (“generic” rank (2,2) supercharges), but they
differ from the twist by such a supercharge at the point ¢ = 1 ("special” rank
(2,2) supercharges). <&

Now, let us describe the theories produced by twisting N/ = 4 super
Yang-Mills theory on R* by these classes of supercharge. Let g be a reductive
Lie algebra equipped with a fixed nondegenerate equivariant pairing (that, in
particular, induces a canonical isomorphism between g and g*).

Remark 3.3. When we refer to a family of quantum field theories over an affine
space C", we mean a quantum field theory where the effective interactions are
valued in the ring C[t1, ..., t,], and where all the relevant structures are linear
over this ring. For a detailed definition we refer to [16, Section 7.3]. <&

Let € be a formal variable of degree —1.
Theorem 3.4. ([25, Section 10.3]) There is a three-parameter family of twists
of N' = 4 super Yang—Mills theory on C? that can be described perturbatively
by the Clt1,ta, u]-linear space of fields

_ d
£ = (Q.’. (CZ1 X CZ279[1] S3) 59[2})[t17t27u} ) 0+ t1822 + t2822 + udE) .

We will write a general field as o+ €3, where
a € Q**(C%g[l]) and BeQ%*(C?eg[2)).

The interaction is
1
Ia,8) = [ 6 laal

where the bracket is encoded by the wedge product of differential forms and the
Lie bracket on g.

Notice that the interaction I is independent of the parameters, the only
dependence on the parameters u, t1, ts is in dg. In the terminology of Sect. 2.1,
we have a family of generalized Chern—Simons theories valued in the Hodge
Lie algebra g, moq associated to g.

We can match up subspaces of this three-dimensional family of twists
with the classes of nilpotent supercharges discussed above (see [25, Section
10.3]).

e The point (0,0,0) is a holomorphic twist, obtained from a supercharge
of rank (1,0). It is a holomorphic BF theory.

e Points of the form (¢1,0,0) or (0,t2,0) with ¢; # 0 are obtained from
supercharges of rank (1, 1). These twists are holomorphic in one complex
direction, and topological in the other. They are often referred to as
Kapustin twists [39].

e Points of the form (¢1,¢2,0) with both ¢; and t2 # 0 are obtained from
special rank (2,2) supercharges, as in Remark 3.2.



5064 C. Elliott et al. Ann. Henri Poincaré

e Points of the form (0,0,u) with u # 0 are topological twists obtained
from supercharges of rank (2,0).

e Points of the form (¢1,0,u) or (0,ts,u) with both ¢; and u # 0 are topo-
logical twists obtained from supercharges of rank (2, 1).

e Points of the form (t1,¢2,u) with all three coordinates non-zero are topo-
logical twists obtained from generic supercharges of rank (2,2). These
twists occur in the quantum geometric Langlands conjecture at generic
values of the level.

There is the two-dimensional family &£,—q that we refer to as the family
of “B-type” twists of NV = 4 super Yang—Mills theory. We refer to subfamilies
with u # 0 as “A-type” twists.

Remark 3.5. Kapustin and Witten [41] study a CP'-family of topological twists
of 4d N' = 4 super Yang—Mills theory, and the behavior of this family of topo-
logical theories under electric-magnetic duality. One can obtain these CP'-
families from the three parameter family of twists discussed here by first pass-
ing from C? to CP? = (C3 \ {0})/C*, and then restricting along an appro-
priate embedded projective line i: CP* — CP?. The appropriate embeddings
i are given by quadratic functions (see [28, Section 3.4] for details on how this
comparison works). <&

Remark 3.6. We use the terminology of A- and B-type twists following Ka-
pustin and Witten. After constructing their CP' family of topological twists,
they obtain a family of two-dimensional topological field theories by dimen-
sionally reducing along a curve C'. This reduction produces a family of twists
of an N = (2,2) supersymmetric sigma model whose target is the Hitchin
system Higgs(C'). These twists are either A-models (so that the category of
boundary conditions is modeled by a category of twisted D-modules), or B-
models (so that the category of boundary conditions is modeled by a category
of coherent sheaves). <&

Remark 3.7. All twists of N' = 4 super Yang-Mills theory occur in families of
this type. If one fixes a holomorphic supercharge Q.1, the space of nilpotent
supercharges commuting with Q1) is three-dimensional. One does need to take
care, however: the identification between such a space of supercharges and the
space of deformations of the holomorphic twist is nonlinear. See [28] for further
details. <&

3.2. Anomaly Vanishing
In this section, we will establish the following theorem.
Theorem 3.8. The three-parameter family of classical field theories of Theo-

rem 3.4 admits a one-loop exact quantization to a three-parameter family of
quantum field theories on R*.

In other words, we will construct a C[ty, ta, u]-linear solution to the quan-
tum master equation whose A — 0 limit agrees with the classical family of
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FIGURE 2. The space C? of square zero supercharges that
we are considering. The vertical plane is the two-dimensional
space of B-type twists. The diagonal plane indicates the two-
dimensional subspace of supercharge compatible with the
SO(4) Kapustin—Witten twisting homomorphism

Theorem 3.4. We will do this using the method discussed in Sect. 2.2 because
the family &€ consists of holomorphic theories.
We will proceed in two steps.

(1) First, we argue that the theory &y oo over the special point u = t1 =t =
0 admits a one-loop exact quantization.

(2) We show that this quantization extends Clty, ta, u]-linearly to a quanti-
zation over the three-dimensional family of theories.

The quantum corrections that we will construct will, rather remarkably, be
constant over the three dimensional space (C?llt%u of twisting parameters. In
other words, the effective collection {I[A]} of interactions will be independent
of the parameters tq,t> and wu.

Remark 3.9. In fact, if g is semisimple, then the family of quantizations that
we construct is uniquely characterized by the fact that, for points of the form
(t1,t2,0) € C3, the quantization preserves the cotangent structure, in the
sense that the effective interactions I[A] only involves the « fields. One can
show this by a computation involving the obstruction-deformation complexes
of the twisted theories.

Let us begin by discussing the obstruction-deformation complex of the
B-twisted theory &1.1,0 (a similar computation will apply for any theory &, +,0
with ¢; and ¢3 both non-zero). Using [16, Lemma 3.5.4.1] we can see that the
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obstruction-deformation complex takes the form
C;ed,loc(glyl’o) =Q° (R4; ;ed(g[g]))[4]
= Cea(@, Sym® (g7[—2]))[4].
In particular, HC (£1.1,0) can be identified with H*(g)®(H° (g)®Sym?(g*)9),

red,loc
which is one-dimensional if g is semisimple. Restricting to quantizations com-
patible with the cotangent structure is equivalent to taking C*-invariants of
this complex, where C* acts on € with weight one. When we take these in-
variants, the resulting cohomology group is trivial. So the quantization of the
theory &1 0 (and a fortiori the quantization of the full family £ of theories) is
unique.!

One can also calculate the obstruction-deformation complex of the holo-
morphically twisted theory & 0,0. This was discussed by Costello in [20, The-
orem 21.0.3], where the part of the obstruction-deformation complex of the
holomorphic twist consisting of functionals invariant for the action of a certain
group of symmetries (namely (C* x C?) x GL(2; C), where the first factor acts
on spacetime, and the latter factor acts by R-symmetries) was calculated. <

3.2.1. The Holomorphic Twist. We will begin by establishing the existence of
the quantization for a large class of holomorphic theories. Consider holomor-
phic BF theory on C?, whose space of fields is

(A, B) € QY*(C? L[1]) ® Q**(C* LY)

where L is now a general graded Lie algebra. The action functional of the
theory is [ B A Fa where Fq = 0A + %[A A A]. If L is equipped with a
degree 0 invariant pairing (for instance if L = g is a semisimple Lie algebra),
then the standard Calabi-Yau form on C? identifies the space of fields with
Qe (C?, T1)(L])).

Remark 8.10. We can recover &y by letting L = gle1, e2], where g; are pa-
rameters of degree 1. These parameters are distinct from the odd parameter
we called € in Theorem 3.4 and correspond to the holomorphic one-forms dz;.
That is, in the notation of Theorem 3.4, we have the following relationship
among the fields. Expand the field A € Q%*(C?, g[e1,2][1]) in BF theory as

A=Ay +eA; +e1e2410.
Then, the corresponding field in &g, is
o = AO + dzlAl -+ ledZQAlQ.

A similar relationship holds between the fields 5 and B.

In fact, one can check that holomorphic twists of N'= 1 and N/ = 2 super
Yang—Mills theories in dimension 4 are also theories of this type (for L = g
and L = g[e], respectively), and so the result below will also reply to twisted
theories of this more general class. <&

1The deformation that we’ve realized here that breaks the cotangent structure appears in
our story too, it is the deformation of the B-twisted theory £1,1,0 to an A-twisted theory
E1,1u-
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For any graded Lie algebra L, the holomorphic gauge of Sect.2.2.1 de-
termines an effective collection of interactions {I7,[A]} for the holomorphic BF
theory. Since BF theory is of cotangent type, for each A the coefficient of A",
for n > 2, in the functional Iy [A] is zero. So it admits a decomposition as

IL[A] = I [A] + rI V(A

Here 11 is a sum over trees > trees « Iv[A] and ItY[A] is a sum over graphs
with a single loop.

Proposition 3.11. Let § be an odd parameter of degree 1 and suppose that
L = L'[6] for some graded Lie algebra L'. The effective collection {Ir[A]}
satisfies the quantum master equation.

The assumption implies that the classifying space BL, the formal moduli
problem associated with the L., algebra L, can be identified with the formal
moduli problem T'[+1]BL'.

Proof. The order h° component of the quantum master equation is equivalent
to the classical master equation, so we focus our attention to the order A!
component. We will show that the obstruction to solving the one-loop quantum
master equation

Ol = nanIA + (QIPW 4 PN EY) o)

satisfies limp_,o O[L] = 0.
We apply [43, Theorem C.5] to show that the obstruction vanishes. Since
A.I =0 for any € > 0, it follows that the A — 0 limit of the obstruction is
lim ©1[A] = lim lim Y Wae(Peen, Ko, 1.

A—0e—0
wheel I edge e

We analyze the weight Wy (Pe<a, K, I) where e is a fixed edge in a
wheel 4 with v vertices. The weight is product of an analytic and an algebraic
piece

Wm7e(Ps<A; K., I) = wi?e (ps<A7 ke, I) wilg(kalg’ Ialg). (6)

Notice that the algebraic weight does not depend on the distinguished edge e.
We will show that w8 (k2le, [818) is identically zero.

The algebraic factor k28 of both the propagator P.., and the heat kernel
K. is given by the element in Sym?(L*) corresponding to the choice of invariant
pairing on L. When one contracts the factors of (k*9)®? thus computing the
algebraic weight of the graph, what results is an invariant polynomial for the
Lie algebra L.

Recall we are in the situation that L = L’[] where ¢ is a parameter
of degree £1. If we assign weight 1 to J, then it is clear that the classical
action is weight —1 and the propagator is weight 1. Thus, the weight of any
wheel representing the anomaly is weight zero. In particular, it suffices to show
that the invariant polynomial w8 (k*8, [#12) vanishes when restricted to the
subalgebra L' C L'[4].
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Up to scale, the invariant polynomial w8 (k¥8, [218) sends X € L’ to
Trr,(X?), where we mean the trace in the adjoint representation. But, as L'-
modules, we have L = L'[0] = L' & L'[+1]. Thus, for every element Y € L',
the trace is zero Trp(Y) = Trp/ (V) — Trp (Y) = 0. O

This computation has the following consequence for our holomorphic the-
ory in the case L' = g[e1] and § = eq, where g is an ordinary Lie algebra.

Corollary 3.12. The effective collection {I[A]} = {Ig[, c,)[A]} of Proposition
3.11 is a solution to the quantum master equation for the theory £y .0

We note that this fact did not require us to know anything about the
analytic form of the factor in the obstruction. This result is discussed in [53,
Proof of Proposition 7.7] and in [34, Proposition 6.5].

3.2.2. Extending to the Family of Twists. Let us now consider the quantiza-
tion of our three-dimensional family of theories £. We do it by leveraging the
quantization of the purely holomorphic theory of the previous section.

The effective collection {I[A]} for the holomorphic theory & 0,0 was con-
structed using the Cle]-linear extension of the 9 operator acting on de Rham
forms. We observe that this 8" operator commutes with the Clt1, 2, u]-linear
operator

0 0 d

t10;, + 120, —l—u&

In particular, the effective collection {I[L]} constructed in the previous sec-

tion extends to an effective collection for the Clty, ta, u]-linear family £. This

implies that the propagator P.., constructed from 9" is constant over the en-

tire three-parameter family. Thus, the effective action I[A], constructed in the

same way as in the purely holomorphic theory, is also constant over the entire

three-parameter family. It remains to see that this effective action satisfies the
C[t1, t2,u]-linear quantum master equation.

Proposition 3.13. The effective collection {I[A]} of Corollary 3.12 is a solution
to the quantum master equation for the C[ty,ta, u]-family of theories & on C2.

Proof. The obstruction to solving the Clty, t2, u]-linear quantum master equa-
tion is very similar to the obstruction to solving the quantum master equation
for the purely holomorphic theory. The obstruction is given by the formula:

OucalA] = nanTOA] + Q1A+ L) 1A}

+ (102, + t20., + udz) IV[A]. (7)

We will show that lima_.o ©[L] = 0.

The A — 0 limit of the first two terms in the above equation vanish by
the same argument as in the proof of Proposition 3.11. It remains to show
that

lim (410, + 120, + ud:) IMIA] = 0. (8)
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This result is deduced from a fact about wheel diagrams, just as in the proof
of Proposition 3.11.

We apply [43, Theorem C.5], which gives the following formula for the
one-loop effective action:

IO = 373" 3" Wy (Peca, I Wi(Peca, 1))
trees vy vEy wheel 1
We focus our attention just on the piece Wi(P.<a,I) where I is a wheel
diagram. It is enough to show that the A — 0 limit of this term vanishes for
all wheel diagrams.
Suppose 3 is a wheel with v vertices. The weight W (P.<a,I) can be
decomposed as a product of an analytic and algebraic factor as

Wae(Pean, 1) = wi (pean, I) wile (K8, 1712),

We crucially observe that the dependence of this weight on the values of t;
and ty occur entirely in the analytic factor p.a of the propagator. Both k&
and I%!# are independent of ¢; and to. Therefore the factor w28 (k& 1318) is
the same algebraic weight as in Eq. (6). We showed above this algebraic weight
vanishes. It follows that Eq. (8) holds. O

3.2.3. A-Type Twists. In this section, we provide a more extended discussion
that is specific to the subfamily of twists with v # 0—the family of A-type
twists as defined in Remark 3.6.

Remark 3.14. Note that the classical BV complexes of A-type twist are all
contractible. In other words, these theories are uninteresting when viewed as
perturbative field theories in isolation (as opposed to as part of the full three-
dimensional family of theories). These A-type theories, however, do have in-
teresting structure when one considers aspects other than the perturbative
classical field theory, such as their global moduli spaces of solutions (as dis-
cussed in [26,28]). <&

Over this locus the family of classical theories is no longer of cotangent
type, so cannot be presented in the form T*[—1]M. In particular, there is no
a priori guarantee of the existence of a one-loop exact collection of effective
actions. There is a potential contribution coming from diagrams with more
than one loop.

However, we have shown in Proposition 3.13 that the effective collection
{I[A]} produced via the holomorphic gauge fixing operator does produce a
one-loop exact quantization over the entire family, in particular we obtain a
quantization over the locus of A-type twists. In other words, Feynman dia-
grams with more than one loop do not contribute to the quantization even
when u # 0.

While this result may appear surprising at first, to see why it is true
we need only note that both the classical interaction I and the propagator
P._, are independent of the parameters ¢1,t2 and u. Indeed, the heat kernel,
and hence the propagator, are defined using the commutator [5*,5 + t10,, +
t20,, + u%], which is independent of the three parameters. Therefore, the
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weight W (P.<a, I) is constant across the family. In particular it vanishes if T’
has more than one loop.

An alternative argument, which applies to deformations of BF theories
more generally, may offer insight as well. Let us view an A-twist as deforming
the interaction by a quadratic term IA(a, 3). We can argue directly that such
deformations are trivial.

Lemma 3.15. Fiz a holomorphic BF theory on C", and let I denote a qua-
dratic deformation of the classical interaction involving no spacetime deriva-
tives. The weight of all Feynman diagrams with at least one loop involving the
bivalent vertex associated with It vanishes identically.

Our result then follows by applying this lemma to the theory £,— on C?
with I4 = I/! for some nonzero choice of w.

Proof. Consider any Feynman diagram I' including the bivalent vertex asso-
ciated to I#, say with k + 1 vertices. Let us say that this bivalent vertex is
located at w € C", and the remaining vertices are located at zi,...,z;. The
weight of this Feynman diagram is given by a limit of expressions of the form

WEA = / / (/ 0, K-(z1 —w) A O, K. (w — 25)dun
[, ATk Jkn C

"'d’wn>F(21,...,Zk)dtl,...,dthrl,

..... z

where F(z1,...,2) is some t; dependent differential form that is, crucially,
independent of the location w of the A-type bivalent vertex. It is enough to
note that the factor [., 0, K.(z, — w)d,, K. (w — z3)dw; - - - dw, vanishes for
all values of z1, 2. Induéed, if A and B are Dolbeault forms we can always
calculate

9 AND Bdw, ---dw, = | 0(xA) Ad(+B)dw; - - - dw,
Cn Ccn

= / d(xA) Ad(*B A dwy - - - dwy,)

0

using integration by parts. Therefore, the weight of the Feynman diagram I’
vanishes identically.

The only remaining possibility is that all the A-type bivalent vertices are
only connected to one propagator, i.e., that they directly connect to exter-
nal edges. Any such diagram must have at most one loop and therefore has
vanishing weight by [55, Proposition 4.4]. O

4. Perturbation Theory Around a Vacuum

So far we have discussed these field theories when expanded around a special
solution to the equations of motion: the trivial solution aka the zero section.
At the classical level, the local L, algebras we have introduced describe the
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FIGURE 3. An illustration of the space C* x [g*/G] parame-
terizing the choice of a pair (Q, [z]), where @ is a square-zero
supercharge and [z] is a choice of vacuum

formal neighborhood of this solution, and we have produced perturbative quan-
tizations around this solution. There are, however, other important solutions
to consider—namely, translation-invariant solutions—and here we will show
that our results extend easily to this class of solutions. We will also discuss
phenomena like symmetry breaking for these twisted theories.

The main outcome of this section is the following construction.

Theorem 4.1. The family of quantum field theories over C> constructed in the
previous section extend to a family of quantum field theories over the stack
C? x [g*/G], where [g*/G] is the coadjoint quotient stack.

Here the incorporation of the g* factor corresponds to computing the
perturbation theory around a nonzero vacuum solution for any given twisted
theory. The subfamily over C* x {0} recovers the family of quantum field
theories constructed in the previous section.

Remark 4.2. Let us clarify what is meant by a family over [g*/G]. We simply
mean a family of theories over the affine space g* equipped with an action of
G that is equivariant for the map down to the base. This equivariant family of
theories over g* thus determines a family of theories over the quotient stack. <

Below we will first discuss what we mean by vacua, describe the associated
family of classical theories, and then describe the quantization.

4.1. Moduli of Vacua

4.1.1. First Steps Toward Vacua. In this section, we will review the idea of
the moduli space of vacua for a classical field theory, and what it means to
consider not just a single perturbative field theory, but a family of perturbative
field theories parameterized by a choice of vacuum. This section will provide
motivation for the constructions we describe in the subsequent sections, where
we demonstrate that the twisted field theories studied above can be generalized
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to families of perturbative field theories depending on an auxiliary space, the
coadjoint quotient stack [g*/G].

Remark 4.3. (Proviso on the role of derived geometry) We will use the lan-
guage of derived algebraic geometry in order to motivate the constructions
that appear in this section, however the constructions that we ultimately pro-
duce can be described in a much more elementary fashion: as complex analytic
families of quantum field theories over complex vector spaces V' that are equi-
variant for the action of a complex algebraic group G, that therefore descend
to the quotient stack [V/G]. <&

Let us begin by recalling the idea of a vacuum solution.

Definition 4.4 The (classical) moduli stack of vacua. of a classical field theory
on R”™ is the derived stack of translation-invariant solutions to the equations
of motion.

Remark 4.5. Note that in order to study such moduli spaces rigorously, we
must work with the nonperturbative classical field theory, rather than studying
the perturbative expansion around a fixed solution. A completely rigorous
discussion would require us to formulate a derived moduli space of solutions,
among which we would pick out the translation-invariant sublocus. As yet,
no adequate treatment of field theory using global derived differential super-
geometry is yet available to do this. &

Remark 4.6. In Remark 4.16, we turn to the vacua of the untwisted theory, in
light of our discussion of the vacua for the twisted theories. <&

In the case of the B-twisted theory (that is, the twist occuring at the
point (1,1,0) € C?), there is a natural derived stack that will parametrize a
family of perturbative field theories.

Definition 4.7. For a complex algebraic surface X, let
Mp(X) = Map(Xar, T"[3| BG).

Remark 4.8. The B-twist should make sense on general smooth 4-manifolds,
not only on complex surfaces. It should be possible to define Mp(X) more
generally in an appropriate model for derived differential geometry. In the
present paper, it will suffice to work with the case where X is just isomorphic
to R* (which we may also view as C?). <&

If X =R* = C? then
Mp(R*) = T*[3]BG
= [g*[2]/G],

the (—2-shifted) coadjoint quotient stack. The group R* of translations acts
trivially on this stack, so the moduli of vacua is also equivalent to [g*[2]/G].
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Remark 4.9. We will treat Mp(R*) as the moduli stack of vacua of the B-
twisted theory. Although we will not rigorously justify this nonperturbative
description of the twisted theories, we do refer to a related discussion in [26],
where descriptions of this type are derived from the starting point of a non-
perturbative description for holomorphic Chern—Simons theory on N = 4 su-
per twistor space. O

Remark 4.10. To further orient the reader, we offer some interpretation of
the space Mp(X) in terms of more familiar objects from gauge theory—flat
G-bundles. Recall that Map(Xar, BG) = Flatg(X), the moduli stack of flat
G-bundles on X [49]. Recall also that if Z is a compact manifold of dimension
n then

Map(Zar, T*[k]Y) =2 T [k — n]Map(Zggr,Y).
Thus,
Mp(X) =T*[-1]Flatg(X)
whenever X is compact. <&

Let us now begin to work in a slightly different context: for the rest of
this section we will work with a Z/2Z-grading, not a Z-grading. That is, we
will forget the Z-grading on our BV complexes down to a Z/2Z-grading.

Remark 4.11. After reducing the grading, we gain the freedom to study per-
turbation theory around nonzero points in the moduli of vacua, which would
otherwise have corresponded to inhomogeneous (but purely even) ideals in its
ring of functions. At least in the example of the B-twisted theory, it is possible
to recover a Z-graded story at the expense of introducing some more techni-
cal modifications, which we will not be concerned with in this paper. See [27,
Section 3.4] for a discussion of this issue. <

The discussion of Definition 4.7 motivates the following definition.

Definition 4.12. For the B-twisted theory with gauge group given by a reduc-
tive algebraic group G, the (stacky) moduli of vacua is the coadjoint quotient
stack [g*/G]. Its coarse moduli of vacua is the quotient space h*/W arising
from the action of the Weyl group W on the dual space h* to the Cartan
subalgebra b of g.

It is worthwhile to note how these two moduli differ. The stack is a rather
sophisticated approach that keeps track of a lot of information, such as the
isotropy group (or stabilizer) of a point = € g*. The coarse space shows up when
one constructs a quotient via the ring of functions, because the G-invariant
functions on g* are isomorphic to the W-invariant functions on h*. In the
setting of algebraic geometry, this result is known as the Chevalley restriction
theorem [17]; one says that the affine variety h*/W is the affinization of the
algebraic stack [g*/G]. There is a canonical map [g*/G] — h* /W, sending a
conjugacy class to its “generalized eigenvalues” (or better, its characteristic
polynomial).
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This simpler quotient space forcibly identifies distinct solutions and hence
is merely a coarse approximation. To see this, consider the case G = GL,,(C),
and let us use a nondegenerate invariant pairing on g to identify g* and g.
The quotient h/W arises by looking at diagonal matrices up to permutation of
eigenvalues (e.g., by taking the characteristic polynomial or by taking traces
of powers of the matrix). But not every matrix in g is conjugate to a diagonal
matrix, as we know from the theory of Jordan normal form. Hence the map
[6*/G] — b*/W remembers the generalized eigenvalues of a matrix (up to
permutation) but does not remember the Jordan blocks.

Remark 4.13. Physicists often describe constructions involving coarse moduli
of vacua such as h*/W, but mention where various points have “enhanced
symmetry” (see, e.g., [44,51]). The stacky quotient captures this enhanced
symmetry data in a mathematically precise way. <&

4.1.2. Vacua for Other Twists. Now, what happens when we try to generalize
this discussion from the B-twist to the other twisted theories? Let us next con-
sider the holomorphic twist. We can make a natural (and again, not rigorously
justified) guess for a non-perturbative description for the holomorphic twist,
much like we did for the B-twist.

Claim 4.14. The moduli stack of solutions to the equations of motion for the

holomorphically twisted theory on a complex surface X is My (X) = Map

(Xpol, T*[3]|BG). In particular, if X is compact, Muq(X) = T*[-1]

Higgs (X)), where Higgs(X) is the moduli stack of G-Higgs bundles on X.
If X = C2, then we can similarly identify

Mol (C?) = T*[3] Higgs(C?).

The group R* of translations now acts non-trivially on M1 (C?), but we
can easily pick out a substack of translation invariant solutions, namely the
stack [g*[2]/G] = T*[3]BG, where we consider only the trivial Higgs bundle
with zero Higgs field, modulo translation invariant gauge transformations. This
space is not the full moduli of vacua; for instance, we could consider the
shifted cotangent space to all constant Higgs fields, not necessarily zero-valued.
However, only this substack of zero Higgs fields extends to vacua for the B-
type twists. We will thus focus on those vacua that extend to the whole space
of twists, in a certain sense to be explained.

In fact, we will exhibit a family of theories where we vary two parameters:

(1) first, the choice of twisting parameter Q € C?, and

(2) second, a point = € [g*/G].
We have seen why [g*/G| parametrizes vacua for the B-type twists, but the
situation for the A-type twists is more subtle. We will not construct the moduli
of vacua for the A-type twists, for reasons discussed in the next Remark, but
we will produce an A-type theory for each x € g* below.

Remark 4.15. The moduli of vacua for these theories have the potential to
include new and interesting additional features. The moduli stack we have
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been considering for the holomorphic twist can alternatively be described using
Simpson’s notion of the Dolbeault stack: we have a shifted adjoint quotient
stack

BGpo = T[]BG = [g[2]/G],

where BG = [pt /G|. Hence, in the Z/2Z-graded setting, the adjoint quotient
stack is isomorphic to IIT(BG)—the parity-shifted tangent bundle to BG—
and hence it is a Dolbeault stack as

[9/G] = BGpol.-

This identification is convenient for us, but moving to the Z/2Z-graded world
drastically changes the geometry: as a Z/2Z-graded space, there are many
points in BGpe (i.e., maps from pt = Spec(C)), while in Z-graded derived
geometry, there is only one point in BGpg.

Passing to the A-twist should correspond in the Z/2Z-graded setting to
Simpson’s Hodge deformation, moving from the Dolbeault to the de Rham
stack of BG. It would be interesting to perform a careful analysis of this
construction, but we will not do this in the present paper. &

Remark 4.16. Finally, we turn to vacua for the original, untwisted theory. A
priori one might expect the moduli of vacua here to be even larger than that
of the holomorphic twist. Such vacua are discussed by Vafa and Witten in
[54, Section 5.1], where the moduli of vacua for the untwisted A/ = 4 theory
(without turning on a mass deformation) is described as

{X,Y.Zeg® [X,Y]=[Y,Z] = [2,X]=0}/G],

the adjoint quotient of the triply commuting variety of g. There is a natural
embedding of [g*/G] into this quotient stack using the diagonal map g — g3
and identifying g* and g using a non-degenerate invariant pairing. &

4.2. Families of Classical Field Theories over [g*/G]

We turn to an important feature of the moduli of vacua: it parametrizes a fam-
ily of perturbative classical field theories, by remembering the formal neigh-
borhood of the vacua inside the space of all solutions. We will describe a sheaf
of local Lo, algebras over [g*/G] that encodes this information.

4.2.1. The Holomorphic Twist and the Higgs Mechanism. For simplicity of
notation, we continue to use a nondegenerate invariant pairing on g to identify
g" with g, and we will freely pass between them below. Concretely, if we pick
an element z € g, it determines a translation-invariant solution (9, z) to the
equations of motion for holomorphic BF theory. There is a local L., algebra
on C? given by
(Q**(C*) ® gle][1], 0 + e[z, )

where gle] is the tensor product of g with Cle] with |¢| = —1. The Maurer—
Cartan equation encodes the perturbation expansion of holomorphic BF the-

ory around this solution, as can be quickly checked. This construction clearly
varies nicely in the choice of = € g, so that we get a bundle of local L.,
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algebras (equivalently, perturbative classical field theories), as only the [—];
bracket varies. It is straightforward to verify that this bundle is equivariant
under conjugation, so that this bundle on g* descends to a bundle on the
quotient [g*/G].

Lemma 4.17. For each complex reductive group G, this construction produces a
family Ty'5%[G] over the moduli of vacua [g* /G of (Z/2Z-graded) perturbative
classical field theories on C2.

We assert that this family should encode the formal neighborhood of
the translation-invariant subspace [g*/G] sitting inside the moduli space of
solutions.

This family has some lovely and intriguing features, called the symmetry
breaking phenomenon or Higgs mechanism by physicists. The idea is quite
simple: there is an equivalence of the perturbative theory around a translation-
invariant solution z € g with a different perturbative theory. In our case, for
each point z, there is an isotropy (or stabilizer) group G, C G fixing = under
conjugation, and the perturbative expansion of the G-BF theory around z
agrees with the perturbative expansion for the G,-BF theory around 0. Let us
say this more precisely.

Lemma 4.18. There is an equivalence of perturbative theories

T55%[G], = To5%[Gall,

between the perturbative theory over a vacuum x for gauge group G, and the
perturbative theory over the vacuum 0 for gauge group given by the central-
1zer Gy.

Proof. Consider the inclusion of complexes
(Q**(C*) ® go[e][1],0) — (2**(C*) ® gle][1], 0 + ez, ),

which provides, in fact, a quasi-isomorphism of local L, algebras. Indeed, it
is enough to show that the complex Ilg 2y, g is canonically isomorphic to
the direct sum of the acyclic complex IIg:- ade, im(ad,) and the complex

0
g, — g

The inclusion of Ig+ into g, can be postcomposed with ad,, and the
image is clearly the whole image of ad,. Hence the inclusion of the acyclic
complex into T,[g/G] (or rather, our representing complex) is manifest.

We also know that IIg = IIg, ®IIg;, so it remains only to give a canonical
isomorphism between the even component g and the direct sum im(ad,) ® g.
In other words, we need to give a canonical isomorphism between im(ad, )"
and g,. The key fact is that for any elements a,b € g,

k(a, [x,b]) = k([a, z],b) = —&([z, a], b);
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in other words, ad, is skew self-adjoint for the pairing k. Thanks to this fact,
we see that

y € im(ad,)™ <= k(y,ad,z) =0Vz € g
<— k(adyy,z) =0Vzeg
<= ad,y =0.

That is, g, = im(ad, ). O

In the sense of Lemma 4.18, the symmetry group (i.e., the gauge group)
has “broken” from G to G,. For instance, for G = GL,,(C) and = a diagonal
matrix with distinct eigenvalues, the stabilizer is the torus (C*)™, so that we
have broken from a nonabelian gauge theory down to an abelian gauge theory.
(For further discussion of symmetry breaking in this style, see [23].)

Remark 4.19. The symmetry breaking lemma implies that in fact, the theory
over any vacuum [z] € [g*/G] can be lifted from a Z/2Z-graded theory to a
Z-graded theory. These lifted theories will not vary smoothly in the [g*/G]-
family, they only exist when considering each point (or each stratum, where
we stratify [g*/G] by conjugacy classes of the centralizers. O

4.2.2. The B Twists. We can immediately generalize this discussion—of the
existence of a family of theories, as well as of symmetry breaking—from the
holomorphic twist to the B-twist by replacing 0 everywhere with the twisted
differential 0 + t10,, + t20.,. In particular, we have the following.

Lemma 4.20. This construction produces a family T, o over [g*/G] x C7, ,,
of (Z.)2Z-graded) perturbative classical field theories on R*. Moreover, at a
point x € g, there is an equivalence

7% oG], = T, olCull

of perturbative theories.

4.2.3. The A Twists. We can extend our family of theories depending on a
choice of point in the moduli of vacua to the full 3-dimensional family of
twisted theories. We can motivate the following construction by considering
the orthogonal decomposition g = g, @ g+ associated with a chosen invariant
nondegenerate pairing. Recall from our argument for Lemma 4.18 that the
operator ead, restricts to an isomorphism from g to egi. The operators
ead, and u% idg clearly do not commute if u is non-zero, but if we restrict the
latter term to the identity on the centralizer subalgebra g,., then the operators
ead, and u% idg, do commute. Therefore, we can extend our family of theories
to all of C3 x [g*/G] in the following manner.

Definition 4.21. Let 7,27 , denote the family over [g*/G] of perturbative clas-

ty,t2,u

sical field theories on R* where the fiber at a point z € g* is encoded by

<Q.".((C2) ® g[g‘][l],g + tlazl + t28zz + Sad$ + u% ldgm) )
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It is straightforward to see that at a point « € g, there is an equivalence
T alGll, = TG

of perturbative theories.

As we discussed in Remark 4.15, it would be interesting to realize a family
of theories of this type in terms of perturbation theory over the image of a map
[07/G] — My, where M 4 is the moduli stack of solutions to the equations of
motion in our A-twisted theory, viewed in Z/2Z-graded derived geometry. We
do not have such a derivation of this family of theories at present.

x

4.3. Families of Quantum Field Theories over [g*/G]

The classical moduli of vacua parametrizes a family of perturbative classical
field theories, so it is natural to ask whether we can quantize this family. We
will see that we can, using precisely the techniques that let us quantize the
theory at the origin of the coadjoint quotient [g*/G]. (The origin is given by
the “trivial” solution (3,0).)

Remark 4.22. As we will see in Sect. 6.1, this quantization gives rise to a family
of E4-stacks quantizing the odd symplectic structure on the coadjoint quotient
stack [g*/G] = TIT*BG. <&

The key observation is that at every point ((t1,t2,u),[z]) € C3 x [g*/G],
the perturbative classical theory is a deformation of the theory at (0, [0]) where
only the first-order bracket is changed: we add to 0 the operator

0 .
tlazl + t2822 + E[fﬂ, —} + U§ ldgz .

(Equivalently, one can say that we have only changed the quadratic term of the
action functional.) Hence, the perturbative quantization exhibits very similar
behavior to what we saw when x = 0; the only change is that the bivalent
vertices are slightly altered.

Theorem 4.23. The family T, ., of Z/2Z-graded classical field theories over

t1,ta,u
C? x [g*/G] admits a one-loop exact quantization.

Proof. Let us begin by verifying that there is no anomaly for the quantization
of our family of theories over C3 x g*. This follows from a similar argument as in
Proposition 3.13. The gauge fixing operator 0" commutes with the deformation
e[z, —] for any = € g*. Therefore, the effective action I[A] is independent of
the value of x. To show that I[A] solves the quantum master equation as a
family of effective actions over C3 x g* it suffices to show that [z, I[A]] = 0 for
all z € g* and A > 0. This follows from an identical argument to the one we
used to prove Equation (8).

Now, we must argue that the classical coadjoint action of G extends to
the quantum level. We have already seen that the linear differential

— 0
0+ 1t10,, +120., +cad, + ug idg,

descends to the coadjoint quotient. It remains to see that the effective action
I[A] also descends. But, since the propagator and the classical action functional
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are both strictly G-invariant, so is the effective action I[A] for each A > 0, since
the effective action is constructed as a function of the classical action and the
propagator. ]

5. Framing Anomaly
5.1. Homotopically Trivial G-Actions

In this subsection, we will discuss what it means for a Lie group G to act
homotopically trivially on a quantum field theory. Our main example will in-
volve theories on R™ with a homotopically trivial action of the group ISO(n) =
SO(n) x R™ of isometries of R™. As we will see, the presence of such an action
allows us to realize the factorization algebra of local observables in the theory
as a framed E,, algebra.

Let us start by discussing the concept of a homotopy trivialization of a
g-action.

Definition 5.1. Let g be a Lie algebra. Write gqr for the dg Lie algebra whose
underlying graded vector space is g[1]@g, with differential given by the identity
map g[1] — g (so that the resulting cochain complex is contractible), and with
bracket given by the Lie bracket on g and the adjoint action of g on g[1]. We
write elements of gqr as pairs (X, X) with X € g in degree zero and X € g[1]
in degree —1.

Because gqgr is contractible, actions of such dg Lie algebras on classical
and quantum field theories are not, in and of themselves, very interesting.
There is however a non-trivial notion that we can consider.

Definition 5.2. Suppose the Lie algebra g is a symmetry of a field theory on
a manifold M, meaning g acts by derivations on the observables Obs(M). A
homotopy trivialization of the g action is a gqr-action on Obs(M) that restricts
to the original g-action along the inclusion g — gq4r.

5.2. Framing Anomaly Vanishing

We will now apply these general ideas to the specific theories we have been
studying in this paper: twists of A' = 4 supersymmetric Yang—Mills theory on
R%. Specifically, let us consider the B-twisted theory &1 1,9 from Sect.3.2.2. In
this section, we will prove that this theory carries a de Rham action of ISO(4)
when the gauge group G is reductive (in fact it will be sufficient for G to be
unimodular).

Theorem 5.3. The quantization of the classical BV theory €11, carries a ho-
motopy trivialization of the action of the group ISO(4) of isometries of R*.

Remark 5.4. If we consider a more general B-type theory in our family, say
&ty 45,0, our proof will apply to a subgroup of the full group of isometries. If
t1 # to are both nonzero, then the quantum field theory will admit a homotopy
trivialized action of the group (SO(2) x SO(2)) x R*. If ¢, # 0 but t5 = 0 (the
situation of the “Kapustin twist”), then the quantum field theory will admit a
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homotopy trivialized action of the group SO(2) x R2. In both cases, there is no
obstruction to the existence of this action: the relevant anomaly vanishes. <

Remark 5.5. It is worth noting that the action of the group SO(4) of rotations
on our family of theories does not come from the action of rotations on the
untwisted N' = 4 gauge theory. At the level of complexified Lie algebras we can
obtain a “twisted” so0(4; C) action instead by embedding SO(4) diagonally in
the Lie algebra so(4; C) x s((4; C), where the second factor is the algebra of R-
symmetries, and where so(4; C) = sl(2; C) @ sl(2; C) embeds into sl(4; C) block
diagonally. This is the Kapustin—-Witten twisting homomorphism considered in
[41], and the 2-parameter family of Kapustin-Witten supercharges consist of
exactly those supercharges that are stabilized by the image of this Lie algebra
embedding. Since we do not treat the untwisted A/ = 4 theory in this paper,
we don’t need to keep track of this non-trivial origin for the rotation action. <

The proof of Theorem 5.3 will involve the following steps.

(1) First we will describe the classical action of ISO(4), and its homotopy
trivialization.

(2) We will argue that there is no obstruction to the quantization of the
ISO(4) action itself, using the fact that the ingredients of the quantization
of the classical field theory are manifestly isometry invariant.

(3) Next we will argue that there is no obstruction to the homotopy trivi-
alization of the R* action by translations. We will use the fact that this
trivialization commutes with a natural choice of gauge-fixing condition
to show that the relevant Feynman diagrams vanish.

(4) Tt remains to address the homotopy trivialization of the action of rota-
tions. We will use the decomposition s0(4) = su(2) @ su(2): there is a
canonical complex structure associated to this splitting. The first su(2)
factor will act by holomorphic vector fields with respect to this complex
structure. The remaining factor likewise acts by antiholomorphic vector
fields. We can treat each factor in turn, using two different choices of
gauge-fixing operator associated to two conjugate complex structures.
For each choice, the theory with compatible su(2) background fields will
be a holomorphic field theory as in [55], so we can use the results therein.
In particular, the only Feynman diagrams that contribute to the anomaly
are wheels with three external edges. We will show in Theorem 5.13 that
this anomaly vanishes, completing the proof.

With this plan in mind, we first address the homotopy trivialization of
the ISO(4) action on the classical field theory &1 1,0.

5.2.1. Classical Framing. Recall that the linear space of fields is two copies of
the de Rham complex valued in shifted copies of g:
Era0 = Q°(RY, g[1]) & Q°(R*, £g[2)).

The group ISO(4) acts on the differential forms on R* by natural automor-
phisms. This extends to an action at the level of classical observables.
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Proposition 5.6. The action of the group ISO(4) on the fields &1 1,9 extends to
an action on the classical observables

ObSil,l,o = (O(&1,1,0), {51,1,0, -1

Proof. Tt suffices to observe that the action preserves the Lie bracket on dif-
ferential forms valued in g as well as the invariant pairing on g. O

~

The infinitesimal action of the complexified Lie algebra iso(4;C) =
(sI(2;C) @s1(2; C)) x C* acts on &1 0 by the Lie derivative of complex valued
vector fields on R%. In fact, this action is Hamiltonian in the sense that it is
given by the BV bracket with a fixed local functional.

Lemma 5.7. Let Jx be the local functional Jx = f(ﬂ A Lxa) on E11,0. Then
Lx ={Jx,—}.

For the B-twisted theory &1, we can extend this action to include
a homotopical trivialization for the infinitesimal action of isometries using
Cartan’s formula Lx = [d, tx].

For any vector field X on R*, let nx be the following endomorphism of
cohomological degree —1 of the linear space of fields

nx: €110 = E1,1,0(—1]
nx (o +ef) = tx(a) +evx(B)
where tx(—) is the contraction of a differential form.

Proposition 5.8. The collection of endomorphisms {nx|X € is0(4;C)} defines
a homotopy trivialization of the classical field theory &1 0.

Proof. The operator nx extends to a derivation on observables in the natural
way. The fact that the operator nx defines a homotopy trivialization of the
derivation determined by X is Cartan’s formula. 0

There is another, soon to be convenient, description of the endomorphism

nx. For any vector field X consider the local functional jx € Oioc(€1,1,0)[—2]
defined by

Ty = /wmga).

Lemma 5.9. For any wvector field X one has nx = {jX,—} acting on
Obsy.1,0(R*). Moreover,

Lx = {{S11.0, Jx}, -}
as derivations on ObsiLo(R‘l).

Proof. The first part is a straightforward calculation. The second part follows
from the fact that the only term in S; ;0 that does not commute with nx
is the kinetic term [ Bda. The equation is then equivalent to the equality
of local functionals Jy = {Sl,l,o,j x } which follows from Cartan’s formula
[d, Lx] = Lx. O
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5.2.2. Quantum Framing. We have, therefore, constructed a homotopically
trivialized action of the group of isometries on the classical observables of
the B-twisted 4d ' = 4 theory. In the rest of this section we will quantize this
classical symmetry thus proving Theorem 5.3.

Proposition 5.10. The quantization of the theory & 1,0 constructed in Sect. 3.2.2
admits an ISO(4) action.

Proof. This follows from [16, Proposition 9.1.1.2] and the remark that im-
mediately follows it. The proposition in question says that if we are given a
quantization of a smoothly G-equivariant classical field theory with the prop-
erty that the effective interaction I[®] associated to every parametrix @ is
G-invariant, then the quantum theory is also smoothly G-equivariant.

To see that the effective interactions are ISO(4)-invariant at every scale,
it is enough to observe that the classical interaction and the propagator are
ISO(4) invariant, by definition of the effective interaction I[®]. This is clear for
the classical interaction (defined using the Lie bracket for the gauge Lie algebra
and the wedge product of differential forms). We can define a propagator using
the gauge fixing operator d* on & ; o. Since this operator and the BV bracket
on &11, are both ISO(4), so is the propagator. O

Remark 5.11. In fact, this argument shows that the factorization algebras of
quantum observables in the B-twisted theory admits a smooth action of the
group ISO(4), as in [15, Chapter 4.8]. This will be relevant in Sect. 6, where we
will use the existence of a smooth homotopically trivial action of the isometry
group to identify this factorization algebra as a framed E4-algebra. O

Infinitesimally, we see that the classical action of the Lie algebra iso(4; C)
also persists to the quantum level. It remains to quantize the homotopy triv-
ialization of this action. Recall that the derivation nx trivialized the classical
action of a vector field X. Unlike the action of iso(4; C), it is not immediate
that the action by the derivation nx is compatible with the quantization. In
fact, we will see that for generic Lie algebra g, there is a potential anomaly to
quantizing these trivializations.

We will address the quantization of the homotopy trivialization by mak-
ing use of the observation in Lemma 5.9 that, classically, the action of a vector
field X and its homotopy trivialization are through the BV bracket of local
functionals Jx, J x. Instead of directly quantizing the endomorphisms {nx},
we attempt to quantize the collection of local functionals {Jx} by using the
background field method of equivariant BV quantization recalled in Sect. 2.3.

We study the Hamiltonian action by the dg Lie algebra iso(4; C)gr. This
process begins by applying the RG flow to the local functionals I, J, J. ,in a
similar way that we constructed I[A] as the RG flow of the classical interaction
1.

Let I4r[A] be the naive effective collection for the iso(4; C)qr-equivariant
theory, as defined in Remark 2.17. We need to show that I4g[A] solves the equi-
variant QME (4). The non-equivariant theory & 1 ¢ is manifestly holomorphic,
but notice that iso(4; C) involves the action of non-holomorphic vector fields.
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In particular, the techniques to solving the QME using the holomorphic gauge
do not apply. Nevertheless, we can break the problem up in the following way.
Consider the subalgebra

C?* ®sl(2;C) C iso(4;C)

consisting of holomorphic translations and holomorphic volume preserving lin-
ear transformations. For any vector field X in this subalgebra, the operators
Lx and nx are by holomorphic differential operators. Thus, we have the fol-
lowing statement.

Lemma 5.12. Consider the theory &1 1,0 on C? with its homotopically trivialized
SU(2)-action. The corresponding classical field theory with background fields
valued in

[C? ®51(2;C)] 4

is a holomorphic field theory with background fields in the sense of [34], and
therefore the only possible obstructions to solving the equivariant QME are
given by the weights of wheel Feynman diagrams with three external edges.

Let us now prove that the homotopy trivializations we have defined clas-
sically for the rotation action on our B-twisted theory extend to the quantum
level, i.e., that the anomaly vanishes.

Theorem 5.13. Suppose the Lie algebra g defining £1 1,0 is reductive. There
exists a quantization of the homotopy trivialization of the sl(2;C) action on
E1.1,0-

Proof. By Theorem 2.13 we must show that the weight of a wheel-shaped
Feynman diagram with three external legs vanishes. By Proposition 5.10 it
suffices to characterize the anomaly only in the case that it depends on back-
ground fields valued in C2[1]®sl(2; C)[1]. In this case, the vertices of the wheel
diagram labeling the anomaly are only labeled by the classical BF interaction
I or Jx for some vector field X € C? @ s((2;C).

We can decompose the weight of such a wheel into a sum, depending on
the number of legs labeled by BF theory fields a € Q**(C?;g).

(1) Two a-legs. If the remaining vertex is labeled by J. x, then we will show
that the weight of the diagram is zero for form-degree reasons. Indeed,
identify X as a holomorphic vector field f; (w)% + fg(w)% on

C2. The Feynman weight in question is a limit of integrals of the form

0
/(uw,w)e(@)?» a1 (u)ag(v)P(u,v)P(v,w) (f1 (w)iﬁ(dwl)
0

+f2(w)mK(w, u)> .

K(w,u)

The factor P(u,)P(v,w) ( F1(w) gy K (w,u) + fg(w)%K(w,u))
of the integrand is a (5,4) form on CY. However, by definition of the
heat kernel, this form lies in the sub-bundle generated by the 1-forms
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du — dv,dv — dw,duw — dv, dv — dw, in other words, 1-forms pulled back
from a four-dimensional subspace of C%. Any (5,4) form of this type must
necessarily vanish.

(2) One a-leg. Let us write the input field o € Q*®(C?;g) as a pure tensor
Qalg ® g, Where agye is a differential form on C? and «y is an element
of g (without loss of generality). Any diagram of this type has weight
proportional to Try(cy), where the trace takes place in the adjoint rep-
resentation. Because g is reductive, this trace, and therefore the weight
of the diagram, vanishes.

Summing all these contributions, we find that the total weight of a wheel-
shaped Feynman diagram is zero, and therefore the anomaly vanishes, as de-
sired. U

Corollary 5.14. The anomaly for the iso(4; C)ar-equivariant quantization of
the B-twisted theory &£1,1,0 vanishes.

Proof. We split iso(4; C)gr up as a sum
[C? ®5l(2;C)] 45 ® [C* @ 5l(25,C)]

The first factor consists of holomorphic vector fields in a fixed complex struc-
ture. The second consists of holomorphic vector fields in the conjugate complex
structure. This implies that the full action of is0(4; C)qr is anomaly-free as de-
sired. O

Let us conclude this section by extending this result for the B-twist to
the full Kapustin-Witten family of topological twists. That is, to the C2 \ {0}
family of supercharges spanned by the B-twisting supercharge (1,1,0) along
with the A-twisting supercharge (0,0, 1).

Theorem 5.15. There is an anomaly-free action of is0(4; C)qr on the twisted
theory &4 for any (t,u) € C2\{0}, extending the action described above for
the point (1,0).

Proof. The classical action of & ., is

St,t,u:/ﬁA5a+t/ﬂAaa+u/ﬂA5+I.

Even when u # 0, the equivariant action I+ .J + J still satisfies the CME since
{[BAB,Ix}={[BAB,Jx} =0 for any vector field X.

Now, we must verify that this action extends to the quantum level. Propo-
sition 5.10 continues to apply for our family of theories; therefore, it is enough
to generalize Theorem 5.13 from &y o0 to the Clul-family of theories £y g . In
order to do this, we only need to observe that the proof of Lemma 3.15 con-
tinues to apply for the equivariant version of the interaction, so the Feynman
weights that contribute to the anomaly of the theory & ¢, are independent of
the value of wu. O

Finally, we can combine this equivariant structure with the construction
of the family of theories over the moduli of vacua, to obtain the following
equivariant family.
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Corollary 5.16. The family of quantum field theories of Theorem 4.23 can be
enhanced to define a family of iso(4; C)ar-equivariant one-loop exact Z/27-
graded quantum field theories over the stack (C*\{0}) x [g*/G].

6. The Factorization Algebras of Observables

The collection of observables of a field theory carry an exceedingly rich math-
ematical structure. For a perturbative theory, the notion of a factorization al-
gebra captures important aspects of this structure, notably the local-to-global
features. In brief, for a field theory on a manifold M, its factorization algebra
Obs of observables encodes the following information.

e For each open set U, such as an open ball, the collection of observables
Obs(U) that only depend on the fields’ behavior inside U.

e Given observables Oq, ..., Oy that depend on disjoint regions Uy, . .., Uy,
the assignment of a product observable O7 - - - Ok.

In particular, the factorization algebra knows the operator product expan-
sion. For a precise definition, see [15,16], which also show how to construct
and analyze the observables for any BV theory. Indeed, the central result of
those books is that a factorization algebra arises automatically from the BV
formalism, simply by keeping track of the support of observables.

The real benefit of this result is that factorization algebras are objects
of intrinsic mathematical interest and have already received extensive devel-
opment, for purposes independent of field theory. As the preeminent exam-
ple, consider a topological field theory on R™, such as Chern—Simons theory
on R3. In this case, the observables are locally constant, in the sense that
Obs(U) ~ Obs(U’) if U C U’ are two balls. It is then a theorem that the
factorization algebra is equivalent to the data of an algebra over the little
n-disks operad, also known as an E,, algebra. Such algebras were introduced
by topologists in the 1960s and have received intensive study since, so that
we can seek to deploy their insights in the setting of topological field theory.
Recently much activity has centered around the notion of factorization ho-
mology, which (when defined) pairs an n-manifold M with a E,, algebra A to
produce a cochain complex, much as traditional homology pairs a space with
an abelian group [1,46]. This process produces rich invariants of manifolds and
E, algebras (see, e.g., [5,33,37,40] for some recent work).

Our goal in this section is to begin the analysis of the observables of the
twists of 4-dimensional A = 4 super Yang-Mills theories. In particular, we
begin by explaining when the observables of a topological twist are framed
[E4 algebras, which allows one to compute factorization homology on arbitrary
oriented 4-manifolds. Next, we explain how to capture the process of canoni-
cally quantizing and then imposing constraints is captured by a filtration on
the factorization algebra of observables. This filtration answers a puzzle raised
in [27] about how quantization of the B-twist affects its observables. Finally,
we unwind what factorization homology should mean and compute its values
on various classes of manifolds.
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6.1. Factorization Algebras and Framed [E,, Algebras

Let us begin by discussing the notion of a smooth G-action on a factorization
algebra. We will keep this discussion brief, and refer to [24, Section 2.2] and
[15, Chapter 4.8] for a more detailed discussion.

Let G be a Lie group with Lie algebra g, equipped with an action on R™
by diffeomorphisms. Let Obs denote a factorization algebra on R™.

Definition 6.1. A smooth action of G on the factorization algebra Obs consists
of
(1) an isomorphism «4(U): Obs(U) — Obs(gU) for each g € G and each
open subset U C R", and
(2) adg Lie algebra homomorphism g — Der(Obs), where Der(Obs) is the dg
Lie algebra of derivations of Obs (see [15, Chapter 4, Definition 8.1.2]).

This data must together satisfying the following conditions.

(1) For all U and all g1, 92 € G, g, (92U) 0 vy, (U) = g, 4, (U).

(2) For all ¢ € G, the maps ¢, commute with the factorization algebra
structure on Obs.

(3) For all pairwise disjoint open subsets Uy, ..., Uy €V C R™, the map

m: {(g1,...,9x) € G*: gp(Uy) are disjoint subsets of V'}

k
— Hom (@ Obs(U;), Obs(V)> :
i=1
defined by first acting by (g1, ..,gx) € G* then using the factorization
structure, is smooth.
(4) The maps o, and the infinitesimal g action p are compatible in the fol-
lowing sense. For all X € gand ¢ =1,...,k, we have

(‘3X,imgl7,,,,gk (Ol, ceey Ok) = Mgy,...,q% (Ol, ey ,p(X)Oi, ey Ok)

where the map Ox ; is the derivative on G* with respect to the tangent
vector

0,y Ly (X),...,0) €Ty, 4. G,
where the nonzero element is placed in the i*" slot.

Definition 6.2. A homotopy trivialization of a smooth G-action on Obs is a
G-equivariant cochain map 7: g[1] — Der(Obs) so that [n(X),n(Y)] = 0 for
all X,Y € g, and dn(X) = p(X) for all X € g.

Equivalently, let ggr denote the dg Lie algebra g[1] d g, where g acts on
g[1] by the adjoint action. A homotopy trivialization of a smooth G-action is
an extension of the infinitesimal action p of g to an action of g4r.

We can construct factorization algebras with G-actions as the algebras
of classical or quantum observables of a field theory. Let us consider examples
where G is a subgroup of the group ISO(n) = SO(n) x R™, acting on R™ by
isometries. For instance, G could be the group R™ of translations, or the full
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group ISO(n) of all isometries. Factorization algebras with an action of Gggr
of this type admit another interpretation, in terms of homotopical algebra.
We will use the following two types of object

e [E, algebras are cochain complexes with the structure of an algebra for
the operad of little n-disks. We will work with a specific model for this
operad. The space of k-ary operations of this operad can be described by
taking the singular cochains of the manifold Disk, (k) of all collections
of k-disjoint n-disks inside the unit n-disk. We refer to for instance [48,
Chapter 4.1] for a definition (see also [24, Definition 2.12] in a similar
context.)

o Framed E, algebras, or Eff-algebras are likewise algebras for the operad of
framed little n-disks, which can alternatively be realized as the semidirect
product SO(n) x E,.

Remark 6.3. The word “framing” occurs in factorization homology in two
places; this would benefit from some unpacking. Given an (ordinary, unframed)
E, algebra A, one can attempt to compute the factorization homology of a
framed manifold with coefficients in A. Using this input, Scheimbauer’s theo-
rem [50] provides a framed TQFT.

On the other hand, given a framed E, algebra A, one can attempt to
compute the factorization homology of any oriented manifold with coefficients
in A. According to the cobordism hypothesis, as in [45, Theorem 2.4.18], Sche-
imbauer’s construction will extend to provide an oriented TQFT. &

Now, in the presence of a homotopically trivial action of the group of
translations, one can understand the factorization algebra of observables of a
quantum field theory as an E, algebra. We emphasize that this construction
is explicit; it does not simply abstractly imply the existence of an [E,, action,
but instead allows for the construction of an action of an explicit model for
the E,, operad.

Theorem 6.4 ([24, Corollary 2.30 and 2.39]). Let Obs be a factorization alge-
bra on R™, and suppose that the factorization map Obs(B,(0)) — Obs(Bgr(0))
associated with the inclusion of concentric balls B, (0) — Bgr(0) for r < R is
a quasi-isomorphism.

If Obs is equipped with a smooth Ry action, then the cochain complex
Obs(B1(0)) can be equipped with a canonical E,, algebra structure.

If Obs is equipped with a smooth ISO(n)qr action, then the cochain com-
plex Obs(B1(0)) can be equipped with a canonical B algebra structure.

By applying Theorem 6.4 to the twisted A/ = 4 theories we have been
considering in this paper, particularly by Theorem 5.15, we can deduce the
following.

Corollary 6.5. The family of factorization algebras of quantum observables
Obs()l\,mt over C2\ {0} canonically carries the structure of a family of Ef-
algebras.
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Proof. For the factorization algebras of observables of the full C2\{0}-family
of theories, it is manifestly the case that the factorization map associated
to the inclusion of concentric balls is a quasi-isomorphism (theories in this
family are either topological BF theories, or theories for which the algebra of
local observables on any ball is contractible). So we only need to know that
the factorization algebra carries a smooth ISO(4)qr-action in order to apply
Theorem 6.4.

The factorization algebra of quantum observables carries a smooth ac-
tion of the group ISO(4) by Proposition 5.10 as discussed in Remark 5.11,
we need to realize a homotopy trivialization of the infinitesimal iso(4;C) ac-
tion. We have constructed a potential for the action on the global observables
Obs?(R*) in Theorem 5.15. This action preserves the local observables Obs®(U)
supported on an open set U C R*: this is immediate from the expression for
the classical Hamiltonian J°? defining the homotopy trivialization. g

Given an E4-algebra, according to Scheimbauer’s theorem [50, Corollary
4.6.4] there is a canonically associated framed extended 4-dimensional TQFT,
valued in the Morita category of E4-algebras. Since in this case our E4-algebras
have been equipped with the richer structure of an Eff-algebra, these extended
4-dimensional TQFTs can be promoted to oriented extended 4-dimensional
TQFTs, i.e. functors from the (c0,4)-category of oriented bordisms, as con-
structed in [50, Definition 2.6.10].

Remark 6.6. By combining this construction with our results from Sect. 4 we
will obtain, say for the point (1,1,0) € C3, a sheaf of Z/2Z-graded framed E,4-
algebras over [g* /G]. Alternatively, we could recover the Z-grading by applying
an even grading shift to obtain a sheaf of Z-graded framed E4-algebras over
[9%[2]/G]. Because we can canonically identify the shifted coadjoint quotient
with T*[3]BG, this stack is 3-shifted symplectic, or P4. It is natural to expect
that the E4-algebra of quantum local observables that we have constructed
provides a quantization of this stack in the sense of [14]. <

6.2. Filtrations and the Free-to-Interacting Spectral Sequence

The observables of any BV theory sometimes admit natural filtrations, and
these typically offer both conceptual insight and calculational leverage. Two
obvious filtrations are

e the classical-to-quantum filtration on quantum observables Obs? arising
from powers of i, where

Obs? D hObs? > ++- D FFObs? > - - -,

whose associated graded is Obs®[[1]], and
e the free-to-interacting filtration on classical observables Obs® arising from
powers of the augmentation ideal, where
— — >0 — >k
Obs® = Sym(£*) > Sym™ () D ---D>Sym™ () D -,
whose associated graded is the classical observables of the underlying free
theory.
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The first filtration amounts to imposing the classical equations of motion and
then tracking quantum corrections in powers of /. In other words, it is a version
of the loop expansion for QFT. The second filtration amounts to imposing the
linearized equations of motion and then tracking the corrections due to terms
in the action functional of higher polynomial degree. In other words, it is a
version of perturbatively solving PDE. Here, however, we are interested in
more subtle filtrations.

6.2.1. The Free-to-Interacting Filtration. The following filtration captures the
notion of canonically quantizing first and then imposing the equations of mo-
tion.

Definition 6.7. The free-to-interacting filtration on quantum observables Obs?
is the decreasing filtration where

Fg_Obst = [ »msym™(€).
2m+n>k

The associated graded is the quantum observables of the underlying free theory.

Note that the free-to-interacting filtration is exhaustive (that is, (J;cs,
Ff_;Obs? = Obs?) and separated (that is, (,c; Fr_,;Obs? = @, because
Fk_Obs? is empty if k < 0).

The free-to-interacting spectral sequence—the spectral sequence arising
from this filtration—begins by computing the cohomology of the free quantum
theory, which is typically easy to calculate, so that the spectral sequence gives
us traction on the observables of the interacting theory. For instance, on a
closed manifold, this spectral sequence always collapses on the first page (see
Theorem 5.6.1 of [36]).

Below, we will compute the factorization homology of the abelian gauge
theories arising as twists of 4-dimensional A = 4 super Yang—Mills theory, and
then leverage that information to understand homology for the non-abelian
gauge theories using the free-to-interacting spectral sequence. The underlying
free theory of a non-abelian super Yang—Mills theory can be understood simply
by turning off the non-trivial Lie bracket on the gauge Lie algebra, producing
an abelian gauge theory.

This filtration has an interesting consequence for the theories living in the
family of B-type twists, including the holomorphic and Kapustin twists. Each
of these theories has an exact one-loop quantization, so the differential on the
quantum observables only has terms of order A° and order h'. We express it
heuristically as

Q+hA +{I,—} + {1 -},

where I is the classical interaction term and 7 is the quantum interaction
term. (We are suppressing here any dependence on a parametrix or length
scale.) The first page of the spectral sequence is the cohomology with respect
to Q + hA, but the differential on the next page depends on the cubic term
of I and the linear term of I9. Later pages depend on higher order terms of
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and I9. Hence, this spectral sequence breaks up the problem of analyzing the
observables into a series of more tractable problems.

The free-to-interacting filtration also resolves the following puzzle about
the quantum observables of these twisted theories. A priori, it does not seem
like the quantum observables for the B-twisted theory are very interesting, for
the following reason.

Lemma 6.8. The E4 algebra of classical observables in the B-twisted theory
&1.1,0 admits no non-trivial deformations.

This is proven in [27, Proposition 3.19] and the discussion that immedi-
ately follows it, but we will give a brief argument here.

Proof. The B-twisted classical field theory is described by the local Lie algebra
Q°*(R*) ® gle], where |¢| = —1. Note that by the Poincaré lemma, this local
Lie algebra is quasi-isomorphic to gle], viewed as a locally constant sheaf of
dg Lie algebras on R*.

As the classical observables ObsCB1 of the B-twist are the Chevalley—
Eilenberg cochains of the local Lie algebra, we thus see that the classical
observables are quasi-isomorphic to C}, (g[e]) as a locally constant prefac-
torization algebra on R*. Hence, the classical observables encode C$;_(gle]) as
an [E4-algebra.

This algebra is, of course, a commutative algebra but now viewed merely
as an [E4-algebra. When we quantize the B-twist, we produce a deformation
of this E4-algebra, but by the HKR theorem for E,, algebras of Calaque and
Willwacher [21], one finds that there are no nontrivial E4-deformations that
are equivariant for the action of C*, acting on £ with weight one. g

In other words, the quantization seems to have done nothing interest-
ing, in the sense that the quantum observables are equivalent to the classical
observables. This result might be concerning, but our filtration offers some
relief.

Lemma 6.9. As a filtered E4-algebra, the quantum observables of a B-type twist
are a nontrivial deformation of the classical observables.

Before giving the short proof, we recall a motivating but simpler exam-
ple. Consider the Chevalley—Eilenberg cochains C?, (g) of a semisimple Lie
algebra g. As a dg commutative algebra, it is formal, i.e., quasi-isomorphic to
its cohomology, which is a free graded-commutative algebra. Little about the
original Lie algebra can be read off from the cohomology. On the other hand,
there is a canonical filtration on C}, (g) by powers of the augmentation ideal,
whose associated graded is the free graded-commutative algebra Sym(g*[—1]).
Thus from C3,.(g) as a filtered algebra, one can fully recover the Lie algebra
g (in brief, via the tangent complex of the associated graded algebra and via
the differential).
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Proof. Consider the quantum observables of the B-type twist equipped with
the free-to-interacting filtration. The associated graded is the complex of quan-
tum observables of an abelian B-type twist, which is a deformation of the com-
plex of classical observables of that abelian B-type twist. Hence, to prove the
lemma, it suffices to show that this associated graded, the quantum observ-
ables for an abelian theory, nontrivially the classical observables of the abelian
theory.

To see this, we study a simpler, closely related deformation. Let M be a
closed 3-manifold and consider the manifold M xR, equipped with the projec-
tion m: M x R — R. The quantum observables of the B-type twist on M x R
push forward to a factorization algebra m,Obs? on R. As this factorization
algebra is locally constant, it corresponds to an [E;-algebra. This correspon-
dence applies to the associated graded as well, so that m, gr Obs? corresponds
to some E;-algebra that is a deformation of the algebra for the , gr Obs®.. In
other words, to prove the lemma, it suffices to show that we obtain a nontrivial
deformation of E;-algebras when we quantize the abelian B-type twist on the
manifold M x R.

We give a precise version of this claim in Lemma 7.16 and Corollary 7.17.
(Strictly speaking, the results stated there use the fiberwise polynomial observ-
ables discussed below, but the argument applies to the observables here.) But
such a claim is a quick consequence of the techniques and results of Chapter
4, [15]. Tt is shown there that for a free BV theory on R, the classical observ-
ables correspond to algebraic functions on a dg vector space of the form 7%V
and that the quantum observables correspond to the corresponding dg Weyl
algebra. A Weyl algebra is a nontrivial deformation, as needed for our lemma
here. U

6.2.2. The Fiberwise Polynomial Observables and Their Filtration. For a cotan-
gent theory, there is a variant definition of the observables, both classical and
quantum. The essential idea is to ask for observables that are formal power
series along the “base” (i.e., as functions on the L-direction) but that are poly-
nomial along the “fiber” (i.e., as functions on the L'-direction). It might help
the reader to bear in mind that this kind of construction appears in the def-
inition of differential operators on a manifold X: the symbol of a differential
operator is a smooth function on 7*X that is a polynomial when restricted to
a cotangent fiber 7' X. (We elaborate on this analogy in Sect. 6.3.)

Definition 6.10. For the cotangent theory associated with a local L., algebra
L, the fiberwise polynomial classical observables assign to each open set U, the
cochain complex

Obs, (@ [T sym™ (L)1 ])*)®Symn((L!(U)[—2D*),{L—}> :
n=0m=0

The differential preserves the observable that are homogeneous of degree n

with respect to the L'-inputs.

The reason we can implement this construction is that the local L.,
algebra of a cotangent theory is the extension of a local L., algebra L by its
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module L'[—3], viewed as an abelian L., algebra. For such an extension g x V/
of a Lie algebra g by a module V', the algebra of Chevalley—FEilenberg cochains
has the form

Clic(a x V) = Chie(s, Sym(V*[-1])) = [] Clic(s, Sym™ (V*[-1])).
n=0
There is thus a natural grading by symmetric powers of V*[—1], which we will
call the fiberwise weight. By taking the sum rather than the product over the
fiberwise weights, we obtain a natural subalgebra

o]
Ctie (g, Sym(V*[-1])) = @ Cie(g, Sym™ (V*[-1]))
n=0
that is polynomial in the V-direction. In the definition above of fiberwise poly-
nomial observables, we likewise replaced the product over those symmetric
powers by the direct sum.

When we quantize a cotangent theory, only one-loop diagrams appear,
as we have seen already, and these only depend on the L-inputs (the base of
the cotangent space). Hence, the fi-weighted term I9 of the quantized action
is only a function of the L-inputs, and the operator {I%,—} thus has the
property that it lowers the fiberwise weight by one. Thus, if this quantized
action satisfies the quantum master equation, the differential on the quantum
observables preserves the subalgebra of fiberwise polynomial observables. This
argument shows that the following sub-factorization algebra is well-defined.

Definition 6.11. Given an exact one-loop quantization of the cotangent theory,
the algebra of fiberwise polynomial quantum observables Obs?pﬁ is the sub-
factorization algebra of Obs? given by taking the direct sum over symmetric
powers in L'.

As the differential is a polynomial in %, we can even set h equal to 1
(or any nonzero value), a very special feature of exact one-loop quantizations.
(It implies that, in a sense, the theory is less perturbative and perhaps closer
to a complete answer.) In particular, the quantum corrections to the classical
action functional are treated on an equal footing.

Definition 6.12. Given an exact one-loop quantization of the cotangent theory,
let Obsj, denote the quotient Obsg ,/(h — 1).

The reader might recognize this quotient as analogous to a situation in
quantum mechanics: sometimes one imposes the commutation relation [p, z] =
ih (viewing h as a parameter) or one imposes the commutation relation [p, z] =
i. The second appears when viewing the operators as differential operators on
R, with p = i%; the first appears as a deformation quantization of functions
on T*R.

There is a useful filtration one can put on these observables. Consider
the underlying graded vector space of the observables

D I sym™(LO))")& Sym" (L' (V)[-2])")-

n=0m=0
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It has a natural bigrading with the (m,n)-component consisting of Sym™
(L(U)[1])*)® Sym™ ((L'(U)[~2])*). Given a homogeneous (m, n)-graded com-
ponent, the classical differential {I, —} preserves the second term n (polyno-
mial degree in L'-inputs) but can increase the first term m (polynomial degree
with respect to L-inputs). The BV Laplacian sends (m,n) to (m — 1,n — 1),
lowering both terms equally. The quantum correction {I9,—} lowers the sec-
ond term n by 1 but can increase the first term m arbitrarily, so if f has
bidegree (m,n), the {I9, f} is a sum of terms with bidegree (m + k,n — 1) for
any k > 0.
An arbitrary element in these observables has the form

f: Z me,na

finite n m=0

where there are only finitely many values of n such that the formal power

series
oo
f(n) = Z fm,n
m=0

is nonzero. Running over the nonzero terms f,, , in f, we see that there is a
maximum value of the difference n — m because m is bounded below by 0 and
there are only finitely many values of n. Set

[f]K = HnlLanX{n —-—m: f?n,n 7é 0}
Note that the quantum differential d? satisfies

[dflx < [fla
so long as 1% has no linear term.

Remark 6.13. Let us comment on why this last assumption holds for the
twisted NV = 4 gauge theories. The linear term in I9 is given by the weight
of a “tadpole” Feynman diagram: a wheel with one external edge. As we dis-
cussed in Example 2.11, since g is reductive, the weight of such a diagram will
necessarily be zero. &

With this condition being satisfied, we can define the following filtration.
Definition 6.14. The anti-diagonal filtration on Obs?p is

k
FxObsg, = {f: [flz =k},
and the differential preserves this filtration when the linear quantum interac-
tion term Iy vanishes.

This filtration is again exhaustive and separated; exhaustiveness very
much depends on our restriction to fiberwise polynomial observables.

The spectral sequence arising from this filtration begins by computing the
cohomology of the fiberwise polynomial quantum observables of a free quantum
theory. Here the differential is {Io+ I3, —} + A, where the subscript 2 indicates
that we take the quadratic term of the quantized action functional. Hence it
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is a close cousin of the free-to-interacting spectral sequence we have discussed
already, and many observations we made there apply in this situation. In
particular, the following result holds by an identical argument.

Lemma 6.15. As a filtered E4-algebra, the fiberwise polynomial quantum ob-
servables Obs?p of a B-type twist are a nontrivial deformation of the fiberwise
polynomial classical observables.

We now explain a nice feature of this filtration when the manifold is
closed.

Lemma 6.16. Let M be a closed manifold, and let L be a local Lo algebra on
M such that its cotangent theory has an exract one-loop quantization. Then
the cohomology of the fiberwise polynomial quantum observables Obs‘flp(M) 18
isomorphic to

det (H®(L(M), 1)) [das],
where dy; modulo 2 agrees with the Euler characteristic.

Here (L(M),¢1) denotes the underlying elliptic complex of the local Ls,
algebra, and this complex has finite-dimensional cohomology because M is
closed.

Remark 6.17. Tt is possible to write down the shift d,; explicitly. It takes the
form

dy =Y cp dim(H(L(M), £1)),

kEZL
where
k if k is odd
Cp =
1-k if k is even.

<

Proof. Consider the spectral sequence for the anti-diagonal filtration. The first
page is the cohomology of the quantum observables for a free cotangent theory.
By Lemma 13.7.1.1 of [16], this cohomology is one-dimensional, and so the
spectral sequence collapses. We outline this argument.

For the fiberwise quantum observables of a free theory, there is another
filtration by fiberwise polynomial degree. Indeed for any dg vector space V,
we can consider fiberwise polynomial functions on its shifted cotangent space
T*[-1]V =V @& V*[—1], which is the dg commutative algebra

P Sym(v*) @ Sym™(V[1])).

n>0
We call n the fiberwise weight, and we note that the differential preserves fiber-
wise weight. If we have a BV Laplacian arising from the -1-shifted symplectic
pairing on the shifted cotangent space, then it lowers this fiberwise weight
by one. Thus, on the quantum fiberwise observables, there is a filtration by



Vol. 25 (2024) Higher Deformation Quantization for Kapustin-Witten Theories 5095

fiberwise weight and hence a spectral sequence. The first page is simply the co-
homology of the classical fiberwise observables. Under our hypotheses, since V/
is an elliptic complex (L(M), ¢1) on a closed manifold, we know that H®(V) is
finite-dimensional, so that the first page of the spectral sequence is isomorphic
to

P Sym(H*(V*)) @ Sym" (H*(V)[1])).
n>0

The residual differential is the BV Laplacian for the shifted cotangent space
T*[-1]H*(V). We can then invoke Lemma 13.7.1.1 of [16] to see that the
second page is one-dimensional. We have thus computed that the cohomology
of the fiberwise polynomial quantum observables of a free cotangent theory on
a closed manifold is one-dimensional. 0

6.3. Algebras of Differential Operator Type

For cotangent theories, the factorization algebras of quantum observables have
the flavor of twisted differential operators. We wish to capture what we mean
with some precision. (Perhaps more accurately, for an n-dimensional topolog-
ical field theory of cotangent type, the observables are twisted E, algebras
of differential operators. We return to this issue after discussing the E; case,
which is more familiar.)

Recall the notion of twisted differential operators for a smooth manifold
X (or complex manifold or smooth variety, depending on the geometric con-
text in which one wishes to work). Let O, (T*X) denote the ring of fiberwise
polynomial functions on the cotangent bundle 7% X as a sheaf on X. In other
words, it is the sheaf Symy, (7x), where 7x denotes the tangent sheaf of X.
Hence O, (T*X) is naturally graded by symmetric powers in vector fields.

Definition 6.18. An algebra of twisted differential operators is a sheaf A on
X of positively filtered associative algebras such that gr A = Og,(T*X) as a
Poisson algebra.

For each line bundle L — X, the differential operators on L are an
example of an algebra of twisted differential operators. In general, the co-
homology group H'(X, Q) parametrizes twisted differential operators up to
isomorphism of such filtered algebras, where Q! denotes the sheaf of closed
1-forms. (More precisely, we are referring here to locally trivial TDOs [4].)

We wish to study the analogous construction but where X is replaced
by a formal moduli space. In this situation, we can offer a refinement of the
usual notion because for a formal moduli space, its algebra of functions itself
already has a natural filtration.

Let X be a formal moduli space with basepoint z, modeled by an L.
algebra L. We can take C?, (L) as a model for O(X), the dg commutative
algebra of functions on X. Let |X| denote the linear formal moduli space
associated to the tangent complex T, X’; it can be modeled by the abelian L.,
algebra |L|, namely the underlying cochain complex of L. Note that O(X') has
a natural filtration, in essence determined by the maximal ideal of functions
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vanishing at the basepoint. In our concrete model C}, (L), the filtration is by
powers of the augmentation ideal. By construction,

grx Opp (X) =~ Ogy (|1 X))

so that this filtration identifies O, (X) as a commutative deformation of func-
tions on a linear formal moduli space.

We want to study algebras that closely resemble the algebra of differential
operators on X. As in the classic situation, we are interested in deformation
quantizations of fiberwise polynomial functions on T*X, by which we mean
the dg algebra

It can be modeled by C},,(L, Sym(L[1])). There is an obvious grading by sym-
metric powers of L[1], which is the analog of the grading on fiberwise polyno-
mial functions for a smooth manifold X.

On the other hand, we also have an anti-diagonal filtration along the
lines of Definition 6.14. It is a natural extension of the filtration on O(X), the
functions on the base X'. By construction,

grx O (T*X) = Og (T7| X))

so that the anti-diagonal filtration identifies Og,(T*X) as a commutative de-
formation of functions on a linear symplectic formal moduli space.

We will now discuss deformation quantizations that satisfy conditions
with respect to both filtrations.

Definition 6.19. For a formal moduli space X, a dg associative algebra A is
of differential operator type if it admits two filtrations Fg, (positively graded)
and F% (unbounded) such that

e the associated graded for the fiberwise filtration satisfies
grgy A =~ O (T X)

where the right-hand side is equipped with its grading by symmetric
powers of vector fields, and
e the associated graded for the anti-diagonal filtration satisfies

grx A =~ D(|X]),

where the right-hand side denotes the algebra of differential operators on
|X'|. These differential operators can be viewed as a fiberwise polynomial
version Weylg, (T*|X|) of the Weyl algebra for the symplectic dg vector
space T*|X|.

Ezample 6.20. Consider the algebra D(X) of differential operators on X, by
which we mean Grothendieck’s construction: the subalgebra of endomorphisms
of O(X) generated by left multiplication of functions and vector fields. This
algebra is of differential operator type. The underlying graded vector space of
D(X) can be written out explicitly as:

Sym’ (L*[~1]) ® Sym*(L[1)),
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and equipped with a pair of filtrations as in Sect.6.2. One can readibly check
that these do indeed define filtered dg algebra structures on D(X).

Ezample 6.21. Let us consider two simple special cases.

(1) When the formal moduli problem X is linear (so L is abelian), D(X) is
a Weyl algebra.

(2) When X is a classical formal moduli space (here meaning non-derived),
the Lie algebra L is concentrated in degree one. Therefore X = |X|, and
we are able to use the trivial anti-diagonal filtration.

We will see that for the framed E, algebra of the B-twist, when we take
factorization homology over a closed 3-manifold N, we get such algebras of
differential operator type.

Remark 6.22. One can generalize Definition 6.19 in the following way. Replace
“dg associative” in the definition with E,, replace T*X with T*[1 — n]X,
and replace the Weyl algebra on T™*|X| with the E,-Weyl algebra on T*[1 —
n]|X|. Such an E,, algebra deformation of Og,(T*[n — 1]X) is defined to be an
E, algebra of differential operator type. One can build examples of such E,
algebras as the E,-enveloping algebras of the Lie algebroid associated to the
tangent sheaf of X'. This should use methods extending those of Knudsen [40].

In this sense, the B-twist produces an [E4-algebra of differential oper-
ator type on X = Flatg(R*)}, the formal neighborhood of the trivial flat
G-bundle. <&

7. Factorization Homology Computations

We will now explore some consequences of our results on manifolds other than
R*. The key mechanism for global results is factorization homology: a factor-
ization algebra satisfies a local-to-global condition that means its value on an
interesting manifold M is determined by its behavior on “small” opens (e.g.,
disks sitting inside M). In particular, the observables of a perturbative field
theory (whether classical or quantum) form a factorization algebra, by the
results of [16], and it is interesting to ask about the global observables on vari-
ous manifolds, which provide interesting algebraic structures depending on the
manifold and which can thus encode invariants of the manifolds.

Let us focus on 4-dimensional theories such as those discussed in this
paper. If the 4-manifold M is closed, we will see that the complex of global
quantum observables is one-dimensional, if a quantization exists on that man-
ifold. (We will assume that hypothesis for the moment.) If the manifold is a
product M =R x N with N a closed 3-manifold, then the global observables
determine a factorization algebra on R by pushing forward along the projection
to R. This 1-dimensional factorization algebra encodes an interesting dg asso-
ciative (or As) algebra that a physicist might call the algebra of observables
of the compactification of the 4-dimensional theory along N. If the manifold
is a product M = R? x N with N a closed 2-manifold, then the pushforward
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of observables to R? encodes a dg vertex algebra (possibly even just an Eo
algebra, if the 4-dimensional theory is topological along the R? directions).

A key assumption here was that the theory makes sense on a given 4-
manifold M and that a quantization exists. This assumption must be checked
and need not always be satisfied. For instance, the holomorphic twist as a
classical theory is defined on a complex surface, so that M must be equipped
with a complex structure. Our explicit quantization in this paper provides a
quantization on manifolds closely related to C?, notably

e complex tori such as C?/A, where A is a lattice Z* — C?;

e open subsets of C2, notably CA{0}, which is diffeomorphic to R x S% and
hence offers an example of compactification along a 3-manifold; and

e products C x E, where E is an elliptic curve.

In this paper, we will discuss only such manifolds, deferring a treatment of
other complex surfaces to later work.

On the other hand, we have provided an SO(4)-equivariant quantization
of twists living in the subspace of C? of elements of the form (¢,t,u), so that
our quantizations make sense on any oriented 4-manifold. For these twists, the
global quantum observables are the factorization homology of the framed E,4
algebra Obs?n tu0) associated with our quantization. For such twists, we find
that

a

e for any closed oriented 4-manifold M, the cochain complex | v Obs(t )

has one-dimensional cohomology;
e for any closed oriented 3-manifold N, the factorization homology | N
Obs?m 1) 18 equivalent to an Ei-algebra;
e for any closed oriented 2-manifold N, the factorization homology | N
Obs‘(lu ) is equivalent to an [Eq-algebra; and
e for any closed oriented 1-manifold N, the factorization homology | N
Obs?n tu) is equivalent to an Es-algebra.

Indeed, this framed E4-algebra Obs((lt, £10) determines a fully extended and ori-
ented 4-dimensional topological field theory, in the sense of Baez—Dolan—Lurie,
by [50]. It would be worthwhile to unravel how this functorial TFT arising
from the Kapustin—Witten theories relates to other constructions occurring in
the literature. We defer this very interesting question to future explorations,

although we make some suggestions in this paper.

In this subsection, we will treat each type of twist separately. For each
twist, we will first describe the factorization homology of the classical observ-
ables, before describing the quantum observables for abelian gauge theories
and then deducing consequences for quantum observables of the nonabelian
gauge theories, using the filtrations we have already introduced. The won-
derful thing about the abelian gauge theories is that computations reduce to
understanding the cohomology of elliptic complexes (notably the Dolbeault,
de Rham, or mixed complexes). Such questions are often rather tractable, as
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we will see, following the treatment of abelian Chern—Simons theory in Sec-
tion 4.5 of [15]. (We will freely refer to results from that book with minimal
exposition.)

Note that in the abelian case, there is nothing interesting to say about
the family of theories over the moduli of vacua, as the family is manifestly
constant.

7.1. The Holomorphic Twist

Let G be a reductive algebraic group. For any complex surface M, consider a
holomorphic principal G-bundle P — M and let Op denote the 0-connection
on the adjoint bundle ad(P) = P x“ g. The space of fields is then

Ep = Q%*(M,ad(P))[1] & Q**(M,ad(P)*)[2],

which is the space of sections of a graded vector bundle Ep — M. We equip
this graded vector space with the differential 0p. The cohomology of the space
of fields is

H*(&p) = H%"(M, ad(P))[1] & H%"(M, ad(P)")[2],

where we view H%j (M,ad(P)) as concentrated in cohomological degree i + j

and use the subscript 0 to indicate the differential. When P is the trivial
bundle G x M, this reduces to

H* (Euiv) = HZ* (M) ® g[1] & HZ* (M) @ g"[2].

For a closed complex surface (i.e., compact and without boundary), the coho-
mology H®(Ep) is finite-dimensional. Furthermore, there is a canonical pairing
on H*(Ep) of degree —1 that is invariant for the shifted Lie bracket.

Lemma 7.1. Let G be an abelian complex algebraic group. On the closed com-
plex surface M with holomorphic principal G-bundle P — M, the cohomology
of the classical observables Obs™ (M) is isomorphic to S/y?n(H'(Ep)*), which
s a finitely-generated free graded-commutative algebra.

We remark that this algebra also has a natural 1-shifted Poisson bracket,
arising from the canonical pairing on H®(Ep)*.

Proof. This result is a special case of results from [15]; see especially Chapter
5, Section 6, and Appendix C. We gloss the complete argument here.

The graded vector space of global observables is a version of a completed
symmetric algebra:

Obs? (M) = J] T(M™, (Ep)™)s,.
neN
where

e M™ denotes the n-fold product of M with itself;

e X denotes the outer product of vector bundles: for V— M and W — N
vector bundles, V XIW — M x N is the obvious vector bundle;

e EY = E} ® Dens)y is the dual vector bundle E} to Ep twisted by the
density line.



5100 C. Elliott et al. Ann. Henri Poincaré

It has a differential determined by dp. We filter this Obsd(M ) by powers of
the augmentation ideal, and it is complete with respect to this filtration. We
view it as living in a category of pro-cochain complexes. (Note that we could
take the direct sum rather than the direct product, if we wanted a symmetric
algebra rather than a completed symmetric algebra. This would avoid working
with complete filtered complexes.)

The cohomology of Obs® (M) is thus the product over N of the coho-
mology for each factor. For each n, that cohomology is finite-dimensional and
agrees with Sym" (H®(Ep)*). O

For G nonabelian, the fields £p have a nontrivial shifted dg Lie algebra
structure, by mixing the wedge product of Dolbeault forms with the Lie bracket
on g. This dg Lie algebra £p[—1] has a natural moduli-theoretic interpretation:
it can identified with the (—1)-shifted tangent complex to the derived stack
T*[—1]Higgs (M), the shifted cotangent to the stack of G-Higgs bundles (as
discussed in Sect.4.1.2), at a point (P,0) corresponding to the zero Higgs
bundle.

The cohomology H®(Ep)[—1] again carries the structure of a graded Lie
algebra.

Corollary 7.2. On the closed complex surface M with holomorphic principal
bundle P — M, there is a canonical filtration on the classical observables
ObSCl(M) by powers of the augmentation ideal. In the associated spectral se-

quence, the first page is isomorphic to S/yr\n(H’(Ep)*).

The next interesting differential in the spectral sequence is the Chevalley
differential arising from the Lie algebra structure of H*(Ep).

In most cases of geometric interest, we have a stronger result. For M a
closed Kéahler manifold of complex dimension 2, Hodge theory offers a defor-
mation retract of £p onto its cohomology. In fact, by the main result of [22],
Ep[—1] is quasi-isomorphic to its cohomology as a dg Lie algebra, so that we
have the following.

Lemma 7.3. For M a closed Kahler manifold of complex dimension 2, the
classical observables Obs® (M) are quasi-isomorphic to Ct, (H*(Ep)[—1]) as
dg commutative algebras.

We now turn to describing the global quantum observables on a closed
surface. Since we constructed a quantization on C2, we only know that we have
quantizations for manifolds closely related to C2. For instance, our quantization
determines a quantization on any complex torus C2/A, where A denotes a
lattice Z* < C2, because our quantization is manifestly A-equivariant and
hence the quantization descends from C? to the quotient. Similarly, we obtain
a quantization on a Hopf surface C? \ {0}/¢%, with ¢ € C* x C*, because
our quantization restricts to C?\ {0}, the punctured affine plane, and our
quantization is equivariant under rescaling by ¢. In general, if U is an open
subspace of C? preserved by the action by a discrete subgroup L of GLo(C)x C?
with the property that U/L is a manifold, then we have a quantization for the
holomorphic theory on U/L.
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Remark 7.4. Now that we are discussing the quantization of the algebra of
observables, we will restrict attention to the trivial principal G-bundle over
M, in order to ensure that our results from Sect.3.2 for the quantization of
the theory on C? can be applied (by passing, as discussed above, to a discrete
quotient of an open subset of C?). O

Proposition 7.5. Let G be a reductive algebraic group. Consider the trivial holo-
morphic G-bundle on M, a closed complex surface of the form discussed in the
paragraph above, so that the holomorphically twisted theory on M admits a
quantization. Then the cohomology of the fiberwise polynomial quantum ob-
servables Obsg (M) is isomorphic to

det (H5* (M) @ g) [du].
where dy; modulo 2 agrees with the Euler characteristic.
This result is an application of Lemma 6.16.

Remark 7.6. We have a similar result describing the quantum observables
on M for the theory near any choice of vacuum [z] € [g*/G]. By virtue of
Lemma 4.18, we can identify the perturbative theory over the vacuum [x] with
the theory over the vacuum 0 for the gauge group G, the stabilizer of x.
The cohomology of the fiberwise polynomial quantum observables over [x] can

therefore be identified with det (Hg'(M) ® gx) [da]. o

We want to mention one last construction that leads to an A.-algebra
that has the flavor of the higher Kac-Moody algebras of Faonte, Hennion and
Kapranov [30]. Consider the holomorphic twist on the manifold C?\ {0}, which
[30] would denote A2, Using spherical coordinates, we can view A? as R x 53,
and hence, we can compactify the theory along S® to get a one-dimensional
theory. Our quantization lives on this manifold, so the observables form a
factorization algebra on A? and their pushforward to Rsg along the radial
coordinate p: A? R+ is a factorization algebra. We call this pushforward
the algebra of spherical operators of the theory. This factorization algebra
encodes the “canonical radial quantization” of our holomorphic theory.

There is a rather precise statement we can make, thanks to [35], notably
the discussion following Definition 3.12. Consider V' a dg vector space of fi-
nite rank, which determines an elliptic complex Q%*(A2) ® V on A2. There
is an associated free holomorphic cotangent theory, sometimes known as a 37
system. It is shown that there is a dense inclusion

U(Hy,2) — p«Obs

of factorization algebras on R, where Hy s is the dg Heisenberg algebra of
[35, Definition 3.12]. In other words, for a free cotangent theory, there is a dg
Weyl algebra inside the algebra of spherical operators. It encodes the operators
one knows from canonical radial quantization.

It is straightforward to write down the fiberwise polynomial version of
this construction, so that we use completed functions in the “base” direction.
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In other words, we view the vector space V as replaced by 17, the formal
neighborhood of the origin in V. This fiberwise polynomial algebra Us,(Hv,2)
should be seen as the ring of differential operators on the space Maps(AQ, ‘A/),
which is a kind of higher loop space. (For discussion of this interpretation,
again see [30,35].) The algebra of spherical operators is a completion of that
algebra, and it is controlled by differential operators on this higher loop space.

Something similar should hold for the holomorphic theory with a non-
abelian gauge group. We replace the formal moduli space V with Byg, the
formal moduli space arising from g. Then, the higher loop space MapS(AQ, ‘7)
is replaced by MapS(AQ, Bg), which can be seen as a formal neighborhood of
the trivial bundle in Bung(&g). Loosely speaking, we expect that the algebra
of spherical operators is controlled by an algebra of differential operator type
on this formal moduli space Bung(A2)).

We now give a precise, but weaker, statement, using the result about free
cotangent theories.

Lemma 7.7. Let G be a reductive algebraic group. Consider the algebra p*Obs?p
of spherical operators for the theory. Let |g| denote the underlying vector space
of g. Using the anti-diagonal filtration, we take the associated graded and obtain
a map

Utp(H|g)[—1],2) — &r /)*Obs?p
of factorization algebras on R~g.

In other words, the spherical operators for the nonabelian gauge theory
should determine a deformation of this dg Weyl algebra, obtained by comput-
ing the differentials in the fiberwise polynomial spectral sequence. The main
subtlety here is that the pushforward is sensitive to the complex geometry
of the thickened spheres, notably the ratio of the interior to exterior radii,
whereas the locally constant algebra on the left hand side is insensitive to that
ratio. For this reason, the pushforward is not “just” differential operators on
the formal moduli space.

We expect that deformation to have the following form. Let R, denote
the graded-commutative algebra H’(A%oggg). Since algebraic functions in-
clude canonically into the Dolbeault complex, there is a map from Ry to the
Dolbeault cohomology of A2, For a reductive algebraic group G, the graded
Lie algebra gle] ® Re thus maps canonically to the cohomology of the local
Lie algebra encoding the holomorphic twist we are studying. Given a choice of
invariant pairing on the reductive Lie algebra g, the dg algebra

Lie (0] © R2) = O(B(g ® Ry))

has a Poisson bracket determined by the pairing on g and the residue pairing
on Ry. There is a canonical deformation to a dg associative algebra, namely
the algebra of differential operators on B(g ® Rs).

Conjecture 7.8. Let GG be a reductive algebraic group. Consider p*ObS?p, the
algebra of spherical operators for the holomorphically twisted theory. There is
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a map from the algebra of differential operators on B(g ® R2) to the second
page of the spectral sequence for the anti-diagonal filtration on p*Obs?p.

7.2. B-Type Twists

For simplicity we will focus our attention to the B-twist associated to the
parameter (1, 1,0), so that we are working with the usual de Rham differential.
With some care everything in this section could be generalized to a generic
B-twist associated to the parameter (¢,t,0) for any nonzero ¢.

Remark 7.9. In fact it would also be possible to consider theories associated
to the twist at parameter (t1,t2,0) where ¢; and to are both non-zero, but
where the two values may differ. Such twists only carry a de Rham action of
SO(2) x SO(2) rather than SO(4), so the factorization homology can only be
computed on products 31 X Yo of surfaces. &

Let G be a reductive algebraic group. For any 4-dimensional smooth
manifold M, consider a principal G-bundle P — M equipped with a flat
connection V. It induces a flat connection on the adjoint bundle ad(P) =
P x% g, which we also denote by V. The space of fields is then

Ep = Q* (M, ad(P))[1] ® Q° (M, ad(P)")[2],

which is sections of a graded vector bundle Ep — M, and we equip this graded
vector space with the differentials induced by V. The cohomology of the space
of fields is

H*(Ep) = HY (M, ad(P))[1] ® HY (M, ad(P)")[2].

When P is the trivial bundle G x M with the associated flat connection, this
reduces to

HY (Eiriv) = Hig (M) @ g[1] © Hig (M) ® g*[2].

For a closed 4-manifold (i.e., compact and without boundary), the cohomology
H*(Ep) is finite. Furthermore, there is a canonical pairing on H*(Ep) of degree -
1 that is invariant for the shifted Lie bracket.

Lemma 7.10. Let G be an abelian reductive algebraic group. On a closed 4-
manifold M with principal G-bundle P — M and flat connection V, the coho-
mology of the classical observables Obs™ (M) is isomorphic to S/y?n(H'(Ep)*),
which is a finitely-generated free graded-commutative algebra.

We remark that this algebra also has a natural 1-shifted Poisson bracket,
arising from the canonical pairing on H®(Ep)*.

Proof. This result is a special case of results from [15]; see especially Chapter
5, Section 6, and Appendix C. The argument is completely parallel to that
for Lemma 7.1, everywhere replacing Dolbeault complexes with the de Rham
complexes for the flat connection V. O

For G nonabelian, the fields £€p have a nontrivial shifted dg Lie alge-
bra structure, by mixing the wedge product of differential forms with the Lie
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bracket on g. This dg Lie algebra £p[—1] has a natural moduli-theoretic in-
terpretation. We can identify it with the (—1)-shifted tangent complex to the
derived stack T*[—1]Flatg (M), the shifted cotangent to the stack of flat G-
bundles on M, at the point (P, V) (see also the discussion of stacks of this
type in Sect.4.1.1.)

The cohomology H®(Ep)[—1] carries the structure of a graded Lie algebra.

Corollary 7.11. On the closed j-manifold M with principal bundle P — M
and flat connection V, there is a canonical filtration on the classical observ-
ables ObSCI(M) by powers of the augmentation ideal. In the associated spectral
sequence, the first page is isomorphic to S/y?n(H' (Ep)*).

The next interesting differential in the spectral sequence is the Chevalley
differential arising from the Lie algebra structure of H*(Ep).

In some cases, we have a stronger result. For M a closed 4-manifold that
is formal in the sense of rational homotopy theory, Ep[—1] is quasi-isomorphic
to its cohomology as a dg Lie algebra, so that we have the following.

Lemma 7.12. For M a formal closed 4-manifold, the classical observables
Obs® (M) are quasi-isomorphic to Ct, (H*(Ep)[—1]) as dg commutative al-
gebras.

The quantum situation for the B-twist is nice: thanks to Corollary 6.5,
our quantization works on any oriented 4-manifold. Indeed, by Lemma 6.16,
we have the following.

Proposition 7.13. Let M be an oriented closed 4-manifold, equipped with the
trivial principal G-bundle. Then the cohomology of the fiberwise polynomial
quantum observables Obs?p(M) 18 1somorphic to

det (H3g (M) ® g) [da],
where dyr modulo 2 agrees with the Euler characteristic.

Remark 7.14. By the same argument as in Remark 7.6, we can identify the
cohomology of the fiberwise polynomial quantum observables after symmetry
breaking to a choice of vacuum [z] € [g*/G] with

det (HSx (M) ® g.) [dar],

where g, is the centralizer of x. <&

Now take M to be a closed 3-manifold and consider the theory on M x R.
In other words, we compactify our 4-dimensional theory along M to produce
a l-dimensional theory in terms of the R coordinate (or “time direction”).
This theory is a one-dimensional topological o-model of AKSZ-type, where
the target space is, in essence, 7™ Flatg (M), where Flatg (M) denotes the
derived stack of flat G-connections on M. In practice, we take a formal moduli
space as the target, typically the formal neighborhood of the trivial G-bundle
equipped with the trivial connection.

The observables of this compactified theory should offer a deformation
quantization of this symplectic derived stack. In more explicit terms, let 7: M x
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R — R denote the projection map, and consider the pushforward factorization
algebra m,0bs? on R. It is locally constant, and hence it corresponds to an
[E;-algebra, thanks to the equivalence of co-categories between E;-algebras and
locally constant factorization algebras on R [1,46]. The E;-algebra associated
with the pushforwards has a clear conceptual meaning, as we will now see.

Let Flatg(M){ denote the formal neighborhood of the trivial flat bundle
inside all flat G-bundles on M.

Proposition 7.15. For a reductive algebraic group G with Lie algebra g, con-
sider the fiberwise polynomial observables of the B-twisted theory on M x R.
The pushforward observables W*Obsg) and W*Obs‘f}l, are locally constant on R
and hence correspond to E1-algebras:
e the classical observables W*Obsfll) correspond to Og,(T* Flatg(M)y), and
e the quantum observables W*Obs?p correspond to an algebra of differential
operator type on Flatg(M){, in the sense of Definition 6.19.

Before proving this proposition, we will provide a very concrete char-
acterization of the graded associative algebra associated to H®w,.Obs?, the
strictly locally constant factorization algebra on R. The reader may find think-
ing through these very explicit constructions useful for appreciating what sort
of thing these methods can produce.

Let us start by considering the case of the abelian gauge group G,,. In
this case, we are working with the derived moduli of flat line bundles—a kind
of derived version of a Jacobian—and it is easy to show that the tangent
complex to the trivial flat bundle is modeled by Q°(M)[1] = B(2*(M)), the
shifted de Rham complex. There are no nontrivial Mrackets, so the formal
neighborhood Flatg (M){ of the trivial bundle, is Q*(M)[1], viewed as a formal
moduli space.

Taking cohomology simplifies things, so that we get a particularly con-
crete consequence of the proposition. If the reader wants a very explicit dis-
cussion of how to produce representatives of observables and how the Weyl
algebra arises, we direct them to Chapter 4 of [15], where this kind of situa-
tion is treated in depth.

Corollary 7.16. For the abelian group G,,, consider the fiberwise polynomial
observables of the B-twisted theory on M x R. The pushforward observables
W*Obsg) and 71'*Obs?ID are locally constant on R, and their cohomologies corre-
spond to graded associative algebras:

. H'W*Obs‘f}l, corresponds to (’)fp(T*(H'(/ZW\)[l])), and

° H‘mObs?p corresponds to differential operators on the formal moduli

space H'(/ZW\)[l]

For G nonabelian, we obtain a related statement using the spectral se-
quence of the anti-diagonal filtration.

Corollary 7.17. For a reductive algebraic group G with Lie algebra g, consider
the fiberwise polynomial observables of the B-twisted theory on M x R. The
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pushforward observables W*Obs%l) and Ty Obs‘ffll? are locally constant on R. More-
over, the spectral sequence of the anti-diagonal filtration produces a sequence
of locally constant factorization algebras.
On the first page and ignoring the differential, these factorization algebras
correspond to the graded associative algebras:
° H’W*Obs‘f:ll) corresponds to O, (T*B(|g| @ H*(M))), and
o H°m.Obsp, corresponds to differential operators on B(|g| @ H*(M)),

where |g| denotes the vector space underlying g.

The differential on the first page is determined by the cubic term I§' of the
classical interaction, which arises from the Lie bracket on Q*(M x R) ® gle].
Hence for the classical observables, the first page of the spectral sequence
corresponds to the dg associative algebra

O (T"B(g ® H*(M))) = Cf,.(g ® H* (M) x (g* @ H*(M))[-2]).

For the quantum observables, the first page of the spectral sequence corre-
sponds to the dg associative algebra of differential operators on B(g®@H?®(M)).
Later pages would yield further deformations.

Proof of Proposition 7.15. We begin with the classical observables. The push-
forward 7,0bs® is the factorization algebra on R that assigns
Clie (2 (I x M) ® g[e])
to each open set I C R. Note that the Kiinneth theorem assures us that the
inclusion
Q*(I) @ Q° (M) ® gle] — Q°(I x M) @ gle]

is a quasi-isomorphism of dg Lie algebras for every open I. Hence, we have a
quasi-isomorphism of factorization algebras

7.0 25 O, (2°(1) ® (@ (M) @ gle])
Observe that the dg Lie algebra Q°(M) ® g models Flatg(M){, and so
CLie(Q°(Io) ® (Q*(M) @ gle])) ~ O(T™ Flate(M)g)

when Ij is non-empty and connected (i.e., a single interval). By taking the
fiberwise polynomial observables, we find that W*Obs}}l, maps quasi-
isomorphically to a factorization algebra that is locally constant (in the dg
sense) and manifestly quasi-isomorphic to Og, (T* Flatg(M)y), as claimed.

(If one wants, one can go farther and give a map to a strictly locally
constant factorization algebra. Since every open [ is a disjoint union of intervals

and hence C™() — Q°*(I) is a quasi-isomorphic by the Poincaré lemma, we
have

cEoN @O (M)®g— QI xM)®g
is a quasi-isomorphism. Thus,
T Obsg (1) = Chiep (CO™ 1) © Q* (M) ® gle]) = O, (T Flatg(M)g)®™0 )

and this map is functorial in the open I.)
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We now turn to the quantum observables. We have already seen that
we can equip these observables with an anti-diagonal filtration. Taking the
associated graded, we obtain the fiberwise polynomial observables of a free
cotangent theory, namely the B-twisted theory with abelian Lie algebra |g|.
Consider, for a moment, the polynomial observables for this free theory (i.e.,
before completing along the base direction Blg| and hence getting the fiberwise
polynomial observables). It is the central result of Chapter 4 of [15] that the
observables of any free theory are an enveloping factorization algebra of a
Heisenberg dg Lie algebra. In this case, it is the Heisenberg dg Lie algebra
arising by extending (28 (R x M) ® |g|[¢])[1] via its pairing. This dg Lie algebra
is quasi-isomorphic to the Heisenberg dg Lie algebra for Q2 (R)@Q° (M) ®|g|[e],
by the Kiinneth theorem. Let us denote it by Hq as. Hence there is a quasi-
isomorphism

CI:ie(H‘gLM) — ﬂ'*ObS?gl

into the observables for the abelian B-twisted theory. By [40], the left hand side
corresponds to the enveloping algebra of the (ordinary, unshifted) Heisenberg
Lie algebra (Q°(M) ®|g|[])[1] © AC. This implies that . Obs'flgl models a Weyl
algebra (or polynomial differential operators). To get the claim about fiberwise
polynomial observables, we simply complete in the “base direction,” which we
can do at every stage of the argument just given. O

7.3. A-Type Twists

The situation here is, at first inspection, rather simple. For a classical A-twisted
theory expanded around some point [z] € [g*/G], the BV complex of fields is
acyclic, so that the space of solutions is just an isolated point. The observables
are quasi-isomorphic to C, the algebra of functions on a point. There are no
interesting [4-algebra deformations here!

On the other hand, we are working over a base stack [g*/G], and the
constant sheaf on a space encodes interesting topological information. The key
example to bear in mind is that the de Rham sheaf (2%,d4r) looks locally
trivial by the Poincaré lemma, but it knows interesting global information,
namely cohomology.

Our situation is exactly parallel. By construction, at a point = € g*, the
BV complex of the A-twisted theory

(Qo7o(((:2) ® g[g] [1],5 + tlazl + tgazg + ead, + u% ldgz>

admits a canonical inclusion from a “constant subcomplex”
0 .
gle][1], ead, + Upe idg,

and this map is a quasi-isomorphism by the Poincaré lemma. Hence, there is
a canonical quasi-isomorphism

Obsﬂ(R‘l) — Clie (g[e],eadz + u% idgm>
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that we will call the “Poincaré map.” The right hand side is a model of the
de Rham complex of the formal neighborhood of [z] in [g*/G]. In this sense,
the global classical observables provide a fat model of the de Rham complex
on the stack [g*/G].

When we quantize, we deform the complex of observables, and we might
hope to deform this Poincaré map in a compatible way. Such a construction
would allow us to take a quantum observable (e.g., a Wilson loop) and produce
a closed differential form on [g*/G].

This discussion is so far about factorization algebras on R*, where we
have seen the observables are quasi-isomorphic to the unit factorization algebra
(i.e., it assigns the base field to any open). It is straightforward to compute
factorization homology of the unit algebra on any manifold.
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